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Chronomeric invariants are mathematically determined as the projections of four-dimensional tensorial
quantities onto the three-dimensional spatial section and the line of time belonging to a real particular ob-
server. Such projections are physical observables to the observer; it is these quantities that are measurable
in his real laboratory and depend on the physical and geometric properties of his local physical space.
In other words, chonometric invariants are physical observable quantities in the space-time of General
Relativity. Chronometric invariants and the mathematical appararus for their calculation were introduced
in 1944 by Abraham L. Zelmanov. In this article, we have collected everything (or almost everything)
that we know about chronometric invariants to provide a convenient and most detailed reference to this
mathematical apparatus originally scattered throughout many publications.

Physical observables were mathematically determined and in-
troduced into General Relativity in 1941–1944 by Abraham
L. Zelmanov (1913–1987), who called them chronometrical-
ly invariant quantities or, in brief, chronometric invariants.
Zelmanov first presented his mathematical apparatus for cal-
culating physical observables in 1944, in the form of his PhD
thesis [1]. Later, in 1956–1957, he published a brief review
of his theory in two journal articles [2, 3], of which his 1957
presentation is the most useful and complete. A more detailed
account of Zelmanov’s mathematical apparatus can be found
in the respective chapters of our three research monographs
[4–6] and in one of our recent journal publications [7].

Chronomerically invariant quantities are determined as
the projections of four-dimensional tensorial quantities onto
the three-dimensional spatial section and the line of time in
the real physical reference frame belonging to a particular ob-
server. Such quantities depend on the physical and geometric
properties of his local physical space (his physical reference
space) and can be measured in his laboratory. In other words,
chonometric invariants are physical observable quantities in
the space-time of General Relativity.

For this reason and since we have always sought to ob-
tain a theoretical result that can be registered in laboratory
measurements, we used Zelmanov’s mathematical apparatus
in our research studies. The chronological list of our publica-
tions in English and French, wherein we used chronometric
invariants, is given in the end of this article.

Unfortunately, it just so happened that after Zelmanov’s
death in 1987, we remain the only ones in the world who pro-
fessionally master this mathematical apparatus and apply it
in scientific research. In addition, Zelmanov’s mathematical
apparatus was fragmentarily scattered throughout the afore-
mentioned publications. Some of them pretended to be more
or less complete, but were also limited due to the omission of
some important parts (not relevant to the specific problem).

For this reason, and also because the problem of physical
observables in General Relativity is of great importance for

experiment, Pierre A. Millette, Editor of Progress in Physics,
prompted us to write a compendium containing “everything
we know about chronometric invariants and would like to
say”. Such an article, despite the obvious repetitions with
the previous ones, would contain the entire mathematical ap-
paratus of chronometric invariants, which is very convenient
for ourselves and our future followers.

We are grateful to Pierre A. Millette for his proposal and
will implement it here in this article.

Usually, when doing a research study on General Rela-
tivity, we present all equations and their terms in the general
covariant (four-dimensional) form. This form has its own ad-
vantage as well as a substantial drawback. The advantage is
the invariance of general covariant equations and their terms
in all transitions from one reference frame to another. The
drawback is that they do not show actual three-dimensional
quantities, which can be measured in experiments by a real
observer in his real physical laboratory. In other words, gen-
eral covariant equations do not give us physical observable
quantities, but only an intermediate theoretical result, which
is not applicable in practice. Therefore, in order to obtain a
theoretical result applicable in practice, we need to formulate
our equations in terms of physical observables — the quan-
tities that are experimentally measurable and depend on the
physical and geometric properties of the physical local refer-
ence space belonging to a real particular observer.

Meanwhile, to determine physical observable quantities
in the space-time of General Relativity is not a trivial prob-
lem. For instance, a four-dimensional vector, i.e., a con-
travariant tensor of the 1st rank, has just 4 components: 1 time
component and 3 spatial components. In this case, we can
heuristically assume that its three spatial components form
a three-dimensional observable vector, while its time com-
ponent is the observable potential of the vector field (which,
generally speaking, does not prove that these quantities can
actually be observed). A tensor of the 2nd rank, e.g., a rota-
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tion or deformation tensor, has 16 components: 1 time com-
ponent, 9 spatial components and 6 mixed (time-spatial) com-
ponents. Are the mixed components physical observables?
This is another question that seemingly has no definite an-
swer. Tensors of higher ranks have even more components.
For instance, the Riemann-Christoffel curvature tensor is a
tensor of the 4th rank. It has 256 components. In such a
case the problem of the heuristic recognition of physically ob-
servable components becomes far more complicated, or even
impossible. Besides that, there is an obstacle related to the
recognition of observable components of covariant tensors (in
which indices occupy the lower position) and of mixed type
tensors, which have both lower and upper indices.

Therefore, the most reasonable way out of the labyrinth of
heuristic guesses is to create a strict mathematical theory that
allows us to calculate observable components for any tensor
quantity. As mentioned in the beginning of this article, such a
complete mathematical theory was created in 1941–1944 by
Zelmanov. His theory was called the mathematical apparatus
of physical observable quantities in General Relativity, or, in
brief, the theory of chronometric invariants.

It should be noted that in the 1930’s and 1950’s, indepen-
dently from Zelmanov, some other researchers tried to give
a mathematical definition to physical observable quantities in
the space-time of General Relativity. In 1939, L. D. Landau
and E. M. Lifshitz in their famous The Classical Theory of
Fields [8] introduced observable time and observable three-
dimensional interval similar to Zelmanov’s definitions. But,
Landau and Lifshitz limited themselves only to this particu-
lar case and they did not arrive at general mathematical meth-
ods to calculate physical observable quantities in the four-
dimensional space-time. In the 1950’s, the idea of presenting
physical observables in the form of the projections of four-
dimensional tensorial quantities onto the three-dimensional
spatial section and the time line belonging to an observer
was also voiced by the Italian mathematician Carlo Catta-
neo [9–12]. Cattaneo highly appreciated Zelmanov’s theory
of chronometric invariants, and referred to it in his last publi-
cation [12]. Nevertheless, when evaluating the scientific con-
tribution of Cattaneo, we must take two facts into account.
Firstly, his research was done only in 1958, i.e. 14 years later
than Zelmanov. And secondly, his result was very far from a
complete theory: he limited himself to general considerations
on this problem and did not take into account the physical and
geometric observable properties of the local physical space
belonging to an observer (as Zelmanov did). Therefore, the
projections of four-dimensional tensor quantities considered
by Cattaneo do not depend on the observable properties of the
observer’s reference space and cannot be considered physical
observables.

We therefore call physical observable quantities in the
space-time of General Relativity the Zelmanov chronometric
invariants in order to fix this term and Zelmanov’s priority in
the history of science.

It is also necessary to understand that Zelmanov’s mathe-
matical apparatus of chronometric invariants is not just one of
many other mathematical techniques used in the General The-
ory of Relativity, which require an experimental verification
of their applicability in practice. The Zelmanov chronomet-
ric invariants are physical observables by definition, and there
is no other mathematical technique to determine physical ob-
servables in General Relativity. In this sense, the mathemati-
cal apparatus of chronometric invariants does not require ex-
perimental verification, since all quantities that we register in
experiments and astronomical observations are chronometric
invariants by definition. This fact should always be taken into
account, when a researcher seeks to obtain a theoretical result
that can be verified in a laboratory experiment or astronomi-
cal observations.

Below we present the mathematical apparatus of Zelma-
nov’s chronometric invariants in its entirety, based on his ori-
ginal publications, our personal conversations with him, as
well as our own works. So, let us begin.

In order to recognize which of the components of a four-
dimensional quantity are physical observables, we consider
a physical frame of reference belonging to a real observer,
which includes a three-dimensional coordinate grid spanned
over his reference body (a real physical body near him, such
as the planet Earth for an Earth-bound observer), at each point
of which a real physical clock is installed. His reference body,
like any other real physical body, has a gravitational field,
can rotate and deform, thereby making the local reference
space of the observer inhomogeneous and anisotropic. In fact,
the reference body and its reference space can be considered
as a set of the real physical standards to which the observer
compares the results of his measurements. Mathematically,
this means that the physical observable quantities registered
by an observer are the projections of four-dimensional quan-
tities onto the three-dimensional space (coordinate grid) and
the time line of his reference body.

From a geometric point of view, the three-dimensional
space of an observer is a three-dimensional spatial section
drawn in space-time at the time coordinate x0 = ct= const
determined by the moment of observation t. In fact, at any
point in space-time, a local spatial section (local space) can
be drawn orthogonally to the line of time. If there exists an
enveloping curve to such local spatial sections (local three-
dimensional spaces) in space-time, these local spatial sections
create a global spatial section, everywhere orthogonal to the
lines of time that “pierce” it. Such a space is known as a holo-
nomic space. If there is not an enveloping curve for such local
spaces, then there are only spatial sections locally orthogonal
to the lines of time: such a space is non-holonomic.

Assume that an observer is at rest with respect to his phys-
ical references (his reference body). The reference frame of
such an observer always accompanies his reference body in
any of its displacements, so such a system is called an ac-
companying reference frame. Any coordinate grid that is at
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rest with respect to its reference body is connected to another
coordinate grid through the transformation

x̃0 = x̃0 (x0, x1, x2, x3)
x̃i = x̃i (x1, x2, x3) , ∂x̃i

∂x0 = 0

 ,
where the latter equation means that spatial coordinates in the
tilde-marked grid are independent of time in the non-tilded
coordinate grid, which is the same as setting a coordinate grid
of fixed time lines xi = const at any point of the grid. Trans-
formation of spatial coordinates is nothing but only transition
from one coordinate grid to another within the same spatial
section. Transformation of time means changing the whole
set of clocks, so this is transition to another spatial section
(another three-dimensional reference space). In practice, this
means replacing one reference body and all its physical refer-
ences with another one that has its own physical references.
But when using different physical references, the observer
will obtain different results of measurement (other observ-
able quantities). Therefore, all physical observable quantities
in the reference frame accompanying an observer must be in-
variant with respect to transformations of time throughout his
entire three-dimensional spatial section xi = const. In other
words, such quantities must have the property of chronomet-
ric invariance. That is, all physical observable quantities in
the reference frame accompanying an observer are “chrono-
metrically” invariant quantities or, in brief, chronometric in-
variants.

Since the aforementioned transformations of time deter-
mine a set of fixed time lines “piercing” the observer’s three-
dimensional spatial section, chronometric invariants (physi-
cal observable quantities) are all those quantities that are in-
variant with respect to these transformations.

In practice, in order to obtain physical observable quan-
tities in the physical reference frame that accompanies a real
observer, we need to calculate chronometrically invariant pro-
jections of four-dimensional quantities onto the spatial sec-
tion and the time line of the observer’s physical reference
body, and then formulate the projections with chronometri-
cally invariant (physically observable) properties of his local
physical reference space.

Therefore, Zelmanov had introduced projection operators
that completely characterize the reference space of a particu-
lar observer.

The operator of projection onto the time line of an ob-
server is the unit vector of the observer’s four-dimensional
velocity bα with respect to his reference body

bα =
dxα

ds
,

which is tangential to his four-dimensional (space-time) tra-
jectory at each of its points. Because any individual reference
frame is characterized by its own tangential unit vector bα,

Zelmanov referred to the bα as the monad vector. It is easy
to see that since the vector bα is tangential to the observer’s
four-dimensional trajectory at each of its points, this vector
has unit length

bα bα = gαβ
dxα

ds
dxβ

ds
=
gαβ dxαdxβ

ds2 = +1 .

The operator of projection onto the three-dimensional ref-
erence space of the observer (which is an instant spatial sec-
tion of space-time at the moment of observation) is a four-
dimensional symmetric tensor hαβ having the form

hαβ = −gαβ + bα bβ ,

hαβ = −gαβ + bαbβ,

hβα = −g
β
α + bα bβ.

It is easy to see that the vector bα and the tensor hαβ have
all the necessary properties characteristic of projection oper-
ators, namely — the properties

bαbα = +1 , hβα bα = 0 ,

where the second property follows from the fact that the vec-
tor bα and the tensor hαβ are orthogonal to each other in space-
time: mathematically this means that their common contrac-
tion is zero

hαβbα = −gαβbα + bα bαbβ = 0 ,

hαβbα = −gαβbα + bβbαbα = 0 ,

hαβ bα = −gαβ bα + bβbαbα = 0 ,

hβα bα = −gβα bα + bβbα bα = 0 .

In the reference frame accompanying the observer, his
three-dimensional velocity with respect to his reference body
is zero, which means that bi = 0. As a result, the components
of the bα in the accompanying reference frame are

b0 =
1
√
g00
, b0 = g0α bα =

√
g00 ,

bi = 0 , bi = giα bα =
gi0
√
g00
.

Therefore, the components of the projection operator hαβ
in the accompanying reference frame (bi = 0) are

h00 = 0 , h00 = −g00 +
1
g00
, h0

0 = 0 ,

h0i = 0 , h0i = −g0i, hi
0 = δ

i
0 = 0 ,

hi0 = 0 , hi0 = −gi0, h0
i =
gi0

g00
,

hik = −gik +
g0ig0k

g00
, hik = −gik, hi

k = −g
i
k = δ

i
k .
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The projection of a tensor onto the time line of an ob-
server is the result of its contraction with the monad vector
bα of his reference frame.

The projection of a tensor onto the three-dimensional spa-
tial section of the observer (his three-dimensional reference
space) is the result of its contraction with the tensor hαβ of his
reference frame.

Despite the fact that such projections of a tensor of the
1st rank (a vector) are chronometric invariants, i.e., physical
observables, not all such projections (contractions) of higher
rank tensors have the property of chronometric invariance. To
solve this problem, Zelmanov developed a general mathemat-
ical method for calculating chronometrically invariant (physi-
cally observable) projections of any four-dimensional general
covariant tensor and formulated it as a theorem. We refer to
it as Zelmanov’s theorem.

Zelmanov’s theorem: Let there be a four-dimensional
tensor Qµν...ραβ...σ of the r-th rank, where Qik...p

00...0 is the three-
dimensional part of Qµν...ρ00...0 , in which all upper indices
are non-zero, and all m lower indices are zeroes. Then,

T ik...p = (g00)−
m
2 Qik...p

00...0

is a chronometrically invariant three-dimensional con-
travariant tensor of the (r−m)-th rank. This means that
the chr.inv.-tensor T ik...p is the result of m-fold projec-
tion of the initial tensor Qµν...ραβ...σ onto the time line by the
indices α, β . . . σ and onto the spatial section by r−m
indices µ, ν . . . ρ.

