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Preface

The background behind this book is as follows. In 1991 the authors
started a research to find out what kinds of particles can theoretically
inhabit the space-time of General Relativity. To this end, they used the
mathematical apparatus of chronometric invariants (physically observ-
able quantities) introduced in the 1940s by Abraham L. Zelmanov.

The study was completed to reveal that besides mass-bearing and
massless (light-like) particles, particles of the third kind may also ex-
ist. Their trajectories lie beyond the regular region in space-time. For
an ordinary observer, the trajectories have zero four-dimensional length
and zero three-dimensional observable length. Besides, along the tra-
jectories the interval of observable time is also zero. Mathematically,
this means that such particles inhabit a space-time with a completely
degenerate metric (completely degenerate space-time). We have there-
fore called such a space the “zero-space” and such particles — “zero-
particles”.

For an ordinary observer, the motion of particles in the zero-space
is instantaneous. Therefore, zero-particles do realize the long-range ac-
tion. Through possible interaction with our-world’s mass-bearing or
massless particles, zero-particles can instantly transmit signals to any
point in our three-dimensional space (a phenomenon that the authors
call the “non-quantum teleportation”).

Considering zero-particles in the frames of the wave-particle du-
ality, the authors have obtained that for an ordinary observer they are
standing waves and the whole zero-space is filled with a system of stand-
ing light-like waves (zero-particles), i.e. standing light-holograms. This
result corresponds to the well-known “stopped light experiment” that
was first conducted in 2000 by Lene Hau (in Harvard, USA).

Using the mathematical method of physically observable quantities,
the authors have also showed that two separate regions in inhomoge-
neous space-time exist, where the physically observable (proper) time
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flows to the future and to the past, while such a duality is not found in
a homogeneous space-time. These regions are referred to as our world
and the mirror world respectively; they are separated by a space-time
membrane wherein observable time stops.

A few other certain problems are considered. It is shown, through
Killing’s equations, that geodesic motion of particles is a result of sta-
tionary geodesic rotation of the space which hosts them.

This book includes a chapter on the theory of gravitational wave
detectors: it is shown that both free-mass detectors and solid-body de-
tectors can register a gravitational wave only if the detector extremities
oscillate relative to each other.

In the 3rd edition, the authors have added a list of chronometrically
invariant derivatives, as well as references to their recent publications.
We have also fixed typographical errors found in the previous editions.

Calais, January 12, 2023 Patrick Marquet



Editor’s Foreword

“Only through the pure contemplation . . . which
becomes absorbed entirely in the object, are the
Ideas comprehended; and the nature of genius
consists precisely in the preeminent ability for
such contemplation. . . .This demands a complete
forgetting of our own person.”

Arthur Schopenhauer

“Genius does what it must, and Talent does what
it can.”

Owen Meredith

Einstein’s theory of space-time and gravitation, the General Theory of
Relativity, has nearly reached its centennial relative adulthood. While
this theory has revolutionized our basic understanding of the structure
of space-time and its respective dynamical interaction with energy fields
and matter in the rather rhapsodic-aesthetic light of differential geome-
try, after the savory dominance of the classical Newtonian-mechanical
and Maxwellian-electromagnetic worldviews, it has become incumbent
upon the shoulders of the most capable — and most sincere and pas-
sionate — of scientists to shed light on a few still largely mysterious,
fundamental features associated with the nature of the theory. Without
doubt, these scientists number only a few today, as those capable of fill-
ing a pure niche with real object-illumination in the dark, and not a mere
spark, and absolutely not mere brilliance. They are the infinitely self-
reserved ones who, at once, see the foundational and material aspect —
including the philosophical, theoretical and experimental aspects — of
the theory beyond everyone else.

The authors of the present book— like their preeminent teacher be-
fore them who spear-headed the Soviet general relativistic and cosmo-
logical school, Abraham Leonidovich Zelmanov — certainly are such
capable, natural, reflexive fillers in the loom of Einstein’s theory. With
respect to one’s possession of fundamental theoretical and experimental
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strength and intellectual clarity, and of immense creativity, authenticity,
and integrity, both physicists form a vigorous, perpetual dimension of
the physico-mathematical school of Zelmanov himself.

Among the seemingly many truly elusive and more moderate prob-
lems faced in General Relativity, gravitation, and cosmology, one must
further discern the trulymost important ones byway of proper scientific-
epistemological qualification as to whether or not the problems (as they
are) are truly fundamental— in contrast to the rawness of a new plethora
of merely fanciful (yet lacking in true in-depth quality) post-modern,
solipsistic-toy-models of the universe available (and easily so) nowa-
days. Of course, such a distinctive weight is the emphasis while keeping
in mind possible ways of generalizing Einstein’s theory towards a simi-
larly qualified unified field theory — and thus complete geometrization
— of not just gravitation, but also of other physical fields, including the
constituents of matter.

Notwithstanding the fact that various experimental tests have been
carried out to verify the theory within a simple, limited, tangible range
of largely earth-bound human experiences and suavities, one crucial rea-
son for the rather lengthy “single theoretical incubation period” of Gen-
eral Relativity in its original form since its very inception has been pre-
cisely the profound degree of depth of the philosophical aspect — and
further abstract edification — of the theory as related to its existence
as a scientific theory of physical reality and as an impetus for philo-
sophical considerations regarding our place in the universe. However,
referring back to the aforementioned fundamental problems, there is a
great qualitative lacuna between past-time researchers — in a line em-
anating from Einstein himself and culminating all the way with, among
others, Abraham Leonidovich Zelmanov — and many of today’s own
as regards the fundamental epistemological standard and cognizance,
including the critical dimension of human experiment, in the vein of
identifying the important problems truly relevant to the theory and the
cosmos as a whole.

At least, four of these truly fundamental problems “native to the
landscape of General Relativity” are presented and solved here. These
are profoundly encompassed by the authors’ commanding investigation
into the kinds of particles theoretically conceivable in the generally in-
homogeneous, anisotropic, non-simply connected space-time structure
of General Relativity (including various kinds of degenerate pseudo-
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Riemannian manifolds and zero-particles), their respective considera-
tion of the dynamics of particles therein (covering both geodesic and
non-geodesic motion), their in-depth study of gravitational waves fol-
lowed by a substantial modification of the theory of gravitational wave
detectors and their formidable creation of a general relativistic theory of
frozen light (the first such account in immediate connexion to the exper-
iment of stopped or retarded light, which is peculiar to this book).

It must be emphasized that while swimming extensively through the
sky and ocean of these cosmical problems, one must respect the profun-
dity and power of the mathematical apparatus left behind by Zelmanov
himself at the apex and zenith of his profound intellectual presence,
i.e., the theory of chronometric invariants. This, being more than just
a tool for regularly projecting space-time quantities (i.e., mathematical
representations — tensor fields) onto the observer’s coordinate lines,
is not a trivial matter at all: the full creation of the theory of chrono-
metric invariants enables us — a few who truly understand it — to
cast General Relativity in an elegant kinemetric semi-three-dimensional
(hence “chronometric”) formwherein the fundamental observer, seen as
a co-moving space-time “patch”, generally moves, deforms, and rotates
along with the entire universe while occupying an infinitesimal dynam-
ical volume thereof. The fact that such an observer is integral to the the-
ory, as in quantum mechanics, renders him beyond just an immutable
abstract kinematic point-like addition to the actual space-time substra-
tum. This forms the basis of the chronometrically invariant formalism
of General Relativity.

I am hereby proud and privileged to have edited this insightful mas-
terpiece by Rabounski and Borissova, who also wrote a magnum opus
on General Relativity, Fields, Vacuum, and the Mirror Universe.

Yogyakarta, April 11, 2012 Indranu Suhendro
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Chapter 1 Three Kinds of Particles
Inherent in the Space-Time

of General Relativity

1.1 Problem statement

The main goal of the theory of motion of particles is to define the three-
dimensional (spatial) coordinates of a particle at any given moment of
time. In order to do this, one should be aware of three things. First, one
should know in what type of space-time the events take place. That is,
one should know the geometric structure of space and time, just as one
should know the conditions of a road to be able to drive on it. Second,
one should know the physical properties of the travelling particle. Third,
knowledge of the equations of motion of particles of a certain kind is
necessary.

The first problem actually leads to the choice of a space from the
spaces known in mathematics, in order to represent just the right geom-
etry for space and time which best fits the geometric representation of
the observed world.

The view of the world as a space-time continuum takes its origin
from Hermann Minkowski’s historical speech Raum und Zeit, which
he delivered on September 21, 1908, in Köln, Germany, at the 80th
Assembly of the Society of German Natural Scientists and Physicians
(Die Gesellschaft Deutscher Naturforscher und Ärzte). There he intro-
duced the term “space-time” into physics and gave a geometric interpre-
tation of the principle of invariance of the speed of light and Lorentz’
transformations.

A few years later, in 1912, Marcel Grossmann, in his private conver-
sation with Albert Einstein, a close friend of him, proposed Riemannian
geometry as the geometry of the observed world. Later Einstein came
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to the idea that became the corner-stone of his General Theory of Rel-
ativity: the “geometric concept of the world”, according to which the
geometric structure of space-time determines all properties of the Uni-
verse. Thus, Einstein’s General Theory of Relativity, completed by him
in 1915, is the first geometric theory of space-time and particle motion
since the dawn of modern science.

Consideration of the problem in detail had led Einstein to the con-
clusion that the only way to represent space-time in the way that fits
the modern experimental data is given by a four-dimensional pseudo-
Riemannian space with one time axis and three spatial axes, i.e., with
the sign-alternating Minkowski signature (+−−−) or (−+++). This is a
particular case of the family of Riemannian spaces, i.e., spaces where
geometry is Riemannian (in such spaces, the squared distance ds2 be-
tween any two infinitely close points is determined by the invariant met-
ric ds2 = gαβ dxαdxβ = inv). In general, in a Riemannian space, coordi-
nate axes can be of any kind. A four-dimensional pseudo-Riemannian
space differs in that there is a principal difference between the three-
dimensional space, perceived as space, and the fourth axis — time.

From a mathematical point of view, the above means the following:
the three spatial axes are real, while the time axis is imaginary (or vice
versa), and the choice of such conditions is arbitrary.

A particular case of such spaces is a flat, homogeneous and isotropic
four-dimensional pseudo-Riemannian space referred to as Minkowski’s
space. This is the basic space-time of Special Relativity — a particular
abstract case, free of gravitational fields, rotation, deformation, and cur-
vature. In a general case, the real pseudo-Riemannian space is curved,
inhomogeneous and anisotropic. This is the basic space-time of General
Relativity, where we encounter gravitational fields, rotation, deforma-
tion, and curvature.

So, Einstein’s General Theory of Relativity is based on the view of
the world as a four-dimensional space-time, where any and all objects
possess not a three-dimensional volume alone, but their “longitude” in
time. In other words, any physical body, including ours, is a really exist-
ing four-dimensional instance with the shape of a cylinder elongated in
time (event cylinder of the body), created by the interweaving of other
event cylinders at the moment of its “birth” and decayed into many other
ones at the moment of its “death”. For example, for a human, the “time
length” is the duration of his life from conception until death.
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Shortly after Eddington gave the first experimental proof in 1919
that light rays are deviated by the Sun’s gravitational field, many re-
searchers faced strong obstacles in fitting together calculations made in
the framework of Einstein’s theory with existing results of observations
and experiments. Successful experiments verifying the theory over the
last 100 years have explicitly shown that the four-dimensional pseudo-
Riemannian space is the basic space-time of the observed world (as far
as the modern measurement precision allows us to judge). And if the
inevitable evolution of human civilization and thought, as well as of
experimental technology, indicates that the four-dimensional pseudo-
Riemannian space can no longer explain the results of new experiments,
then this will mean nothing other than the need to assume a more gen-
eral space, which will include the four-dimensional pseudo-Riemannian
space as a particular case.

In this book, the main focus will be on the motion of particles, based
on the geometric concept of the world-structure: we will assume that the
geometry of our space-time determines all properties of the observed
world. Therefore, in contrast to other researchers, we are not going to
constrain the geometry of the space-time by any limitations, but solve
the problems of physics in theway that the space-time geometry requires
their solution.

So, any particle in the four-dimensional space-time corresponds to
its own world-line determining the three-dimensional (spatial) coordi-
nates of the particle at any given moment of time. Therefore, our task
to determine all possible kinds of particles evolves into considering all
allowable types of trajectories of motion in the space-time.

Generally speaking, in terms of the equations of motion of a free
particle in a metric space (space-time), one actually refers to the equa-
tions of geodesic lines, which are the four-dimensional equations of the
world-trajectory of a free particle*

d2xα

dρ2 + Γ
α
µν

dxµ

dρ
dxν

dρ
= 0 , (1.1)

where Γαµν are the Christoffel symbols of the 2nd kind, and ρ is a param-
eter of derivation along the geodesic line.

*Here and so forth space-time indices are Greek, for instance α, β, = 0, 1, 2, 3, while
spatial indices — Roman, for instance i, k=1, 2, 3.
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From a purely geometric point of view, the equations of geodesic
lines are the equations of the Levi-Civita parallel transport [1] of the
four-dimensional kinematic vector

Qα =
dxα

dρ
, (1.2)

namely — the following equations

DQα

dρ
=

dQα

dρ
+ ΓαµνQµ dxν

dρ
= 0 , (1.3)

where DQα = dQα +ΓαµνQµdxν is the absolute differential of the kine-
matic vector Qα transported parallel to itself and tangential to the tra-
jectory of transport (a geodesic line).

The Levi-Civita parallel transport means that the length of the trans-
ported vector remains unchanged

QαQα = gαβ QαQβ = const (1.4)

along the entire world-trajectory, where gαβ is the fundamental metric
tensor of the space.

At this point, we note that the equations of geodesic lines are purely
kinematic as they do not contain the physical properties of the travelling
object. Therefore, to obtain the complete picture of motion of particles
we must consider dynamical equations of motion, solving which will
give us not only the trajectories of the travelling particles, but also their
properties such as their energy, frequency, etc.

To do this, we must define: a) the possible types of trajectories in
the four-dimensional space-time (pseudo-Riemannian space); b) the dy-
namical vector for each type of trajectory; c) the derivation parameter
for each type of trajectory.

First we consider what types of trajectories are allowable in the four-
dimensional pseudo-Riemannian space.

As mentioned above, along a geodesic line in a Riemannian space
the condition gαβ QαQβ = const is true.

If along geodesic lines gαβ QαQβ , 0, then such lines are called non-
isotropic geodesics. Along non-isotropic geodesics the square of the
four-dimensional interval is non-zero

ds2 = gαβ dxαdxβ , 0 , (1.5)
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and the interval ds takes the form

ds =
√
gαβ dxαdxβ if ds2 > 0 , (1.6)

ds =
√
−gαβ dxαdxβ if ds2 < 0 . (1.7)

If along geodesic lines gαβ QαQβ = 0, then such lines are called
isotropic geodesics. Along isotropic geodesics the square of the four-
dimensional interval is zero

ds2 = gαβ dxαdxβ = c2dτ2 − dσ2 = 0 , (1.8)

while the physically observable three-dimensional (spatial) interval dσ
and the interval of the physically observable time interval dτ are non-
zero (therefore isotropic trajectories are particularly degenerate).

This ends the list of types of trajectories in the four-dimensional
pseudo-Riemannian space (basic space-time of General Relativity),
which are known to scientists until now.

Further, we will show that trajectories of the third type are theoret-
ically allowable in the space, along which the four-dimensional inter-
val, the physically observable time interval and the observable three-
dimensional interval are zero. Such trajectories lie beyond the regular
four-dimensional pseudo-Riemannian space, in a completely degener-
ate space-time region. We call them “completely degenerate” because,
from the viewpoint of an ordinary observer, all distances and intervals of
time in such a region degenerate into zero. Nevertheless, transition into
such a degenerate space-time region from the regular space-time is quite
possible (upon reaching certain physical conditions). And, perhaps, for
an observer, whose home is such a completely degenerate space-time
region, such quantities as “time” and “space” are measured in units dif-
ferent from ours.

Therefore, we will consider the regular four-dimensional pseudo-
Riemannian space (space-time) together with the completely degenerate
space-time as an extended space-time, in which both non-degenerate
(isotropic and non-isotropic) and degenerate trajectories exist.

Therefore, in such an extended four-dimensional space-time, which
is an actual “extension” of the basic space-time of General Relativity,
which includes a completely degenerate space-time region, three types
of trajectories are allowed:
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1) Non-isotropic trajectories (pseudo-Riemannian space). Motion on
such trajectories is possible with subluminal and superluminal ve-
locities;

2) Isotropic trajectories (pseudo-Riemannian space). On such trajec-
tories, motion is possible with the velocity of light only;

3) Completely degenerate trajectories (zero-trajectories), which lie
in the completely degenerate space-time.

According to these types of trajectories, three kinds of particles can
be distinguished, which can exist in the four-dimensional space-time:
1) Mass-bearing particles (their rest-masses are m0 , 0). Such parti-

cles travel along non-isotropic trajectories (ds, 0) with sublumi-
nal velocities (real mass-bearing particles) and with superluminal
velocities (imaginary mass-bearing particles — tachyons);

2) Massless particles (their rest-masses are m0 = 0) travel along iso-
tropic trajectories (ds= 0) with the velocity of light. These are
light-like particles, e.g., photons;

3) Particles of the 3rd kind travel along trajectories in the completely
degenerate space-time.

Besides, from a purely mathematical point of view, the equations
of geodesic lines contain the same vector Qα and the same parameter ρ
irrespective of whether the considered trajectories are isotropic or non-
isotropic. This indicates that there must exist such equations of motion,
which have a common form for mass-bearing and massless particles.
We will proceed to search for such generalized equations of motion.

In the next §1.2, we will explain the basics of the mathematical ap-
paratus of physically observable quantities (chronometric invariants),
which will be used as our main tool in this book. In §1.3, we prove
the existence of a generalized dynamical vector and derivation param-
eter, which are the same for mass-bearing and massless particles. In
§1.4, we focus on the physical conditions of the complete degeneration
of a pseudo-Riemannian space. In §1.5, we consider the properties of
particles in an extended four-dimensional space-time, which allows the
complete degeneration of the space metric. In §1.6–§1.8, the chrono-
metrically invariant dynamical equations of motion valid for all of the
three kinds of particles allowed in the extended four-dimensional space-
time will be obtained. In §1.9 and §1.10, we show that the equations
of geodesic lines and Newton’s laws of Classical Mechanics are par-
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ticular cases of the above dynamical equations of motion. The next
§1.11 and §1.12 will be devoted to two aspects of the obtained equa-
tions: 1) the conditions transforming the extended space-time into the
regular space-time; 2) the asymmetry of motion to the future (direct
flow of time) and to the past (reverse flow of time). In §1.13 and §1.14,
we focus on the physical conditions of the direct and reverse flows of
time. In §1.15 and §1.16, we discuss certain specific cases such as a
superluminal observer and gravitational collapse.

1.2 Chronometrically invariant (observable) quantities

In order to build a descriptive picture of any physical theory, we need to
express the obtained results through real physical quantities, which can
be measured in experiments (physically observable quantities). In the
General Theory of Relativity, this problem is not a trivial one, because
we consider objects in a four-dimensional space-time; therefore wemust
determine which components of four-dimensional tensor quantities are
physically observable.

Here is the problem in a nutshell. All equations of the General The-
ory of Relativity are usually expressed in the general covariant form,
which is independent of our choice of reference frame. Such equations,
as well as the variables they contain, are four-dimensional. Which of the
four-dimensional variables are observable in real physical experiments,
i.e., which components are physically observable quantities?

Intuitively we may assume that the three-dimensional components
of a four-dimensional tensor constitute a physically observable quantity.
At the same time, we cannot be absolutely sure that what we observe are
truly the three-dimensional components per se, if not more complicated
variables that depend on other factors such as the properties of the phys-
ical standards of the observer’s reference space.

A four-dimensional vector (1st rank tensor) has as few as 4 compo-
nents: 1 time component and 3 spatial components. A 2nd rank tensor,
e.g., a rotation or deformation tensor, has 16 components: 1 time com-
ponent, 9 spatial components and 6 mixed (time-space) components.
Now, are the mixed components physically observable quantities? This
is another question that seemingly has no definite answer. Tensors of
higher ranks have even more components; for instance the Riemann-
Christoffel curvature tensor has 256 components, so the problem of
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the heuristic recognition of its physically observable components be-
comes far more complicated. Besides, there is an obstacle related to the
recognition of physically observable components of covariant tensors
(in which indices occupy the lower position) and of mixed type tensors,
which have both lower and upper indices.

We see that finding physically observable quantities in the General
Theory of Relativity is not a trivial problem. Ideally, we would like
to have a mathematical technique for unambiguously calculating physi-
cally observable quantities for tensors of any given rank.

