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Cătălin Barbu
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In this note, we present a proof to the Van Aubel Theorem in the Einstein Relativistic
Velocity Model of Hyperbolic Geometry.

1 Introduction

Hyperbolic Geometry appeared in the first half of the 19th

century as an attempt to understand Euclid’s axiomatic basis
of Geometry. It is also known as a type of non-Euclidean Ge-
ometry, being in many respects similar to Euclidean Geom-
etry. Hyperbolic Geometry includes similar concepts as dis-
tance and angle. Both these geometries have many results in
common but many are different. There are known many mod-
els for Hyperbolic Geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic veloc-
ity model, etc. Here, in this study, we give hyperbolic version
of Van Aubel theorem. The well-known Van Aubel theorem
states that if ABC is a triangle and AD, BE,CF are concurrent
cevians at P, then AP

PD =
AE
EC +

AF
FB (see [1, p. 271]).

Let D denote the complex unit disc in complex z - plane,
i.e.

D = {z ∈ C : |z| < 1}.
The most general Möbius transformation of D is

z→ eiθ z0 + z
1 + z0z

= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the
Möbius transformation of the disc to be viewed as a Möbius
left gyrotranslation

z→ z0 ⊕ z =
z0 + z
1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D,
and z0 is the complex conjugate of z0. Let Aut(D,⊕) be the
automorphism group of the grupoid (D,⊕). If we define

gyr : D × D→ Aut(D,⊕), gyr[a, b] =
a ⊕ b
b ⊕ a

=
1 + ab
1 + ab

,

then is true gyrocommutative law

a ⊕ b = gyr[a, b](b ⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gy-
rogroup (G,⊕) that obeys the following axioms:

1. gyr[u, v]a· gyr[u, v]b = a · b for all points
a,b,u, v ∈G.

2. G admits a scalar multiplication, ⊗, possessing the fol-
lowing properties. For all real numbers r, r1, r2 ∈ R and
all points a ∈G:

(G1) 1 ⊗ a = a

(G2) (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a

(G3) (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a)

(G4)
|r| ⊗ a
∥r ⊗ a∥ =

a
∥a∥

(G5) gyr[u, v](r ⊗ a) = r ⊗ gyr[u, v]a

(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1

3. Real vector space structure (∥G∥ ,⊕,⊗) for the set ∥G∥
of onedimensional “vectors”

∥G∥ = {± ∥a∥ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such
that for all r ∈ R and a,b ∈ G,

(G7) ∥r ⊗ a∥ = |r| ⊗ ∥a∥

(G8) ∥a ⊕ b∥ ≤ ∥a∥ ⊕ ∥b∥

Definition 1. Let ABC be a gyrotriangle with sides a, b, c
in an Einstein gyrovector space (Vs,⊕,⊗), and let ha, hb, hc

be three altitudes of ABC drawn from vertices A, B,C per-
pendicular to their opposite sides a, b, c or their extension,
respectively. The number

S ABC = γaaγha ha = γbbγhb hb = γccγhc hc

is called the gyrotriangle constant of gyrotriangle ABC (here

γv =
1√

1 − ∥v∥
2

s2

is the gamma factor).

(See [2, p. 558].)
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Theorem 1. (The Gyrotriangle Constant Principle)
Let A1BC and A2BC be two gyrotriangles in a Einstein gy-
rovector plane (R2

s ,⊕,⊗), A1 , A2 such that the two gyroseg-
ments A1A2 and BC, or their extensions, intersect at a point
P ∈ R2

s . Then,
γ|A1P| |A1P|
γ|A2P| |A2P| =

S A1BC

S A2BC
.

(See [2, p. 563].)

Theorem 2. (The Hyperbolic Theorem of Menelaus in Ein-
stein Gyrovector Space)
Let a1, a2, and a3 be three non-gyrocollinear points in an Ein-
stein gyrovector space (Vs,⊕,⊗). If a gyroline meets the sides
of gyrotriangle a1a2a3 at points a12, a13, a23, then

γ⊖a1⊕a12 ∥⊖a1 ⊕ a12∥
γ⊖a2⊕a12 ∥⊖a2 ⊕ a12∥

· γ⊖a2⊕a23 ∥⊖a2 ⊕ a23∥
γ⊖a3⊕a23 ∥⊖a3 ⊕ a23∥

·

γ⊖a3⊕a13 ∥⊖a3 ⊕ a13∥
γ⊖a1⊕a13 ∥⊖a1 ⊕ a13∥

= 1

(See [2, p. 463].)