According to this theorem, the chronometrically invari-
ant (physically observable) projections of a four-dimensional
vector Qα are the quantities

bαQα =
Q0
√
g00
, hi

αQα = qi,

while the chr.inv.-projections of a symmetric tensor of the 2nd
rank Qαβ are the quantities

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi
0

√
g00
, hi

αh
k
β Qαβ =Qik,

where, in the case of an antisymmetric tensor of the 2nd rank,
the first chr.inv.-projection is zero, because Q00 =Q00 = 0 for
any antisymmetric 2nd rank tensor.

The chr.inv.-projections of a four-dimensional coordinate
interval dxα are the physically observable time interval

dτ =
√
g00 dt +

g0i

c
√
g00

dxi,

and the interval of the physically observable coordinates dxi,
which are the same as the regular spatial coordinates. Thus,
the three-dimensional chr.inv.-vector

vi =
dxi

dτ
, vivi = hik vivk = v2

is the physically observable velocity of a particle, which is
different from the particle’s coordinate velocity

ui =
dxi

dt
.

At isotropic trajectories (trajectories of light), the vi trans-
forms into the three-dimensional chr.inv.-vector of the physi-
cally observable velocity of light

ci = vi =
dxi

dτ
, ci ci = hik cick = c2.

When we project the fundamental metric tensor gαβ onto
the three-dimensional spatial section of an observer (which is
his three-dimensional reference space)

hi
αh

k
β g
αβ = gik = −hik, hαi hβkgαβ = gik − bi bk = −hik ,

we see that the three-dimensional part of the projection opera-
tor hαβ, i.e., the three-dimensional tensor hik, the components
of which have the form

hik = −gik + bi bk , hik = −gik, hi
k = −g

i
k = δ

i
k ,

is the chr.inv.-metric tensor or, in other words, the metric ten-
sor physically observed in the reference frame accompanying
the observer.

The chr.inv.-metric tensor hik has all properties of the fun-
damental metric tensor gαβ throughout the observer’s three-
dimensional spatial section (his three-dimensional reference
space), i.e., it satisfies the condition

hi
α hαk = δ

i
k − bk bi = δik , δik =

 1 0 0
0 1 0
0 0 1

 ,
where δik is the unit three-dimensional tensor. The tensor δik is
the three-dimensional part of the four-dimensional unit ten-
sor δαβ , which can be used to lift and lower indices in four-
dimensional quantities. For this reason, the chr.inv.-metric
tensor hik can lift and lower indices in chronometrically in-
variant quantities.

Using gαβ from hαβ =−gαβ + bαbβ, we obtain the four-
dimensional interval ds2 = gαβ dxαdxβ in the form

ds2 = bα bβ dxαdxβ − hαβdxαdxβ

expressed with the projection operators bα and hαβ. Because
bα dxα = cdτ, the first term of the above formula transforms
into bα bβ dxαdxβ = c2dτ2. The second term of this formula,
hαβdxαdxβ = dσ2, in the reference frame accompanying the
observer is the square of the three-dimensional physically ob-
servable interval

dσ2 = hik dxidxk,

since hαβ has all properties of the fundamental metric tensor
gαβ in the accompanying reference frame.
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As a result, the four-dimensional interval written in terms
of physically observable chr.inv.-quantities has the form

ds2 = c2dτ2 − dσ2.

Obviously, the physical observables (chr.inv.-projections
of four-dimensional quantities) registered by an observer de-
pend on the physical and geometric observable properties of
the observer’s local space (his physical reference space), with
which, therefore, all chr.inv.-quantities and equations must be
expressed. Therefore, Zelmanov deduced the basic observ-
able properties of the reference space accompanying an ob-
server and introduced them into the theory.

Two main physical observable properties of the accom-
panying reference space can be obtained using the chr.inv.-
derivation operators with respect to time and the spatial co-
ordinates. The mentioned chr.inv.-derivation operators intro-
duced by Zelmanov have the form

∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi −
g0i

g00

∂

∂x0

and are non-commutative, so the difference between the 2nd
derivatives is not zero

∗∂2

∂xi∂t
−

∗∂2

∂t ∂xi =
1
c2 Fi

∗∂

∂t
,

∗∂2

∂xi∂xk −
∗∂2

∂xk∂xi =
2
c2 Aik

∗∂

∂t
.

Here, Aik is the three-dimensional antisymmetric chr.inv.-
tensor of the angular velocity with which the reference space
of the observer rotates

Aik =
1
2

(
∂vk
∂xi −

∂vi

∂xk

)
+

1
2c2 (Fi vk − Fk vi) ,

where vi is the linear velocity of this rotation

vi = −c
g0i
√
g00
, vi = −cg0i √g00 ,

vi = hik v
k, v2 = vk v

k = hik v
ivk.

In addition, the vi gives detailed formulae for the physi-
cally observable time interval dτ and the chr.inv.-metric ten-
sor hik, which are

dτ =
√
g00 dt −

1
c2 vi dxi, hik = −gik +

1
c2 vi vk .

The quantity Fi is the three-dimensional chr.inv.-vector of
the gravitational inertial force

Fi =
1
√
g00

(
∂w
∂xi −

∂vi
∂t

)
=

1

1 − w
c2

(
∂w
∂xi −

∂vi
∂t

)
,

where
w = c2 (

1 −
√
g00

)

is the gravitational potential, the origin of which is the grav-
itational field of the observer’s reference body. In the frame-
work of quasi-Newtonian approximation, i.e., in a weak grav-
itational field at velocities much lower than the velocity of
light and in the absence of rotation of the space, the Fi trans-
forms into the non-relativistic gravitational force

Fi =
∂w
∂xi .

It should be noted that the quantities w and vi do not have
the property of chronometric invariance, despite the fact that
vi = hik v

k is obtained as for a chr.inv.-quantity, through lower-
ing the upper index by the chr.inv.-metric tensor hik. On the
other hand, the vector of the gravitational inertial force Fi and
the tensor of the angular velocity of rotation of the observer’s
space, Aik, built using them, are chr.inv.-quantities.

The chr.inv.-quantities Fi and Aik are related to each other
by two identities, which we call the Zelmanov identities

∗∂Aik

∂t
+

1
2

(
∗∂Fk

∂xi −
∗∂Fi

∂xk

)
= 0 ,

∗∂Akm

∂xi +
∗∂Ami

∂xk +
∗∂Aik

∂xm +
1
2

(Fi Akm + Fk Ami + Fm Aik) = 0 .

In addition to rotation and the presence of a gravitational
field, the real reference body of an observer can deform. In
this case, the observer’s reference space with its coordinate
grid deforms accordingly, which must be taken into account
in experiments. Mathematically, this factor manifests itself
in the non-stationarity of the physically observable chr.inv.-
metric hik of the observer’s space and must be taken into ac-
count in the physically observable chr.inv.-quantities regis-
tered by him. For this reason, Zelmanov had introduced the
three-dimensional symmetric chr.inv.-tensor Dik characteriz-
ing the rate of deformations of the observer’s space

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t
,

D = hikDik = Dn
n =

∗∂ ln
√

h
∂t

, h = det ∥hik∥ .

Zelmanov had also introduced a theorem linking the holo-
nomity of space-time to the tensor of the angular velocity of
rotation of the observer’s three-dimensional space.

Zelmanov’s theorem on the holonomity of space-time:
The identical equality to zero of the tensor Aik in a four-
dimensional region of space-time is the necessary and
sufficient condition for the orthogonality of the spatial
sections to the time lines everywhere in this region.

In other words, Aik , 0 in a non-holonomic space-time re-
gion, and Aik = 0 in a holonomic one. Naturally, if the three-
dimensional spatial sections are everywhere orthogonal to the
time lines (in such a case the space-time region is holonomic),
all the quantities g0i are equal to zero. Since g0i = 0, we have
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vi = 0 and Aik = 0 too. Therefore, we also refer to the tensor
Aik as the space non-holonomity tensor.

The space-time of Special Relativity (Minkowski space)
in the Galilean reference frame, as well as some cases of
the space-time in General Relativity, do not rotate (Aik = 0).
These are examples of holonomic spaces: time lines are or-
thogonal to spatial sections in them. Rotating spaces (Aik , 0)
are non-holonomic; time lines are non-orthogonal to three-
dimensional spatial sections in such spaces.

To understand why the rotation of a three-dimensional
spatial section of space-time makes this spatial section non-
orthogonal to the time lines “piercing” it, consider a locally
geodesic reference frame. Within the infinitesimal vicinity of
any point in such a reference frame, the fundamental metric
tensor has the form

g̃µν = gµν +
1
2

(
∂2g̃µν

∂x̃ρ∂x̃σ

)
(x̃ρ − xρ) (x̃σ − xσ) + . . . ,

which means that the numerical values of its components in
the infinitesimal vicinity of any point differ from those at this
point itself only in the 2nd order terms and the higher other
terms, which can be neglected. Therefore, at any point in a
locally geodesic reference frame, the fundamental metric ten-
sor (within the 2nd order terms withheld) is constant, while
the 1st derivatives of the metric tensor, i.e., the Christoffel
symbols, are zeroes.

It is obvious that in any Riemannian space within the in-
finitesimal vicinity of any point of the space a locally geodes-
ic reference frame can be set up. As a result, at any point be-
longing to the locally geodesic reference frame, a flat space
can be set up tangential to the Riemannian space so that the
locally geodesic reference frame in the Riemannian space is
a globally geodesic frame in the tangential flat space. Since
the fundamental metric tensor is constant in the flat space,
there in the infinitesimal vicinity of any point in the Rieman-
nian space the quantities g̃µν converge to those of the tensor
gµν in the tangential flat space. This means that, in the tan-
gential flat space, we can set up a system of the basis vectors
e⃗(α) tangential to the curved coordinate lines of the Rieman-
nian space. Because the coordinate lines of a Riemannian
space are curved (in a general case), and, in the case where
the space is non-holonomic, are not even orthogonal to each
other, the lengths of the basis vectors are sometimes substan-
tially different from unit length.

Consider the world-vector dr⃗ of an infinitesimal displace-
ment from such a point, i.e., dr⃗ = {dx0, dx1, dx2, dx3 }. Then
dr⃗= e⃗(α)dxα, where its components e(α) are

e⃗(0) =
{
e0

(0), 0, 0, 0
}
, e⃗(1) =

{
0, e1

(1), 0, 0
}
,

e⃗(2) =
{
0, 0, e2

(2), 0
}
, e⃗(3) =

{
0, 0, 0, e3

(3)

}
.

The scalar product of the vector dr⃗ with itself is equal to
dr⃗dr⃗= ds2. On the other hand, it is ds2 = gαβ dxαdxβ. Thus,

we obtain the general formula

gαβ = e⃗(α)e⃗(β) = e(α)e(β) cos (xα; xβ) .

According to this formula we have

g00 = e2
(0) ,

while, on the other hand,
√
g00 = 1− w

c2 . Hence, the length e(0)

of the time basis vector e⃗(0) tangential to the time line x0 = ct
is expressed with the gravitational potential w as

e(0) =
√
g00 = 1 −

w
c2 .

The stronger the gravitational potential w, the smaller e(0)
is than 1. In the case of gravitational collapse (w= c2), the
length of the time basis vector e⃗(0) becomes zero: e(0) = 0.

Thus, according to the above general formula, the com-
ponent g0i is expressed as

g0i = e(0)e(i) cos (x0; x i) ,

while, according to the definition of vi, we have

g0i = −
1
c
vi

(
1 −

w
c2

)
= −

1
c
vi e(0) ,

whence we obtain the formula for vi, which takes into ac-
count the angle of inclination of the time lines to the three-
dimensional spatial section of space-time, i.e.

vi = −ce(i) cos (x0; x i) .

In addition, since the above general formula gives

gik = e(i)e(k) cos (x i; x k) ,

and according to the definition of the chr.inv.-metric tensor
hik (page 7), we obtain the formula for hik, which also takes
into account the angle of inclination of the time lines to the
three-dimensional spatial section

hik = e(i)e(k)

[
cos (x0; x i) cos (x0; x k) − cos (xi; x k)

]
.

From the above formula for vi, we see that from a geomet-
ric point of view, the linear velocity vi with which the three-
dimensional reference space of an observer rotates is the pro-
jection (scalar product) of the time basis vector e⃗(0) of his ref-
erence space onto the spatial basis vectors e⃗(i), multiplied by
the velocity of light. If the spatial sections of a space (space-
time) are everywhere orthogonal to the time lines thereby giv-
ing the space holonomity, then cos (x0; x i)= 0 and, hence,
vi = 0. In a non-holonomic space, the spatial sections are not
orthogonal to the lines of time: cos (x0; x i), 0.

Generally | cos (x0; x i) |⩽ 1, hence the linear velocity vi
with which the three-dimensional reference space of an ob-
server rotates cannot exceed the velocity of light.
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If somewhere the conditions Fi = 0 and Aik = 0 are met in
common, there the conditions g00 = 1 and g0i = 0 are present
as well (the conditions g00 = 1 and g0i = 0 can be satisfied
through the transformation of time). In such a region, accord-
ing to the definition of dτ (page 6), we have dτ= dt: so, the
difference between the coordinate time t and the physically
observable time τ disappears in the absence of gravitational
fields and rotation of space. In other words, according to the
theory of chronometric invariants, the difference between the
coordinate time t and the physically observable time τ comes
from both gravitation and rotation attributed to the local ref-
erence space of the observer (in fact — from his reference
body, which is a real physical body near him, for example,
the planet Earth for an Earth-bound observer), or from each
of the mentioned two factors separately.

On the other hand, it is doubtful to find such a region
of the Universe where gravitational fields or rotation of the
background space are clearly absent. Therefore, in practice
the physically observable time τ differs from the coordinate
time t. This means that the real space of our Universe is non-
holonomic: it rotates and is filled with gravitational fields,
while a holonomic space, free from rotation and gravity, can
only be a local approximation to it.

The condition of holonomity of a space (space-time) is
directly linked to the problem of integrability of time in it.
In a non-holonomic space, the formula for the physically ob-
servable time interval dτ has no integrating multiplier, i.e., it
cannot be transformed to the form

dτ = Adt ,

where the multiplier A depends on only t and x i. In this case
the formula for dτ (page 6) has a non-zero second term de-
pending on the coordinate interval dx i and g0i. On the con-
trary, in a holonomic space, we have Aik = 0, so g0i = 0. In this
case, the second term of the formula for dτ is zero, while the
first term is the coordinate time interval dt with an integrating
multiplier

A =
√
g00 = f (x0, x i ) ,

so we can write the integral

dτ =
∫
√
g00 dt .

Hence time is integrable in a holonomic space (Aik = 0),
while it cannot be integrated if the space is non-holonomic
(Aik , 0). In the case where time is integrable, i.e., in a holo-
nomic space, we can synchronize the clocks installed at two
distantly located points by moving a control clock along the
path between these two points. In the case where time cannot
be integrated (in a non-holonomic space), synchronization of
clocks in two distant points is impossible in principle: the
larger is the distance between these two points, the more is
the deviation of time on these clocks.