Numerous attempts to develop such a mathematical method were
made in the 1930s by some researchers of that time. A contribution
was done by L.D. Landau and E.M. Lifshitz in their famous The Clas-
sical Theory of Fields, first published in 1939 [2]. Aside for discussing
the problem of physically observable quantities, in §84 of their book,
they introduced the physically observable time interval and the observ-
able three-dimensional interval, which depend on the physical proper-
ties (physical standards) of the reference space of an observer. But all
the attempts made in the 1930s were limited to solving certain particular
problems. None of them led to a versatile mathematical apparatus.

A complete mathematical apparatus for calculating physically ob-
servable quantities in a four-dimensional pseudo-Riemannian space was
first introduced by Abraham Zelmanov and is known as the theory of
chronometric invariants. Zelmanov’s mathematical apparatus was first
presented in 1944 in his PhD thesis [3], where it is given in detail, then
— in his short papers of 1956–1957 [4, 5].

A similar result was obtained by Carlo Cattaneo [6–9], an Italian
mathematician who worked independently of Zelmanov. Cattaneo pub-
lished his first paper on this subject in 1958 [6]. He highly appreci-
ated Zelmanov’s theory of chronometric invariants and referred to it
in 1968, in his last publication [9]. On the other hand, his result was
very far from a complete theory, because he limited himself to general
considerations on this problem and did not emphasize the physical and
geometric observable properties of the local physical space associated
with an observer (as Zelmanov did).

The essence of Zelmanov’s mathematical apparatus of physically
observable quantities (chronometric invariants), which he developed
specifically for the four-dimensional, curved, inhomogeneous pseudo-
Riemannian space (space-time), is as follows.
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This mathematical apparatus is very extensive. For this reason, we
present here only the necessary basics of this technique*.

At any point of the space-time we can place a three-dimensional
spatial section x0 = ct= const (three-dimensional space) orthogonal to
a given time line xi = const. If a spatial section is everywhere orthogonal
to the time lines, which pierce it at each point, then such a space is
called holonomic. Otherwise, if the spatial section is non-orthogonal
everywhere to the aforementioned time lines, then the space is called
non-holonomic.

The reference frame of a real observer includes a coordinate grid
spanned over a real physical body (his reference body located near him)
and real clocks installed at each point of the coordinate grid.

The coordinate grid and clocks represent a set of real references,
to which the observer compares the results of his observations. There-
fore, physically observable quantities, as actually registered by a partic-
ular observer, must be the result of a truly fundamental (i.e., “chrono-
metrical”) projection of four-dimensional quantities onto the time line
and the spatial section (his local three-dimensional space) associated
with his reference body.

The operator of projection onto the time line of an observer is the
four-dimensional velocity world-vector

bα =
dxα

ds
(1.9)

of his reference body with respect to him. The world-vector bα is tan-
gential to the observer’s world-line (his four-dimensional trajectory) at
each point. Therefore, it is a unit-length vector

bαbα = gαβ
dxα

ds
dxβ

ds
=
gαβ dxαdxβ

ds2 = +1 . (1.10)

The operator of projection onto the spatial section of the observer
(his local three-dimensional space) is determined as a four-dimensional

*To date, the most complete description (compendium) of the mathematical ap-
paratus of physically observable quantities in General Relativity is given in our recent
article. In this article, we have collected everything (or almost everything) that we know
on this topic fromZelmanov andwhat has been obtained over the past decades: Raboun-
ski D. and Borissova L. Physical observables in General Relativity and the Zelmanov
chronometric invariants. Progress in Physics, 2023, vol. 19, no. 1, 3–29.
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symmetric tensor hαβ, which is

hαβ = −gαβ + bαbβ

hαβ = −gαβ + bαbβ

hβα = −g
β
α + bαbβ

 . (1.11)

The vector bα and the tensor hαβ are orthogonal to each other. Math-
ematically this means that their common contraction is zero

hαβbα = −gαβbα + bαbαbβ = −bβ + bβ = 0

hαβbα = −gαβbα + bβbαbα = −bβ + bβ = 0

hαβ bα = −gαβ bα + bβbαbα = −bβ + bβ = 0

hβα bα = −gβα bα + bβbαbα = −bβ + bβ = 0


, (1.12)

therefore the main properties of the operators of projection are com-
monly expressed, obviously, as follows

bαbα = +1 , hβα bα = 0 . (1.13)

If an observer is at rest with respect to his reference body (such a
case is known as the accompanying reference frame), then bi = 0 in his
reference frame. In this case, the coordinate grids of the same spatial
section are connected to each other through the transformations

x̃0 = x̃0
(
x0, x1, x2, x3

)
x̃i = x̃i

(
x1, x2, x3

)
,

∂x̃i

∂x0 = 0

 (1.14)

where the third equation displays the fact that the spatial coordinates
in the tilde-marked grid are independent of the time of the non-tilded
grid, which is equivalent to a coordinate grid, at any point of which the
time lines piercing it are fixed xi = const. A transformation of the spa-
tial coordinates is nothing but the transition from one coordinate grid
to another within the same spatial section. A transformation of time
means changing the whole set of clocks, so this is the transition to an-
other spatial section (another three-dimensional reference space). This
means replacing one reference body with all of its physical standards
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with another reference body that has its own physical standards. But,
using different physical standards, the observer gets different results of
measurements (other observable quantities). Therefore, the physically
observable projections in the accompanying reference frame must be
invariant with respect to the transformation of time, i.e., they must be
invariant with respect to the transformations (1.14). In other words, such
quantities must have the property of chronometric invariance.

Therefore, we call physically observable quantities determined in
the accompanying reference frame chronometrically invariant quanti-
ties, or chronometric invariants in short.

The projection tensor hαβ, when considered in the reference frame
accompanying an observer, has all properties attributed to the funda-
mental metric tensor, namely

hαi hk
α = δ

k
i − bi bk = δk

i , δk
i =

 1 0 0
0 1 0
0 0 1

 , (1.15)

where δk
i is the unit three-dimensional tensor*. Therefore, in the accom-

panying reference frame, the three-dimensional tensor hik can lift and
lower indices in chronometrically invariant quantities.

So, in the accompanying reference frame, the main properties of the
operators of projection are

bαbα = +1 , hi
αbα = 0 , hαi hk

α = δ
k
i . (1.16)

Calculate the components of the projection operators in the accom-
panying reference frame.

The component b0 comes from the condition bαbα = gαβbαbβ = 1,
which in the accompanying reference frame (where bi = 0) transforms
obviously into bαbα = g00 b0b0 = 1. As a result, the component b0 and
the rest components of the bα are

b0 =
1
√
g00

, bi = 0

b0 = g0αbα =
√
g00 , bi = giαbα =

gi0
√
g00

 , (1.17)

*This tensor δk
i is the three-dimensional part of the four-dimensional unit tensor δαβ ,

which can be used to replace (lift and lower) indices in four-dimensional quantities.
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while the components of hαβ are

h00 = 0 , h00 = −g00 +
1
g00

, h0
0 = 0

h0i = 0 , h0i = −g0i, hi
0 = δ

i
0 = 0

hi0 = 0 , hi0 = −gi0, h0
i =

gi0

g00

hik = −gik +
g0ig0k

g00
, hik = −gik, hi

k = −g
i
k = δ

i
k


. (1.18)

In the framework of the chronometrically invariant formalism, Zel-
manov had developed a common mathematical method how to calcu-
late the chronometrically invariant (physically observable) projections
of any general covariant (four-dimensional) tensor quantity. He formu-
lated it as a theorem, which we call Zelmanov’s theorem:
Zelmanov’s theorem

Let there be a four-dimensional tensor Qµν...ρ
αβ...σ of the r-th rank,

where Qik...p
00...0 is the three-dimensional part of Qµν...ρ

00...0 , in which all
upper indices are non-zero, and all m lower indices are zeroes.
Then,

T ik...p = (g00)−
m
2 Qik...p

00...0 (1.19)

is a chronometrically invariant three-dimensional contravariant
tensor of the (r−m)-th rank. This means that the chr.inv.-tensor
T ik...p is the result of m-fold projection of the initial tensor Qµν...ρ

αβ...σ

onto the time line by the indices α, β . . . σ and onto the spatial sec-
tion by r−m indices µ, ν . . . ρ.

In particular, according to the theorem, the chronometrically invari-
ant (physically observable) projections of any four-dimensional vector
Qα are the two following quantities

bαQα =
Q0
√
g00

, hi
αQα = Qi, (1.20)

while the chr.inv.-projections of any symmetric tensor of the 2nd rank
Qαβ are the three following quantities

bαbβQαβ =
Q00

g00
, hiαbβQαβ =

Qi
0

√
g00

, hi
αhk

β Qαβ = Qik. (1.21)
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The chr.inv.-projections of a four-dimensional coordinate interval
dxα are the interval of the physically observable time

dτ =
√
g00 dt +

g0i

c
√
g00

dxi, (1.22)

and the intervals of each of the respective three-dimensional spatial co-
ordinates dxi. The physically observable velocity of a particle is the
three-dimensional chr.inv.-vector

vi =
dxi

dτ
, vi vi = hik vivk = v2, (1.23)

which at isotropic trajectories becomes the three-dimensional chr.inv.-
vector of the physically observable velocity of light

ci = vi =
dxi

dτ
, ci ci = hik cick = c2. (1.24)

Projecting the covariant and contravariant fundamental metric ten-
sor onto the spatial section of an observer, in the accompanying refer-
ence frame (bi = 0), we obtain

hαi hβk gαβ = gik − bi bk = −hik

hi
αhk

β g
αβ = gik − bibk = gik = −hik

 , (1.25)

which means that the chr.inv.-quantity

hik = −gik + bi bk (1.26)

is the chr.inv.-metric tensor (i.e., the observable metric tensor), using
which we can lift and lower indices in any three-dimensional chr.inv.-
quantity in the accompanying reference frame. The contravariant and
mixed components of the observable metric tensor are, obviously,

hik = −gik, hi
k = −g

i
k = δ

i
k . (1.27)

Expressing gαβ through the definition hαβ =−gαβ + bαbβ, we obtain
the formula for the four-dimensional interval

ds2 = bαbβ dxαdxβ − hαβ dxαdxβ, (1.28)
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expressed through the projection operators bα and hαβ. In this formula
bαdxα = cdτ, so the first term is bαbβ dxαdxβ = c2dτ2. The second term
hαβ dxαdxβ = dσ2 in the accompanying reference frame is the square of
the physically observable three-dimensional interval*

dσ2 = hik dxidxk. (1.29)

Thus, the formula, where the four-dimensional interval is expressed
through physically observable quantities, is

ds2 = c2dτ2 − dσ2. (1.30)

The main physically observable properties attributed to the accom-
panying reference space had been deduced by Zelmanov in the frame-
work of the theory. In particular, he proceeded from the property of non-
commutativity (non-zero difference between the mixed 2nd derivatives
with respect to the coordinates)

∗∂2

∂xi∂t
−
∗∂2

∂t ∂xi =
1
c2 Fi

∗∂

∂t
, (1.31)

∗∂2

∂xi∂xk −
∗∂2

∂xk∂xi =
2
c2 Aik

∗∂

∂t
(1.32)

of the chr.inv.-derivation operators that he had introduced
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
∂

∂xi −
g0i

g00

∂

∂x0 . (1.33)

The first two physically observable properties are characterized by
the chr.inv.-vector of the gravitational inertial force Fi and the antisym-
metric chr.inv.-tensor Aik of the angular velocity with which the refer-
ence space rotates. They are

Fi =
1

1 − w
c2

(
∂w
∂xi −

∂vi

∂t

)
, (1.34)

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂xk

)
+

1
2c2 (Fi vk − Fk vi) . (1.35)

*This is due to the fact that the hαβ in the accompanying reference frame has all
properties of the fundamental metric tensor gαβ.



1.2 Chronometrically invariant quantities 25

The quantities w and vi characterize the observer’s reference space.
These are the gravitational potential

w = c2 (
1 −
√
g00

)
, 1 −

w
c2 =

√
g00 , (1.36)

and the linear velocity with which the space rotates

vi = −c
g0i
√
g00

, vi = −cg0i√g00

vi = hik v
k, v2 = vk v

k = hik v
ivk

 . (1.37)

We note that w and vi do not have the property of chronometric
invariance, despite the fact that vi = hik v

k is obtained as for a chr.inv.-
quantity, through lowering the index by the chr.inv.-metric tensor hik.

Zelmanov had also found that the chr.inv.-quantities Fi and Aik are
related by two identities that we call Zelmanov’s identities

∗∂Aik

∂t
+

1
2

(
∗∂Fk

∂xi −
∗∂Fi

∂xk

)
= 0 , (1.38)

∗∂Akm

∂xi +
∗∂Ami

∂xk +
∗∂Aik

∂xm +
1
2

(Fi Akm + Fk Ami + Fm Aik) = 0 . (1.39)

In the framework of quasi-Newtonian approximation, i.e., in a weak
gravitational field at velocities much lower than the velocity of light and
in the absence of rotation of the space, the Fi becomes an ordinary non-
relativistic gravitational force Fi =

∂w
∂xi .

Zelmanov had also proved a theorem setting up the condition for a
space to be non-holonomic:
Zelmanov’s theorem on the space holonomity condition

For a four-dimensional region of a space (space-time), the identi-
cal equality to zero of the tensor Aik is the necessary and sufficient
condition for the orthogonality of the spatial sections to the time
lines everywhere in this region.

In other words, the necessary and sufficient condition for a space to
be holonomic is achieved by equating to zero the tensor Aik. Naturally, if
the spatial sections are everywhere orthogonal to the time lines (in such
a case the space is holonomic), then the quantities g0i are zero. Since
g0i = 0, we have vi = 0 and Aik = 0. Therefore, we also refer to the tensor
Aik as the space non-holonomity tensor.
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If somewhere the conditions Fi = 0 and Aik = 0 are satisfied together,
then there the conditions g00 = 1 and g0i = 0 are satisfied (i.e., the con-
ditions g00 = 1 and g0i = 0 can be satisfied through the transformation of
time in such a region). In such a region, according to (1.22), we have
dτ= dt: the difference between the coordinate time t and the physically
observable time τ disappears in the absence of gravitational fields and
rotation of the space. In other words, according to the theory of chrono-
metric invariants, the difference between the coordinate time t and the
physically observable time τ is due to both gravitation and rotation at-
tributed to the reference space of the observer (the Earth for an Earth-
bound observer), or due to each of these factors separately.

On the other hand, it is doubtful to find such a region in the Universe,
wherein gravitational fields or rotation of the background space would
be absent in clear. Therefore, in the real world, the physically observable
time τ and the coordinate time t differ from each other. This means
that the real space of our Universe is non-holonomic and is filled with
gravitational fields, and a holonomic space free of gravitational fields
can only be a local approximation to it.

The space holonomity condition is linked directly to the problem
of integrability of time. The formula for the physically observable time
interval (1.22) has no integratingmultiplier. In other words, this formula
cannot be reduced to the form

dτ = Adt , (1.40)

where the multiplier A depends on only t and xi: in a non-holonomic
space, the formula (1.22) has a non-zero second term depending on the
coordinate interval dxi and g0i. In a holonomic space Aik = 0, so g0i = 0.
In this case, the second term of (1.22) is zero, while the first term is the
elementary coordinate time interval dt with an integrating multiplier

A =
√
g00 = f

(
x0, xi) , (1.41)

so we are allowed to write the integral

dτ =
∫
√
g00 dt . (1.42)

Hence, time is integrable in a holonomic space (Aik = 0), but cannot
be integrated in a non-holonomic space (Aik , 0). In the case, where
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time is integrable (a holonomic space), we can synchronize clocks at
two distant points in the space by moving a control clock along the path
between these two points. In the case, where time cannot be integrated
(a non-holonomic space), the clock synchronization at two distant points
is impossible in principle: the greater the distance between these two
points, the greater the deviation of time on these clocks.

The Earth’s space is non-holonomic due to the daily rotation of the
Earth around its axis. Hence, two clocks located at different points on
the Earth’s surface should show a deviation between the intervals of
time registered on each of them. The greater the distance between these
clocks, the greater the expected deviation of the physically observable
time registered on them. This effect was surely verified by the well-
known Hafele-Keating experiments [10–15] on moving a set of standard
atomic clocks on board a civil jet airplane around the globe. When fly-
ing along the Earth’s rotation, the observer’s space on board the airplane
had more rotation than the space of another observer, who remained
motionless on the ground at the departure/arrival point. When flying
against the Earth’s rotation it was vice versa. As a result, the atomic
clocks on board the airplane showed a significant deviation of the regis-
tered time depending on the velocity with which the space on board the
airplane rotated.

Synchronization of clocks at different points on the Earth’s surface is
the most important task of maritime navigation and aviation. Therefore,
in the past, navigators introduced desynchronization corrections based
on tables containing empirically obtained values that take the Earth’s
rotation into account. Now, thanks to the theory of chronometric invari-
ants, we know the origin of the corrections and can calculate them on
the basis of General Relativity.

In addition to gravitation and rotation, a reference body can deform,
changing its coordinate grid with time. This fact must also be taken into
account inmeasurements. This can be done by selecting in the equations
the three-dimensional symmetric chr.inv.-tensor of the deformation rate
of the observer’s reference space

Dik =
1
2

∗∂hik

∂t
, Dik = −

1
2

∗∂hik

∂t

D = hikDik = Dn
n =

∗∂ ln
√

h
∂t

, h = det ∥hik∥

 . (1.43)
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In addition to the above, when Zelmanov tried to develop a four-
dimensional (general covariant) generalization of the chronometrically
invariant formalism called the orthometric monad formalism [16], he
had deduced formulae for the four-dimensional quantities

Fα = −2c2bβaβα , (1.44)

Aαβ = chµα hνβaµν , (1.45)

Dαβ = chµα hνβdµν , (1.46)

which are the general covariant generalization of the chr.inv.-quantities
Fi, Aik, Dik. The auxiliary quantities aαβ and dαβ here are

aαβ =
1
2

(
∇αbβ − ∇βbα

)
, dαβ =

1
2

(
∇αbβ + ∇βbα

)
. (1.47)

The regular Christoffel symbols of the 2nd rank Γαµν and the regular
Christoffel symbols of the 1st rank Γµν,σ

Γαµν = g
ασ Γµν,σ =

1
2
gασ

(
∂gµσ

∂xν
+
∂gνσ
∂xµ

−
∂gµν

∂xσ

)
(1.48)

are related to the corresponding chr.inv.-Christoffel symbols

∆i
jk = him∆ jk,m =

1
2

him
( ∗∂hjm

∂xk +
∗∂hkm

∂x j −

∗∂hjk

∂xm

)
, (1.49)

which Zelmanov had determined similarly to Γαµν. The only difference is
that here instead of the fundamental metric tensor gαβ the chr.inv.-metric
tensor hik is used.

Zelmanov had found that the regular Christoffel symbols are con-
nected with the other chr.inv.-characteristics of the accompanying ref-
erence space by the following relations

Di
k + A·ik· =

c
√
g00

Γi
0k −

g0kΓ
i
00

g00

 , (1.50)

F k = −
c2 Γk

00

g00
, (1.51)

giαgkβ Γm
αβ = hiqhks∆m

qs . (1.52)
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By analogy with the respective absolute (general covariant) deriva-
tives, Zelmanov had also introduced the chr.inv.-derivatives

∗∇i Qk =
∗∂Qk

dxi − ∆
l
ik Ql , (1.53)

∗∇i Qk =
∗∂Qk

dxi + ∆
k
il Ql, (1.54)

∗∇i Qjk =
∗∂Qjk

dxi − ∆
l
ij Qlk − ∆

l
ik Qjl , (1.55)

∗∇i Qk
j =

∗∂Qk
j

dxi − ∆
l
ij Qk

l + ∆
k
il Ql

j , (1.56)

∗∇i Q jk =
∗∂Q jk

dxi + ∆
j
il Qlk + ∆k

il Q jl, (1.57)

∗∇i Qi =
∗∂Qi

∂xi + ∆
j
ji Qi, ∆

j
ji =

∗∂ ln
√

h
∂xi , (1.58)

∗∇i Q ji =
∗∂Q ji

∂xi + ∆
j
il Qil + ∆l

li Q ji, ∆l
li =

∗∂ ln
√

h
∂xi . (1.59)

Zelmanov had also deduced the chr.inv.-projections of the Riemann-
Christoffel tensor. He followed the same way by which the Riemann-
Christoffel tensor was built, proceeding from the non-commutativity of
the second derivatives of an arbitrary vector taken in the given space.
Taking the second chr.inv.-derivatives of an arbitrary vector

∗∇i
∗∇k Ql −

∗∇k
∗∇i Ql =

2Aik

c2

∗∂Ql

∂t
+ H ··· jlki·Qj , (1.60)

he obtained the chr.inv.-tensor

H ··· jlki· =

∗∂∆
j
il

∂xk −

∗∂∆
j
kl

∂xi + ∆
m
il ∆

j
km − ∆

m
kl∆

j
im , (1.61)

which is like Schouten’s tensor from the theory of non-holonomic man-
ifolds [17]. The H ··· jlki· differs algebraically from the Riemann-Christoffel
tensor by the presence of the space rotation velocity tensor Aik in the
formula (1.60). Nevertheless it gives the chr.inv.-tensor

Clkij =
1
4

(
Hlkij − Hjkil + Hklji − Hiljk

)
, (1.62)
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which has all the algebraic properties of the Riemann-Christoffel tensor
in the observer’s three-dimensional space. Therefore, Zelmanov called
the Ciklj the chr.inv.-curvature tensor. Its contraction step-by-step gives
the chr.inv.-scalar C, which is the observable three-dimensional curva-
ture of the observer’s spatial section (his reference space)

Ckj = C ···ikij· = himCkimj , C = C j
j = hljClj , (1.63)

Substituting the necessary components of the Riemann-Christoffel
tensor into the formulae for its chr.inv.-projections

X ik = −c2 R·i·k0·0·

g00
, Y ijk = −c

R·ijk0···
√
g00

, Z ijkl = c2Rijkl. (1.64)

and by lowering indices, after transformations Zelmanov obtained the
above chr.inv.-components in the form

Xij =
∗∂Dij

∂t
−

(
D l

i + A·li·
) (

Djl + Ajl
)
+

+
(
∗∇i Fj +

∗∇j Fi
)
−

1
c2 Fi Fj , (1.65)

Yijk =
∗∇i

(
Djk + Ajk

)
−∗∇j (Dik + Aik) +

2
c2 Aij Fk , (1.66)

Ziklj = Dik Dlj − Dil Dkj + Aik Alj −

− Ail Akj + 2Aij Akl − c2Ciklj , (1.67)

where Y(ijk) =Yijk +Yjki +Ykij = 0 just like in the Riemann-Christoffel
tensor. Contraction of the spatial observable projection Ziklj step-by-
step gives the following chr.inv.-quantities

Zil = Dik Dk
l − Dil D + Aik A·kl· + 2Aik Ak·

·l − c2Cil , (1.68)

Z = hilZil = Dik Dik − D2 − Aik Aik − c2C . (1.69)

These are the necessary basics of the mathematical apparatus of
physically observable quantities, known also as the Zelmanov chrono-
metric invariants [3–5].

