The Algebraic Rainich Conditions

José Héctor Caltenco Franca, José Luis López-Bonilla and Raúl Peña-Rivero

Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional
Postal address: Edif. Z-4, 3er Piso, Col. Lindavista, CP 07738 México DF, Mexico
E-mail: joseluis.lopezbonilla@gmail.com

In the literature, the algebraic Rainich conditions are obtained using special methods such as spinors, duality rotations, an eigenvalue problem for certain 4 × 4 matrices or artificial tensors of 4th order. We give here an elementary procedure for deducing an identity satisfied by a determined class of second order tensors in arbitrary ℜ^n, from which the Rainich expressions are immediately obtained.

1 Introduction

Rainich [1–5] proposed a unified field theory for the geometrization of the electromagnetic field, whose basic relations can be obtained from the Einstein-Maxwell field equations:

\[R_{ij} - \frac{1}{2} R g_{ij} = -8 \pi \left(F_{ib} F^b_j - \frac{1}{4} F_{ab} F^{ab} g_{ij} \right) , \] (1)

where \(R_{ac} = R_{ca} , R = R^b_b \) and \(F_{ac} = -F_{ca} \) are the Ricci tensor, scalar curvature and Faraday tensor [6], respectively.

If in (1) we contract \(i \) with \(j \) we find that:

\[R = 0 \] (2)

then (1) adopts the form:

\[R_{ij} = 2 \pi F_{ab} F^{ab} g_{ij} - 8 \pi F_{ib} F^b_j , \] (3)

used by several authors [1, 2, 5, 7, 8] to obtain the identity:

\[R_{ic} R^c_j = \frac{1}{4} \left(R_{ab} F^{ab} \right) g_{ij} . \] (4)

If \(F_{ar} \) is known, then (3) is an equation for \(g_{ij} \) and our situation belongs to general relativity. The Rainich theory presents the inverse process: To search for a solution of (2) and (4) (plus certain differential restrictions), and after with (3) to construct the corresponding electromagnetic field; from this point of view \(F_{ar} \) is a consequence of the spacetime geometry.

In the next Section we give an elementary proof of (4), without resorting to duality rotations [2], spinors [7], eigenvalue problems [8] or fourth order tensors [9, 10].

2 The algebraic Rainich conditions

The structure of (3) invites us to consider tensors with the form:

\[C_{ij} = A g_{ij} + B_{ik} F^k_j , \] (5)

where \(A \) is a scalar and \(B_{ac} , F_{ij} \) are arbitrary antisymmetric tensors. Then from (5) it is easy to deduce the expression:

\[C_{ia} C^{a}_j - \frac{C}{2} C_{ij} - \frac{1}{4} \left(C_{ab} C^{ba} - \frac{C^2}{2} \right) g_{ij} = D_{ij} \] (6)

with \(C = C^\tau_\tau \) and

\[D_{ij} = B_{ik} F^{ak} B_{am} F^m_j - \frac{1}{2} \left(B^{nm} F_{nm} \right) B_{ab} F^b_j + \frac{1}{8} \left[\left(B^{nm} F_{nm} \right)^2 - 2 B_{bk} F^k_a B_a^m \right] g_{ij} . \] (7)

But in four dimensions we have the following identities between antisymmetric tensors and their duals [11–13]:

\[B_{ci} F^{ic} - * B_{ci} * F^m_c = \frac{1}{2} \left(B_{cd} F^{cd} \right) g^{im} , \] (8)

\[B^*_k * B^* r = \frac{1}{4} \left(B_{ab} * B^{ab} \right) g^{kr} . \]

With (7) and (8) it is simple to prove that \(D_{ij} = 0 \). Therefore (6) implies the identity:

\[C_{ia} C^{a}_j - \frac{C}{2} C_{ij} = \frac{1}{4} \left(C_{ab} C^{ba} - \frac{C^2}{2} \right) g_{ij} . \] (9)

If now we consider the particular case:

\[A = 2 \pi F_{ab} F^{ab} , \quad B_{ij} = -8 \pi F_{ij} , \] (10)

then (5) reproduces (3) and \(C = R = 0 \), and thus (9) leads to (4), q.e.d.

Our procedure shows that the algebraic Rainich conditions can be deduced without special techniques.

References

Submitted on April 30, 2007
Accepted on May 01, 2007
3. Farrell E. J. Uniqueness of the electromagnetic field in the

5. Kramer D., Stephani H., MacCallum M. and Herlt E. Exact
solutions of Einstein’s field equations. Cambridge University
Press, 1980, Chap. 5.

8. Adler R., Bazin M. and Schiffer M. Introduction to general

10. Lovelock D. The algebraic Rainich conditions. *Gen. Rel. and
Grav.*, 1973, v. 4, 149.

1962.