The space of our planet Earth, is non-holonomic due to
the daily rotation of it around the Earth’s axis. Hence, two
clocks installed at different points on the surface of the Earth
should manifest a deviation between the intervals of time reg-
istered on each of them. The larger is the distance between
these clocks, the larger is the deviation of the physically ob-
servable time expected to be registered on them. This ef-
fect was surely verified by the well-known Hafele-Keating
experiment performed in October 1971 by Joseph C. Hafele
together with Richard E. Keating [13–15] and then success-
fully repeated by the UK’s National Measurement Laboratory
commonly with the BBC on its 25th anniversary in 2005 [16].
This experiment concerned with displacing standard atomic
clocks by a jet airplane around the terrestrial globe, where
rotation of the Earth’s space sensibly changed the measured
time. During the flight along the Earth’s rotation, the local
space of an observer on board of the airplane had more ro-
tation than the space of another observer who stayed fixed
on the airfield. During the flight against the Earth’s rotation
it was vice versa. The atomic clocks on board the airplane
showed a significant deviation of the observed time depend-
ing on the velocity of rotation of the observer’s space.

Since synchronization of clocks at various points on the
Earth’s surface is the highly important task of metrology, ma-
rine navigation, aviation, and orbital space flights, corrections
for desynchronization were introduced in early times in the
form of tables of empirically obtained corrections that take
the Earth’s rotation into account. Now, thanks to the theory
of chronometric invariants, we know the origin of the correc-
tions and therefore can calculate them on the basis of General
Relativity.

With Zelmanov’s definitions of chr.inv.-quantities above,
we can not only calculate the physically observable chr.inv.-
projections of any four-dimensional general covariant quan-
tity or equation of theoretical physics, but also express them
in terms of the physically observable chr.inv.-properties F i,
Aik, and Dik characteristic of the local reference space of a
particular observer.

The Christoffel symbols (coherence coefficients of space)
appear in the absolute derivatives, the equations of motion,
and somewhere else in the equations of theoretical physics.
The Christoffel symbols are not tensors [17]. Nevertheless,
they can be expressed in terms of physical observable quanti-
ties. Following the analogy with the regular Christoffel sym-
bols of the 2nd rank Γαµν and the regular Christoffel symbols
of the 1st rank Γµν,σ

Γαµν = g
ασ Γµν,σ =

1
2
gασ

(
∂gµσ

∂xν
+
∂gνσ
∂xµ

−
∂gµν

∂xσ

)
,

Zelmanov had introduced the chr.inv.-Christoffel symbols of
the 2nd rank and 1st rank

∆i
jk = him∆ jk,m =

1
2

him
(
∗∂h jm

∂xk +
∗∂hkm

∂x j −

∗∂h jk

∂xm

)
,
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where the only difference is that the chr.inv.-Christoffel sym-
bols use the chr.inv.-metric tensor hik instead of the funda-
mental metric tensor gαβ.

It is not a problem to find out how the regular Christoffel
symbols are expressed in terms of the physically observable
chr.inv.-properties characteristic of the reference space of an
observer. Expressing the components of gαβ and then the 1st
derivatives of gαβ with Fi, Aik, Dik, w, and vi, after some alge-
bra we obtain

Γ00,0 = −
1
c3

(
1 −

w
c2

)
∂w
∂t
,

Γ00,i =
1
c2

(
1 −

w
c2

)2
Fi +

1
c4 vi
∂w
∂t
,

Γ0i,0 = −
1
c2

(
1 −

w
c2

)
∂w
∂xi ,

Γ0i, j = −
1
c

(
1 −

w
c2

) (
Dij + Aij +

1
c2 Fj vi

)
+

1
c3 vj

∂w
∂xi ,

Γij,0 =
1
c

(
1−

w
c2

) [
Dij −

1
2

(
∂vj

∂xi +
∂vi
∂x j

)
+

1
2c2

(
Fi vj+Fj vi

)]
,

Γij, k = −∆ij, k +
1
c2

[
vi A jk + vj Aik +

1
2
vk

(
∂vj

∂xi +
∂vi
∂x j

)
−

−
1

2c2 vk
(
Fi vj + Fj vi

)]
+

1
c4 Fk vi vj ,

Γ0
00 = −

1
c3

 1

1 − w
c2

∂w
∂t
+

(
1 −

w
c2

)
vk Fk

 ,
Γk

00 = −
1
c2

(
1 −

w
c2

)2
Fk,

Γ0
0i =

1
c2

− 1

1 − w
c2

∂w
∂xi + vk

(
Dk

i + A·ki· +
1
c2 vi Fk

) ,
Γk

0i =
1
c

(
1 −

w
c2

) (
Dk

i + A·ki· +
1
c2 vi Fk

)
,

Γ0
ij = −

1

c
(
1 − w

c2

) {
−Dij +

1
c2 vn ×

×

[
vj
(
Dn

i + A·ni·
)
+ vi

(
Dn

j + A·nj·
)
+

1
c2 vi vj Fn

]
+

+
1
2

(
∂vi
∂x j +

∂vj

∂xi

)
−

1
2c2

(
Fi vj + Fj vi

)
− ∆n

ij vn

}
,

Γk
ij = ∆

k
ij −

1
c2

[
vi

(
Dk

j + A·kj·
)
+ vj

(
Dk

i + A·ki·
)
+

1
c2 vi vj Fk

]
.

Respectively, some components of the regular Christoffel
symbols are linked to the chr.inv.-properties of the observer’s

space by the following relations

Di
k + A·ik · =

c
√
g00

Γi
0k −
g0kΓ

i
00

g00

 ,
Fk = −

c2 Γk
00

g00
,

giαgkβ Γm
αβ = hiqhks∆m

qs .

By analogy with the respective absolute derivatives, Zel-
manov had also introduced the chr.inv.-derivatives

∗∇i Q k =
∗∂Qk

dxi − ∆
l
ik Ql ,

∗∇i Q k =
∗∂Q k

dxi + ∆
k
il Q l,

∗∇i Q jk =
∗∂Q jk

dxi − ∆
l
ij Qlk − ∆

l
ik Q jl ,

∗∇i Q k
j =

∗∂Q k
j

dxi − ∆
l
ij Q k

l + ∆
k
il Q l

j ,

∗∇i Q jk =
∗∂Q jk

dxi + ∆
j
il Q lk + ∆k

il Q jl,

∗∇i Q i =
∗∂Q i

∂xi + ∆
j
ji Q i, ∆

j
ji =

∗∂ ln
√

h
∂xi ,

∗∇i Q ji =
∗∂Q ji

∂xi + ∆
j
il Q il + ∆l

li Q ji, ∆l
li =

∗∂ ln
√

h
∂xi .

In particular, they show the following properties of the
chr.inv.-metric tensor hik

∗∇i h jk = 0 , ∗∇i hk
j = 0 , ∗∇i h jk = 0 .

Next we give an account of tensor calculus in terms of
physical observables (chronometric invariants).

Assume that there is a space (not necessarily metric) in
which there is an arbitrary reference frame {xα}. Let this
space contain an object G determined by n functions fn of
the xα coordinates. Let us know the transformation rule to
calculate these n functions in any other reference frame {x̃α}
in this space. If the n functions fn and also the transformation
rule have been given in the space, then G is a geometric ob-
ject, which in the system {xα} has axial components fn (xα),
while in any other system {x̃α} it has components f̃n (x̃α).

Assume that a tensor object (tensor) of zero rank is any
geometric object φ, transformable according to the rule

φ̃ = φ
∂xα

∂x̃α
,

where the index takes numbers of all coordinate axes one-by-
one (this notation is also known as by-component notation or
tensor notation). Any tensor of zero rank has a single com-
ponent and is called scalar.
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From a geometric point of view, any scalar is a point to
which a certain number is attributed. Therefore, a scalar field
is a set of points of the space, which have a common property.
For instance, a point mass is a scalar, while a distributed mass
(a gas, for instance) makes up a scalar field.

It should be noted that the algebraic notations for a tensor
and a tensor field are the same. The field of a tensor in a space
is represented as the tensor in a given point of the space, but
its presence in other points everywhere in this region of the
space is assumed.

Contravariant tensors of the 1st rank Aα are geometric ob-
jects with components, transformable according to the rule

Ãα = Aµ
∂x̃α

∂xµ
.

From a geometric point of view, such an object is an n-
dimensional vector. For instance, the vector of an elementary
displacement dxα is a contravariant tensor of the 1st rank.

Contravariant tensors of the 2nd rank Aαβ are geometric
objects transformable according to the rule

Ãαβ = Aµν
∂x̃α

∂xµ
∂x̃β

∂xν
.

From a geometric point of view, such an object is the area
(parallelogram) formed by two vectors. For this reason, con-
travariant tensors of the 2nd rank are also called bivectors.

So forth, contravariant tensors of higher ranks are formu-
lated as the following geometric objects

Ãα...σ = Aµ...τ
∂x̃α

∂xµ
· · ·
∂x̃σ

∂xτ
.

A vector field or a higher rank tensor field are space dis-
tributions of the respective tensor quantities. For instance, be-
cause a mechanical strength characterizes both its own mag-
nitude and direction, its distribution in a physical body can be
presented by a vector field.

Covariant tensors of the 1st rank Aα are geometric objects,
transformable according to the rule

Ãα = Aµ
∂xµ

∂x̃α
.

Thus, the gradient of a scalar field φ, i.e., the quantity

Aα =
∂φ

∂xα
,

is a covariant tensor of the 1st rank. This is because for a
regular invariant we have φ̃=φ, then

∂φ̃

∂x̃α
=
∂φ̃

∂xµ
∂xµ

∂x̃α
=
∂φ

∂xµ
∂xµ

∂x̃α
.

Covariant tensors of the 2nd rank Aαβ are geometric ob-
jects with the transformation rule

Ãαβ = Aµν
∂xµ

∂x̃α
∂xν

∂x̃β
,

hence, covariant tensors of higher ranks are formulated as

Ãα...σ = Aµ...τ
∂xµ

∂x̃α
· · ·
∂xτ

∂x̃σ
.

Mixed tensors are tensors of the 2nd rank or of higher
ranks with both upper and lower indices. For instance, any
mixed symmetric tensor Aαβ is a geometric object, transform-
able according to the rule

Ãαβ = Aµν
∂x̃α

∂xµ
∂xν

∂x̃β
.

Tensor objects exist both in metric and non-metric spaces.
In non-metric spaces, as it is known, the distance between any
two points cannot be measured. This is in contrast to metric
spaces. In the theories of space-time-matter, such as the Gen-
eral Theory of Relativity and its extensions, metric spaces
are taken under consideration. This is because the core of
such theories is the measurement of time intervals and spatial
lengths, that is nonsense in a non-metric space.

Any tensor has an components, where a is its dimension
and n is the rank. For instance, a four-dimensional tensor of
zero rank has 1 component, a tensor of the 1st rank has 4
components, a tensor of the 2nd rank has 16 components, a
tensor of the 4th rank (for example, the Riemann-Christoffel
curvature tensor) has 256 components, and so on.

Indices in a geometric object, marking its axial compo-
nents, are found not in tensors only, but in other geometric
objects as well. For this reason, if we encounter a quantity in
component notation, it is not necessarily a tensor quantity.

In practice, to know whether a given object is a tensor
or not, we need to know a formula for this object in a refer-
ence frame and to transform it to any other reference frame.
For instance, consider the classic question: are Christoffel’s
symbols (i.e., the coherence coefficients of space) tensors?
To answer this question, we need to calculate the Christoffel
symbols in a tilde-marked reference frame

Γ̃αµν = g̃
ασ Γ̃µν,σ , Γ̃µν,σ =

1
2

(
∂g̃µσ

∂x̃ν
+
∂g̃νσ
∂x̃µ

−
∂g̃µν

∂x̃σ

)
proceeding from the general formula of them in a non-marked
reference frame.

First, we calculate the terms in the brackets. The funda-
mental metric tensor like any other covariant tensor of the 2nd
rank, is transformable to the tilde-marked reference frame ac-
cording to the following rule

g̃µσ = gετ
∂xε

∂x̃µ
∂xτ

∂x̃σ
.

Because the quantity gετ depends on the non-tilde-marked
coordinates, its derivative with respect to the tilde-marked co-
ordinates (which are functions of the non-tilded ones) is cal-
culated according to the rule

∂gετ
∂x̃ν
=
∂gετ
∂xρ
∂xρ

∂x̃ν
,
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and thus the first term in the brackets, taking the rule of trans-
formation of thefundamental metric tensor into account, takes
the form

∂g̃µσ

∂x̃ν
=
∂gετ
∂xρ
∂xρ

∂x̃ν
∂xε

∂x̃µ
∂xτ

∂x̃σ
+ gετ

(
∂xτ

∂x̃σ
∂2xε

∂x̃ν∂x̃µ
+
∂xε

∂x̃µ
∂2xτ

∂x̃ν∂x̃σ

)
.

Calculating the rest of theterms of the tilde-marked Chris-
toffel symbols and transposing their free indices we obtain

Γ̃µν,σ = Γερ,τ
∂xε

∂x̃µ
∂xρ

∂x̃ν
∂xτ

∂x̃σ
+ gετ

∂xτ

∂x̃σ
∂2xε

∂x̃µ∂x̃ν
,

Γ̃αµν = Γ
γ
ερ

∂x̃α

∂xγ
∂xε

∂x̃µ
∂xρ

∂x̃ν
+
∂x̃α

∂xγ
∂2xγ

∂x̃µ∂x̃ν
.

We see that the Christoffel symbols are not transformed
in the same way as tensors, hence they are not tensors.

Tensors can be represented as matrices. But in practice,
such a form can only be possible for tensors of the 1st or 2nd
rank (one-row and flat matrices, respectively). For instance,
the tensor of an elementary four-dimensional displacement
can be represented in the form of a one-row matrix

dxα =
(
dx0, dx1, dx2, dx3) ,

the four-dimensional fundamental metric tensor can be repre-
sented in the form of a flat matrix

gαβ =


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

 ,
and tensors of the 3rd rank are three-dimensional matrices.
Representing tensors of higher ranks as matrices is problem-
atic and not visual.

Now let us turn to tensor algebra, the branch of tensor
calculus that focuses on algebraic operations with tensors.

Only same-type tensors of the same rank with indices in
the same position can be added or subtracted. Adding up two
n-rank tensors of the same type gives a new tensor of the same
type and rank, the components of which are the sums of the
corresponding components of the added tensors. For instance

Aα + Bα = Dα, Aαβ + Bαβ = Dαβ .

Multiplication is allowed not only for tensors of the same
type, but also for any tensors of any rank. External multipli-
cation of a tensor of the n-rank by a tensor of the m-rank gives
a new tensor of the (n+m)-rank

Aαβ Bγ = Dαβγ , AαBβγ = Dβγα .