With the above definitions, we can find out how any geometric ob-
ject of the four-dimensional pseudo-Riemannian space (space-time)
looks like from the viewpoint of an observer, whose home is this space.
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For instance, having any equation obtained in the general covariant ten-
sor analysis, we can calculate the chr.inv.-projections of it onto the time
line and the spatial section associated with any particular observer, then
formulate the chr.inv.-projections in terms of the physically observable
properties of his reference space. In this way, we will arrive at equations
containing only quantities measurable in practice.

1.3 Mass-bearing particles and massless particles

According to modern concepts, a mass-bearing particle is characterized
by the four-dimensional momentum vector Pα, while a massless particle
is characterized by the four-dimensional wave vector Kα, i.e.

Pα = m0
dxα

ds
, Kα =

ω

c
dxα

dσ
, (1.70)

where m0 is the rest-mass of the mass-bearing particle, while ω is the
frequency of the massless particle. The space-time interval ds is used
as the derivation parameter for mass-bearing particles (non-isotropic
trajectories, ds, 0). Along isotropic trajectories ds= 0 (massless par-
ticles), but the observable three-dimensional interval is dσ, 0. There-
fore, dσ is used as the derivation parameter for massless particles.

The square of the momentum vector Pα along the trajectories of
mass-bearing particles is not zero and is constant

PαPα = gαβ PαPβ = m2
0 = const , 0 , (1.71)

i.e., the Pα is a non-isotropic vector. The square of the wave vector Kα

is zero along the trajectories of massless particles

KαKα = gαβ KαKβ =
ω2

c2

gαβ dxαdxβ

dσ2 =
ω2

c2

ds2

dσ2 = 0 , (1.72)

therefore the Kα is an isotropic vector.
Since ds2 in the chr.inv.-form (1.30) expresses itself through the

square of the relativistic root as

ds2 = c2dτ2 − dσ2 = c2dτ2
(
1 −

v2

c2

)
, v2 = hikvivk, (1.73)

we can put the Pα and Kα down as

Pα = m0
dxα

ds
=

m
c

dxα

dτ
, Kα =

ω

c
dxα

dσ
=

k
c

dxα

dτ
, (1.74)
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where k= ω
c is the massless particle’s wave number, and m is the mass-

bearing particle’s relativistic mass.
From the obtained formulae, we see that the physically observable

time τ can be used as a universal derivation parameter with respect to
both isotropic and non-isotropic trajectories, i.e., as the single derivation
parameter for mass-bearing and massless particles.

The contravariant components of the Pα and Kα are

P0 = m
dt
dτ

, P i =
m
c

dxi

dτ
=

1
c

mvi , (1.75)

K0 = k
dt
dτ

, K i =
k
c

dxi

dτ
=

1
c

kvi , (1.76)

where mvi is the three-dimensional chr.inv.-momentum vector of the
mass-bearing particle, and kvi is the three-dimensional chr.inv.-wave
vector of the massless particle. The observable velocity of massless
particles is the observable chr.inv.-velocity of light vi = ci (1.24).

The dt
dτ can be obtained based on the square of the four-dimensional

velocity vector Uα of a particle, which in the case of a subluminal ve-
locity, the light velocity and a superluminal velocity is, respectively,

gαβ UαU β = +1 , Uα =
dxα

ds
, ds = cdτ

√
1 −

v2

c2 , (1.77)

gαβ UαU β = 0 , Uα =
dxα

dσ
, ds = 0 , dσ = cdτ, (1.78)

gαβ UαU β = −1 , Uα =
dxα

|ds|
, ds = cdτ

√
v2

c2 − 1 . (1.79)

Using the definitions of hik, vi, vi in the formulae for gαβ UαU β,
we arrive at three identical quadratic equations with respect to dt

dτ for
subluminal velocities, the light velocity and superluminal velocities(

dt
dτ

)2

−
2vi vi

c2
(
1 − w

c2

) dt
dτ
+

1(
1 − w

c2

)2

(
1
c4 vi vk vivk − 1

)
= 0 . (1.80)

This quadratic equation has two solutions(
dt
dτ

)
1,2
=

1

1 − w
c2

(
1
c2 vi vi ± 1

)
. (1.81)
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The function dt
dτ allows you to find out in which direction in time

the particle is travelling. If dt
dτ > 0, then the time coordinate parameter t

increases: the particle travels from the past to the future, which means
the direct flow of time. If dt

dτ < 0, then the time coordinate parameter
decreases: the particle travels from the future to the past (the reverse
flow of time).

We assume 1− w
c2 =
√
g00 > 0, because the other cases √g00 = 0 and

√
g00 < 0 contradict the signature condition (+−−−). Therefore, the co-

ordinate time t stops ( dt
dτ = 0) provided that

vi vi = −c2, vi vi = +c2. (1.82)

The coordinate time t has direct flow dt
dτ > 0, if in the first and second

solutions we have, respectively

1
c2 vi vi + 1 > 0 ,

1
c2 vi vi − 1 > 0 . (1.83)

The coordinate time t has reverse flow dt
dτ < 0, if

1
c2 vi vi + 1 < 0 ,

1
c2 vi vi − 1 < 0 . (1.84)

For subluminal particles, vi vi < c2 is always true. Hence, the direct
flow of time for regularly observed mass-bearing particles takes place
under the first condition of (1.83), and the reverse flow of time takes
place under the second condition of (1.84).

It should be noted that we have considered the problem of the direc-
tion of the coordinate time t, assuming that the physically observable
time interval is always dτ > 0. This is associated with the perception of
any ordinary observer to see the events of his world in order from the
past to the future.

Calculate the covariant components Pi and Ki, then — the chr.inv.-
projections of the four-dimensional vectors Pα and Kα onto the time line
of an observer. Using the formulae (1.75), (1.76), (1.81), we obtain

Pi = −
m
c

(vi ± vi) , Ki = −
k
c

(vi ± vi) , (1.85)

P0
√
g00
= ±m ,

K0
√
g00
= ±k , (1.86)
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where the time projections +m and +k take place when observing the
motion of these particles to the future (direct flow of time), and −m and
−k are registered when observing the motion of these particles to the
past (reverse flow of time).

Therefore, the physically observable quantities are as follows. For
a mass-bearing particle these are its relativistic mass ±m and the three-
dimensional quantity 1

c mvi, where mvi is the observable momentum
vector of the particle. For a massless particle these are its wave number
±k and the three-dimensional quantity 1

c kvi, where kvi is the observ-
able wave vector of the particle.

From the obtained formulae (1.85) and (1.86), we see that the ob-
servable wave vector kvi characterizing a massless particle is the com-
plete analogue of the observable momentum vector mvi that character-
izes a mass-bearing particle.

Substituting the obtained formulae for P0, P i, K0, K i, and also the
formula for gik expressed through hik =−gik +

1
c2 vi vk into the formulae

for PαPα (1.71) and KαKα (1.72), we arrive at the relations between the
physically observable energy and the physically observable momentum
for a mass-bearing particle

E2

c2 − m2 vi vi =
E2

0

c2 , (1.87)

and also that for a massless particle

hik vivk = c2, (1.88)

where E =±mc2 is the relativistic energy of the mass-bearing particle,
while E0 =m0c2 is its rest-energy.

Therefore, by comparing the new common formulae for Pα and Kα

(1.74), which we have obtained, we arrive at an universal derivation
parameter, which is the physically observable time τ and is the same for
both mass-bearing and massless particles. This is despite the fact that
the four-dimensional dynamical vectors for particles of each of these
two kinds, i.e., the vectors Pα and Kα, differ from each other.

Now we are going to find a universal dynamical vector, which in
particular cases can be represented as the dynamical vector of a mass-
bearing particle Pα and that of a massless particle Kα.

Wewill tackle this problem by assuming that the wave-particle dual-
ity, first introduced by Louis de Broglie formassless particles, is peculiar
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to particles of all kinds without any exception. That is, we will consider
the motion of massless and mass-bearing particles as the propagation
of waves in the approximation of geometric optics.

The four-dimensional wave vector of a massless particle Kα in the
approximation of geometric optics is [2]

Kα =
∂ψ

∂xα
, (1.89)

where ψ is the wave phase (eikonal). In the same way, we introduce the
four-dimensional momentum vector of a mass-bearing particle

Pα =
ℏ

c
∂ψ

∂xα
, (1.90)

where ℏ is Planck’s constant, while the coefficient ℏc equates the dimen-
sions of both parts of the equation. From these formulae we obtain

K0
√
g00
=

1
c

∗∂ψ

∂t
,

P0
√
g00
=
ℏ

c2

∗∂ψ

∂t
. (1.91)

Equating the quantities (1.91) to (1.86) we obtain

±ω =
∗∂ψ

∂t
, ±m =

ℏ

c2

∗∂ψ

∂t
, (1.92)

where +ω for a massless particle and +m for a mass-bearing particle
take place at the wave phase ψ that increases with time, while −ω and
−m take place at the wave phase decreasing with time. Thus, we obtain
a formula for the energy of both massless and mass-bearing particles,
which takes their dual (wave-particle) nature into account. It is

±mc2 = ±ℏω = ℏ
∗∂ψ

∂t
= E . (1.93)

Now from (1.90) we obtain the dependence between the chr.inv.-
momentum pi of a particle and its wave phase ψ

pi = mvi = −ℏhik
∗∂ψ

∂xk , pi = mvi = −ℏ
∗∂ψ

∂xi . (1.94)

Furthermore, as is known [2], the condition KαKα = 0 can be pre-
sented in the form

gαβ
∂ψ

∂xα
∂ψ

∂xβ
= 0 , (1.95)
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which is the basic equation of geometric optics, known as the eikonal
equation. Formulating the ordinary derivation operators through the
chr.inv.-derivation operators and taking into account that

g00 =
1 − 1

c2 vi v
i

g00
, gik = −hik, vi = −cg0i√g00 , (1.96)

we arrive at the chr.inv.-eikonal equation for massless particles

1
c2

(
∗∂ψ

∂t

)2

− hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0 . (1.97)

Following the same way, we obtain the chr.inv.-eikonal equation for
mass-bearing particles

1
c2

(
∗∂ψ

∂t

)2

− hik
∗∂ψ

∂xi

∗∂ψ

∂xk =
m2

0c2

ℏ2 , (1.98)

which at m0 = 0 becomes the same as the former one.
Substituting the relativistic mass m (1.92) into (1.74), we obtain the

dynamical vector Pα that characterizes the motion of both massless and
mass-bearing particles in the approximation of geometric optics

Pα =
ℏω

c3

dxα

∂τ
, PαPα =

ℏ2ω2

c4

(
1 −

v2

c2

)
. (1.99)

The length of the vector Pα is real for v< c, is zero for v= c, and
is imaginary for v> c. Therefore, the obtained dynamical vector Pα

characterizes a particle with any rest-mass (real, zero, or imaginary).
The observable chr.inv.-projections of the universal vector Pα are

P0
√
g00
= ±
ℏω

c2 , P i =
ℏω

c3 vi, (1.100)

where the time chr.inv.-projection has the dimension of mass, and the
quantity pi = cP i has the dimensions of momentum.

1.4 Completely degenerate space-time. Zero-particles

As is known, along the trajectories of massless particles (isotropic tra-
jectories) the four-dimensional interval is zero

ds2 = c2dτ2 − dσ2 = 0 , c2dτ2 = dσ2 , 0 . (1.101)
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Note that we have ds2 = 0 not only at c2dτ2 = dσ2, but also when
even a stricter condition is true, c2dτ2 = dσ2 = 0. The condition dτ2 = 0
means that the physically observable time τ has the same numerical
value along the entire trajectory. The second condition dσ2 = 0 means
that all the three-dimensional trajectories have zero length. Taking into
account the definitions of dτ (1.22) and dσ2 (1.29), and also the fact
that h00 = h0i = 0 in a reference frame accompanying the observer, we
re-write the conditions dτ2 = 0 and dσ2 = 0 in the expanded form

cdτ =
[
1 −

1
c2

(
w + vi ui

)]
cdt = 0 , dt , 0 , (1.102)

dσ2 = hik dxidxk = 0 , (1.103)

where ui = dx i

dt is the three-dimensional coordinate velocity of the parti-
cle, which is not a physically observable chr.inv.-quantity.

As is known, the necessary and sufficient condition for a metric
to be complete degenerate means zero value of the determinant of its
metric tensor. For the three-dimensional physically observable metric
dσ2 = hik dxidxk this condition is

h = det ∥hik∥ = 0 . (1.104)

On the other hand, the determinant of the chr.inv.-metric tensor hik

has the form [3–5]

h = −
g

g00
, g = det ∥gαβ∥ . (1.105)

The degeneration of the three-dimensional form dσ2 (i.e., h= 0)
means the degeneration of the four-dimensional form ds2 (i.e., g= 0).
Hence, a four-dimensional space (space-time), wherein the conditions
(1.102) and (1.103) are true, is a completely degenerate space-time.

Substituting hik =−gik +
1
c2 vi vk into (1.103), then dividing it by dt2,

we obtain the (1.102) and (1.103), i.e., the physical conditions of degen-
eration of the space, in the final form

w + vi ui = c2, gik ui uk = c2
(
1 −

w
c2

)2
, (1.106)

where vi ui is the scalar product of the linear velocity vi with which the
space rotates and the coordinate velocity ui of the particle.
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If all quantities vi = 0 (i.e., the space is holonomic), then w= c2 and
also √g00 = 1− w

c2 = 0. This means that the gravitational potential of
the reference body w is strong enough at the given point of the space to
bring the space to gravitational collapse at this point. This case will not
be discussed here.

Consider the degeneration of a four-dimensional space (space-time),
which is non-holonomic. In this case, we have vi , 0, i.e., the spatial
section belonging to the observer rotates.

Using the definition of dτ (1.22), we obtain the relation between the
coordinate velocity ui and the observable velocity vi in the space

vi =
ui

1 − 1
c2

(
w + vk uk) , (1.107)

which takes the first degeneration condition into account.
Thus, we re-write ds2 in a form, where the first degeneration condi-

tion is presented explicitly

ds2 = c2dτ2
(
1 −

v2

c2

)
= c2dt2


[
1 −

1
c2

(
w + vk uk

)]2

−
u2

c2

 . (1.108)
It is obvious that a degenerate space-time can only host the particles

for which the physical conditions of degeneration (1.106) are true.
We will refer to such a completely degenerate space-time as the

zero-space, while the particles allowed in such a completely degener-
ate space-time (zero-space) will be referred to as zero-particles.

1.5 An extended space for particles of all three kinds

When we studied the motion of mass-bearing and massless particles,
we considered it in a four-dimensional space-time, the metric of which
is strictly non-degenerate (g< 0). Now, we are going to consider the
motion of particles in such a space-time, the metric of which can be
degenerate (g⩽ 0).

We have already obtained the metric of such an extended space-time
(see formula 1.108). Hence, the momentum vector of a mass-bearing
particle Pα in such an extended space-time (g⩽ 0) has the form

Pα = m0
dxα

ds
=

M
c

dxα

dt
, (1.109)
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M =
m0√[

1 − 1
c2

(
w + vk uk)]2

−
u2

c2

, (1.110)

where M stands for the gravitational rotational mass of the particle.
Such a mass M depends not only on the three-dimensional velocity of
the particle with respect to the observer, but also on the gravitational
potential w (associated with the reference body’s field) and on the linear
velocity vi with which the space rotates.

From the obtained formula (1.109) we see that in a four-dimensional
space-time, wherein the metric can be degenerate (g⩽ 0), the general-
ized derivation parameter is the coordinate time t.

Substituting v2 from (1.107) and m0 =m
√

1− v2/c2 into this for-
mula, we arrive at the relation

M =
m

1 − 1
c2

(
w + vi ui) (1.111)

between the relativistic mass m of any particle in the space and its grav-
itational rotational mass M.

From the obtained formula we see that the M is a ratio between
two quantities, each one is zero in the case where the space metric is
degenerate (g= 0), but the ratio itself is not zero M , 0.

This fact is no surprise. The same is true for the relativistic mass m
in the case of v2 = c2. As soon as m0 = 0 and

√
1− v2/c2 = 0, the ratio

of these quantities is still m, 0.
Therefore, light-like (massless) particles are the limiting case of

mass-bearing particles at v→ c. Zero-particles can be regarded the lim-
iting case of light-like ones travelling in a non-holonomic space at the
observable velocity vi (1.107) that depends on the gravitational poten-
tial w of the reference body’s field and on the direction with respect to
the linear velocity vi with which the space rotates.

The time component of the world-vector Pα (1.109) and the physi-
cally observable projection of the vector onto the time line are

P0 = M =
m

1 − 1
c2

(
w + vi ui) , (1.112)

P0
√
g00
= M

[
1 −

1
c2

(
w + vi ui

)]
= m , (1.113)
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while the spatial components of the vector are

P i =
M
c

ui =
m
c

vi, (1.114)

Pi = −
M
c

[
ui + vi −

1
c2 vi

(
w + vkuk

)]
. (1.115)

In a completely degenerate region of the extended space-time, i.e.,
under the physical conditions of degeneration (1.106), the components
of the dynamic vector Pα of a particle become

P0 = M , 0 ,
P0
√
g00
= m = 0 , (1.116)

P i =
M
c

ui, Pi = −
M
c

ui , (1.117)

i.e., a particle of the degenerate space-time (a zero-particle) has a zero
relativistic mass, but its gravitational rotational mass is not zero.

Consider mass-bearing particles in the extended space-time within
the wave-particle duality concept. In such a case, the components of the
universal dynamical vector Pα = ℏc

∗∂ψ
∂xα (1.90) of a particle are

P0
√
g00
= m = M

[
1 −

1
c2

(
w + vi ui

)]
=
ℏ

c2

∗∂ψ

∂t
, (1.118)

Pi =
ℏ

c

(
∗∂ψ

∂xi −
1
c2 vi

∗∂ψ

∂t

)
, (1.119)

P i =
m
c

vi =
M
c

ui = −
ℏ

c
hik
∗∂ψ

∂xk , (1.120)

P0 = M =
ℏ

c2
(
1 − w

c2

) (
∗∂ψ

∂t
− vi

∗∂ψ

∂xi

)
. (1.121)

From these components, the following two formulae can be obtained

Mc2 =
1

1 − 1
c2

(
w + vi ui) ℏ ∗∂ψ∂t

= ℏΩ = E tot , (1.122)

Mui = −ℏhik
∗∂ψ

∂xk , (1.123)
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where Ω is the gravitational rotational frequency of the particle, while
ω is its regular frequency

Ω =
ω

1 − 1
c2

(
w + vi ui) , ω =

∗∂ψ

∂t
. (1.124)

The first relation (1.122) links the gravitational rotational mass M
of a particle to its corresponding total energy Etot. The second relation
(1.123) links the three-dimensional generalized momentum Mui of the
particle to the gradient of its wave phase ψ.

