A More Elegant Argument that \(P \neq NP \)

Craig Alan Feinstein
2712 Willow Glen Drive, Baltimore, Maryland 21209
Email: cafeinst@msn.com

In April 2011, Craig Alan Feinstein published a paper in *Progress in Physics* entitled “An elegant argument that \(P \neq NP \)” [1]. Since then, Craig Alan Feinstein has discovered how to make that argument much simpler. In this letter, we present this argument.

Consider the following problem: Let \(\{s_1, \ldots, s_n\} \) be a set of \(n \) integers and \(t \) be another integer. We want to determine whether there exists a subset of \(\{s_1, \ldots, s_n\} \) for which the sum of its elements equals \(t \). We shall consider the sum of the elements of the empty set to be zero. This problem is called the SUBSET-SUM problem [2].

Let \(k \in \{1, \ldots, n\} \). Then the SUBSET-SUM problem is equivalent to determining whether there exist sets \(I^+ \subseteq \{1, \ldots, k\} \) and \(I^- \subseteq \{k+1, \ldots, n\} \) such that

\[
\sum_{i \in I^+} s_i = t - \sum_{i \in I^-} s_i.
\]

There is nothing that can be done to make this equation simpler. Then since there are \(2^k \) possible expressions on the left-hand side of this equation and \(2^{n-k} \) possible expressions on the right-hand side of this equation, we can find a lower-bound for the worst-case running-time of an algorithm that solves the SUBSET-SUM problem by minimizing \(2^k + 2^{n-k} \) subject to \(k \in \{1, \ldots, n\} \).

When we do this, we find that

\[
2^k + 2^{n-k} = 2^{\lfloor n/2 \rfloor} + 2^{n-\lfloor n/2 \rfloor} = \Theta(\sqrt{2^n})
\]

is the solution, so it is impossible to solve the SUBSET-SUM problem in \(o(\sqrt{2^n}) \) time with a deterministic and exact algorithm. This lower-bound is tight [1]. And this conclusion implies that \(P \neq NP \) [2].

Submitted on December 11, 2011 / Accepted on December 20, 2011

References