Contraction is the multiplication of tensors of the same
rank when some of their indices are the same. Contraction of
tensors across all indices yields a scalar

AαBα = C , Aγαβ Bαβγ = D .

Often the multiplication of tensors entails the contraction
of some of their indices. Such multiplication is known as in-
ner multiplication, which means that some indices become
contracted when the tensors are multiplied. Below is an ex-
ample of internal multiplication

Aασ Bσ = Dα , Aγασ Bβσγ = Dβα .

Using internal multiplication of geometric objects we can
determine whether they are tensors or not. This is the so-
called fraction theorem.

Fraction theorem: If Bσβ is a tensor and its internal
multiplication with a geometric object A (α, σ) is a ten-
sor D (α, β), i.e., A (α, σ) Bσβ =D (α, β), then this ob-
ject A (α, σ) is also a tensor.

According to this theorem, if internal multiplication of an
object Aασ with a tensor Bσβ gives another tensor Dβα

Aασ Bσβ = Dβα ,

then this object Aασ is a tensor. Or, if internal multiplication
of an object Aασ and a tensor Bσβ gives a tensor Dαβ

Aα··σ Bσβ = Dαβ,

then the object Aα··σ is a tensor.
The geometric properties of any metric space are deter-

mined by its fundamental metric tensor, which can lift and
lower the indices in the objects of this metric space. In Rie-
mannian spaces, the space metric has a square form, which is
ds2 = gαβdxαdxβ and is known also as the Riemannian met-
ric, so the fundamental metric tensor of a Riemannian space
is a tensor of the 2nd rank gαβ. The mixed fundamental metric
tensor gβα is equal to the unit tensor gβα = gασgσβ = δ

β
α . The di-

agonal components of the unit tensor are units, while its rest
(non-diagonal) components are zeroes. Using the unit tensor
we can replace the indices in four-dimensional quantities

δ
β
α Aβ = Aα , δνµδ

σ
ρ Aµρ = Aνσ.

Contracting any tensor of the 2nd rank with the funda-
mental metric tensor gαβ yields a scalar known as the tensor
spur or its trace

gαβAαβ = Aσσ = A .

For example, the spur of the fundamental metric tensor in
a four-dimensional pseudo-Riemannian space is 4

gαβ g
αβ = gσσ = g

0
0 + g

1
1 + g

2
2 + g

3
3 = δ

0
0 + δ

1
1 + δ

2
2 + δ

3
3 = 4.

As mentioned on page 6, the chr.inv.-metric tensor hik has
all properties of the fundamental metric tensor gαβ throughout
the observer’s three-dimensional spatial section (his three-
dimensional reference space). Therefore, hik can lower, lift
and replace indices in chr.inv.-quantities. Accordingly, the
spur (trace) of any three-dimensional chr.inv.-tensor is ob-
tained by contracting it with hik. For instance, the spur (trace)
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of the tensor of the rate of deformations of the observer’s
space, Dik, is the chr.inv.-scalar

D = Dm
m = hikDik ,

the physical sense of which is the rate of relative expansion
or contraction of the elementary volume of the observer’s ref-
erence space.

The scalar product of two vectors Aα and Bα (tensors of
the 1st rank) in a four-dimensional pseudo-Riemannian space
is formulated as

gαβAαBβ = AαBα = A0 B0 + Ai Bi.

Scalar product is the result of contraction, because the
multiplication of vectors contracts all their indices. There-
fore, the scalar product of two vectors (tensors of the 1st rank)
is always a scalar (tensor of zero rank). If both the vectors are
the same, their scalar product

gαβAαAβ = AαAα = A0 A0 + Ai Ai

is the square of the given vector Aα, the length of which is
expressed as

A = |Aα| =
√
gαβ AαAβ .

The four-dimensional pseudo-Riemannian space, which
is the space-time of General Relativity, by its definition has
the sign-alternating metric, i.e., the fundamental metric ten-
sor has the sign-alternating signature (+−−−) or (−+++). In
this case, the lengths of four-dimensional vectors can be real,
imaginary or zero. Vectors with non-zero (real or imaginary)
lengths are known as non-isotropic vectors; they are tangen-
tial to non-isotropic trajectories. Vectors with zero length are
known as isotropic vectors; they are tangential to isotropic
trajectories (trajectories of light-like particles).

In the three-dimensional Euclidean space, the scalar prod-
uct of two vectors is a scalar quantity, the numerical value of
which is equal to the product of their lengths and the cosine
of the angle between them

Ai Bi = |Ai ||Bi | cos
(
Ai; Bi) .

From the above formula it follows that the scalar product
of two vectors is zero, if the vectors are orthogonal to each
other. In other words, from a geometric point of view, the
scalar product of two vectors is the projection of one vector
onto the other. If the vectors are the same, then the vector
is projected onto itself, so the result of this projection is the
square of its length.

Theoretically, at each point of any Riemannian space, a
tangential flat space can be set, the basis vectors of which are
tangential to the basis vectors of the Riemannian space at this
point. Then, the metric of the tangential flat space is also the
metric of the Riemannian space at this point. Therefore, the

above formula is also true, if we consider the angle between
the three-dimensional coordinate lines and the time lines in
the space thereby replacing the Roman (three-dimensional
spatial) indices with the Greek (four-dimensional) ones.

Denote the chr.inv.-projections of arbitrary vectors Aα and
Bα onto the time line and the three-dimensional spatial sec-
tion of an observer as follows

a =
A0
√
g00
, ai = Ai,

b =
B0
√
g00
, bi = Bi,

then their remaining components have the form

A0 =
a + 1

c vi a
i

1 − w
c2

, Ai = − ai −
a
c
vi ,

B0 =
b + 1

c vi b
i

1 − w
c2

, Bi = − bi −
b
c
vi .

Substituting the chr.inv.-projections of the vectors Aα and
Bα into the formulae for Aα Bα and AαAα, we obtain

Aα Bα = ab − ai bi = ab − hik aibk,

AαAα = a2 − ai ai = a2 − hik aiak.

From here, we see that the square of the length of any vec-
tor is the difference between the squares of the lengths of its
time and spatial chr.inv.-projections. If both these projections
are the same, then the vector’s length is zero, so the vector
is isotropic. Hence, any isotropic vector equally belongs to
the time line and the spatial section. The equality of its time
projection to its spatial projection also means that this vector
is orthogonal to itself. If its time projection is “longer” than
its spatial projection, then this vector is real. If the spatial
projection is “longer”, then this vector is imaginary.

The latter can be illustrated by the square of the length of
the space-time interval

ds2 = gαβ dxαdxβ = dxαdxα = dx0 dx0 + dxi dxi,

which in terms of chr.inv.-quantities has the form

ds2 = c2dτ2− dxi dxi = c2dτ2− hik dxidx k = c2dτ2− dσ2.

Its length ds can be real, imaginary or zero, depending
on whether ds is time-like c2dτ2 > dσ2, which is the case
along sublight-speed real trajectories, space-like c2dτ2 < dσ2,
which is the case of imaginary superluminal-speed trajecto-
ries, or isotropic c2dτ2 = dσ2, which is the case of light-like
(isotropic) trajectories, respectively.

The vector product of two vectors Aα and Bα is a tensor of
the 2nd rank Vαβ, obtained from their external multiplication
according to the rule

Vαβ = [ Aα; Bβ ] =
1
2
(
AαBβ− AβBα

)
=

1
2

∣∣∣∣∣∣ Aα Aβ

Bα Bβ

∣∣∣∣∣∣ .
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As it is easy to see, in this case the order in which the
vectors are multiplied matters, i.e., the order in which we
write down the tensor indices is important. For this reason,
the tensors obtained as vector products are called antisymmet-
ric tensors. In an antisymmetric tensor we have Vαβ =−Vβα,
where its indices being moved “reserve” their places as dots,
gασVσβ =V ·βα· , thereby showing the place from where the spe-
cific index was moved. In symmetric tensors there is no need
to “reserve” places for moved indices, because the order in
which they appear does not matter. For example, the fundam-
ental metric tensor is symmetric gαβ = gβα, and the Riemann-
Christoffel tensor of the curvature of space Rα···

·βγδ is symmetric
with respect to transposition over a pair of its indices and an-
tisymmetric within each pair of the indices. It is obvious that
only tensors of the 2nd rank or higher ranks can be symmetric
or antisymmetric.

All diagonal components of any antisymmetric tensor by
its definition are zeroes. For instance, in an antisymmetric
tensor of the 2nd rank we have

Vαα = [ Aα; Bα ] =
1
2
(
AαBα− AαBα

)
= 0 .

In the three-dimensional Euclidean space, the numerical
value of the vector product of two vectors is defined as the
area of the parallelogram formed by them and is equal to the
product of their moduli multiplied by the sine of the angle
between them

V ik = |Ai ||Bk | sin
(
Ai; Bk) .

This means that the vector product of two vectors, i.e.,
any antisymmetric tensor of the 2nd rank, is a pad oriented in
space according to the directions of the vectors forming it.

The contraction of an antisymmetric tensor Vαβ with any
symmetric tensor Aαβ = AαAβ is zero. Naturally, since Vαα = 0
and Vαβ =−Vβα we have

VαβAαAβ = V00 A0A0 + V0i A0Ai + Vi0 AiA0 + Vik AiAk = 0 .

According to the theory of chronometric invariants, an
antisymmetric tensor of the 2nd rank Vαβ has the following
chr.inv.-projections

V00

g00
= 0 ,

V ·i0 ·
√
g00
= −

V i·
·0
√
g00
=

1
2
(
abi − bai) ,

V ik =
1
2
(
aibk − akbi) ,

which are expressed here with the chr.inv.-projections of its
forming (multiplied) vectors Aα and Bα: here a and b are the
chr.inv.-projections of the multiplied vectors Aα and Bα onto
the time line of the observer, and ai and bi are their chr.inv.-
projections onto the observer’s spatial section (which is his
three-dimensional reference space).

The first chr.inv.-projection of the antisymmetric tensor
Vαβ is zero, since in any antisymmetric tensor all its diago-
nal components are zeroes. The third physically observable
chr.inv.-quantity V ik is the projection of the tensor Vαβ onto
the observer’s spatial section. It is analogous to a vector
product in the three-dimensional space. The second chr.inv.-
quantity of the above is the space-time (mixed) projection of
Vαβ. It has no equivalent among the components of a regular
three-dimensional vector product.

The square of an antisymmetric tensor of the 2nd rank
Vαβ, formulated with the chr.inv.-projections of its forming
vectors Aα and Bα, is calculated as

VαβVαβ =
1
2
(
ai ai bk bk − ai bi ak bk)+
+ abai bi −

1
2
(
a2bi bi − b2ai ai) .

The asymmetry of tensor fields is determined by reference
antisymmetric tensors. Such references in the Galilean refer-
ence frame* are Levi-Civita’s tensors: for four-dimensional
quantities this is the four-dimensional completely antisym-
metric unit tensor eαβµν, while for three-dimensional quanti-
ties this is the three-dimensional completely antisymmetric
unit tensor eikm. The components of the Levi-Civita tensors,
which have all indices different, are either +1 or −1 depend-
ing on the number of transpositions of their indices. All the
remaining components, i.e., those having at least two coin-
ciding indices, are zeroes. Moreover, with the space signa-
ture (+−−−) we are using, all non-zero contravariant com-
ponents of the Levi-Civita tensors have the opposite sign to
their corresponding covariant components†. For instance, in
the Minkowski space we have

gασ gβρ gµτ gνγ eσρτγ = g00g11g22 g33 e0123 = −e0123,

giα gkβgmγ eαβγ = g11 g22g33 e123 = −e123,

since g00 = 1 and g11 = g22 = g33 =−1 with the space signature
(+−−−) we are using. In this case, the components of the
tensor eαβµν are

e0123 = +1, e1023 = −1, e1203 = +1, e1230 = −1,

e0123 = −1, e1023 = +1, e1203 = −1, e1230 = +1,

and the components of the tensor eikm are

e123 = +1, e213 = −1, e231 = +1,

e123 = −1, e213 = +1, e231 = −1.

*A Galilean reference frame is one that does not rotate, is not sub-
ject to deformation, and falls freely in the space-time of Special Relativity
(Minkowski space). The time lines in the Galilean reference frame are lin-
ear, as are the three-dimensional coordinate axes.

†If the space signature is (−+++), then what has been said is true only
for the four-dimensional Levi-Civita tensor eαβµν. The components of the
three-dimensional Levi-Civita tensor eikm will have the same sign as well as
the corresponding components of the eikm tensor.
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In general, the tensor eαβµν is related to the tensor eikm

as follows e0ikm = eikm. Because we have an arbitrary choice
for the sign of the first component, we can choose e0123 =−1
and e123 =−1. Then the remaining components of eikm will
change respectively.

Multiplying the four-dimensional antisymmetric unit ten-
sor eαβµν by itself we obtain a regular tensor of the 8th rank
with the non-zero components determined by the matrix

eαβµνeστργ = −


δασ δατ δαρ δαγ

δ
β
σ δ

β
τ δ

β
ρ δ

β
γ

δ
µ
σ δ

µ
τ δ

µ
ρ δ

µ
γ

δνσ δντ δνρ δνγ

 .
The remaining properties of the tensor eαβµν are deduced

from the previous by means of contraction of their indices

eαβµνeστρν = −


δασ δατ δαρ

δ
β
σ δ

β
τ δ

β
ρ

δ
µ
σ δ

µ
τ δ

µ
ρ

 ,
eαβµνeστµν = −2

(
δασ δατ
δ
β
σ δ

β
τ

)
= −2

(
δασδ

β
τ − δ

β
σδ
α
τ

)
,

eαβµνeσβµν = −6δασ , eαβµνeαβµν = −6δαα = −24.

Multiplying the three-dimensional antisymmetric unit
tensor eikm by itself we obtain a regular tensor of the 6th rank

eikmerst =


δir δis δit
δkr δks δkt
δmr δms δmt

 .
The remaining properties of the tensor eikm are

eikmersm = −

( δir δis
δkr δks

)
= δisδ

k
r − δ

i
rδ

k
s ,

eikmerkm = 2δir , eikmeikm = 2δii = 6.

The completely antisymmetric unit tensor determines for
a tensor object its corresponding pseudotensor, marked with
asterisk. For instance, any four-dimensional scalar, vector
and tensors of the 2nd, 3rd, and 4th ranks have corresponding
four-dimensional pseudotensors of the following ranks

V∗αβµν = eαβµνV , V∗αβµ = eαβµνVν , V∗αβ =
1
2

eαβµνVµν ,

V∗α =
1
6

eαβµνVβµν , V∗ =
1
24

eαβµνVαβµν ,

where pseudotensors of the 1st rank, such as V∗α, are called
pseudovectors, while pseudotensors of zero rank, such as V∗,
are called pseudoscalars. Any tensor and its corresponding
pseudotensor are known as dual to each other to emphasize

their common genesis. So, three-dimensional antisymmetric
tensors have their corresponding three-dimensional pseudo-
tensors

V∗ikm = eikmV , V∗ik = eikmVm ,

V∗i =
1
2

eikmVkm , V∗ =
1
6

eikmVikm .