The condition PαPα = const in the approximation of geometric op-
tics is the eikonal equation (1.98). For corpuscular matter in the ex-
tended space-time, this condition takes the chr.inv.-form

E2

c2 − M2u2 =
E2

0

c2 , (1.125)

where M2u2 is the square of the generalized three-dimensional momen-
tum vector, E =mc2, and E0 =m0c2. Using this formula, we obtain the
formula for the universal dynamical vector

Pα =
ℏΩ

c3

dxα

dt
=

ℏ
∗∂ψ
∂t

c3
[
1 − 1

c2

(
w + vi ui)] dxα

∂t
, (1.126)

PαPα =
ℏ2Ω2

c4


[
1 −

1
c2

(
w + vi ui

)]2

−
u2

c2

 , (1.127)

where the first degeneration condition has been included.
In a completely degenerate region of the extended space-time, we

have m0 = 0, m= 0, ω=
∗∂ψ
∂t = 0, and PαPα = 0. That is, from the view-

point of an observer, whose home is our world, particles of a degenerate
region (zero-particles) have zero rest-mass m0, zero relativistic mass m,
zero relativistic frequency ω (corresponding to the relativistic mass in
the framework of the wave-particle duality), while the length of the four-
dimensional dynamical vector of any zero-particle is indeed conserved.
On the contrary, for zero-particles, the gravitational rotational mass
M (1.110), the three-dimensional generalized momentum Mui (1.123),
and the gravitational rotational frequencyΩ (1.124), which corresponds
to the mass M according to the wave-particle duality, are not zero.
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The zero-space metric dµ2 is not invariant from the viewpoint of an
internal observer in the zero-space. It can be proven based on the second
degeneration condition dσ2 = hik dxidxk = 0. Using hik =−gik +

1
c2 vi vk,

dividing by dt2, and then substituting the first degeneration condition
w+ vi ui = c2, we arrive at the internal zero-space metric

dµ2 = gik dxidxk =

(
1 −

w
c2

)2
c2dt2 , inv , (1.128)

which is not invariant. Hence, from the viewpoint of an observer in the
zero-space, the four-dimensional vector of any zero-particle has a length
that is not conserved along the trajectory of the particle

UαUα = gik uiuk =

(
1 −

w
c2

)2
c2 , const. (1.129)

The eikonal equation for zero-particles is obtained by substituting
the conditions m= 0, ω=

∗∂ψ
∂t = 0, PαPα = 0 into the eikonal equation

(1.97) or (1.98) obtained for mass-bearing and massless particles, re-
spectively. Thus, we obtain the eikonal equation for zero-particles in
the reference frame of an ordinary observer, whose home is our world,

hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0 . (1.130)

This is a standing wave equation. This means that zero-particles
look from our point of view as standing light waves—waves of stopped
light (information circles, or light-like holograms).

As a result, our theoretical investigation of the extended space-time,
wherein the metric can be completely degenerate, we conclude that in
such a space-time there are two ultimate space-time barriers:
1) The light barrier, to overcome which a particle must exceed the

velocity of light;
2) The zero-transition, to overcome which a particle must be in the

state of specific rotation depending on a particular distribution of
matter (the degeneration conditions).

1.6 The equations of motion: general considerations

Let us obtain the dynamical equations of motion of free particles in
the extended space-time (g⩽ 0), i.e., the equations of motion for mass-
bearing, massless, and zero particles in a common form.
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Geometrically, the equations in question are those of the Levi-Civita
parallel transport applied to the universal dynamical vector Pα, i.e.,

DPα = dPα + ΓαµνPµdxν = 0 . (1.131)

The parallel transport equations (1.131) are written in the general
covariant form. In order to use the equations to solve real problems
of physics, the equations must contain only chronometrically invariant
(physically observable) quantities. To transform the equations to the
chr.inv.-form, we project them onto the time line and the spatial section
of the reference frame accompanying our reference body. We obtain

bαDPα =
√
g00

(
dP0 + Γ0

µνPµdxν
)
+

+
g0i
√
g00

(
dP i + Γi

µνPµdxν
)
= 0

hi
βDPβ = dP i + Γi

µνPµdxν = 0


. (1.132)

The Christoffel symbols found in the chr.inv.-equations (1.132) are
not yet expressed in terms of chr.inv.-quantities. Express the Christoffel
symbols of the 2nd kind Γαµν and those of the 1st kind Γµν,σ

Γαµν = g
ασΓµν,σ , Γµν,ρ =

1
2

(
∂gµρ

∂xν
+
∂gνρ

∂xµ
−
∂gµν

∂xρ

)
(1.133)

through the chr.inv.-properties of the accompanying reference space.
Formulating the gαβ components and the first derivatives of gαβ in terms
of Fi, Aik, Dik, w, and vi, after some algebra we obtain

Γ00,0 = −
1
c3

(
1 −

w
c2

)
∂w
∂t

, (1.134)

Γ00,i =
1
c2

(
1 −

w
c2

)2
Fi +

1
c4 vi

∂w
∂t

, (1.135)

Γ0i,0 = −
1
c2

(
1 −

w
c2

)
∂w
∂xi , (1.136)

Γ0i, j = −
1
c

(
1 −

w
c2

) (
Dij + Aij +

1
c2 Fj vi

)
+

1
c3 vj

∂w
∂xi , (1.137)

Γij,0 =
1
c

(
1 −

w
c2

) [
Dij −

1
2

(
∂vj

∂xi +
∂vi

∂x j

)
+

1
2c2

(
Fi vj + Fj vi

)]
, (1.138)
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Γij,k = −∆ij,k +
1
c2

[
vi Ajk + vj Aik +

1
2
vk

(
∂vj

∂xi +
∂vi

∂x j

)
−

−
1

2c2 vk
(
Fi vj + Fj vi

)]
+

1
c4 Fk vi vj , (1.139)

Γ0
00 = −

1
c3

 1

1 − w
c2

∂w
∂t
+

(
1 −

w
c2

)
vk F k

 , (1.140)

Γk
00 = −

1
c2

(
1 −

w
c2

)2
F k, (1.141)

Γ0
0i =

1
c2

− 1

1 − w
c2

∂w
∂xi + vk

(
Dk

i + A·ki· +
1
c2 vi F k

) , (1.142)

Γk
0i =

1
c

(
1 −

w
c2

) (
Dk

i + A·ki· +
1
c2 vi F k

)
, (1.143)

Γ0
ij = −

1

c
(
1 − w

c2

) {
−Dij +

1
c2 vn ×

×

[
vj

(
Dn

i + A·ni·
)
+ vi

(
Dn

j + A·nj·
)
+

1
c2 vi vj Fn

]
+

+
1
2

(
∂vi

∂x j +
∂vj

∂xi

)
−

1
2c2

(
Fi vj + Fj vi

)
− ∆n

ij vn

}
, (1.144)

Γk
ij = ∆

k
ij −

1
c2

[
vi

(
Dk

j + A·kj·
)
+ vj

(
Dk

i + A·ki·
)
+

1
c2 vi vj F k

]
, (1.145)

where ∆i
jk are the chr.inv.-Christoffel symbols (1.49).

Expressing the ordinary derivation operators through the chr.inv.-
derivation operators, then writing down dx0 = cdt through dτ (1.22),
we obtain a chr.inv.-formula for the regular differential

d =
∂

∂xα
dxα =

∗∂

∂t
dτ +

∗∂

∂xi dxi. (1.146)

Denoting the chr.inv.-projections of the Pα as φ and qi, we have
P0
√
g00
= φ , P i = qi, (1.147)

P0 =
1
√
g00

(
φ +

1
c
vk qk

)
, Pi = −

φ

c
vi − qi . (1.148)
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Substituting these formulae into (1.132), we arrive at the parallel
transport chr.inv.-equations of the vector Pα, which are

dφ +
1
c

(
−Fi qidτ + Dik qidxk

)
= 0

dqi +

(
φ

c
dxk + qkdτ

) (
Di

k + A·ik·
)
−

−
φ

c
F idτ + ∆i

mk qmdxk = 0


. (1.149)

From the obtained equations (1.149) we can make an easy transition
to particular dynamical equations of motion, with φ and qi for different
kinds of particles substituted into (1.149) and divided by dt.

1.7 The equations of motion in the extended space

The corpuscular and wave forms of the universal dynamical vector Pα

for this case have been obtained in §1.5.

1.7.1 The equations of motion of real mass-bearing particles

From (1.113) and (1.114) we obtain the chr.inv.-projections of the Pα

taken in the corpuscular form for real mass-bearing particles

φ = M
[
1 −

1
c2

(
w + vk uk

)]
, qi = M

ui

c
, (1.150)

where u2[
1 − 1

c2

(
w + vi ui)]2 < c2, dτ, 0, dt, 0.

From here we immediately arrive at the corpuscular form of the
dynamical equations of motion of real mass-bearing particles

d
dt

{
M

[
1 −

1
c2

(
w + vk uk

)]}
−

−
M
c2

[
1 −

1
c2

(
w + vk uk

)]
Fi ui +

M
c2 Dik uiuk = 0

d
dt

(
Mui) + 2M

[
1 −

1
c2

(
w + vk uk

)] (
Di

n + A·in·
)

un −

−M
[
1 −

1
c2

(
w + vk uk

)]
F i + M∆i

nk unuk = 0



, (1.151)
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where d =
∗∂
∂t dτ+

∗∂
∂x i dxi, d

dτ =
∗∂
∂t + vi ∗∂

∂x i , and also

d
dt
=
∗∂

∂t
dτ
dt
+ ui

∗∂

∂xi =

[
1 −

1
c2

(
w + vm um)] ∗∂

∂t
+ ui

∗∂

∂xi . (1.152)

For thewave form of the universal dynamical vector Pα of realmass-
bearing particles we obtain, according to (1.118) and (1.120),

φ =
ℏ

c2

∗∂ψ

∂t
, qi = −

ℏ

c
hik
∗∂ψ

∂xk , (1.153)

where the physically observable change of the wave phase ψ with time,
i.e., the chr.inv.-function

∗∂ψ
∂t , is positive for the particles travelling from

the past to the future, and is negative for those travelling from the future
to the past. From here we arrive at the wave form of (1.151), i.e., at the
dynamical equations of wave propagation corresponding to real mass-
bearing particles according to the wave-particle duality

±
d
dτ

(
∗∂ψ

∂t

)
+

[
1 −

1
c2

(
w + vp up

)]
F i
∗∂ψ

∂xi − Di
k uk

∗∂ψ

∂xi = 0

d
dτ

(
hik
∗∂ψ

∂xk

)
±

1
c2

[
1 −

1
c2

(
w + vp up

)] ∗∂ψ
∂t

F i −

−

{
±

1
c2

∗∂ψ

∂t
uk − hkm

[
1 −

1
c2

(
w + vp up

)] ∗∂ψ
∂xm

}
×

×
(
Di

k + A·ik·
)
+ hmn∆i

mk uk
∗∂ψ

∂xn = 0



. (1.154)

We see that the first term in the time chr.inv.-equation and two terms
in the spatial chr.inv.-equations of (1.154) are positive for the wave-
particles travelling from the past to the future, and are negative when
travelling from the future to the past.

1.7.2 The equations of motion of imaginary mass-bearing par-
ticles

In this case, the chr.inv.-projections φ and qi of the corpuscular vector
Pα differ from those for real particles (1.150) by the factor i=

√
−1

φ = iM
[
1 −

1
c2

(
w + vk uk

)]
, qi = iM

ui

c
, (1.155)
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where u2[
1 − 1

c2

(
w + vi ui)]2 > c2, dτ, 0, dt, 0.

Respectively, the corpuscular form of the dynamical equations of
motion of imaginary mass-bearing particles (superluminal particles —
tachyons) differ from the equations obtained for real (subluminal) par-
ticles (1.151) by the coefficient i in the mass term M.

The chr.inv.-projections φ and qi of the dynamical wave vector of
imaginary mass-bearing particles are the same as those for real particles
(1.153). Hence, the dynamical equations of wave propagation are the
same for both imaginary wave-particles and real ones (1.154).

1.7.3 The equations of motion of massless particles

According to (1.107), for massless (light-like) particles in the extended
space-time (taking the condition v= c into account) we have

u2[
1 − 1

c2

(
w + vi ui)]2 = c2, dτ , 0 , dt , 0 . (1.156)

Using this condition in the φ and qi obtained for real mass-bearing
particles considered as corpuscles, i.e., in (1.150), we obtain

φ = M
u
c
, qi = M

ui

c
. (1.157)

Respectively, the corpuscular form of the dynamical equations of
motion of massless particles is

d
dt

(Mu) −
Mu
c2 Fi ui +

M
c

Dik uiuk = 0

d
dt

(
Mui) + 2M

u
c

(
Di

n + A·in·
)

un −

−M
u
c

F i + M∆i
nk unuk = 0


. (1.158)

The chr.inv.-projections φ and qi of the dynamical wave vector of
massless particles are the same as the φ and qi of the dynamical wave
vector of mass-bearing particles (1.153). As a result, the dynamical
equations of wave propagation associated with massless particles in the
framework of the wave-particle duality are the same as those we have
obtained for mass-bearing wave-particles (1.154).
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1.7.4 The equations of motion of zero-particles

In the degenerate space-time, i.e., under the degeneration conditions,
the chr.inv.-projections of the Pα taken in the corpuscular form are

φ = 0 , qi = M
ui

c
, (1.159)

where w+ vk uk = c2, dτ= 0, dt, 0. Substituting them into the chr.inv.-
equations of the Levi-Civita parallel transport (1.149), we obtain the
corpuscular form of the dynamical equations of motion of zero-particles

M
c2 Dik uiuk = 0

d
dt

(
Mui) + M∆i

nk unuk = 0

 . (1.160)

The chr.inv.-projections φ and qi of the wave form of the generalized
dynamical vector Pα in the degenerate space-time are

φ = 0 , qi = −
ℏ

c
hik
∗∂ψ

∂xk , (1.161)

from which we arrive at the equations

Dm
k uk

∗∂ψ

∂xm = 0

d
dt

(
hik
∗∂ψ

∂xk

)
+ hmn∆i

mk uk
∗∂ψ

∂xn = 0

 , (1.162)

which are the dynamical equations of wave propagation corresponding
to zero-particles in the framework of the wave-particle duality.

1.8 The equations of motion in the regular space

In this case, the corpuscular and the wave forms of the universal dynam-
ical vector Pα have been obtained in §1.3.

1.8.1 The equations of motion of real mass-bearing particles

According to (1.86) and (1.75), the corpuscular form of the Pα charac-
teristic of real mass-bearing particles has the chr.inv.-projections

φ = ±m , qi =
1
c

mvi, (1.163)
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where v2 < c2, dτ, 0, dt, 0. After substituting these chr.inv.-quantities
into (1.149), we obtain the dynamical equations of motion of the mass-
bearing particles that have positive relativistic masses m> 0 (they travel
from the past to the future)

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0

d
(
mvi)
dτ

+ 2m
(
Di

k + A·ik·
)

vk − mF i + m∆i
nk vnvk = 0

 , (1.164)
and also the equations of motion of the particles that have negative rel-
ativistic masses m< 0 (they travel from the future to the past)

−
dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk = 0

d
(
mvi)
dτ

+ mF i + m∆i
nk vnvk = 0

 . (1.165)

For the wave form of the Pα, from (1.91) and (1.94) we obtain

φ =
ℏ

c2

∗∂ψ

∂t
, qi = −

ℏ

c
hik
∗∂ψ

∂xk , (1.166)

which are the same as those we have obtained for the wave form of the
Pα in the extended space-time (1.153). We see that the chr.inv.-function
∗∂ψ
∂t , i.e., the physically observable change of the wave phase with time,
is positive when travelling from the past to the future, and is negative
when travelling from the future to the past.

Taking into account the above and the fact that the chr.inv.-Levi-
Civita parallel transport equations (1.149) in the strictly non-degenerate
space-time must be divided by the physically observable time interval
dτ, we obtain the dynamical equations of wave propagation associated
with mass-bearing real particles

±
d
dτ

(
∗∂ψ

∂t

)
+ F i

∗∂ψ

∂xi − Di
k vk

∗∂ψ

∂xi = 0

d
dτ

(
hik
∗∂ψ

∂xk

)
−

(
Di

k + A·ik·
) (
±

1
c2

∗∂ψ

∂t
vk − hkm

∗∂ψ

∂xm

)
±

±
1
c2

∗∂ψ

∂t
F i + hmn∆i

mk vk
∗∂ψ

∂xn = 0


. (1.167)
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From the equations (1.167) we see that the first term of the time
chr.inv.-equation and two terms of the spatial chr.inv.-equations are pos-
itive for the wave-particles travelling from the past to the future, and are
negative when travelling from the future to the past.

1.8.2 The equations of motion of imaginary mass-bearing par-
ticles

In this case, the corpuscular form of the φ and qi differ from that ob-
tained for real mass-bearing particles (1.163) by only factor i=

√
−1

φ = ± im , qi =
1
c

imvi, (1.168)

where v2 > c2, dτ, 0, dt, 0. Respectively, the corpuscular form of the
dynamical equations of motion of imaginary (superluminal) particles
differ from those we have obtained for real (subluminal) particles by
only the coefficient i in the mass term m.

The wave form of φ and qi for imaginary mass-bearing particles is
the same as that for real mass-bearing particles (1.166). Therefore, the
dynamical equations of wave propagation corresponding to imaginary
mass-bearing particles, are the same as the dynamical equations of wave
propagation corresponding to real mass-bearing particles (1.167).

We now see that in the framework of the wave concept there is no
difference with what velocity a mass-bearing particle travels (a wave
propagates) — slower than the velocity of light or faster than light. On
the contrary, in the framework of the corpuscular concept the equations
ofmotion of superluminal (imaginary) particles differ from those of sub-
luminal (real) particles by the presence of the coefficient i in the mass
term m.

1.8.3 The equations of motion of massless particles

In this case, the corpuscular form of the φ and qi takes the form

φ = ±
ω

c
= ±k , qi =

1
c

kvi =
1
c

kci, (1.169)

where v2 = c2, dτ, 0, dt, 0, and also the physically observable chr.inv.-
velocity of light ci (1.24) is attributed to any massless particle

vi =
dxi

dτ
= ci, ci ci = hik cick = c2. (1.170)
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Using the above parameters in the parallel transport equations, we
obtain the corpuscular dynamical equations of motion

dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0

d
(
ωci)
dτ

+ 2ω
(
Di

k + A·ik·
)

ck − ωF i + ω∆i
nk cnck = 0

 (1.171)

for themassless particles that have positive relativistic frequenciesω> 0
(they travel from the past to the future), and also

−
dω
dτ
−
ω

c2 Fi ci +
ω

c2 Dik cick = 0

d
(
ωci)
dτ

+ ωF i + ω∆i
nk cnck = 0

 (1.172)

for those having ω< 0 (they travel from the future to the past).
The wave form of the φ and qi for massless particles is the same

as that for mass-bearing particles (1.166). Therefore, the dynamical
equations of wave propagation corresponding to massless (light-like)
particles in the framework of the wave-particle duality are identical to
those ofmass-bearing particles in the framework of this concept (1.167).
The only difference is the particles’ observable velocity vi replaced with
the chr.inv.-vector of the physically observable light velocity ci.

1.9 A particular case: the equations of geodesic lines

What are the geodesic equations? As we mentioned in §1.1, these are
the kinematic equations of particle motion along the shortest (geodesic)
trajectories. From a geometric point of view, the geodesic equations are
the Levi-Civita parallel transport equations

DQα

dρ
=

dQα

dρ
+ ΓαµνQµ dxν

dρ
=

d2xα

dρ2 + Γ
α
µν

dxµ

dρ
dxν

dρ
= 0 (1.173)

of the four-dimensional kinematic vector Qα = dxα
dρ characteristic of a

particle (it is tangential to the trajectory at its every point). Respectively,
the non-isotropic geodesic equations (they determine the trajectories of
free mass-bearing particles) have the form

DQα

ds
=

d2xα

ds2 + Γ
α
µν

dxµ

ds
dxν

ds
= 0 , Qα =

dxα

ds
, (1.174)
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and the isotropic geodesic equations (determining the trajectories of free
massless particles) have the form

DQα

dσ
=

d2xα

dσ2 + Γ
α
µν

dxµ

dσ
dxν

dσ
= 0 , Qα =

dxα

dσ
. (1.175)

On the other hand any kinematic vector, similar to the dynamical
vector Pα of a mass-bearing particle or to the wave vector Kα of a mass-
less particle, is a particular case of an arbitrary vector Qα, for which we
have obtained the universal chr.inv.-equations of the Levi-Civita parallel
transport (1.149).

Hence, with the chr.inv.-projections φ and qi of the kinematic vec-
tor of a mass-bearing particle, substituted into the universal chr.inv.-
equations of the Levi-Civita parallel transport (1.149), we should im-
mediately arrive at the non-isotropic geodesic equations in the chr.inv.-
form. Similarly, substituting the φ and qi of the kinematic vector of a
massless particle, we should arrive at the chr.inv.-equations of isotropic
geodesics. This is what we are going to do now.