Theorem 3. (The Gyrotriangle Bisector Theorem)
Let ABC be a gyrotriangle in an Einstein gyrovector space
(Vs,⊕,⊗), and let P be a point lying on side BC of the gyro-
triangle such that AP is a bisector of gyroangle ]BAC. Then,

γ|BP| |BP|
γ|PC| |PC| =

γ|AB| |AB|
γ|AC| |AC|

(See [3, p. 150].) For further details we refer to the recent
book of A. Ungar [2].

2 Main results

In this section, we prove Van Aubel’s theorem in hyperbolic
geometry.

Theorem 4. If the point P does lie on any side of the hyper-
bolic triangle ABC, and BC meets AP in D, CA meets BP in
E, and AB meets CP in F, then

γ|AP| |AP|
γ|PD| |PD| =

γ|BC| |BC|
2

·
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

· γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD| .

Proof. If we use the Menelaus’s theorem in the h-triangles
ADC and ABD for the h-lines BPE, and CPF respectively,
then

γ|AP| |AP|
γ|PD| |PD| =

γ|AE| |AE|
γ|EC| |EC| ·

γ|BC| |BC|
γ|BD| |BD| (1)

and
γ|AP| |AP|
γ|PD| |PD| =

γ|FB| |FB|
γ|FA| |FA| ·

γ|BC| |BC|
γ|CD| |CD| (2)

From (1) and (2), we have

2 · γ|AP| |AP|
γ|PD| |PD| =

γ|AE| |AE|
γ|EC| |EC| ·

γ|BC| |BC|
γ|BD| |BD|+

γ|FA| |FA|
γ|FB| |FB| ·

γ|BC| |BC|
γ|CD| |CD| ,

the conclusion follows. �

Corollary 1. Let G be the centroid of the hyperbolic trian-
gle ABC, and D, E, F are the midpoints of hyperbolic sides
BC,CA, and AC respectively. Then,

γ|AG| |AG|
γ|GD| |GD| =

γ|BC| |BC|
2

[
1

γ|BD| |BD| +
1

γ|CD| |CD|

]
. (3)

Proof. If we use theorem 4 for the triangle ABC and the cen-
troid G, we have

γ|AG| |AG|
γ|GD| |GD| =

γ|BC| |BC|
2

·
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

·
γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD| ,

the conclusion follows. �

Corollary 2. Let I be the incenter of the hyperbolic triangle
ABC, and let the angle bisectors be AD, BE, and CF. Then,

γ|AI| |AI|
γ|ID| |ID| =

1
2

[
γ|AB| |AB|
γ|BD| |BD| +

γ|AC| |AC|
γ|CD| |CD|

]
. (4)

Proof. If we use theorem 3 for the triangle ABC, we have

γ|AE| |AE|
γ|EC| |EC| =

γ|AB| |AB|
γ|BC| |BC| , and

γ|AF| |AF|
γ|FB| |FB| =

γ|AC| |AC|
γ|BC| |BC| . (5)

If we use theorem 4 for the triangle ABC and the incenter
I, we have

γ|AI| |AI|
γ|ID| |ID| =

γ|BC| |BC|
2

·
γ|AE| |AE|
γ|EC| |EC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

·
γ|FA| |FA|
γ|FB| |FB| ·

1
γ|CD| |CD| .

(6)

From (5) and (6), we have

γ|AI| |AI|
γ|ID| |ID| =

γ|BC| |BC|
2

·
γ|AB| |AB|
γ|BC| |BC| ·

1
γ|BD| |BD|+

γ|BC| |BC|
2

·
γ|AC| |AC|
γ|BC| |BC| ·

1
γ|CD| |CD| ,

the conclusion follows. �
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The Einstein relativistic velocity model is another model
of hyperbolic geometry. Many of the theorems of Euclidean
geometry are relatively similar form in the Einstein relativis-
tic velocity model, Aubel’s theorem for gyrotriangle is an
example in this respect. In the Euclidean limit of large s,
s → ∞, gamma factor γv reduces to 1, so that the gyroequal-
ity (1) reduces to the

|AP|
|PD| =

|BC|
2

[
|AE|
|EC| ·

1
|BD| +

|FA|
|FB| ·

1
|CD|

]
in Euclidean geometry. We observe that the previous equality
is a equivalent form to the Van Aubel’s theorem of euclidian
geometry.
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