Pseudotensors are called such because, in contrast to reg-
ular tensors, they do not change when reflected with respect
to one of the coordinate axes. For instance, when reflected
with respect to the abscissa axis x1 =−x̃1, x2 = x̃2, x3 = x̃3, the
reflected component of an antisymmetric tensor Vik, orthog-
onal to x1, is Ṽ23 =−V23, while the dual component of the
pseudovector V∗i retains the original sign unchanged

V∗1=
1
2

e1kmVkm =
1
2
(
e123V23+e132V32

)
=V23 ,

Ṽ∗1=
1
2

ẽ1kmṼkm =
1
2

ek1mṼkm =
1
2
(
e213Ṽ23+e312Ṽ32

)
=V23 .

Since any four-dimensional antisymmetric tensor of the
2nd rank and its dual pseudotensor are of the same rank, their
contraction yields a pseudoscalar, which is

VαβV∗αβ = Vαβ eαβµνVµν = eαβµνBαβµν = B∗.

The square of a pseudotensor V∗αβ and a pseudovector
V∗i, expressed with their dual tensors, are

V∗αβV∗αβ = eαβµνVµνeαβρσVρσ = −24VµνVµν,

V∗i V∗i = eikmVkmeipqVpq = 6VkmVkm.

We cannot set a Galilean reference frame in an inhomo-
geneous and anisotropic pseudo-Riemannian space. In such
a general space, the antisymmetry references of tensor fields
depend on the inhomogeneity and anisotropy of the space it-
self, which are determined by the fundamental metric tensor,
and a reference antisymmetric tensor is the four-dimensional
completely antisymmetric discriminant tensor

Eαβµν =
eαβµν
√
−g
, Eαβµν = eαβµν

√
−g.

The proof is the following. Transformation of the four-
dimensional completely antisymmetric unit tensor eαβµν from
a Galilean (non-tilde-marked) reference frame into an arbi-
trary (tilde-marked) reference frame is

ẽαβµν =
∂xσ

∂x̃α
∂xγ

∂x̃β
∂xε

∂x̃µ
∂xτ

∂x̃ν
eσγετ = Jeαβµν ,

where

J = det
∥∥∥∥∥∂xα∂x̃σ

∥∥∥∥∥ = det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∂x0

∂x̃0
∂x0

∂x̃1
∂x0

∂x̃2
∂x0

∂x̃3

∂x1

∂x̃0
∂x1

∂x̃1
∂x1

∂x̃2
∂x1

∂x̃3

∂x2

∂x̃0
∂x2

∂x̃1
∂x2

∂x̃2
∂x2

∂x̃3

∂x3

∂x̃0
∂x3

∂x̃1
∂x3

∂x̃2
∂x3

∂x̃3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
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is the determinant of Jacobi’s matrix known also as the Jacob-
ian of the transformation. Because the fundamental metric
tensor gαβ is transformable according to the rule

g̃αβ = gµν
∂xµ

∂x̃α
∂xν

∂x̃β

and since its determinant in the tilde-marked frame is

g̃ = det
∥∥∥∥∥ gµν ∂xµ∂x̃α ∂xν∂x̃β

∥∥∥∥∥ = J2g,

then, in the Galilean (non-tilde-marked) reference frame,

g = det
∥∥∥gαβ∥∥∥ = det

∥∥∥∥∥∥∥∥∥∥∥
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥∥∥∥∥∥∥∥∥∥∥ = −1,

and, hence, J2 =− g̃2. Denoting ẽαβµν in an arbitrary reference
frame as Eαβµν and writing down the metric tensor in a regular
non-tilde-marked form, we obtain

Eαβµν = eαβµν
√
−g

as expected at the very beginning, which was to be proved. In
the same way, we obtain the transformation rule

Eαβµν =
eαβµν
√
−g

for the components Eαβµν, because for them

g = g̃ J̃ 2, J̃ = det
∥∥∥∥∥∂x̃α∂xσ

∥∥∥∥∥ .
The discriminant tensor Eαβµν is not a physical observable

quantity. For this reason, Zelmanov had introduced the four-
dimensional discriminant tensor εαβγ

εαβγ = hαµhβν hγρbσEσµνρ = bσEσαβγ,

εαβγ = hµα hνβh
ρ
γ bσEσµνρ = bσEσαβγ ,

which in the accompanying reference frame of an observer
(bi = 0) and taking into account that

√
−g =

√
h
√
g00 accord-

ing to the theory of chronometric invariants transforms into
the three-dimensional chr.inv.-discriminant tensor εikm

εikm = b0 E0ikm =
√
g00 E0ikm =

eikm

√
h
,

εikm = b0E0ikm =
E0ikm
√
g00
= eikm

√
h ,

for which, as is easy to obtain, we have

∗∇l εijk = 0 , ∗∇l ε
ijk = 0 ,

∗∂εijk

∂t
= εijk D ,

∗∂εijk

∂t
= −εijkD ,

where D is the spur (trace) of the chr.inv.-tensor Dik charac-
terizing the rate of deformations of the observer’s space

D = hikDik = Dn
n =

∗∂ ln
√

h
∂t

, h = det ∥hik∥ .

The three-dimensional chr.inv.-discriminant tensor εikm is
the physical observable reference of the asymmetry of tensor
fields in the observer’s reference space. Using the εikm, we
can transform antisymmetric chr.inv.-tensors into the corre-
sponding chr.inv.-pseudotensors.

For example, for the chr.inv.-tensor Aik of the angular ve-
locity of rotation of the observer’s space, we have the chr.inv.-
pseudovector Ω∗i of this rotation

Ω∗i =
1
2
εikmAkm , Ω∗i =

1
2
εimn Amn, Aik = εmikΩ∗m ,

εipqΩ∗i =
1
2
εipqεimn Amn =

1
2

(
δ

p
mδ

q
n − δ

q
mδ

p
n

)
Amn = Apq.

With the chr.inv.-pseudovector Ω∗i the Zelmanov identi-
ties (page 7) connecting the chr.inv.-quantities Fi and Aik take
the form, respectively,

2
√

h

∗∂

∂t
(√

hΩ∗i
)
+ εijk ∗∇j Fk = 0 ,

∗∇k Ω
∗k +

1
c2 Fk Ω

∗k = 0 .

Next we consider the absolute differential and absolute
directional derivative.

In geometry, a differential of a function is its variation
between two infinitely close points with the coordinates xα

and xα+ dxα. Respectively, the absolute differential in an n-
dimensional space represents the change of an n-dimensional
quantity between two infinitely close points in this space. For
continuous functions, which we commonly deal with in prac-
tice, their variations between infinitely close points are in-
finitesimal. But in order to determine an infinitesimal varia-
tion of a tensor quantity, we cannot use a simple “difference”
between its numerical values at the neighbouring points xα

and xα+ dxα, because tensor algebra does not determine it.
This ratio can only be determined using the rules for trans-
forming tensors from one reference frame to another. As a
consequence, differential operators and the results of their ap-
plication to tensors must be tensors.

For instance, the absolute differential of a tensor quantity
is a tensor of the same rank as the original tensor itself. The
absolute differential of a scalar φ is the scalar

Dφ =
∂φ

∂xα
dxα,

which in the accompanying reference frame of an observer
(bi = 0) takes the form

Dφ =
∗∂φ

∂t
dτ +

∗∂φ

∂xi dxi,
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where, apart from the three-dimensional observable differen-
tial (second term), there is an additional term that takes into
account the dependence of the absolute differential Dφ on the
physically observable time interval dτ.

The absolute differential of a contravariant vector Aα is
formulated with the absolute derivation operator ∇ (nabla)
and has the following form

DAα = ∇σ Aαdxσ =
∂Aα

∂xσ
dxσ + ΓαµσAµdxσ =

= dAα + ΓαµσAµdxσ,

where ∇σ Aα is the absolute derivative of Aα with respect to
xσ, and d stands for regular differentials

∇σ Aα =
∂Aα

∂xσ
+ ΓαµσAµ,

d =
∂

∂xα
dxα.

Formulating the absolute differential with physical ob-
servable quantities is equivalent to projecting its general co-
variant form onto the time line and the spatial section in the
accompanying reference frame of an observer. According to
the theory of chronometric invariants, the physically observ-
able chr.inv.-projections of the absolute differential of a vector
Aα are the quantities

T = bαDAα =
g0αDAα
√
g00

, Bi = hi
αDAα.

Denoting the chr.inv.-projections of the vector Aα as

φ =
A0
√
g00
, qi = Ai,

we calculate its remaining components, which, when express-
ed in terms of the φ and qi take the form

A0 = φ
(
1 −

w
c2

)
, A0 =

φ + 1
c vi q

i

1 − w
c2

, Ai = −qi −
φ

c
vi .

Taking the chr.inv.-formula for the regular differential

d =
∗∂

∂t
dτ +

∗∂

∂xi dxi

into account, we substitute them and also the regular Christ-
offel symbols expressed in terms of chr.inv.-quantities (see
page 10) into the T and Bi. As a result we obtain the chr.inv.-
projections of the absolute differential of the vector Aα in the
final chr.inv.-form

T = bαDAα = dφ +
1
c
(
−Fi qidτ + Dik qidxk) ,

Bi = hi
σDAσ = dqi +

(
φ

c
dxk + qkdτ

) (
Di

k + A·ik ·
)
−

−
φ

c
F idτ + ∆i

mk qmdxk.

The directional derivative of a function is its change with
respect to the elementary displacement along the given direc-
tion. The absolute directional derivative in an n-dimensional
space is the change of an n-dimensional quantity with respect
to an elementary n-dimensional interval along the given di-
rection in the space.

For instance, the absolute derivative of a scalar function
φ to a direction along a curve xα = xα(ρ), where ρ is a non-
zero monotone parameter along this curve, expresses the rate
at which this function φ changes

Dφ
dρ
=

dφ
dρ
,

which in the accompanying reference frame of an observer is

Dφ
dρ
=
∗∂φ

∂t
dτ
dρ
+
∗∂φ

∂xi

dxi

dρ
.

The absolute derivative of a vector Aα to the given direc-
tion tangential to a curve xα = xα(ρ) is

DAα

dρ
= ∇σ Aα

dxσ

dρ
=

dAα

dρ
+ ΓαµσAµ

dxσ

dρ
,

and its chr.inv.-projections are

bα
DAα

dρ
=

dφ
dρ
+

1
c

(
−Fi qi dτ

dρ
+ Dik qi dxk

dρ

)
,

hi
σ

DAσ

dρ
=

dqi

dρ
+

(
φ

c
dxk

dρ
+ qk dτ

dρ

) (
Di

k + A·ik ·
)
−

−
φ

c
F i dτ

dρ
+ ∆i

mk qm dxk

dρ
.

The equations of motion of a particle are based on the ab-
solute directional derivative of the particle’s world vector. For
this reason, the above chr.inv.-projections are the “generic”
chr.inv.-equations of motion.

The divergence of a tensor field is its “change” along a co-
ordinate axis. Respectively, the absolute divergence of an n-
dimensional tensor field is its divergence in an n-dimensional
space. The divergence of a tensor field is the result of contrac-
tion of the field tensor with the absolute derivation operator
∇. The divergence of a vector field Aα is the scalar

∇σ Aσ =
∂Aσ

∂xσ
+ ΓσσµAµ,

and the divergence of a field of a 2nd rank tensor, say the
tensor Fαβ, is the vector

∇σ Fσα =
∂Fσα

∂xσ
+ ΓσσµFαµ + ΓασµFσµ,

where, as it can be proved, Γσσµ is

Γσσµ =
∂ ln
√
−g

∂xµ
.
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To prove this, we use the definition of the regular Christ-
offel symbols (see page 9), which, when re-written with the
above indices has the form

Γσσµ = g
σρΓµσ,ρ =

1
2
gσρ

(
∂gµρ

∂xσ
+
∂gσρ

∂xµ
−
∂gµσ

∂xρ

)
,

where, since σ and ρ are free indices here, they can change
their sites. As a result, after contracting with the tensor gσρ

the first and the last terms of the above formula for Γσσµ cancel
each other, so the formula for Γσσµ simplifies as

Γσσµ =
1
2
gσρ
∂gσρ

∂xµ
.

The quantities gσρ are the components of a tensor recip-
rocal to the tensor gσρ. For this reason, each component of
the matrix gσρ is formulated as

gσρ =
aσρ

g
, g = det

∥∥∥gσρ∥∥∥ ,
where aσρ is the algebraic co-factor of the matrix element
with indices σρ, equal to (−1)σ+ρ, multiplied by the deter-
minant of the matrix obtained by crossing the row and the
column with numbers σ and ρ out of the matrix gσρ. As a
result, we obtain aσρ = ggσρ.

Because the determinant of the fundamental metric tensor
by definition is formulated as

g = det
∥∥∥gσρ∥∥∥ =∑

α0...α3

(−1)N(α0...α3) g0(α0) g1(α1) g2(α2) g3(α3) ,

then the quantity dg is dg= aσρdgσρ = ggσρdgσρ, or

dg
g
= gσρdgσρ .

Integrating the left hand side gives ln (−g), because the
g is negative while logarithm is determined for only positive
functions. Then, we have d ln (−g) = dg

g
. Taking into account

that
√
−g = 1

2
ln (−g), we obtain

d ln
√
−g =

1
2
gσρdgσρ ,

so the above Γσσµ takes the form

Γσσµ =
1
2
gσρ
∂gσρ

∂xµ
=
∂ ln
√
−g

∂xµ
,

which was to be proved.
The divergence of a vector field Aα is a scalar quantity.

Hence∇σ Aσ cannot be projected onto a time line and a spatial
section. But this is enough to express ∇σ Aσ with the chr.inv.-
projections of the Aα and the physically observable proper-
ties of the observer’s reference space. Besides that, the reg-
ular derivation operators must be replaced with the chr.inv.-
derivation operators.

Assuming the above notation φ and qi for the chr.inv.-
projections of the vector Aα, we express the remaining com-
ponents of the Aα with them. Then, substituting the regular
derivation operators expressed with the chr.inv.-derivation op-
erators (marked by asterisk, see their definition on page 7)

∂

∂t
=
√
g00

∗∂

∂t
,

√
g00 = 1 −

w
c2 ,

∂

∂xi =
∗∂

∂xi −
1
c2 vi

∗∂

∂t
,

into the general formula for ∇σ Aσ (page 17) and taking into
account that

√
−g =

√
h
√
g00 , after some algebra we obtain

the ∇σ Aσ in the extended chr.inv.-form

∇σ Aσ =
1
c

(
∗∂φ

∂t
+ φD

)
+
∗∂qi

∂xi + qi
∗∂ ln
√

h
∂xi −

1
c2 Fi qi.