For the kinematic vector of mass-bearing particles we have the fol-
lowing chr.inv.-projections

φ =
Q0
√
g00
=
g0αQα

√
g00
= ±

1√
1 − v2

c2

qi = Qi =
dxi

ds
=

1√
1 − v2

c2

dxi

cdτ
=

1

c
√

1 − v2

c2

vi


. (1.176)

For the kinematic vector of massless particles, taking into account
that dσ= cdτ on isotropic trajectories, we have

φ =
√
g00

dx0

dσ
+

1
c
√
g00

g0k ck = ±1

qi =
dxi

dσ
=

dxi

cdτ
=

1
c

ci

 . (1.177)

So forth, we substitute the above φ and qi into the universal chr.inv.-
equations of the Levi-Civita parallel transport (1.149). As a result,
we obtain the chr.inv.-non-isotropic geodesic equations (trajectories of
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mass-bearing free particles)

±
d
dτ

 1√
1 − v2

c2

 − Fi vi

c2
√

1 − v2

c2

+
Dik vivk

c2
√

1 − v2

c2

= 0

d
dτ

 vi√
1 − v2

c2

 ∓ F i√
1 − v2

c2

+
∆i

nkvnvk√
1 − v2

c2

+

+
(1 ± 1)√

1 − v2

c2

(
Di

k + A·ik·
)

vk = 0



(1.178)

and also the chr.inv.-isotropic geodesic equations (trajectories of mass-
less free particles)

Dik cick − Fi ci = 0

dci

dτ
∓ F i + ∆i

nk cnck + (1 ± 1)
(
Di

k + A·ik·
)

ck = 0

 , (1.179)

where the upper sign in the alternating terms of the equations stands for
the particles travelling from the past to the future (direct flow of time),
and the lower sign stands for the particles travelling from the future to
the past (reverse flow of time).

As you can see, we again have an asymmetry of motion along the
time axis. The same asymmetry was found in the dynamical equations
of motion. We see from the above equations, this asymmetry does not
depend on the physical properties of the travelling particles, but rather
on the properties of the reference space of the observer (actually, on the
properties of his reference body), such as F i, Aik, Dik. In the absence of
gravitational fields, as well as rotation and deformation of the observer’s
reference space, the mentioned asymmetry vanishes.

1.10 A particular case: Newton’s laws

In this paragraph we prove that the dynamical chr.inv.-equations of mo-
tion of mass-bearing particles are the four-dimensional generalization
of Newton’s 1st and 2nd laws in a four-dimensional space (space-time)
that is non-holonomic (i.e., is rotating, Aik , 0) and deforming (Dik , 0),
and is also filled with a gravitational field (F i, 0).
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At low velocities we have m=m0, so the general covariant dynami-
cal equations of motion take the form

DPα

ds
= m0

d2xα

ds2 + m0Γ
α
µν

dxµ

ds
dxν

ds
= 0 , (1.180)

where having these equations divided by m0, the dynamical equations
turn immediately into kinematic ones, i.e., the regular non-isotropic
geodesic equations.

These are the dynamical equations of motion of the so-called “free
particles” — the particles that fall freely under the action of a gravita-
tional field.

The motion of particles under the action of the gravitational field
and an additional non-gravitational force Rα is non-geodesic

m0
d2xα

ds2 + m0Γ
α
µν

dxµ

ds
dxν

ds
= Rα. (1.181)

All these are the dynamical equations of motion of particles in the
four-dimensional space-time, while Newton’s laws are determined for
the three-dimensional space. In particular, the derivation parameter we
use in the above four-dimensional equations is the space-time interval,
not applicable to a three-dimensional space.

Let us now look at the dynamical chr.inv.-equations of motion of
mass-bearing particles. At low velocities of motion, the equations are

m0

c2

(
Dik vivk − Fi vi

)
= 0

m0
d2xi

dτ2 − m0 F i + m0∆
i
nk vnvk + 2m0

(
Di

k + A·ik·
)

vk = 0

 , (1.182)
where the spatial chr.inv.-projections are the actual dynamical equations
of motion along the three-dimensional spatial section associated with
the observer (his three-dimensional space).

In a four-dimensional space (space-time), wherein the spatial sec-
tions have the Euclidean metric, we have hk

i = δ
k
i , and the space defor-

mation tensor is zero Dik =
1
2

∗∂hik
∂t = 0. In such a case ∆i

kn = 0, therefore
m0∆

i
nkvnvk = 0. If there also F i= 0 and Aik = 0, then the spatial chr.inv.-

projections of the equations of motion take the form

m0
d2xi

dτ2 = 0 , (1.183)
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or, in another form,

vi =
dxi

dτ
= const. (1.184)

As a result of the above, we arrive at the conclusion that the four-
dimensional generalization of Newton’s 1st law for mass-bearing parti-
cles can be formulated as follows:
Newton’s 1st law

If a particle is free from the action of gravitational inertial forces
(or such acting forces are balanced) and, at the same time, the
space does not rotate or deform, the particle travels uniformly and
rectilinearly.

Such a condition, as is seen from the formulae for the Christoffel
symbols (1.140–1.145), is only possible in the case, where all Γαµν = 0,
because any component of the Christoffel symbols is a function of at
least one of the quantities F i, Aik, Dik.

Let us now assume that F i, 0, but Aik = 0 and Dik = 0. In such a case,
the spatial chr.inv.-equations of motion take the form

d2xi

dτ2 = F i. (1.185)

On the other hand, the gravitational potential and the force F i as
well as the quantities Aik and Dik according to their definitions describe
the reference body and the local space associated with it. The quantity
F i is the gravitational inertial force acting on a unit-mass particle. The
force acting on a particle, the rest-mass of which is m0 is

Φi = m0 F i, (1.186)

therefore the spatial chr.inv.-equations of motion become

m0
d2xi

dτ2 = Φ
i. (1.187)

Accordingly, the four-dimensional generalization of Newton’s 2nd
law for mass-bearing particles can be formulated as follows:
Newton’s 2nd law

In the space that does not rotate or deform, the acceleration that
a particle gains from a gravitational field is proportional to the
gravitational inertial force acting on the particle from this field,
and inversely proportional to the particle’s mass.
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Having any particular value of the gravitational inertial forceΦi sub-
stituted into the spatial chr.inv.-equations of motion of a mass-bearing
particle, which are the second equation of (1.182),

m0
d2xi

dτ2 + m0∆
i
nk vnvk + 2m0

(
Di

k + A·ik·
)

vk = Φi, (1.188)

we can solve the equations in order to obtain the three-dimensional ob-
servable coordinates of the particle in the three-dimensional space at
any moment of time (from which we find the particle’s trajectory).

As is seen from the equations, the presence of the gravitational iner-
tial force is not mandatory to make the motion curvilinear and uneven.
This happens if at least one of the quantities F i, Aik, Dik is different from
zero. Hence, theoretically, a particle can travel uniformly and curvilin-
early in even the absence of gravitational inertial forces, but in the case
where the space rotates or deforms (or both of these factors are present
in the space).

If a particle travels under the joint action of the gravitational inertial
force Φi and another force Ri of a non-gravitational nature, the spatial
chr.inv.-equations of its motion take the form

m0
d2xi

dτ2 + m0∆
i
nk vnvk + 2m0

(
Di

k + A·ik·
)

vk = Φi + Ri. (1.189)

In a flat three-dimensional space, there ∆i
kn= 0 is true, so the second

term in the equations vanishes. Due to the fact that such a space does
not rotate or deform, the spatial chr.inv.-equations of motion of a mass-
bearing particle in the space take the form

m0
d2xi

dτ2 = Φ
i, m0

d2xi

dτ2 = Φ
i + Ri, (1.190)

respectively, in the case of only the gravitational inertial force Φi, and
in the case together with an additional force Ri of a non-gravitational
nature, which deviates the particles from a geodesic line.

So, we have obtained that motion under the action of gravitational
inertial forces is possible in either curved or flat space. Why?

As is known, the curvature of a Riemannian space is characterized
by the Riemann-Christoffel curvature tensor Rαβγδ consisting of the sec-
ond derivatives of the fundamental metric tensor gαβ and its first deriva-
tives. The necessary and sufficient condition for a Riemannian space to
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be curved is Rαβγδ , 0. To have a non-zero curvature, it is necessary and
sufficient that the second derivatives of gαβ be non-zero.

On the other hand we also know that the first derivatives of the fun-
damental metric tensor gαβ in a flat space may not be zero. Namely, —
the chr.inv.-equations of motion contain the quantities ∆i

kn, F i, Aik, Dik,
which depend on the first derivatives of gαβ. Therefore, even atRαβγδ = 0
(i.e., in a flat space) the Christoffel symbols ∆i

kn, the gravitational iner-
tial force F i, the space rotation tensor Aik and the space deformation
tensor Dik may not be zero.

1.11 Analysis of the equations: the ultimate transitions between
the basic space and the zero-space

At w=−vi ui the quantities of the extended space-time (g⩽ 0) are re-
placed by those of the strictly non-degenerate space-time (g< 0)

dτ =
[
1 −

1
c2

(
w + vi ui

)]
dt = dt , (1.191)

ui =
dxi

dt
=

dxi

dτ
= vi, (1.192)

M =
m

1 − 1
c2

(
w + vi ui) = m , (1.193)

P0 = M = m , P i =
1
c

Mui =
1
c

mvi, (1.194)

and the coordinate time t coincides with the physically observable time
τ in this transition.

Of course, if w→ 0 (a weak gravitational field) and vi = 0 (the space
does not rotate), then the above transformation occurs under a narrower
condition w=−vi ui = 0. On the other hand, it is doubtful to find a re-
gion free of rotation and gravitational fields in the observed part of the
Universe. We therefore see that the transition to the regular (strictly
non-degenerate) space-time always happens at

w = −vi ui = −vi vi. (1.195)

Substituting this condition into the equations of motion, which we
have obtained in §1.7 and §1.8, we arrive at the following conclusions
on the geometric structure of the extended space-time.
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The corpuscular equations ofmotion (ball-particles) in the extended
space-time transform completely into those in the regular (strictly non-
degenerate) space-time, i.e., no terms are vanished or new terms are
added up, only in the case of motion from the past to the future (m> 0,
im> 0, ω> 0). For ball-particles travelling from the future to the past
(m< 0, im< 0, ω< 0), such a transformation is incomplete.

On the other hand, the wave equations of motion (wave-particles) in
the extended space-time transform completely into those in the regular
space-time for both the particles with m> 0, im> 0, ω> 0 (they travel
from the past to the future) and the particles with m< 0, im< 0, ω< 0
(they travel from the future to the past).

In the next §1.12 we will find why this asymmetry takes place in the
four-dimensional space (space-time).

In the regular space-time (g< 0) we have P0 (1.75), which after the
substitution of dt

dτ (1.81) and the transition condition w=−vi ui =−vi vi

becomes the sign-alternating relativistic mass

P0 = m
dt
dτ
=

m

1 − w
c2

(
1
c2 vi vi ± 1

)
= ±m . (1.196)

On the other hand, in the extended space-time (g⩽ 0), we have ob-
tained P0 =M, but using another method (1.112), without the use of dt

dτ
which is the source of the alternating sign in the formula (1.196).

Hence, the component P0 =±m we have obtained in the regular
space-time (1.196), which takes two numerical values, cannot be a par-
ticular case of the single value P0 =M we have obtained in the extended
space-time.

To understand the reason why, we turn from the sign-alternating for-
mula P0 =±m specific to the regular space-time to the formula P0 =M
specific to the extended space-time. This can be easily done by substi-
tuting the already known relation between the physically observable ve-
locity vi and the coordinate velocity ui (1.107) into the sign-alternating
formula P0 =±m (1.196).

Thus, we obtain the formula for the component P0 in the extended
space-time

P0 =
m

1 − w
c2

 1

c2

vi ui

1 − 1
c2

(
w + vi ui) ± 1

 , (1.197)

which has the alternating sign.
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For the particles travelling in the extended space-time from the past
to the future,

P0 =
m

1 − 1
c2

(
w + vi ui) = +M, (1.198)

which is the same as (1.112). For the particles travelling from the future
to the past, we have

P0 =
m

[
1
c2

(
2vi ui + w

)
− 1

]
(
1 − w

c2

) [
1 − 1

c2

(
w + vi ui)] = −M. (1.199)

In the regular space-time, the first formula P0 =+M (1.198) unam-
biguously transforms into P0 =+m, and the second formula P0 =−M
(1.199) transforms into P0 =−m.

It should be noted that the remarks made on the sign-alternating
formulae for the P0 do not affect all the dynamical equations of motion,
which we have obtained for the extended space-time. This is because the
obtained equations ofmotion include the gravitational rotationalmass in
the general notation, M, without any respect to a particular composition
of it. Substituting these two values of the M into the equations ofmotion,
we arrive at merely the equations of two kinds: the equations of motion
from the past to the future, and the equations of motion from the future
to the past.

Let us now come back to the physical condition w=−vi ui (1.195),
which indicates the transition from the dynamical equations of motion
in the extended space-time to those in the regular space-time. We have
also found that dτ= dt (1.191) under this condition. On the other hand,
we know that the equality dτ= dt is not imperative in the regular space-
time. On the contrary, the physically observable time interval dτ is al-
most always a bit different from the coordinate time interval dt in the
observed Universe.

Therefore, the ultimate transition from the extended space-time to
the regular space-time, which occurs under the condition w=−vi ui is
not a case of the conditions usual to the regular space-time.

Does that contain a contradiction between the equations of motion
in the regular space-time and those in the extended space-time?

No it does not. All the laws applicable to the regular space-time
(g< 0) are as well true in a non-degenerate region (g< 0) of the ex-
tended space-time (g⩽ 0). At the same time, those two non-degenerate
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regions are not the same. That is, the degenerate space-time added up
to the regular space-time produces two absolutely segregated manifolds.
The extended space-time is a different manifold and is absolutely inde-
pendent of either strictly non-degenerate space-time or degenerate one.
So, there is no surprise in the found fact that the transition from one to
another occurs under very limited particular conditions.

The only question is what configuration of those manifolds exists in
the observable Universe. Two options are possible here:

a) The non-degenerate space-time (g< 0) and the degenerate space-
time (g= 0) exist as two segregated manifolds, i.e., as the regular
space-time of the General Theory of Relativity with an “add-on”
of the zero-space;

b) The non-degenerate space-time and the degenerate space-time ex-
ist as two internal regions of the same manifold — the extended
space-time (g⩽ 0) which we have considered.

In any case, the ultimate transition from the non-degenerate space-
time into the degenerate space-time occurs under the physical conditions
of degeneration (1.106). Future experiments and astronomical observa-
tions will show which of these two options actually exists.

1.12 Analysis of the equations: asymmetry of our Universe and
the mirror universe

Compare the corpuscular equations of motion for the particles with
m> 0 (1.164) and ω> 0 (1.171) with those for the particles with m< 0
(1.165) and ω< 0 (1.172).

Even a first look shows the obvious fact that the corpuscular equa-
tions of motion (ball-particles) from the past to the future differ from
those from the future to the past. The same asymmetry exists for the
wave form of the equations (wave-particles). Why?

From a purely geometric point of view, the asymmetry found in the
equations of motion indicates the following:

In the four-dimensional, inhomogeneous and curved space-time
(pseudo-Riemannian space), there is a primordial asymmetry of
the directions to the future and to the past.

To understand the origin of this primordial asymmetry of motion in
time, consider the following example.
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Assume that there is a mirror in the four-dimensional space-time,
which coincides with the three-dimensional spatial section and, hence,
separates the past from the future. Assume also that the mirror reflects
all the particles and waves coming on it from the past and from the
future. Thus, the particles and waves that travel from the past to the
future (m> 0, im> 0, ω> 0) always hit the mirror, then bounce back to
the past so that their properties reverse (m< 0, im< 0, ω< 0). At the
same time, the particles and waves travelling from the future to the past
(m< 0, im< 0, ω< 0), when hitting the mirror change the sign of their
properties (m> 0, im> 0, ω> 0) to bounce back to the future.

With the aforementioned mirror concept everything becomes easy
to understand. Look at thewave form of the equations ofmotion (1.167).
After reflection from the mirror, the quantity

∗∂ψ
∂t changes its sign. As

a result, the equations of wave propagation to the future (“plus” in the
equations) become those of wave propagation to the past (“minus” in
the equations), and vice versa, the equations of wave propagation to the
past after reflection become those of wave propagation to the future.

Noteworthy, the equations of wave propagation to the future and
those to the past transform completely into each other, i.e., no terms
are vanished and no new terms are added up. Hence, the wave form of
matter is completely reflected from the mirror.

However, this is not the case of the corpuscular equations of mo-
tion. After reflection from the mirror, the quantity φ=±m for mass-
bearing particles and also φ=±k=± ω

c for massless particles change
their signs. At the same time, the corpuscular equations of motion to
the future transform incompletely into those to the past. In the spatial
chr.inv.-equations of motion to the future, there is an additional term.
This term is absent in the spatial chr.inv.-equations of motion to the
past. This term for mass-bearing and massless particles, respectively,
has the form

2m
(
Di

k + A·ik·
)

vk, 2k
(
Di

k + A·ik·
)

ck. (1.200)

Hence, a particle that travels from the past to the future hits the
mirror and bounces back to lose the term in its spatial chr.inv.-equations
of motion, and vice versa, a particle travelling from the future to the past
bounces from the mirror to acquire the additional term in the spatial
chr.inv.-equations of motion. So, we have obtained that the mirror itself
affects the trajectories of particles!
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As a result, a particle with a negative mass or frequency is not a sim-
ple mirror reflection of a particle, the mass or frequency of which is pos-
itive. In both the case of ball-particles and in the case of wave-particles
we do not deal with simple reflection or bouncing from the mirror, but
with passing through the mirror into themirror world. There, in themir-
ror world, all particles have negative masses or frequencies and travel
from the future to the past (from the viewpoint of an observer, whose
home is our world).

The wave-particles of our world do not act on the mirror world, just
as the wave-particles of the mirror world do not act on us. On the con-
trary, the ball-particles of our world can influence the mirror world, and
the ball-particles of the mirror world can have influence on our world.

The complete isolation of our world from the mirror world, i.e., the
absence of mutual influence between the particles of both worlds, takes
place under the condition

Di
k vk = −A·ik·v

k, (1.201)

that the asymmetric term (1.200) of the corpuscular equations of motion
is equal to zero. This happens only if A·ik· = 0 and Di

k = 0, i.e., in a region,
where the space does not rotate or deform.

It is noteworthy that if particles of positive mass (frequency) co-
existed in our world with particles of negative mass (frequency), then
they would inevitably face with destroying each other, so there would
be no particles left in our world. But we see nothing of the kind.

Therefore, in the second part of our analysis of the obtained equa-
tions of motion we arrive at the following conclusions:
1) The primordial (fundamental) asymmetry of the space-time di-

rections to the future and to the past is due to a certain space-time
mirror, which coincides geometrically with the spatial section of
the observer and reflects all particles and waves that bounce off it
from the past or the future. At the same time, the space-time mir-
ror maintains such physical conditions that are very different from
those in the regular space-time, and correspond to the particu-
lar physical conditions in a completely degenerate region of the
space-time (zero-space), wherein the physically observable time
stops. Therefore, we arrive at the obvious conclusion that the rôle
of such a space-time mirror is played by the entire zero-space or
a particular region in it;
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2) The space-time is divided into our world and the mirror world. In
our world (positive relativistic masses and frequencies) all parti-
cles and waves travel from the past to the future. In the mirror
world (negative relativistic masses and frequencies), all particles
and waves travel from the future to the past;

3) If you enter the mirror world through the mirror, then the particles
and waves of our world will appear to have negative masses and
frequencies and travel from the future to the past;

4) We do not observe either particles with negative masses or fre-
quencies, or waves with negative phases, because they exist in the
mirror world, i.e., beyond the mirror. The particles or waves that
we can observe belong to our world, or those that are at the exit
from the mirror (or when rebounding from the mirror, as it seems
to us), since they came from the mirror world. Therefore, all par-
ticles and waves that we can observe travel from the past to the
future.

1.13 The physical conditions characterizing the direct and reverse
flow of time

Herewewill consider the physical conditions underwhich: a) time flows
from the past to the future, b) time flows in the opposite direction, i.e.,
from the future to the past, and c) time stops.

In the General Theory of Relativity, time is determined as the fourth
coordinate x0 = ct of the four-dimensional space-time, where c is the ve-
locity of light, and t is the time coordinate. This formula itself indicates
that the coordinate time t changes with the velocity of light and does
not depend on the physical conditions of observation. Therefore, the
coordinate time t is also called the ideal time. In addition to the ideal
time, there is the physically observable time τ (real time), which strongly
depends on the conditions of observation. The theory of chronomet-
ric invariants determines the physically observable time interval as the
chr.inv.-projection of the four-dimensional coordinate increment dxα on
the time line of the observer

dτ =
1
c

bαdxα. (1.202)

According to the chronometrically invariant formalism, in the ref-
erence frame accompanying an ordinary subluminal (substantial) ob-
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server, dτ is determined on the basis of (1.22), i.e.

dτ =
(
1 −

w
c2

)
dt −

1
c2 vi dxi = dt −

1
c2 wdt −

1
c2 vi dxi. (1.203)

From here we see that dτ consists of three parts: a) the coordinate
time interval dt, b) the “gravitational” time interval dtg =

1
c2 wdt, and

c) the “rotational” time interval dtr =
1
c2 vi dxi. The stronger the gravita-

tional field of the reference body and the faster the observer’s reference
space rotates, the slower the observable time flow dτ of the observer.
Theoretically, a strong enough gravitational field and a fast enough ro-
tation of the space can stop the physically observable time flow.

We define the mirror world as the space-time, where time flows
backward with respect to the time flow in our own reference frame, lo-
cated in our space-time.

The direction of the coordinate time flow t, which describes the dis-
placement along the time coordinate axis x0 = ct, is indicated by the sign
of the derivative dt

dτ . Respectively, the sign of the derivative
dτ
dt indicates

the direction of the physically observable time flow τ.
In §1.3, we have obtained the coordinate time function dt

dτ (1.81),
which comes from the conservation condition of the four-dimensional
velocity of a subluminal, light-like and superluminal particle along its
four-dimensional trajectory (1.77–1.79). On the other hand, the coordi-
nate time function can also be obtained in another way by representing
the space-time interval ds2 = c2dτ2 − dσ2 as

ds2 =

(
1 −

w
c2

)2
c2dt2 − 2

(
1 −

w
c2

)
vi dxidt + gik dxidxk. (1.204)

From here we see that the elementary space-time distance between
two infinitely adjacent world-points consists of the three-dimensional
coordinate distance gik dxidxk, as well as two terms that depend on the
physical properties of the space (space-time).

The term
(
1− w

c2

)
cdt is due to the fourth dimension (time) and the

gravitational potential w that characterizes the field of the reference
body. In the absence of gravitational fields, the time coordinate x0 = ct
changes evenly with the velocity of light. As soon as w, 0, the coordi-
nate x0 changes “slower” by the amount of w

c2 . The stronger gravitational
potential w, the slower time flows. At w= c2 the coordinate time t stops
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completely. As is known, such a condition is realized in the state of
gravitational collapse.

The term
(
1− w

c2

)
vi dxidt is due to the joint action of the gravitational

inertial force and the space rotation. This term is non-zero only if w, c2

(i.e., out the state of gravitational collapse) and vi , 0 (the space is non-
holonomic, i.e., the three-dimensional space rotates).

Having both parts of (1.204) divided by ds2 = c2dτ2
(
1− v2

c2

)
, we ob-

tain a quadratic equation that is the same as (1.80). The equation has
two solutions (1.81). Proceeding from the solutions (1.81), we see that
the coordinate time increases dt

dτ > 0, stops dt
dτ = 0 and decreases dt

dτ < 0
under the following conditions, respectively,

dt
dτ

> 0 if vi vi > ±c2, (1.205)

dt
dτ
= 0 if vi vi = ±c2, (1.206)

dt
dτ

< 0 if vi vi < ±c2. (1.207)

As is known, the regular particles consisting of substance, which we
observe, travel with the velocities that are slow to the velocity of light.
So, the physical condition by which the coordinate time stops vi vi =±c2

(1.206) cannot be found in the world of substance, but is permitted for
the other states of matter such as light-like matter, for instance.

The coordinate time increases, i.e., dt
dτ > 0, at vi vi >±c2. In an ordi-

nary laboratory, the linear velocity with which the space rotates, e.g., the
linear velocity of the daily rotation of the Earth, is also slow to the veloc-
ity of light. Hence, in an ordinary laboratory we have vi vi >−c2, where
the angle α between the space rotation velocity and the observable ve-
locity of the particle that we observe is within the limits − π

2 <α<
π
2 . In

such a regular case, the coordinate time flows from the past to the future,
and this is how the particle travels.

Respectively, the coordinate time decreases, i.e., dt
dτ < 0 and the co-

ordinate time flows from the future to the past (and this is how the par-
ticle travels), at vi vi <±c2.

Until now we have only considered the flow of the coordinate time t.
Let us now analyse the possible directions of the physically observable
time τ, which depends on the sign of the derivative dτ

dt . To obtain a
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formula for this derivative, we divide the formula that we have obtained
for dτ (1.203) by dt. We obtain

dτ
dt
= 1 −

1
c2

(
w + vi ui

)
. (1.208)

By definition, the clock of any ordinary observer registers always
positive intervals of time irrespective of the direction in which the
clock’s hands rotate. Therefore, in an ordinary laboratory bound on
the Earth, the physically observable time may increase or stop, but it
never decreases. Nevertheless, the decrease of the observable time, i.e.,
dτ
dt < 0, is possible under certain circumstances.

From (1.208) we see that the observable time increases, stops, or
decreases under the following conditions, respectively,

dτ
dt

> 0 if w + vi ui < c2, (1.209)

dτ
dt
= 0 if w + vi ui = c2, (1.210)

dτ
dt

< 0 if w + vi ui > c2. (1.211)

It is obvious that the condition by which the observable time stops
w+ vi ui = c2 is the space-time degeneration condition (1.106). In a par-
ticular case, where the space does not rotate, the physically observable
time stops with gravitational collapse w= c2.

Generally speaking, the state of zero-space can be given by any of
the whole scale of the physical conditions represented as w+ vi ui = c2.
The state of gravitational collapse (w= c2) is only a particular case in the
scale of the conditions, which occurs in the absence of the space rotation
(vi = 0). In other words, the mirror membrane between the world with
the direct flow of time and the mirror world with the reverse flow of
time is not a specific zero-space region, wherein gravitational collapse
occurs, but the zero-space as a whole.

So, what is the flow of the coordinate time t and what is the flow of
the physically observable time τ?

In the coordinate time function dt
dτ , we assume that the real time τ

registered by an observer is the reference to which the coordinate time
t is compared. In any calculation or observation, we are connected with
the observer himself. So, the coordinate time function dt

dτ indicates the
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motion of the observer along the time axis x0 = ct, registered from his
own viewpoint.

In the observable time function dτ
dt , the reference to which the ob-

server compares his measurements is his time coordinate t. That is,
the physically observable time τ registered by the observer is deter-
mined with respect to the motion of the whole spatial section associated
with him along the time axis (this motion occurs evenly at the veloc-
ity of light). Therefore, the observable time function dτ

dt indicates the
observer’s true motion along the time axis.

In other words, the coordinate time function dt
dτ shows themembrane

between our world and the mirror world from the point of view of the
observer himself (his logic recognizes the observable time to be always
flowing from the past to the future).

On the contrary, the observable time function dτ
dt gives an abstract

glimpse of the membrane from “outside”. This means that the observ-
able time function indicates the true structure of the space-time mem-
brane that separates our world and the mirror world, wherein time flows
in the opposite direction.

1.14 Introducing the mirror Universe

To obtain a more detailed view of the space-time membranes, we are
going to use a locally geodesic reference frame. The fundamental metric
tensor within the infinitesimal vicinity of any point in such a frame is

g̃µν = gµν +
1
2

 ∂2g̃µν

∂x̃ρ∂x̃σ

 (x̃ρ − xρ
) (

x̃σ − xσ
)
+ . . . , (1.212)

i.e., the gµν components in the infinitesimal vicinity of any point have
numerical values that differ from those at the point itself only in the 2nd
order terms and higher-order terms, which can be neglected. Therefore,
the fundamental metric tensor is constant (within the higher-order terms
withheld) at any point of a locally geodesic reference frame, while the
first derivatives of the metric tensor, i.e., the Christoffel symbols, are
zero [3–5].

It is obvious that within the infinitesimal vicinity of any point in a
Riemannian space a locally geodesic reference frame can be set up. As
a result, at any point belonging to the locally geodesic reference frame,
a flat space can be set up tangential to the Riemannian space so that the
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locally geodesic reference frame in the Riemannian space is a globally
geodesic reference frame in the tangential flat space. Since the funda-
mental metric tensor is constant in a flat space, in the vicinity of a point
in the Riemannian space, the g̃µν components converge to those of the
tensor gµν in the tangential flat space. This means that, in the tangen-
tial flat space, we can set up a system of basis vectors e⃗(α) tangential to
the curved coordinate lines of the Riemannian space. Since the coordi-
nate lines of a Riemannian space are curved (in a general case), and, if
the space is non-holonomic, are not even orthogonal to each other, the
lengths of the basis vectors are sometimes substantially different from
unit length.

Consider the world-vector dr⃗ of an infinitesimal displacement, i.e.,
dr⃗ =

{
dx0, dx1, dx2, dx3

}
. Then dr⃗= e⃗(α)dxα, where the basis vectors e⃗(α)

have the following components

e⃗(0) =
{
e0

(0), 0, 0, 0
}
, e⃗(1) =

{
0, e1

(1), 0, 0
}

e⃗(2) =
{
0, 0, e2

(2), 0
}
, e⃗(3) =

{
0, 0, 0, e3

(3)

}
 . (1.213)

The scalar product of the vector dr⃗ with itself gives dr⃗dr⃗= ds2. On
the other hand, it is ds2 = gαβ dxαdxβ. So, we obtain a formula

gαβ = e⃗(α) e⃗(β) = e(α)e(β) cos
(
xα; xβ

)
, (1.214)

which facilitates our better understanding of the geometric structure of
various regions within the Riemannian space and even beyond it. Ac-
cording to (1.214),

g00 = e2
(0) , (1.215)

while, on the other hand, √g00 = 1− w
c2 . Therefore, the length of the time

basis vector e⃗(0) tangential to the real time line x0 = ct is

e(0) =
√
g00 = 1 −

w
c2 . (1.216)

The smaller e(0) is than 1, the stronger the gravitational potential w.
In the case of gravitational collapse (w= c2), the length of the time basis
vector e⃗(0) becomes zero.

According to (1.214) the g0i components are

g0i = e(0)e(i) cos
(
x0; xi) , (1.217)
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on the other hand, g0i =−
1
c vi

(
1− w

c2

)
=−

1
c vi e(0). Hence

vi = −ce(i) cos
(
x0; xi) . (1.218)

Then according to the general formula (1.214)

gik = e(i)e(k) cos
(
xi; xk) , (1.219)

we obtain the chr.inv.-metric tensor hik =−gik +
1
c2 vi vk in the form

hik = e(i)e(k)

[
cos

(
x0; xi) cos

(
x0; xk) − cos

(
xi; xk)] . (1.220)

Based on (1.218), we realize that, from a geometric point of view,
vi is the projection (scalar product) of the spatial basis vector e⃗(i) onto
the time basis vector e⃗(0), multiplied by the velocity of light. If the spa-
tial sections are everywhere orthogonal to the time lines (a holonomic
space), then cos

(
x0; xi)= 0 and vi = 0. In a non-holonomic space, the

spatial sections are non-orthogonal to the time lines, so cos
(
x0; xi), 0.

Generally
∣∣∣ cos

(
x0; xi) ∣∣∣⩽ 1. Hence, the linear velocity vi (1.218) with

which the space rotates cannot exceed the velocity of light.
If cos

(
x0; xi)=±1, then the space rotation velocity is

vi = ∓ce(i) , (1.221)

and the time basis vector e⃗(0) coincides with the spatial basis vectors e⃗(i)

(the time axis “falls” into the three-dimensional space). In the case of
cos

(
x0; xi)=+1, the time basis vector is co-directed with the spatial

ones e⃗(0)↑↑ e⃗(i). At cos
(
x0; xi)=−1 the time and spatial basis vectors are

oppositely directed e⃗(0)↑↓ e⃗(i).
Let us have a closer look at the condition cos

(
x0; xi)=±1. If any

spatial basis vector is co-directed (or oppositely directed) with the time
basis vector, then the space is degenerate. A maximum degeneration
occurs, when all three vectors e⃗(i) coincide with each other and with the
time basis vector e⃗(0).

The terminal condition of the coordinate time vi vi =±c2 expressed
through the basis vectors has the form

e(i) vi cos
(
x0; xi) = ∓c , (1.222)

which is performed in practice, when we have e(i) = 1, v= c and, hence,
cos

(
x0; xi)=±1. In such a case, as soon as the linear velocity of the
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space rotation reaches the velocity of light, the angle between the time
line and the spatial coordinate lines becomes either zero or π (depending
on the direction in which the space rotates).

Let us illustrate the above with a few examples.
The space does not rotate, i.e., is holonomic

In this case vi = 0, therefore the spatial sections are everywhere or-
thogonal to the time lines, and the angle between them is α= π

2 . Hence,
in the absence of the space rotation, the time basis vector e⃗(0) is orthog-
onal to all spatial basis vectors e⃗(i).

This means that all clocks can be synchronized: they display the
same time (clock synchronization at different points in the space does
not depend on the synchronization path). The linear velocity with which
the space rotates is vi =−ce(i) cosα= 0. At vi = 0 we have

dτ =
(
1 −

w
c2

)
cdt , hik = −gik , (1.223)

and the space-time metric ds2 = c2dτ2 − dσ2 becomes

ds2 =

(
1 −

w
c2

)2
c2dt2 + gik dxidxk, (1.224)

i.e., the physically observable time (1.223) depends only on the gravi-
tational potential w. Two options are possible here:

a) The gravitational inertial force is Fi = 0, and vi = 0 according to our
initial assumption that the space does not rotate. Thus, according
to the definitions of Fi and vi (see §1.2), we obtain

√
g00 = 1− w

c2 =1
and g0i =−

1
c
√
g00 vi = 0. The fact that the gravitational poten-

tial w vanishes means, in particular, that it does not depend on
the three-dimensional coordinates (a homogeneously distributed
gravitational field). In this case, the motion of an observer across
the space leaves his clocks the same (the global synchronization
of clocks remains unchanged with time);

b) If Fi , 0 and vi = 0, then we have the derivative ∂w
∂x i , 0 in the for-

mula for Fi (1.34). This means that the gravitational potential w
depends on the three-dimensional coordinates, i.e., the clock time
differs at different points of the space. Hence, at Fi , 0 the clock
synchronization at different points of a holonomic (non-rotating)
space does not preserve with time.
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In a holonomic (non-rotating) space, gravitational collapse may oc-
cur (w= c2) only if Fi , 0. If Fi = 0 in a holonomic space, according to
the definition of Fi (1.34) we havew= 0, therefore gravitational collapse
is not possible.
The space rotates at subluminal speed

In this case, the spatial sections are not orthogonal to the time lines
vi =−ce(i) cosα, 0. Because −1⩽ cosα⩽+1, we have −c⩽ vi ⩽+c.
Hence, vi > 0 at cosα> 0, and also vi < 0 at cosα< 0.
The space rotates at the speed of light (1st case)

The lesser α, the greater vi. In the limiting case, where α= 0, the
linear velocity with which the space rotates is vi =−c. In this case, the
spatial basis vectors e⃗(i) coincide with the time basis vector e⃗(0) (the space
coincides with time).
The space rotates at the speed of light (2nd case)

If α= π, then vi =+c and the time basis vector e⃗(0) also coincides
with the spatial basis vectors e⃗(i), but is oppositely directed to them. This
case can be understood as a space coinciding with time flowing from the
future to the past.

1.15 Who is a superluminal observer?

We can outline a few types of the reference frames which are possible
in the space-time of General Relativity.

The particles and any observer travelling with a subluminal veloc-
ity (i.e., “inside” the light cone) have real relativistic masses. In other
words, such particles, the observer and his reference body are in the
state of matter that is commonly referred to as “substance”. Therefore,
we call any observer, whose reference frame is subluminal, a subluminal
observer.

The particles and any observer travelling with the velocity of light
(i.e., along the surface of the light cone) have m0 = 0, but their relativis-
tic masses (masses of motion) are m, 0. They are in the light-like state
of matter. Therefore, we call any observer, whose reference frame is
characterized by the light-like state, a light-like observer.

Respectively, we call the particles and any observer travelling with
a superluminal velocity superluminal particles and a superluminal ob-
server. They are in the state of matter, where m0 , 0, and their relativis-
tic masses are imaginary.
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It is intuitively clear who a subluminal observer is; this term does not
require further explanation. The samemore or less applies to a light-like
observer. From the viewpoint of a light-like observer, the world around
looks like a colourful system of light waves. But who is a superluminal
observer? To understand this, let us consider an example.

Imagine a new supersonic jet airplane to be commissioned into op-
eration. All members of the commission are inborn blind. And so is the
pilot. Thus, we may assume that all information about the surrounding
world the pilot and the commission members gain from sound, i.e., from
sound waves in the air. It is sound waves that create a picture that those
people will perceive as their “real world”.

Now the airplane has taken off and begun to accelerate. As long as
its speed is less than the speed of sound in the air, the blind members of
the commission match up its “heard” position in the sky with the one we
see. But once the sound barrier is overcome, everything changes. The
blind members of the commission still perceive the airplane’s velocity
as equal to the sound speed, regardless of its actual speed. For them, the
speed of propagation of sound waves in the air is the maximum speed
of information propagation, and the real supersonic jet airplane is out-
side their “real world”, it is in the world of “imaginary objects” and
all its properties are imaginary from their point of view. A blind pilot
cannot hear anything either. Not a single sound reaches him from the
past reality, and only local sounds from the cockpit (which also flies at
the supersonic speed) break the silence. When overcoming the speed
of sound, the blind pilot leaves the subsonic world for a new supersonic
one. From his new point of view (supersonic reference frame), the old
subsonic fixed world containing the airport and the commission mem-
bers will simply disappear, turning into a region of “imaginary values”.

What is light? These are transverse waves travelling in a certain
medium at a constant speed. We perceive the world around us through
vision, receiving light waves from other objects. It is the waves of light
that create our picture of the “true real world”.

Now imagine a spaceship accelerating faster and faster to eventu-
ally overcome the light barrier, while still increasing its speed. From a
mathematical point of view, this is quite possible in the space-time of
General Relativity. For us, the spaceship’s speed will still be equal to
the speed of light, whatever its actual speed. In the case, where we use
light signals to “synchronize” the world around us, for us the velocity
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of light is the maximum speed of information propagation, while the
real spaceship for us stays in another “unreal” world of superluminal
velocities, wherein all properties are imaginary. The same is true for
the spaceship’s pilot. From his viewpoint, overcoming the light barrier
brings him into a new superluminal world, which becomes his “true re-
ality”, and the old world of subluminal speeds is gone, left behind in the
region of “imaginary reality”.

1.16 Gravitational collapse in different regions of space

We will call a gravitational collapsar a space-time region, wherein the
gravitational collapse condition g00 = 0 is true. According to the the-
ory of chronometric invariants, √g00 = 1− w

c2 . Hence, the collapse con-
dition g00 = 0 also means w= c2. We will consider such a collapsing
region “from outside”, from the viewpoint of an ordinary observer.

Consider the formula for the four-dimensional interval so that it con-
tains an explicit ratio of w and c2, i.e.

ds2 =

(
1 −

w
c2

)2
c2dt2 − 2

(
1 −

w
c2

)
vi dxidt + gik dxidxk. (1.225)

Having substituted w= c2 into this formula, we obtain the space-
time metric on the surface of a gravitational collapsar

ds2 = gik dxidxk. (1.226)

From here we see that gravitational collapse in the four-dimensional
space-time can be correctly determined only if the space-time is holo-
nomic, i.e., the three-dimensional space of the observer does not rotate
(his spatial section is everywhere orthogonal to the time lines).

Since dτ=
√
g00 dt=

(
1− w

c2

)
dt in a non-rotating space, the observ-

able time stops (dτ= 0) on the surface of a gravitational collapsar.
The linear velocity with which the space rotates

vi = −c
g0i
√
g00
= −c

g0i

1 − w
c2

(1.227)

becomes infinite by the collapse condition w= c2. To avoid this prob-
lem, we assume g0i = 0. Then the metric (1.225) takes the form

ds2 =

(
1 −

w
c2

)2
c2dt2 + gik dxidxk, (1.228)
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so the problem of a singular state of the space-time becomes automati-
cally removed. Proceeding from the above, we obtain the metric on the
surface of a gravitational collapsar (1.226) in the form

ds2 = −dσ2 = −hik dxidxk, hik = −gik . (1.229)

From here we see that on the surface of a gravitational collapsar
the four-dimensional interval is space-like: the elementary distance be-
tween two points on its surface is imaginary

ds = idσ = i
√

hik dxidxk . (1.230)

If the four-dimensional interval is ds= 0, then the observable three-
dimensional distance dσ between two points on the surface of a gravi-
tational collapsar is zero.