In the third term of this formula, the quantity

∗∂ ln
√

h
∂xi = ∆

j
ji

stands for the chr.inv.-Christoffel symbols ∆k
ji contracted by

two indices. Therefore, by analogy with the definition of the
absolute divergence of a four-dimensional vector field Aα (see
page 17), Zelmanov called the quantity

∗∇i qi =
∗∂qi

∂xi + qi
∗∂ ln
√

h
∂xi =

∗∂qi

∂xi + qi∆
j
ji

the chr.inv.-divergence of a three-dimensional chr.inv.-vector
field qi. Thus the ∇σ Aσ takes the final chr.inv.-form

∇σ Aσ =
1
c

(
∗∂φ

∂t
+ φD

)
+ ∗∇i qi −

1
c2 Fi qi.

The first term of this formula has no equivalent. It is made
up of two parts. The first part is the observable change in time
of the time projection φ of the vector Aα. The second part φD,
since the spur (trace) D= hikDik of the chr.inv.-tensor Dik is
the observable rate of relative expansion or compression of an
elementary volume of the observer’s space, is the observable
change of the elementary volume of the three-dimensional
observable vector field qi in time.

The difference between the last two terms of this formula,
which make up the chr.inv.-quantity

∗∇̃i qi = ∗∇i qi −
1
c2 Fi qi,

Zelmanov called the physical chr.inv.-divergence, because the
chr.inv.-quantity ∗∇̃i qi takes into account the fact that, in a
real physical space, the flow of time is different on the oppo-
site walls of an elementary volume.

Generally speaking, when calculating the divergence of a
field we consider an elementary volume of the space, so we
calculate the difference between the amounts of a “substance”
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which flows in and out of the volume over an elementary time
interval. The gravitational inertial force F i results in a differ-
ent flow of time at different points: the beginnings as well as
the ends of the time intervals measured on the opposite walls
of a volume will not coincide, which makes these time inter-
vals inapplicable for comparison. Synchronization of clocks
on the opposite walls of the volume will give the true result:
the measured time intervals will be different. That is, the
physical chr.inv.-divergence ∗∇̃i qi is a physical observable in
the observer’s three-dimensional reference space, which is
analogous to a regular divergence.

Next we deduce the chr.inv.-projections of the absolute
divergence ∇σFσα of an antisymmetric tensor Fαβ =−Fβα

∇σFσα =
∂Fσα

∂xσ
+ ΓσσµFαµ + ΓασµFσµ =

=
∂Fσα

∂xσ
+
∂ ln
√
−g

∂xµ
Fαµ,

we need to obtain Maxwell’s equations in chr.inv.-form. Here
in this formula, the third term ΓασµFσµ is zero, because con-
tracting the Christoffel symbols Γασµ (they are symmetric by
their lower indices) with the antisymmetric tensor Fσµ gives
zero as in the case of any symmetric and antisymmetric geo-
metric objects.

The quantity ∇σFσα is a four-dimensional vector, there-
fore its chr.inv.-projections are

T = bα∇σFσα, Bi = hi
α∇σFσα = ∇σFσi.

Denoting the chr.inv.-projections of the tensor Fαβ as

Ei =
F ·i0 ·
√
g00
, Hik = F ik,

we obtain the remaining non-zero components of the Fαβ ex-
pressed with its chr.inv.-projections

F ·00 · =
1
c
vk Ek,

F ·0k · =
1
√
g00

(
Ei −

1
c
vn H ·nk · −

1
c2 vk vn En

)
,

F0i =
Ei − 1

c vk Hik

√
g00

,

F0i = −
√
g00 Ei ,

F ·ki· = −H ·ki· −
1
c
vi Ek,

Fik = Hik +
1
c

(vi Ek − vk Ei) ,

and also the square of the tensor Fαβ in the form as well ex-
pressed with its chr.inv.-projections

FαβFαβ = Hik Hik − 2 Ei Ei.

Substituting these formulae into the above general formu-
lae for T and Bi and then replacing the regular derivation op-
erators with the chr.inv.-derivation operators, after some alge-
bra we obtain the formulae for the chr.inv.-projections T and
Bi of the absolute divergence ∇σFσα of the antisymmetric
tensor Fαβ =−Fβα in detail

T =
∇σF ·σ0 ·
√
g00
=
∗∂Ei

∂xi + Ei
∗∂ ln
√

h
∂xi −

1
c

HikAik ,

Bi = ∇σFσi =
∗∂Hik

∂xk + Hik
∗∂ ln
√

h
∂xk −

1
c2 Fk Hik −

−
1
c

(
∗∂Ei

∂t
+ DEi

)
.

Taking into account that

∗∂Ei

∂xi + Ei
∗∂ ln
√

h
∂xi = ∗∇i Ei

is the chr.inv.-divergence of the vector Ei, and also that

∗∂Hik

∂xk + Hik
∗∂ ln
√

h
∂xk −

1
c2 Fk Hik =

= ∗∇k Hik −
1
c2 FkHik = ∗∇̃k Hik

is the physical chr.inv.-divergence of the tensor Hik, we arrive
at the final formulae for chr.inv.-projections of the absolute
divergence ∇σFσα of the antisymmetric tensor Fαβ

T = ∗∇i Ei −
1
c

HikAik ,

Bi = ∗∇̃k Hik −
1
c

(
∗∂Ei

∂t
+ DEi

)
.

Calculate the chr.inv.-projections of the absolute diver-
gence ∇σF∗σα of the pseudotensor F∗αβ dual to the antisym-
metric tensor Fαβ. For such a dual pseudotensor we have

F∗αβ =
1
2

EαβµνFµν , F∗αβ =
1
2

EαβµνFµν.

Denoting its chr.inv.-projections as

H∗i =
F∗·i0 ·
√
g00
, E∗ik = F∗ik,

we see that the obvious relations H∗i ∼Hik and E∗ik∼ Ei exist
between the chr.inv.-projections of the antisymmetric tensor
Fαβ and the pseudotensor F∗αβ, which are due to the duality
of these tensors to each other.

As a result of these relations, given that

F∗·i0 ·
√
g00
=

1
2
εipqHpq , F∗ik = − εikpEp ,

the remaining components of the pseudotensor F∗αβ, formu-
lated with the chr.inv.-projections of its dual tensor Fαβ have

Rabounski D. and Borissova L. Physical Observables in General Relativity and the Zelmanov Chronometric Invariants 19



Volume 19 (2023) PROGRESS IN PHYSICS Issue 1 (June)

the following form

F∗·00 · =
1

2c
vk ε

kpq
[
Hpq +

1
c
(
vp Eq − vq Ep

)]
,

F∗·0i· =
1

2
√
g00

[
ε
·pq
i· Hpq +

1
c
ε
·pq
i·

(
vp Eq − vq Ep

)
−

−
1
c2 ε

kpqvi vk Hpq −
1
c3 ε

kpqvi vk
(
vp Eq − vq Ep

)]
,

F∗0i =
1

2
√
g00
εipq

[
Hpq +

1
c
(
vp Eq − vq Ep

)]
,

F∗0i =
1
2
√
g00 εipq Hpq,

F∗·ki· = ε
·kp
i· Ep −

1
2c
vi ε

kpqHpq −
1
c2 vi vm ε

mkpEp ,

F∗ik = εikp

(
Ep −

1
c
vq Hpq

)
,

while the square of the pseudotensor F∗αβ has the form

F∗αβF∗αβ = εipq (Ep Hiq − Ei Hpq
)
.

With the above components, after some algebra we obtain
the chr.inv.-projections of the absolute divergence ∇σF∗σα of
the dual pseudotensor F∗αβ in detail

∇σF∗·σ0 ·
√
g00

=
∗∂H∗i

∂xi + H∗i
∗∂ ln
√

h
∂xi −

1
c

E∗ikAik ,

∇σF∗σi =
∗∂E∗ik

∂xi + E∗ik
∗∂ ln
√

h
∂xk −

1
c2 Fk E∗ik −

−
1
c

(
∗∂H∗i

∂t
+ DH∗i

)
,

then, using the formulae for the chr.inv.-divergence ∗∇i H∗i

and the physical chr.inv.-divergence ∗∇̃k E∗ik, we arrive at the
final formulae for chr.inv.-projections of the absolute diver-
gence ∇σF∗σα of the dual pseudotensor F∗αβ

∇σF∗·σ0 ·
√
g00

= ∗∇i H∗i −
1
c

E∗ikAik ,

∇σF∗σi = ∗∇̃k E∗ik −
1
c

(
∗∂H∗i

∂t
+ DH∗i

)
.

Apart from the absolute divergence of vectors, antisym-
metric tensors and pseudotensors of the 2nd rank, we need to
deduce the chr.inv.-projections of the absolute divergence of
a symmetric tensor of the 2nd rank (we need them to obtain
the conservation law in chr.inv.-form).

Just as Zelmanov did, we denote the chr.inv.-projections
of a symmetric tensor Tαβ as

T00

g00
= ρ,

T i
0
√
g00
= Ki, T ik = N ik,

whence, following the same algebra as above, we obtain the
chr.inv.-projections of the absolute divergence ∇σTσα of the
symmetric tensor Tαβ in detail

∇σTσ0
√
g00
=
∗∂ρ

∂t
+ ρD + Dik N ik + c ∗∇i Ki −

2
c

Fi Ki,

∇σTσi = c
∗∂Ki

∂t
+ cDKi + 2c

(
Di

k + A·ik ·
)
Kk +

+ c2 ∗∇k N ik − Fk N ik − ρF i.

In addition to the inner (scalar) product of a tensor with
the absolute differentiation operator ∇, which is the absolute
divergence of this tensor field, there may also be a difference
between the covariant derivatives of the field. This quantity
is known as the curl of the field, because from a geometric
point of view it is the vortex (rotation) of the field itself. The
absolute curl is the curl of an n-dimensional tensor field in an
n-dimensional space.

The curl of an arbitrary four-dimensional vector field Aα

is a covariant antisymmetric tensor of the 2nd rank*

Fµν = ∇µ Aν − ∇ν Aµ =
∂Aν
∂xµ
−
∂Aµ
∂xν
,

where ∇µ Aν is the absolute derivative of the Aα with respect
to the coordinate xµ

∇µ Aν =
∂Aν
∂xµ
− ΓσνµAσ .

The curl contracted with the four-dimensional absolutely
antisymmetric discriminant tensor Eαβµν is the pseudotensor

F∗αβ = Eαβµν
(
∇µ Aν − ∇ν Aµ

)
= Eαβµν

(
∂Aν
∂xµ
−
∂Aµ
∂xν

)
.

In electrodynamics, the electromagnetic field tensor Fµν
(Maxwell’s tensor) is the curl of the four-dimensional elec-
tromagnetic field potential Aα. Therefore, we need the for-
mulae for the chr.inv.-projections of the four-dimensional curl
Fµν and its dual pseudotensor F∗αβ expressed in terms of the
chr.inv.-projections of the four-dimensional vector potential
Aα that forms them.

After the same algebra as above, we obtain the chr.inv.-
projections of the absolute curl Fµν =∇µ Aν −∇ν Aµ expressed
in terms of the chr.inv.-projections φ and qi of the vector Aα

forming this curl

F ·i0 ·
√
g00
=
giαF0α
√
g00
= hik

(
∗∂φ

∂xk +
1
c

∗∂qk

∂t

)
−
φ

c2 F i,

F ik = giαgkβFαβ = himhkn
(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

2φ
c

Aik.

*Strictly speaking, a real geometric curl is not a tensor, but its dual pseu-
dotensor. This is because the invariance with respect to reflection is necessary
for any rotation. See §98 in the very good textbook Riemannsche Geometrie
und Tensoranalysis [17] written by Peter Raschewski (1907–1983), the well-
known expert in Riemannian geometry.
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The remaining components of the curl Fµν =∇µ Aν −∇ν Aµ
with taking into account that F00 = F00 = 0 just like for any
antisymmetric tensor have the form

F0i =

(
1 −

w
c2

) (
φ

c2 Fi −
∗∂φ

∂xi −
1
c

∗∂qi

∂t

)
,

Fik =
∗∂qi

∂xk −
∗∂qk

∂xi +
φ

c

(
∂vi

∂xk −
∂vk
∂xi

)
+

+
1
c

(
vi
∗∂φ

∂xk − vk
∗∂φ

∂xi

)
+

1
c2

(
vi
∗∂qk

∂t
− vk

∗∂qi

∂t

)
,

F ·00 · = −
φ

c3 vk Fk +
1
c
vk

(
∗∂φ

∂xk +
1
c

∗∂qk

∂t

)
,

F ·0k · = −
1
√
g00

[
φ

c2 Fk −
∗∂φ

∂xk −
1
c

∗∂qk

∂t
+

+
2φ
c2 v

mAmk +
1
c2 vk v

m
(
∗∂φ

∂xm +
1
c

∗∂qm

∂t

)
−

−
1
c
vm

(
∗∂qm

∂xk −
∗∂qk

∂xm

)
−
φ

c4 vk vm Fm
]
,

F ·ik · = him
(
∗∂qm

∂xk −
∗∂qk

∂xm

)
−

1
c

himvk
∗∂φ

∂xm −

−
1
c2 himvk

∗∂qm

∂t
+
φ

c3 vk F i +
2φ
c

A·ik · ,

F0k =
1
√
g00

[
hkm

(
∗∂φ

∂xm +
1
c

∗∂qm

∂t

)
−
φ

c2 Fk+

+
1
c
vnhmk

(
∗∂qn

∂xm −
∗∂qm

∂xn

)
−

2φ
c2 vm Amk

]
.

Respectively, the chr.inv.-projections of the dual pseudo-
tensor F∗αβ of the curl Fµν =∇µ Aν −∇ν Aµ have the form

F∗·i0 ·
√
g00
=
g0αF∗αi

√
g00

= εikm
[

1
2

(
∗∂qk

∂xm −
∗∂qm

∂xk

)
−
φ

c
Akm

]
,

F∗ik = εikm
(
φ

c2 Fm −
∗∂φ

∂xm −
1
c

∗∂qm

∂t

)
,

where F∗·i0 · = g0αF∗αi = g0αEαiµνFµν is calculated using the
above components of the curl Fµν.

Laplace’s operator known also as Laplacian is the three-
dimensional derivation operator

∆ = ∇∇ = ∇2 = −gik ∇i∇k .

The four-dimensional generalization of Laplace’s opera-
tor in a pseudo-Riemannian space is d’Alembert’s operator
known also as d’Alembertian

□ = gαβ ∇α∇β .