Now we are going to consider gravitational collapse in different re-
gions of the four-dimensional space-time.
Collapse in a subluminal region

In this region, ds2 > 0. This is the home of ordinary (real) particles
travelling with subluminal velocities. Hence, a gravitational collapsar
located in this region is filled with a collapsed substance. Therefore,
we call it a substantial collapsar. On its surface, the space-time metric
is space-like: since ds2 < 0 on the surface of a substantial collapsar, all
particles on its surface have imaginary relativistic masses. The metric
on the surface of a substantial collapsar is non-degenerate.
Collapse in a light-like region

In this region, ds2 = 0. This is the home of light-like (massless)
particles. A gravitational collapsar in this region is filled with light-like
matter. Therefore, we call it a light-like collapsar. The metric (1.229)
on its surface is dσ2 =−gik dxidxk = 0 that is possible in two cases:

a) The surface of the light-like collapsar is shrunk to a point (in other
words, all dxi = 0);

b) The three-dimensional spatial metric is degenerate (det ∥gik∥= 0).
Since the four-dimensional metric is also degenerate, such a light-
like collapsar in this case is a case of the zero-space.

Collapse in a degenerate region (zero-space)
It is obvious that the distributed matter that fills a completely degen-

erate space-time region (zero-space) can be in the state of gravitational
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collapse. We call such gravitational collapsars degenerate collapsars.
Strictly speaking, based on the degeneration conditions

w + vi ui = c2, gik dxidxk =

(
1 −

w
c2

)2
c2dt2, (1.231)

we see that in the case of collapse (w= c2) there is

vi ui = 0 , gik dxidxk = 0 . (1.232)

Hence, gravitational collapse in a zero-space region occurs in the
absence of rotation (vi = 0) and, due to the conditions (1.232), the entire
surface of such a degenerate collapsar is shrunk to a point.



Chapter 2 Motion of Particles as a Result
of Motion of the Space Itself

2.1 Preliminary words

Having substituted the gravitational potential w and the linear veloc-
ity vi with which the space rotates into the definition of the physically
observable time interval dτ (1.22), we obtain(

1 +
1
c2 vi vi

)
dτ =

(
1 −

w
c2

)
dt , (2.1)

so a significant difference between dτ and dt may result from either a
strong gravitational field or high speeds comparable to the speed of light.
Hence, in everyday life the difference between dτ and dt is small.

The physically observable time coincides with the coordinate time
dt= dτ under the condition

w = −vi vi. (2.2)

This condition actually means that the gravitational attraction of a
particle by the reference body of an observer is completely compensated
by the rotation of the reference body’s space (reference space) together
with the motion of the particle itself. That is, (2.2) is the mathematical
formulation of the weightlessness condition. Substituting the gravita-
tional potential according to Newton’s formula, we obtain

GM
r
= vi vi. (2.3)

If the orbital velocity of a particle is equal to the linear velocity
with which the space of the gravitating body rotates in this orbit, then
the weightlessness condition for the particle takes the form

GM
r
= v2, (2.4)
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Planet Orbital velocity, km/sec
Measured Calculated

Mercury 47.9 47.9
Venus 35.0 35.0
Earth 29.8 29.8
Mars 24.1 24.1
Jupiter 13.1 13.1
Saturn 9.6 9.6
Uranus 6.8 6.8
Neptune 5.4 5.4
Pluto 4.7 4.7
Moon 1.0 1.0

i.e., the farther the orbit is from the attracting body, the lower the speed
of a satellite in this orbit.

Does this statement agree with experimental data? The Table shows
the orbital velocities of the Moon and the planets, measured in astro-
nomical observations and calculated from the state of weightlessness.

It can be seen from the Table that the weightlessness condition that
we have obtained is valid for any satellite orbiting around a gravitating
body. Note that the condition is satisfied if the planet’s orbital velocity
is equal to (or very close to) the linear rotation velocity of the gravitat-
ing body’s space in this orbit (2.4). This means that the space of any
gravitating body, if the body, and, hence, its space, rotates, drags all the
bodies around it, causing their orbital rotation.

If the space of a gravitating body rotated like a solid, without any de-
formation, then its angular velocity would be constant (ω= const), and
the orbital velocities v=ωr of accompanying satellites grew together
with the radii of their orbits. However, as we have just seen with the
example of the planets of the Solar System, the linear velocity of orbital
rotation decreases with distance from the Sun.

This means that in reality the space of a gravitating body (reference
space) rotates not as a solid, but as a viscous and deformable medium,
and the layers far from the body do not rotate as rapid as those closer to
the body’s surface. As a result, the space of a rotating body is twisted,
and the profile of orbital velocities simply repeats the structure of the
twisted space. From here we see that the orbital motion of particles in
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the gravitational field of a massive body is the result of the rotation of
the space itself of the gravitating body.*

2.2 Problem statement

What are the possible consequences of our mathematical theory of par-
ticle motion after the conclusions we have just arrived at?

Assume that there is a metric space. Obviously, the motion of the
space itself allows us to associate any point of this space with the motion
vector Qα of the point. It is also obvious that all points of the space have
the same motion as the space itself. Therefore, Qα can be considered as
the motion vector of the space itself at the given point. Thus, we get a
vector field that describes the motion of the entire space.

Of course, if the length of the vector Qα remains constant while
moving, then such a space moves in such a way that its metric also re-
mains unchanged. Therefore, if in such a space the motion vector Qα is
given at a given point, then the space metric can be found based on the
motion of the point (together with the motion of the space itself).

The way to solving this problem was paved at the end of the 19th
century by Sophus Lie [18]. He had obtained the external derivative
equations of the fundamental metric tensor gαβ in a space with respect
to the trajectory of a motion vector Qα, where the Qα components were
present as fixed coefficients. The number of the equations is equal to
the number of the metric tensor components. Therefore, having a fixed
vector Qα, i.e., having a given motion of the space, we can solve the
equations for finding the metric tensor components gαβ based on the
components of the Qα. Later, David van Danzig had proposed to call
such a derivative of the metric the Lie derivative.

Now we will consider a particular case of the motion of a space, in
which the space metric remains constant. This case was studied byWil-

*Our conclusions are very close to the conclusions obtained due to the elastody-
namics of the space-time continuum — an extension of General Relativity, which was
introduced a decade ago by Pierre A. Millette based on the analysis of the deformation
of the space-time in terms of continuum mechanics. In particular, he showed that the
massive body itself is part of the spacetime fabric that is rotating. See his extensive
paper and subsequent monograph on the subject: Millette P. A. Elastodynamics of the
spacetime continuum. The Abraham Zelmanov Journal, 2012, vol. 5, 221–277. Mil-
lette P. A. Elastodynamics of the Spacetime Continuum. The 2nd expanded edition,
American Research Press, Rehoboth (New Mexico), 2019, 415 pages.
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helm Killing [19]. Obviously, such a motion is equivalent to equalizing
the Lie derivative to zero (Killing equations). Therefore, if the motion
of a space leaves its metric unchanged and we know the vector Qα for
any of the points of the space (i.e., the motion of the space is given at any
of its points), the motion of the point (or points) can be used to obtain
the space metric based on the Killing equations.

On the other hand, the motion of a particle is described by the equa-
tions of motion. On the contrary, these equations leave the space metric
fixed, and the task here is to find the particle’s dynamical vector Qα.
The fixed metric in the equations of motion leads to the fact that the
Christoffel symbols, which are functions of the gαβ components of the
space metric, appear in the equations as fixed coefficients. Therefore,
once a particular space metric is given, we can use the equations of mo-
tion to obtain the vector Qα for a particle travelling in that space.

So now we come to the next one. Since gαβ is a symmetric tensor
(gαβ = gβα), only 10 of the 16 components have different numerical val-
ues. In the Killing equations (10 equations), the motion vector of a point
of the space is fixed, and the metric tensor components are unknown (10
unknowns). The equations of motion of a free particle (4 equations), on
the contrary, leave the metric fixed, but the components of the particle
motion vector (4 components) are unknown. Then, as soon as we con-
sider the free motion of a particle as the motion of any of the points
of the space, due to the motion of the space itself, we can compose a
system of 10 Killing equations (equations of motion of the space itself)
and 4 equations of the particle’s motion. There will be 14 unknowns in
the system of 14 equations, 10 of them are unknown components of the
space metric and 4 unknown components of the dynamic vector of the
particle. Therefore, by solving this system, we will obtain the motion of
a particle in the space and the space metric at the same time.

In particular, when solving the mentioned equation system, we can
find the motion of particles resulting from the motion of the space itself.
For this type of motion, knowing the motion of a particular particle can
explicitly provide the metric for the space itself.

For example, having solved the Killing equations and the dynamic
equations of motion of a satellite (or a planet), we can use its motion to
find the space metric of body, around which it is orbiting.

Next we will deduce the chr.inv.-form of the Killing equations ac-
cording to the chronometrically invariant formalism.
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2.3 The equations of motion and Killing’s equations

Assume that there is a moving space (not necessarily a metric one). It is
obvious that the motion vector Qα of any point of the space is the vector
of motion of the space itself at this point. The motion of a metric space
is described by Lie’s derivative

δ
L
gαβ = Qσ ∂gαβ

∂xσ
+ gασ

∂Qσ

∂xβ
+ gβσ

∂Qσ

∂xα
, (2.5)

which is the derivative of the fundamental metric tensor of the space
with respect to the parallel transport direction of the vector Qα (direc-
tion of motion of the space itself).

Consider a point in the space. Since the space moves, the point is a
subject to the action of the accompanying vector Qα that is the motion
vector of the space itself. For the point itself, the space rests and only
the “wind” produced by the motion vector Qα of the space discloses the
motion of the entire space.

In a general case the Lie derivative is not zero, i.e., the motion of
a space alters the space metric. But in a Riemannian space, the metric
is fixed by definition, so the length of a vector parallel-transported to
itself remains constant. This means that the parallel transport of a vector
across the “bumpy road” in a Riemannian space will alter the vector
along with the structure of the space. As a result, the Lie derivative of
the metric in a Riemannian space should be zero

δ
L
gαβ = 0 . (2.6)

The Lie equations in a Riemannian space were first studied by Wil-
helm Killing and are known as the Killing equations.

Then, 60 years later, A. Z. Petrov showed [20] that the Killing equa-
tions for any point of a Riemannian space are the necessary and suffi-
cient condition for the motion of the point to be the motion of the space
itself. In other words, if a point of a Riemannian space is dragged by the
motion of the space and moves along with it, then the Killing equations
must be true for that point.

It is obvious that to obtain the metric tensor components from the
Killing equations we need to determine the particular motion vector Qα

of a point. Then we will have 10 Killing equations versus 10 unknown
metric components, so we can solve the system.
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There can be different types of motion in a Riemannian space. We
will determine the motion vector Qα to suit our problem.

Consider free (geodesic) motion. In this case, a point moves along
a geodesic trajectory (the shortest of those between two points). Let us
assume that any point of the Riemannian space is dragged by the motion
of the space itself, i.e., it moves along a geodesic trajectory. Therefore,
the motion of the entire Riemannian space in this case is geodesic. In
this case, we can compare the motion of a point dragged by the motion
of the space with the motion of a free particle.

Further, we call the motion of a space the geodesic motion of the
space, if the free motion of particles is the result of their transport by
the moving space.

Consider a system consisting of the dynamical equations of motion
of free particles and the Killing equations

DQα

dρ
= 0

δ
L
gαβ = 0

 , (2.7)

where Qα is the dynamical vector of motion of a particle, ρ is the deriva-
tion parameter along the motion trajectory, and the Lie derivative can
be expressed through the Lie differential as

δ
L
gαβ =

D
L
gαβ

dρ
. (2.8)

In fact, the system of equations (2.7) means that the motion of a free
particle is geodesic and, at the same time, is the result of the fact that
the particle is dragged by the moving space itself. The system is solved
as a set of the dynamic vector components Qα, as well as the metric
tensor components gαβ, for which the geodesic motion of the particle is
the result of the geodesic motion of the space itself.

To solve the problem in a correct way, we need to present the Killing
equations in the chr.inv.-form, i.e., to express them through the physical
properties of the space. It is especially interesting to knowwhat physical
properties follow from the motion of the space itself.

The physical observables obtained from the Killing equations are
the chr.inv.-projections of the equations onto the time line (1 compo-
nent), the mixed projection (3 components), and the spatial projection
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(6 components)
δ
L
g00

g00
= 0

δ
L
gi

0
√
g00
=

giα δ
L
g0α

√
g00

= 0

δ
L
gik = giαgkβ δ

L
gαβ = 0


. (2.9)

Here we are considering the motion of the space and particles from
the viewpoint of an ordinary subluminal observer.

In the chr.inv.-projections of the Killing equations (2.9), we express
the ordinary derivation operators in the Lie derivative through the chr.
inv.-derivation operators, then we use a short notation for the chr.inv.-
projections φ= Q0√

g00
and qi =Qi of the dynamical vector Qα of the par-

ticle. As a result, we obtain the chr.inv.-Killing equations

∗∂φ

∂t
−

1
c

Fi qi = 0

1
c

∗∂qi

∂t
− him

∗∂φ

∂xm −
φ

c2 F i +
2
c

A·ik·q
k = 0

2φ
c

Dik + himhknql
∗∂hmn

∂xl + him
∗∂qk

∂xm + hkm
∗∂qi

∂xm = 0


. (2.10)

If the vector Qα satisfies both the chr.inv.-Killing equations and the
dynamical chr.inv.-equations of the motion of the particle, then this par-
ticle travels due to the geodesic motion of the space.

The joint solution of the equations in a general form is problematic.
Therefore, we will confine ourselves to one special case, which is of
great importance. Let the dynamic vector of the space motion Qα be
the dynamic vector of motion of a mass-bearing particle

Qα = m0
dxα

ds
=

m
c

dxα

dτ
, (2.11)

and the observer accompanies the particle (vi = 0). In this case,

φ = m0 = const, qi =
m
c

vi, (2.12)
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and the chr.inv.-Killing equations (2.10) are simplified to

F i = 0

Dik = 0

 . (2.13)

According to (1.43), Dik = 0 means a stationary state of the observ-
able metric: hik = const. The condition F i = 0 means the fulfillment of
the following equalities when transforming the time coordinate

g00 = 1 ,
∂g0i

∂t
= 0 . (2.14)

Besides, the quantities F i and Aik are related by Zelmanov’s identi-
ties, the first of which is (see formula 1.38 in §1.2)

1
2

(
∗∂Fk

∂xi −
∗∂Fi

∂xk

)
+
∗∂Aik

∂t
= 0 , (2.15)

from which we see that F i = 0 means also
∗∂Aik

∂t
= 0 , (2.16)

so the space motion in this case is a stationary rotation.
As is seen from the Killing equations (2.13), the space deforma-

tion tensor is zero in this case. Hence, the stationary rotation of the
space does not alter its structure. The vanishing of the gravitational in-
ertial force in the Killing equations means that from the viewpoint of
an observer associated with a particle dragged into motion by the mov-
ing space (vi = 0), this particle weighs nothing and is not attracted to
anything (is in the state of weightlessness). This does not contradict
the weightlessness condition w=−vi vi obtained earlier, since from the
viewpoint of the observer the gravitational potential of his reference
body’s field is w= 0 and, therefore, F i = 0.

Therefore, if Qα is the motion vector of a mass-bearing particle trav-
elling in a Riemannian space, then the geodesic motion of the space
along this vector is a stationary rotation.

As you can see, the geodesic motion of mass-bearing particles is
a stationary rotation. Such a stationary rotation arises as a result of
dragging by rotation of the reference space surrounding the gravitating



84 Chapter 2 Motion of the Space Itself

body (reference body of the observer). At the same time, we know that
the main type of motion in the Universe is orbital. Consequently, the
main type of motion in the Universe is the geodesic motion resulting
from the dragging of bodies by the stationary (geodesic) rotation of the
space of the bodies that attract them.

2.4 Conclusions

So, what kind of space has a gravitational potential, deforms and, being
in rotation, behaves like a viscous medium? It is worth noting that if
we place a particle in such a space, the moving space will drag it in the
same way that an ocean current carries a tiny boat and a giant iceberg.

The answer is this: according to the results that we have obtained
above, the reference space of a body and its gravitational field are one
and the same. Physically, reference space points can be considered as
particles in the gravitational field of the reference body.

If the reference space does not rotate, the satellite will fall down
on the reference body due to the influence of gravitational force. But
if the reference space rotates, then the satellite will be under the action
of a reference frame dragging force. This force acts like a wind or an
ocean current, pushing the satellite forward, preventing it from falling
down and causing it to rotate around the gravitating body along with the
rotating space (of course, the extra speed given to the satellite will make
it move faster than the rotating space).



Chapter 3 World-lines Deviation.
Detecting Gravitational Waves

3.1 Gravitational wave detectors

In this Chapter, we explain a theory of detecting gravitational waves
that was published, in brief, in our 2006 paper [21] and presented at the
2008 APSApril Meeting [22]. The basics andmain points of this theory
were developed in 1968–1973 by one of us, L. Borissova, then the exact
solutions to the equations were found in the 2000s by us together. For the
general theory of gravitational waves and their criteria, the reader can
be referred to the detailed paper [23] written in 1968 by L. Borissova.

Consider two particles having a rest-mass m0, each one connected
by a non-gravitational force Φα. Such particles travel along neighbour-
ing non-geodesic world-lines with the same four-dimensional velocity
Uα according to the non-geodesic equations of motion

dUα

ds
+ ΓαµνUµUν =

Φα

m0c2 , (3.1)

while relative deviations of the world-lines (and the particles) are given
by the Synge-Weber equation [24]

D2ηα

ds2 + Rα
·βγδ U βUδηγ =

1
m0 c2

DΦα

dv
dv , (3.2)

where Dηα = dηα +Γαµνη
µdxν is the absolute differential, ηα = ∂xα

∂v
dv is

the relative deviation vector of the particles, and v is a derivation param-
eter having the same numerical value along a world-line and different
as dv in the neighbouring world-lines.

If the particles are free (Φα= 0), they travel along neighbouring geo-
desics according to the geodesic equations of motion

dUα

ds
+ ΓαµνUµUν = 0 , (3.3)
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while the relative deviations of the geodesics (and the particles) are
given by the Synge equations [25]

D2ηα

ds2 + Rα
·βγδ U βUδηγ = 0 . (3.4)

A gravitational wave as a wave of the space metric deforming the
space should produce some effect in a two-particle system. The effect
could be found as a solution to the deviation equations in the gravita-
tional wave metric. Therefore, two kinds of gravitational wave detectors
were presumed in 1960s by JosephWeber, who pioneered experimental
investigation on gravitational waves:

a) Solid-body detector— a freely suspended cylindrical bar, approx-
imated by two masses connected by a spring. Such a detector
should be deformed under the action of a gravitational wave. This
deformation should lead to a piezoelectric effect therein;

b) Free-mass detector— a system consisting of two freely suspended
mirrors, distantly separated within the visibility, and fitted with a
laser range-finder. The expected deviation of the mirrors, derived
from a gravitational wave, should be registered by the laser beam.

3.2 A brief history of the measurements

Initial interest in gravitational waves arose in 1968–1970 when Joseph
Weber, Professor at the University of Maryland (USA), carried out his
first experiments with solid-body gravitational wave detectors. He had
registered several weak signals with his solid-body detectors that were
located at a distance of up to 1000 km from each other. [26–28]. He sup-
posed that some processes in the centre of the Galaxy were the source
of the registered signals.

The experiments were continued in the next decades bymany groups
of researchers working at laboratories and research institutes through-
out the world. The registering systems used in these attempts were much
more sensitive than those of Weber. In his pioneering observations of
1968–1970, Weber used very simple and small size solid-body detec-
tors in room-temperature conditions. To amplify the gravitational wave
effect in measurements, the level of noise in all solid-body detectors of
the second generation was lowered by cooling the cylinder bars down to
a temperature close to 0K. Besides gravitational antennae of the solid-
body kind, many antennae based on free masses were constructed. . .
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Theoretically, gravitational waves should be emitted by many pro-
cesses in the Galaxy, and their magnitude [2] is such that it can be de-
tected even by very simple gravitational wave detectors like those used
by Weber. That is, theoretically, gravitational waves should be the ob-
ject of daily observations. This is what Weber insisted on when he built
his detectors in the late 1960s.

But even the second generation of gravitational wave detectors has
not lead scientists to the expected results. In a few rare cases, when grav-
itational waves were registered, their magnitude was incredibly small.
So far no one has registered gravitational waves emitted by many pro-
cesses in the Galaxy.

Nonetheless it is accepted by most physicists that the discovery of
gravitational waves should be expected as one of the main effects of
General Relativity. The arguments in support of this thesis are [2]:

a) The energy of any gravitational field is determined by the gravi-
tational field energy-momentum pseudotensor;

b) A linearized form of Einstein’s equations permits a solution de-
scribing weak plane gravitational waves, which are transverse;

c) An energy flux, radiated by gravitational waves, can be calculated
through the gravitational field energy-momentum pseudotensor.

Therefore, there is no doubt that gravitational radiation emitted by
many objects in the Galaxy will be detected in the future.

The corner-stone of the problem was the fact that Weber’s conclu-
sions on the construction of the gravitational wave detectors were not
based on an exact solution to the deviation equations, but on an approx-
imate analysis of what could be expected: Weber expected that a plane
weak wave of the space metric (gravitational wave) can displace two
particles at rest with respect to each other.