Let us apply d’Alembert’s operator to a scalar field and
a vector field in the four-dimensional pseudo-Riemannian
space (the space-time of General Relativity), and then express
the calculation results in chr.inv.-form.

First we apply d’Alembert’s operator to a scalar field φ

□φ = gαβ ∇α∇β φ = gαβ
∂φ

∂xα

(
∂φ

∂xβ

)
= gαβ

∂2φ

∂xα∂xβ
,

because in this case the calculation is much simpler: the abso-
lute derivative of a scalar, ∇α φ, does not contain the Christ-
offel symbols, so it becomes the regular derivative.

We express the components of the fundamental metric
tensor in terms of chronometric invariants. For gik we have
gik =−hik (see page 5). The components g0i are obtained from
the formula for the linear velocity of rotation of the observer’s
space vi =−cg0i√g00 (see page 7)

g0i = −
1

c
√
g00
vi.

The component g00 is obtained from the main property
of the fundamental metric tensor gασgβσ = g

β
α . Setting up

α= β= 0 in the mentioned property, we obtain

g0σ g
0σ = g00g

00 + g0ig
0i = δ0

0 = 1,

whence, taking into account that

g00 =

(
1 −

w
c2

)2
, g0i = −

1
c
vi

(
1 −

w
c2

)
,

we obtain the formula

g00 =
1(

1 − w
c2

)2

(
1 −

1
c2 vi v

i
)
, vi v

i = hik v
ivk = v2.

Substituting the obtained formulae for g00, g0i and gik into
the above general formula for □φ and then replacing the
regular derivation operators with the chr.inv.-derivation op-
erators, we obtain the d’Alembertian of the scalar field φ in
chr.inv.-form

□φ = 1
c2

∗∂2φ

∂t2 − hik
∗∂2φ

∂xi∂xk =
∗□φ,

where ∗□ is the chr.inv.-d’Alembert operator, and ∗∆ is the
chr.inv.-Laplace operator

∗□ = 1
c2

∗∂2

∂t2 − hik
∗∂2

∂xi∂xk =
1
c2

∗∂2

∂t2 −
∗∆ ,

∗∆ = hik
∗∂2

∂xi∂xk = −g
ik ∗∇i

∗∇k .

Now, we apply d’Alembert’s operator to an arbitrary four-
dimensional vector field Aα

□Aα = gµν∇µ∇νAα.
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Because □Aα is a four-dimensional vector, the chr.inv.-
projections of it are

T = bσ□Aσ = bσ gµν∇µ∇νAσ,

Bi = hi
σ□Aσ = hi

σg
µν∇µ∇νAσ.

It should be noted that the derivation of the d’Alembertian
of a vector field in a Riemannian space is not a trivial task.
This is because in this case, the Christoffel symbols are not
zeroes and, therefore, the formulae for the chr.inv.-projections
of the second derivatives take many pages*.

So, after some difficult algebra we had obtained formulae
for the chr.inv.-projections of the d’Alembertian of the vector
field Aα in the four-dimensional pseudo-Riemannian space.
They have the following form†

T = ∗□φ − 1
c3

∗∂

∂t
(
Fk qk) − 1

c3 Fi

∗∂qi

∂t
+

1
c2 F i

∗∂φ

∂xi +

+ hik∆m
ik

∗∂φ

∂xm − hik 1
c

∗∂

∂xi

[(
Dkn + Akn

)
qn

]
+

D
c2

∗∂φ

∂t
−

−
1
c

Dk
m

∗∂qm

∂xk +
2
c3 Aik F iqk +

φ

c4 Fi F i −
φ

c2 Dmk Dmk−

−
D
c3 Fm qm −

1
c
∆m

kn Dk
m qn +

1
c

hik∆m
ik
(
Dmn + Amn

)
qn,

Bi = ∗□Ai +
1
c2

∗∂

∂t

[(
Di

k + A·ik ·
)
qk

]
+

D
c2

∗∂qi

∂t
+

+
1
c2

(
Di

k + A·ik ·
) ∗∂qk

∂t
−

1
c3

∗∂

∂t
(
φF i) − 1

c3 F i
∗∂φ

∂t
+

+
1
c2 Fk

∗∂qi

∂xk −
1
c
(
Dmi + Ami) ∗∂φ

∂xm +
1
c4 qkFk F i+

+
1
c2 ∆

i
km qmFk −

φ

c3 DF i +
D
c2

(
Di

n + A·in·
)

qn−

− hkm
{
∗∂

∂xk

(
∆i

mn qn) + 1
c

∗∂

∂xk

[
φ
(
Di

m + A·im·
)]
+

+
(
∆i

kn∆
n
mp − ∆

n
km∆

i
np

)
qp +

φ

c

[
∆i

kn
(
Dn

m + A·nm·
)
−

− ∆n
km

(
Di

n + A·in·
)]
+ ∆i

kn

∗∂qn

∂xm − ∆
n
km

∗∂qi

∂xn

}
,

where ∗□φ and ∗□qi are the result of applying the chr.inv.-
d’Alembert operator to the quantities φ= A0√

g00
and qi = Ai,

*This is one of the reasons why applications of the theory of electromag-
netic fields are calculated in the Galilean reference frame in the Minkowski
space (the space-time of Special Relativity), where the Christoffel symbols
are zeroes. General covariant notation hardly allows unambiguous interpre-
tation of calculation results, unless they are formulated with physical observ-
able quantities (chronometric invariants) or demoted to a simple specific case
like that in the Minkowski space, for instance.

†The above chr.inv.-projections of the d’Alembertian of a vector field
in the four-dimensional pseudo-Riemannian space were deduced not by Zel-
manov, but by one of us, L. Borisova, in the 1980s.

which are chr.inv.-projections (physically observable compo-
nents) of the vector Aα

∗□φ = 1
c2

∗∂2φ

∂t2 − hik
∗∂2φ

∂xi∂xk ,

∗□qi =
1
c2

∗∂2qi

∂t2 − hkm
∗∂2qi

∂xk∂xm .

The main criterion for correct calculations in such a com-
plicated case as here is Zelmanov’s rule of the chronomet-
ric invariance: “Correct calculations make all terms in the fi-
nal equations chronometrically invariant quantities. That is to
say, the final equations consist of the chr.inv.-quantities, their
chr.inv.-derivatives, and also the chr.inv.-properties of the ob-
server’s reference space. If at least one error was made in the
calculations, then some terms of the final equations will not
be chronometric invariants.”

In the Galilean reference frame in the Minkowski space
(the space-time of Special Relativity), Laplace’s and d’Alem-
bert’s operators take the simplified form

∆ =
∂2

∂x1∂x1 +
∂2

∂x2∂x2 +
∂2

∂x3∂x3 ,

□ = 1
c2

∂2

∂t2 −
∂2

∂x1∂x1 −
∂2

∂x2∂x2 −
∂2

∂x3∂x3 =
1
c2

∂2

∂t2 − ∆ .

D’Alembert’s operator applied to a tensor field and equat-
ed to zero or not zero, gives the d’Alembert equations for this
field. From a physical point of view, these are the equations
of propagation of waves of the field. If the d’Alembertian of a
field is not zero, these are the equations of propagation of the
waves enforced by the sources that induce this field; they are
called the d’Alembert equations with sources. For instance,
the sources of electromagnetic fields are electric charges and
currents. If the d’Alembertian of a field is zero, then these are
the equations of propagation of waves in the field not related
to any sources. If the space-time region under consideration,
in addition to the tensor field, is filled with another medium,
then the d’Alembert equations gain an additional term charac-
terizing this medium (this term can be found using the equa-
tions which determine the medium).

These are the basics of tensor calculus expressed in terms
of chronometric invariants.

Next we present formulae for the most common equations
used in General Relativity, in the form expressed in terms of
physical observables (chronometric invariants).

First, consider the equations of motion of a particle. A
particle under the influence of gravitation only falls freely
and thus travels along the shortest (geodesic) line. Such mo-
tion is called free or geodesic motion. If an additional non-
gravitational force also acts on the particle, then the force de-
viates this particle from its geodesic trajectory, and the mo-
tion becomes non-geodesic.

From a geometric point of view, motion of a particle in
the four-dimensional pseuso-Riemannian space (space-time)
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is parallel transport of the four-dimensional vector Qα, which
is tangential to the particle’s trajectory at any of its points and
completely characterizes this particle. Therefore, the equa-
tions of motion of a particle actually determine the parallel
transport of the particle’s vector Qα along the particle’s four-
dimensional trajectory and they are the equations of the ab-
solute derivative of this vector with respect to a parameter ρ,
which is non-zero along the trajectory

DQα

dρ
=

dQα

dρ
+ ΓαµνQµ

dxν

dρ
,

where DQα = dQα +ΓαµνQµdxν is the absolute differential of
the transported vector Qα (i.e., its absolute increment) along
the trajectory.

If a particle travels along a geodesic trajectory (free mo-
tion), then the particle’s characteristic vector is transported
in Levi-Civita’s sense: the square of the transported vector
remains unchanged QαQα = const along the trajectory, while
the absolute derivative of the transported vector is zero and
such equations are called the equations of free motion.

A mass-bearing particle (such particles travel along non-
isotropic space-time trajectories) is characterized by its own
four-dimensional momentum vector

Pα = m0
dxα

ds
, PαPα = m2

0 = const,

where m0 is the particle’s rest-mass. Respectively, the equa-
tions of motion of a free mass-bearing particle are

dPα

ds
+ ΓαµνPµ

dxν

ds
= 0 .

A massless light-like particle (such particles travel along
isotropic space-time trajectories) is characterized by its own
four-dimensional wave vector

Kα =
ω

c
dxα

dσ
, KαKα = 0 ,

where ω is the characteristic frequency of the massless par-
ticle, and dσ= hik dxidxk is the three-dimensional chr.inv.-
interval, which, since ds2 = c2dτ2 − dσ2 = 0 along isotropic
trajectories, is invariant along them. Respectively, the equa-
tions of motion of a free massless (light-like) particle are

dKα

dσ
+ ΓαµνKµ

dxν

dσ
= 0 .

The projections of the above four-dimensional equations
of motion onto the time line and the three-dimensional spatial
section of an observer are, respectively, the chr.inv.-equations
of motion of a free mass-bearing particle

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0 ,

d (mvi)
dτ

+ 2m
(
Di

k + A·ik ·
)
vk − mF i + m∆i

nkvnvk = 0 ,

and the chr.inv.-equations of motion of a free massless (light-
like) particle

dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0 ,

d (ωci)
dτ

+ 2ω
(
Di

k + A·ik ·
)
ck − ωF i + ω∆i

nk cnck = 0 ,

where m is the relativistic mass of the travelling mass-bearing
particle, ω is the characteristic frequency of the massless par-
ticle, dτ is the physically observable time interval, and vi is
the chr.inv.-vector of the physically observable velocity of the
mass-bearing particle. Along isotropic trajectories (trajecto-
ries of light) the vi transforms into the chr.inv.-vector of the
physically observable velocity of light, the square of which is
ci ci = hik cick = c2 (see page 6).

If a particle travels along a non-geodesic trajectory, then
QαQα , const, and the absolute derivative of the transported
vector Qα is equal to a force Φα that deviates the particle
from a geodesic line. Such equations are called the equations
of non-geodesic motion [5]. In this case, the right hand side of
the above chr.inv.-equations of motion is different from zero
and contains the respective chr.inv.-projections of the deviat-
ing force Φα.

The chr.inv.-equations of motion show how the observed
motion of particles depends on the physically observable
gravitational inertial force F i, rotation Aik, deformation Dik

and inhomogeneity (the coherence coefficients ∆i
kn) of the ob-

server’s reference space.
Let us now turn to the basics of electrodynamics in the

four-dimensional pseudo-Riemannian space.
The electromagnetic field tensor F µν is determined as the

curl Fµν =∇µ Aν −∇ν Aµ of the four-dimensional electromag-
netic field potential Aα. Following the terminology of electro-
dynamics, we call the chr.inv.-projections of the Aα (page 17)
the chr.inv.-scalar potential φ and the chr.inv.-vector potential
qi of the electromagnetic field

φ =
A0
√
g00
, qi = Ai,

and the chr.inv.-projections of the electromagnetic field ten-
sor F µν (page 20) — the chr.inv.-electric strength Ei and the
chr.inv.-magnetic strength Hik of the field

Ei =
F ·i0 ·
√
g00
=
giαF0α
√
g00
= hik

(
∗∂φ

∂xk +
1
c

∗∂qk

∂t

)
−
φ

c2 F i,

Hik = F ik = giαgkβFαβ = himhkn
(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

2φ
c

Aik,

where their covariant (lower-index) versions are

Ei = hik Ek =
∗∂φ

∂xi +
1
c

∗∂qi

∂t
−
φ

c2 Fi ,

Hik = him hkn Hmn =
∗∂qi

∂xk −
∗∂qk

∂xi −
2φ
c

Aik ,
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and the mixed components H ·mk · =−Hm·
·k are obtained from Hik

using the metric chr.inv.-tensor hik, i.e., H ·mk · = hki Him.
Respectively, the electromagnetic field pseudotensor F∗αβ

dual to the field tensor, i.e., F∗αβ = 1
2 EαβµνFµν, has the follow-

ing chr.inv.-projections

H∗i =
F∗·i0 ·
√
g00
=

1
2
εimn

(
∗∂qm

∂xn −
∗∂qn

∂xm −
2φ
c

Amn

)
=

1
2
εimnHmn ,

E∗ik = F∗ik = εikn
(
φ

c2 Fn −
∗∂φ

∂xn −
1
c

∗∂qn

∂t

)
=−εiknEn ,

which we call the chr.inv.-magnetic strength pseudovector H∗i

and the chr.inv.-electric strength pseudotensor E∗ik. It is obvi-
ous that the quantities H∗i and Hmn are dually conjugate, and
the quantities E∗ik and Em are also dually conjugate.

The above formulae show that the observed electric and
magnetic strengths of the electromagnetic field depend on the
physically observable gravitational inertial force F i and rota-
tion Aik of the observer’s reference space.

So forth, the electromagnetic field invariants

J1 = FµνFµν = Hik Hik − 2 Ei E i = −2
(
Ei E i −H∗i H∗i

)
,

J2 = FµνF∗µν = εimn (Em Hin − Ei Hnm
)
= −4Ei H∗i,

the first of which is a scalar, and the second is a pseudoscalar,
have the following detailed chr.inv.-formulation

J1 = 2
[

himhkn
(
∗∂qi

∂xk −
∗∂qk

∂xi

)
∗∂qm

∂xn − hik
∗∂φ

∂xi

∗∂φ

∂xk −

−
2
c

hik
∗∂φ

∂xi

∗∂qk

∂t
−

1
c2 hik

∗∂qi

∂t

∗∂qk

∂t
+

8φ
c2 Ω∗iΩ

∗i −

−
2φ
c
εimnΩ∗m

∗∂qi

∂xn +
2φ
c2

∗∂φ

∂xi F i +
2φ
c3

∗∂qi

∂t
F i −

φ

c4 Fi F i
]
,

J2 =
1
2

[
εimn

(
∗∂qm

∂xn −
∗∂qn

∂xm

)
−

4φ
c
Ω∗i

]
×

×

(
∗∂φ

∂xi +
1
c

∗∂qi

∂t
−
φ

c2 Fi

)
.

Mathematically, any electromagnetic field in the four-
dimensional pseudo-Riemannian space is completely charac-
terized by a system of 10 equations in 10 unknowns. First,
this system includes Maxwell’s equations

∇σFµσ =
4π
c

jµ, ∇σF∗µσ = 0 ,

the chr.inv.-projections of which give two groups of equati-
ons, which we call the chr.inv.-Maxwell equations* and which

*The chr.inv.-Maxwell equations were first deduced in the late 1960s in-
dependently by Nikolai Pavlov and José del Prado (unpublished). Zelmanov
asked these students to do it as homework. These equations are deduced on
the basis of the chr.inv.-projections of the absolute divergence of a 2nd rank
antisymmetric tensor (page 19), as well as the chr.inv.-projections of the ab-
solute divergence of its dual pseudotensor (page 20).

have the following form

∗∇i E i −
1
c

HikAik = 4πρ

∗∇k Hik −
1
c2 Fk Hik −

1
c

(
∗∂E i

∂t
+ DE i

)
=

4π
c

j i

 I ,

∗∇i H∗i −
1
c

E∗ikAik = 0

∗∇k E∗ik −
1
c2 Fk E∗ik −

1
c

(
∗∂H∗i

∂t
+ DH∗i

)
= 0

 II ,

or, in another notation

∗∇i E i −
2
c
Ω∗m H∗m = 4πρ

εikm ∗∇̃k
(
H∗m
√

h
)
−

1
c

∗∂

∂t
(
E i
√

h
)
=

4π
c

j i
√

h

 I ,

∗∇i H∗i +
2
c
Ω∗m Em = 0

εikm ∗∇̃k
(
Em
√

h
)
+

1
c

∗∂

∂t
(
H∗i
√

h
)
= 0

 II .

These are 8 equations in 10 unknowns, which are 3 com-
ponents of the chr.inv.-electric strengths E i, 3 components of
the chr.inv.-magnetic strength H∗i, 1 component of the elec-
tric charge density ρ and 3 components of the chr.inv.-current
density vector j i. The latter two, known as the electromag-
netic field sources, are the chr.inv.-projections

ρ =
1
c

bα jα =
1
c

j0
√
g00
, j i = hi

α jα

of the four-dimensional current vector jα of the electromag-
netic field (also known as the shift current).

The first equation of Group I is the Biot-Savart law, the
second is Gauss’ theorem, both in chr.inv.-notation. The first
and second equations of Group II represent a chr.inv.-notation
of Faraday’s law of electromagnetic induction and the condi-
tions for the absence of magnetic charges, respectively.

In particular, the 1st equation in Group II shows that, if
the observer’s reference space does not rotate, then ∗∇i H∗i = 0
(the magnetic field is homogeneous), while the electric field
is not, ∗∇i Ei = 4πρ (the 1st equation in Group I). Therefore,
a “magnetic charge”, if it really exists, is directly connected
with the rotation of space itself.

The 9th equation of the equation system mentioned above
is Lorentz’ condition

∇σ Aσ = 0 ,

which is the conservation condition for the four-dimensional
electromagnetic field potential Aα. The 10th equation that
makes this system definite (the number of equations in this
system must be the same as the number of unknowns), is the
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law of conservation of electric charge (known also as the con-
tinuity equation)

∇σ jσ = 0 ,

which is the mathematical notation of the fact that electric
charge cannot be destroyed, but merely redistributed between
the charged bodies in contact.

Using the chr.inv.-formula for the divergence of an arbi-
trary vector field (see page 18), we obtain the Lorentz condi-
tion and the continuity condition in chr.inv.-form

1
c

∗∂φ

∂t
+
φ

c
D + ∗∇i qi −

1
c2 Fi qi = 0 ,

∗∂ρ

∂t
+ ρD + ∗∇i j i −

1
c2 Fi j i = 0 ,

or, replacing the regular chr.inv.-divergence with the physical
chr.inv.-divergence (see page 18), we finally have

1
c

∗∂φ

∂t
+
φ

c
D + ∗∇̃i q i = 0 ,

∗∂ρ

∂t
+ ρD + ∗∇̃i j i = 0 .

With the above chr.inv.-Lorentz condition and the chr.inv.-
continuity equation, the mentioned system of 10 equations
that completely characterizes any electromagnetic field in the
four-dimensional pseudo-Riemannian space is complete.

Now consider the energy-momentum tensor of an electro-
magnetic field. It has the form

T µν =
1

4π

(
−FµσFν ··σ +

1
4
gµνFαβFαβ

)
.

This tensor is symmetric: T µν =T νµ. For this reason, its
chr.inv.-projections are calculated as for any symmetric tensor
of the 2nd rank (see page 6)

q =
T00

g00
, J i =

c T i
0

√
g00
, U ik = c2T ik

and have the following form

q =
E2 + H∗2

8π
,

J i =
c

4π
εikmEk H∗m ,

U ik = qc2hik −
c2

4π
(
EiEk + H∗iH∗k

)
,

where E2 = hik EiEk and H∗2 = hik H∗iH∗k. These projections
have the following physical sense: the scalar q is the physi-
cally observable energy density of the electromagnetic field,
J i is the physically observable density of the field momen-
tum (the chr.inv.-Poynting vector), and U ik is the physically

observable density of the field momentum flux (the chr.inv.-
stress tensor).

Any electrically charged particle travelling in an electro-
magnetic field deviates from a geodesic trajectory due to the
Lorentz force acting on its electric charge e from the elec-
tromagnetic field. The Lorentz force in the four-dimensional
pseudo-Riemannian space has the form

Φα =
e
c

Fα··σUσ, Uα =
dxα

ds
,

where Uα is the four-dimensional velocity of the charged par-
ticle. Respectively, the four-dimensional equations of motion
of a charged particle in an electromagnetic field (determined
by the electromagnetic field tensor Fαβ) have the form

dPα

ds
+ ΓαµνPµUν =

e
c2 Fα··βU β,

and their chr.inv.-projections

dE
dτ
− mFivi + mDik vivk = −eEi vi,

d (mvi)
dτ

− mF i + 2m
(
Di

k + A·ik ·
)
vk + m∆i

nk vnvk =

= −e
(
E i +

1
c
εikm vk H∗m

)
are the chr.inv.-equations of motion of the charged particle.
Here, E =mc2 is the relativistic energy of the particle, so the
first (scalar) equation is the theorem of live forces represented
in chr.inv.-form.

The above chr.inv.-equations of motion show how the ob-
served motion of charged particles is affected by the physi-
cally observable gravitational inertial force F i, rotation Aik,
deformation Dik and inhomogeneity ∆i

kn of the observer’s ref-
erence space.

Zelmanov had also introduced the chr.inv.-curvature ten-
sor. It is deduced similarly to the Riemann-Christoffel tensor
from the non-commutativity of the 2nd chr.inv.-derivatives of
an arbitrary vector

∗∇i
∗∇k Ql −

∗∇k
∗∇i Ql =

2Aik

c2

∗∂Ql

∂t
+ H ··· j

lki ·Q j ,

where the 4th rank chr.inv.-tensor

H ··· j
lki · =

∗∂∆
j
il

∂xk −

∗∂∆
j
kl

∂xi + ∆
m
il ∆

j
km − ∆

m
kl∆

j
im

is the basis for the chr.inv.-curvature tensor Clkij, which has
all properties of the Riemann-Christoffel tensor in the ob-
server’s three-dimensional spatial section, and its contraction
gives the observable chr.inv.-scalar curvature C

Clkij =
1
4
(
Hlkij − H jkil + Hkl ji − Hil jk

)
,

Clk = C ··· ilki · , C = hlkClk ,
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where

Hlkij = Clkij +
1
2
(
2Aki D jl + Aij Dkl +

+ A jk Dil + Akl Dij + Ali D jk
)
,

Hlk = Clk +
1
2
(
Ak j D j

l + Al j D j
k + Akl D

)
,

H = hlkHlk = C .

The above formulae show that the observed curvature of a
space depends on not only the gravitational inertial force act-
ing in the local reference space of the observer, but also the
rotation and deformation of his reference space, and, there-
fore, does not vanish in the absence of the gravitational field.
If the space does not rotate, then we have Hlkij =Clkij. This is
as well true for Hlk and Clk. In this particular case, the tensor
Clk = hijCilk j has the form

Clk =
∗∂

∂x k

( ∗∂ ln
√

h
∂xl

)
−

∗∂∆i
kl

∂xi + ∆
m
il ∆

i
km − ∆

m
kl

∗∂ ln
√

h
∂xm .

Zelmanov had also deduced chr.inv.-projections for the
Riemann-Christoffel curvature tensor

Ri
·jkl =

∂Γi
lj

∂xk −
∂Γi

k j

∂xl + Γ
i
kpΓ

p
lj − Γ

i
lpΓ

p
kj .

The Riemann-Christoffel tensor Rαβγδ is symmetric with
respect to transposition over a pair of its indices and antisym-
metric within each pair of the indices. Therefore, it has three
chr.inv.-projections as follows

Xik = −c2 R·i·k0·0·

g00
, Y ijk = −c

R·ijk0 ···
√
g00
, Zijkl = c2Rijkl.

Substituting the necessary components of the Riemann-
Christoffel tensor Rαβγδ into these formulae and then lowering
the indices, Zelmanov had obtained the chr.inv.-projections of
the Riemann-Christoffel tensor in the form

Xij =
∗∂Dij

∂t
−

(
Dl

i + A·li·
)(

Djl + A jl
)
+

+
(∗∇i Fj +

∗∇j Fi
)
−

1
c2 Fi Fj ,

Yijk =
∗∇i

(
Djk + A jk

)
− ∗∇j

(
Dik + Aik

)
+

2
c2 Aij Fk ,

Ziklj = Dik Dlj − Dil Dkj + Aik Alj −

− Ail Akj + 2Aij Akl − c2Ciklj ,

where we have Y(ijk) =Yijk +Y jki +Ykij = 0, as in the Riemann-
Christoffel tensor. Contraction of the observable spatial pro-
jection Ziklj step-by-step as Zil = hkjZiklj and Z = hilZil gives

Zil = Dik Dk
l − Dil D + Aik A·kl· + 2 Aik Ak ·

·l − c2Cil ,

Z = hilZil = Dik Dik − D2 − Aik Aik − c2C .

Using the above, Zelmanov was able to deduce chr.inv.-
projections for Einstein’s field equations

Rαβ −
1
2
gαβR = −κTαβ + λgαβ ,

where he used κ= 8πG
c2 instead of κ= 8πG

c4 as used by Landau
and Lifshitz in their The Classical Theory of Fields [8]. To
understand the reason, consider the chr.inv.-projections of the
energy-momentum tensor Tαβ of a distributed matter, which
are calculated according to the rule

ϱ =
T00

g00
, J i =

c T i
0

√
g00
, U ik = c2T ik

as for any symmetric tensor of the 2nd rank (see page 6). The
scalar ϱ is the physically observable mass density of the dis-
tributed matter, J i is its physically observable momentum
density, and U ik is its physically observable momentum flux
density (stress-tensor). Ricci’s tensor Rαβ has the dimension
[cm−2]. This means that the scalar chr.inv.-projection of the
field equations, G00

g00
=−

κT00

g00
+ λ, as well as κT00

g00
=

8πGϱ
c2 have

the same dimension [cm−2]. Hence, the energy-momentum
tensor has the dimension of mass density [gram/cm3]. There-
fore, if we used κ= 8πG

c4 on the right hand side of the field
equations, then we would not use the energy-momentum ten-
sor Tαβ itself, but c2Tαβ as Landau and Lifshitz did.

Taking all the above into account, Zelmanov had obtained
the chr.inv.-projections of Einstein’s field equations. They are
called the chr.inv.-Einstein equations and have the form

∗∂D
∂t
+ Djl D jl + A jl Alj + ∗∇j F j −

1
c2 Fj F j =

= −
κ

2
(
ϱc2 + U

)
+ λc2,

∗∇j
(
hijD − Dij − Aij) + 2

c2 Fj Aij = κ J i,

∗∂Dik

∂t
−

(
Dij + Aij

)(
D j

k + A· jk ·
)
+ DDik + 3 Aij A· jk · −

−
1
c2 Fi Fk +

1
2
(∗∇i Fk +

∗∇k Fi
)
− c2Cik =

=
κ

2
(
ϱc2hik + 2Uik − Uhik

)
+ λc2hik .

In addition, the energy-momentum tensor Tαβ of the dis-
tributed matter must satisfy the conservation law

∇σT σα = 0 ,

the chr.inv.-projections of which are calculated as for the ab-
solute divergence of any symmetric tensor of the 2nd rank
(see page 20), and are chr.inv.-conservation law equations

∗∂ϱ

∂t
+ Dϱ +

1
c2 Dij U ij + ∗∇̃i J i −

1
c2 Fi J i = 0 ,

∗∂J k

∂t
+ DJ k + 2

(
Dk

i + A·ki·
)

J i + ∗∇̃iU ik − ϱF k = 0 .
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So, we have presented here Zelmanov’s mathematical ap-
paratus of chronometric invariants, which are physical ob-
servables in General Relativity. This mathematical apparatus
is given here in its entirety and in the form it was introduced
by Zelmanov in 1944 (except for the chr.inv.-Maxwell equa-
tions, the chr.inv.-d’Alembert and chr.inv.-Laplace operators,
which were deduced later). The above description of this
mathematical apparatus contains all its foundations and def-
initions, tensor calculus in terms of chronometric invariants,
as well as the most common equations used in General Rela-
tivity, which are also expressed in terms of chronometric in-
variants. All this is collected here in one article, which is very
convenient. Even if we have missed some details, these de-
tails are not essential for understanding and working with this
mathematical apparatus.

Zelmanov’s mathematical apparatus was applied to many
problems of General Relativity. In general, Zelmanov always
said that he liked creating “mathematical tools” more than
applying them. Nevertheless, his contribution to relativistic
cosmology, as well as his calculation of the main effects of
General Gelativity and the basics of electrodynamics in terms
of chronometric invariants, are significant. We also made a
contribution: the list of our works, published in English and
French, can be found just after the References*.

We recommend the present article to all those readers who
would like to work independently in the field of General Rel-
ativity using the mathematical apparatus of chronometric in-
variants. Good luck!

Submitted on January 3, 2023
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