Here we deduce exact solutions to both the Synge equation and the
Synge-Weber equation (i.e., the exact theory of free-mass and solid-
body detectors). The exact solutions show instead Weber’s supposition
that gravitational waves cannot displace resting particles; some effect
can only be produced if the particles oscillate relative to each other.

According to the exact solutions we can alter the construction of
both solid-body and free-mass detectors so that they can register os-
cillations produced by gravitational waves. Weber most probably de-
tected them as claimed by him in 1968–1970, as his room-temperature
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solid-body detectors may have had their own relative oscillations of the
bar extremities, whereas the oscillations are inadvertently suppressed as
noise in the detectors developed by his many followers, who have had
no positive result in over 45 years.

3.3 Weber’s approach and criticism thereof

Weber proposed the relative displacement of the particles ηα consisting
of a constant distance rα and an infinitely small displacement ζα caused
by a gravitational wave

ηα = rα + ζα, ζα ≪ rα,
Drα

ds
= 0 . (3.5)

Thus, the non-geodesic deviation equation, i.e., the Synge-Weber
equation (3.2), takes the following particular form

D2ζα

ds2 + Rα
·βγδ U βUδ (rγ + ζγ) = Φα

m0c2 . (3.6)

Then Weber considered the Φα as the sum of the returning elastic
force kασ ζ

σ and the damping factor dασ
Dζσ

ds , while kασ and dασ describe the
properties of the spring. As a result, the equation (3.6) becomes

D2ζα

ds2 +
dασ

m0c2

Dζσ

ds
+

kασ
m0c2 ζ

σ = −Rα
·βγδ U βUδ (rγ + ζγ) , (3.7)

which is the equation of forced oscillations, where the curvature tensor
Rα
·βγδ is a forcing factor. After some simplifications, he transformed the

non-geodesic deviation equation (3.7) to

d2ζα

dt2 +
dασ
m0

dζσ

dt
+

kασ
m0

ζσ = −c2Rα
·0σ0 rσ. (3.8)

Weber did not solve his equation (3.8). He limited himself by using
the curvature tensor as a forcing factor in his calculations of expected
resonant oscillations in solid-body detectors [24].

A solution to Weber’s equation in the form (3.8) having all his sim-
plifications was obtained in 1978 by L. Borissova [29]. She solved it in
the field of a weak plane gravitational wave. Assuming, as Weber did,
the rα and its length r=

√
gµν rµrν to be covariantly constant Drα

ds = 0,
Borissova had obtained that for a gravitational wave linearly polarized
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in the x2 direction and propagating along x1, the equation Drα
ds = 0 gives

r2 = r2
(0)

[
1− A sin ω

c
(
ct + x1)] when the detector is oriented along the x2

axis. Thus, she had obtained Weber’s equation (3.8) in the form

d2ζ2

dt2 + 2λ
dζ2

dt
+ Ω2

0 ζ
2 = −Aω2r2

(0) sin
ω

c
(
ct + x1) , (3.9)

which is the equation of forced oscillations, where the forcing factor is
the relative motion of the particles caused by the gravitational wave.
Here 2λ= b

m0
andΩ2

(0) =
k

m0
are determined by the non-gravitational force

Φ2 =−kζ2 − b ζ̇2, acting along the x2 axis, k is the elastic coefficient of
the “spring”, and b is the friction coefficient. Then she had obtained the
exact solution to the equation— the relative displacement η2 = ηy of the
detector’s extremities transverse to the falling gravitational wave

η2 = r2
(0)

[
1 − A sin

ω

c
(
ct + x1)] + Me−λt sin (Ω t + α) −

−
Aω2r2

(0)(
Ω2

0 − ω
2)2 cos

(
ω t + δ +

ω

c
x1

)
, (3.10)

where Ω =
√
Ω2

0 −ω
2, δ= arctan 2λω

ω2 −Ω2
0
, while M and α are constants.

In this solution, the relative oscillations consist of the “basic” har-
monic oscillations and relaxing oscillations (first two terms), and also
the resonant oscillations (third term).

As was shown by Borissova [29], Weber’s final equation (3.8) can
only be obtained under the following simplifications:

a) It can be considered that in fact there were two detectors in one:
a long bar with a constant length r and a short bar with a length
ζ, both of which change under the influence of the same gravita-
tional wave. However, in real experiments, a solid rod responds to
external influences as a whole;

b) The Christoffel symbols Γαµν are all zero. But, since the curvature
tensor is non-zero, the Γαµν cannot be reduced to zero in a finite
region [20]. Therefore, in the neighbouring particle Γαµν , 0;

c) The extremities of the bar are at rest with respect to the observer
(U i = 0) all the time before a gravitational wave passes. Therefore,
only resonant oscillations can be registered by such a detector.
Parametric oscillations cannot appear there.
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Since the same assumptions were applied to the geodesic deviation
equation, all that has been said is applicable to a free-mass detector.

Thus, by his simplified equation (3.8), Weber actually postulated
that gravitational waves force rest-particles to undergo relative resonant
oscillations. His assumptions led to a specific interior of the solid-body
and free-mass detectors, where parametric oscillations are obviated.

3.4 The main equations

Here we solve the deviation equations together with the equations of
motion in the general case, where both particles in the pair move ini-
tially with respect to the observer (U i , 0), and without Weber’s sim-
plifications. We solve the equations in terms of physically observable
quantities (chronometric invariants). According to §1.2 of Chapter 1,
any vector Qα has two chr.inv.-projections: Q0√

g00
and Qi. Thus, for the

connecting force Φα, we denote

σ =
Φ0
√
g00

, f i = Φi, (3.11)

and also, for the deviation vector ηα,

φ =
η0
√
g00

, ηi ≡ ηi. (3.12)

We consider the non-geodesic deviation equation in a general case,
where the right hand side of the equation is non-zero.

The general covariant non-geodesic equations of motion (3.1) have
two chr.inv.-projections, which have the form

dm
dτ
−

m
c2 Fi vi +

m
c2 Dik vivk =

σ

c
d
dτ

(
mvi) − mF i + 2m

(
Di

k + A·ik·
)
+ m∆i

kn vkvn = f i

 , (3.13)

where we still follow the conventional denotations: m is the relativistic
mass of the particle, vi is its physically observable chr.inv.-velocity, dτ
is the interval of the physically observable time, Fi is the chr.inv.-vector
of the gravitational inertial force, Aik is the chr.inv.-tensor of the angular
velocity with which the space rotates, Dik is the tensor of the deforma-
tion rate of the space, and ∆i

kn are the chr.inv.-Christoffel symbols (see
§1.2 of Chapter 1).
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We re-write the Synge-Weber equation of deviating non-geodesics
(3.2) in the expanded form

d2ηα

ds2 + 2Γαµν
dηµ

ds
Uν +

∂Γαβδ

∂xγ
U βUδηγ =

1
m0c2

∂Φα

∂xγ
ηγ, (3.14)

where ds2 can be expressed through the observable time interval dτ
according to (1.30) as ds2 = c2dτ2 − dσ2 = c2dτ2 (1− v2/c2).

Consider the metric of weak plane gravitational waves

ds2 = c2dt2 −
(
dx1)2

−
(
1 + a

)(
dx2)2

+

+ 2bdx2dx3 −
(
1 − a

)(
dx3)2,

(3.15)

where a and b are functions of ct+ x1, i.e., we assume in the case under
consideration that a weak plane gravitational wave propagates along the
axis x1. The functions a and b are small values, therefore their squares
and the products of their derivatives vanish. The speed of both particles
(extremities of a gravitational wave detector) is obviously slow. In this
case, in the space of the gravitational wave metric (3.15),

dτ = dt , η0 = η0 = φ , Φ0 = Φ0 = σ

Γ0
kn =

1
c

Dkn , Γi
0k =

1
c

Di
k , Γi

kn = ∆
i
kn

 . (3.16)

With these, after some algebra, we obtain the chr.inv.-projections of
the Synge-Weber equation (3.14)

d2φ

dt2 +
2
c

Dkn
dηk

dt
vn +

(
φ
∂Dkn

∂t
+ c

∂Dkn

∂xm ηm
)

vkvn

c2 =

=
1

m0

(
φ

c
∂σ

∂t
+
∂σ

∂xm η
m
)

d2ηi

dt2 +
2
c

Di
k

(
dφ
dt

vk + c
dηk

dt

)
+ 2∆i

kn
dηk

dt
vn+

+ 2
φc ∂Di

k

∂t
+
∂Di

k

∂xm η
m
 vk +

φc ∂∆
i
kn

∂t
+
∂∆i

kn

∂xm ηm
 vkvn =

=
1

m0

(
φ

c
∂ f i

∂t
+
∂ f i

∂xm η
m
)



. (3.17)
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The obtained chr.inv.-deviation equations (3.17) in component nota-
tion form a system of four 2nd order differential equations with respect
to φ, η1, η2, η3, where the variable coefficients of the mentioned func-
tions are the quantities ȧ, ä, v1, v2, v3. To solve this system we will get
a from the gravitational wave metric (3.15), while the vi components
come as the solutions to the non-geodesic equations of motion (3.13).

3.5 The exact solution for a free-mass detector

First, we solve the chr.inv.-deviation equations (3.17) for a free-mass
detector. In such a case, two particles associated with the extremities of
the detector do not interact with each other (Φα = 0), i.e., the right hand
side is zero in the equations.

We are looking for a solution in the field of a gravitational wave
falling along the axis x1 and linearly polarized in the x2 direction (b= 0).
With these, the gravitational wave metric (3.15) gives

D22 = −D33 =
1
2

ȧ ,
d

dx1 =
1
c

d
dt

∆1
22 = −∆

1
33 = −

1
2c

ȧ , ∆2
12 = −∆

3
13 =

1
2c

ȧ

 . (3.18)

In such a case and since Φα = 0, the chr.inv.-equations of motion
(3.13) take the following form(

v2)2
−

(
v3)2
= 0

dv1

dt
= 0 ,

dv2

dt
+ ȧv2 = 0 ,

dv3

dt
+ ȧv3 = 0

 . (3.19)

Here v1 = v1
(0) = const. Hence, a transverse gravitational wave does

not move a single particle in the longitudinal direction. Therefore,

v1 = v1
(0) = 0 . (3.20)

The last two spatial equations of (3.19) are also simple to integrate.
After integration, we obtain

v2 = v2
(0) e−a, v3 = v3

(0) e+a. (3.21)

Assuming the wave simple harmonic (ω= const) with a constant
amplitude A= const, i.e., a= A sin ω

c
(
ct+ x1), then expanding the ex-
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ponent into series (with higher-order terms withheld), we obtain

v2 = v2
(0)

[
1 − A sin

ω

c
(
ct + x1)] , (3.22)

v3 = v3
(0)

[
1 + A sin

ω

c
(
ct + x1)] . (3.23)

Substituting these solutions into the chr.inv.-equations of deviat-
ing non-geodesics (3.17) and setting the right hand side to zero, as for
geodesics, we obtain

d2φ

dt2 +
ȧ
c

(
dη2

dt
v2

(0) −
dη3

dt
v3

(0)

)
= 0 , (3.24)

d2η1

dt2 −
ȧ
c

(
dη2

dt
v2

(0) −
dη3

dt
v3

(0)

)
= 0 , (3.25)

d2η2

dt2 + ȧ
dη2

dt
+

ȧ
c

(
dφ
dt
+

dη1

dt

)
v2

(0) +
ä
c
(
φ + η1)v2

(0) = 0 , (3.26)

d2η3

dt2 − ȧ
dη3

dt
−

ȧ
c

(
dφ
dt
+

dη1

dt

)
v2

(0) −
ä
c
(
φ + η1)v2

(0) = 0 . (3.27)

Summing up the first two equations of the above, then integrating
the obtained sum, we obtain

φ + η1 = B1t + B2 , (3.28)

where B1 and B2 are integration constants. Substituting the result into
the other two equations, we obtain two equations that differ only in the
sign of the a and therefore can be solved in the same way

d2η2

dt2 + ȧ
dη2

dt
+

ȧ
c

B1v2
(0) +

ä
c
(
B1 t + B2

)
v2

(0) = 0 , (3.29)

d2η3

dt2 − ȧ
dη2

dt
−

ȧ
c

B1v3
(0) −

ä
c
(
B1 t + B2

)
v3

(0) = 0 . (3.30)

Introduce a new variable y= dη2

dt . Then we have a linear uniform
equation of the 1st order with respect to y

ẏ + ȧy = −
ȧ
c

B1v2
(0) −

ä
c
(
B1t + B2

)
v2

(0) , (3.31)
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which has the solution

y = e−F
(
y0 +

∫ t

0
g(t) eFdt

)
, F(t) =

∫ t

0
f (t) dt , (3.32)

where F(t)= ȧ and g(t)=− ȧ
c B1 v2

(0) −
(
B1 t+ B2

)
v2

(0). Expanding the ex-
ponent in y (3.32) into series, then integrating, we obtain

y = η̇2 = η̇2
(0)

[
1 − A sin

ω

c
(
ct + x1)] −

−
Aω
c

v2
(0)

(
B1 t + B2

)
cos

ω

c
(
ct + x1) + Aω

c
B2 v2

(0) . (3.33)

We integrate this equation, then apply the same method for η3. As
a result, we obtain the physically observable relative displacements η2

and η3 in a free-mass detector

η2 = η2
(0) +

η̇2
(0) +

AωB2 v2
(0)

c

 t +
A
ω

η̇2
(0) −

v2
(0)

c
B1

 ×
×

[
cos

ω

c
(
ct + x1) − 1

]
−

Av2
(0)

c
(
B1 t + B2

)
sin

ω

c
(
ct + x1) , (3.34)

η3 = η3
(0) +

η̇3
(0) −

AωB2 v3
(0)

c

 t −
A
ω

η̇3
(0) −

v3
(0)

c
B1

 ×
×

[
cos

ω

c
(
ct + x1) − 1

]
+

Av3
(0)

c
(
B1 t + B2

)
sin

ω

c
(
ct + x1) . (3.35)

Getting η̇2 and η̇3, we obtain the physically observable relative dis-
placement η1 (3.25) in a free-mass detector and the physically observ-
able time shift φ (3.24) at its ends

η1 = η̇1
(0) t −

A
ωc

(
v2

(0) η̇
2
(0) − v3

(0) η̇
3
(0)

) [
1 − cos

ω

c
(
ct + x1)] + η1

(0) , (3.36)

φ = φ̇(0) t +
A
ωc

(
v2

(0) η̇
2
(0) − v3

(0) η̇
3
(0)

) [
1 − cos

ω

c
(
ct + x1)] + η1

(0) . (3.37)

Finally, we substitute φ and η1 into φ+ η1 = B1t+ B2 (3.28) to fix
the integration constants. We obtain

B1 = φ̇(0) + η̇
1
(0) , B2 = φ(0) + η

1
(0) . (3.38)
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So, we have obtained the exact solutions φ, η1, η2, η3 to the chr.inv.-
equations of two deviating geodesics in the field of a weak plane grav-
itational wave. Proceeding from the exact solutions, we arrive at the
following conclusions on free-mass detectors:
1) As is seen from the solutions for η2 (3.34) and η3 (3.35), gravita-

tional waves can force the ends of a free-mass detector to undergo
relative oscillations in the directions x2 and x3, transverse to that
of the wave propagation. At the same time, this effect is possi-
ble only if the detector initially moves with respect to the observer
(v2

(0) , 0 or v3
(0) , 0) or, alternatively, its ends initially move with re-

spect to each other (η̇2
(0) , 0 or η̇3

(0) , 0). For instance, if the ends of a
free-mass detector are at rest with respect to x2, an x1-propagating
gravitational wave cannot displace them in the x2 direction;

2) The solution for η1 (3.36) means that gravitational waves can os-
cillatory bounce the ends of a free-mass detector even in the same
direction as the wave propagation, if they initially move both with
respect to the observer and each other in at least one of the trans-
verse directions x2 and x3;

3) The solution for φ (3.37) is the time shift on the clocks located at
the ends of a free mass detector caused by a gravitational wave.
From (3.37) we see that this effect is possible if the ends initially
move both with respect to the observer and each other in at least
one of the transverse directions x2 and x3.

Based on the above results that we have obtained, we propose a new
experimental statement for free-mass detectors:
New experiment (free-mass detector)

Use such a free mass detector, in which two mirrors, distant from
each other, are suspended and vibrating so that they have free os-
cillations with respect to each other (η̇i

(0) , 0) or joint oscillations
along parallel lines (vi

(0) , 0). According to the exact solution for a
free-mass detector given above, a falling gravitational wave pro-
duces a parametric effect in the basic oscillations of the mirrors,
which can be registered using a laser range-finder. Besides, as the
solution predicts, a falling gravitational wave produces a time shift
in the vibrating mirrors, that can be registered using synchronized
clocks located with each of the mirrors: their de-synchronization
means a gravitational wave detection.
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3.6 The exact solution for a solid-body detector

We assume the elastic force Φα =−kασ xσ connecting two particles be-
longing to the opposite extremities of a solid-body detector to be inde-
pendent of time (k0

σ = 0). In such a case, when the chr.inv.-equations of
motion (3.13) are applied to the particles, they take the form(

v2)2
−

(
v3)2
= 0 , (3.39)

dv1

dt
= −

k1
σ

m0
xσ, (3.40)

dv2

dt
+ ȧv2 = −

k2
σ

m0
xσ, (3.41)

dv3

dt
− ȧv3 = −

k3
σ

m0
xσ, (3.42)

where (3.40) means v1 = v1
(0) = const. Hence, in the detector,

v1 = v1
(0) = 0 , k1

σ = 0 . (3.43)

Only two equations, (3.41) and (3.42), are essential. They differ only
in the sign of the ȧ, therefore we solve only (3.41).

Let the solid-body detector be elastic in only two directions trans-
verse to the direction x1, in which the gravitational wave propagates. In
such a case the elastic coefficient components are k2

σ = k3
σ = k= const.

With that, since a= A sin ω
c
(
ct+ x1) as previously and denoting x2 ≡ x,

k
m0
=Ω2, Aω=−µ, we reduce (3.41) to

ẍ + Ω2x = µ cos
ω

c
(
ct + x1) ẋ , (3.44)

where µ is a “small parameter”. We solve this equation using Poincaré’s
method, known also as the small parameter method or the perturbation
method: we consider the right hand side as a forcing perturbation of
a harmonic oscillation described by the left hand side. This is an exact-
solution method, because a solution obtained with it is a power series
expansion over the small parameter (see Chapter XII, §2 in Lefschetz
[30]). Introducing a new variable t′ =Ω t in order to make it dimension-
less according to Lefschetz and µ′ = µ

Ω
, we obtain

ẍ + x = µ′ cos
ω

Ωc
(
ct′ + Ω x1) ẋ . (3.45)
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A general solution of this equation, representable as

ẋ = y , ẏ = − x + µ′ cos
ω

Ωc
(
ct′ + Ω x1) y (3.46)

with the initial data x(0) and y(0) at the moment of time t′ = 0, is deter-
mined by the series pair (Lefschetz)

x = P0
(
x(0), y(0), t′

)
+ µ′P1

(
x(0), y(0), t′

)
+ . . .

y = Ṗ0
(
x(0), y(0), t′

)
+ µ′Ṗ1

(
x(0), y(0), t′

)
+ . . .

 . (3.47)

Substituting these into (3.46) and equating coefficients in the same
orders of µ′, we obtain

P̈0 + P0 = 0

P̈1 + P1 = Ṗ0 cos
ω

Ωc
(
ct′ + Ωx1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 (3.48)

with the initial data P0(0)= ξ, Ṗ0(0)=ϑ, P1(0)= Ṗ1(0)= 0 (where n> 0)
at the moment of time t′ = 0. Because the amplitude A (it is a part of
the variable µ′ =− ω

Ω
A) is a small value, we consider only the first two

equations into account. The first of them is the equation of harmonic
oscillations, which has the solution

P0 = ξ cos t′ + ϑ sin t′, (3.49)

and the second equation, with this solution, takes the form

P̈1 + P1 =
(
−ξ sin t′ + ϑ cos t′

)
cos

ω

Ωc
(
ct′ + Ω x1) . (3.50)

This is a linear uniform equation. The solution to this equation,
according to Kamke (see Part III, Chapter II, §2.5 in [31]), is

P1 =
ϑΩ2

2

cos
[(
Ω − ω

)
t − ω

c x1
]

Ω2 −
(
Ω − ω

)2 +
cos

[(
Ω + ω

)
t + ω

c x1
]

Ω2 −
(
Ω + ω

)2

 −
−

i ξΩ2

2

sin
[(
Ω − ω

)
t − ω

c x1
]

Ω2 −
(
Ω − ω

)2 +
sin

[(
Ω + ω

)
t + ω

c x1
]

Ω2 −
(
Ω + ω

)2

 , (3.51)
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where the brackets contain, respectively, the real and imaginary parts of
the sum ei (Ω−ω) t− ω

c x1
+ ei(Ω+ω) t+ ω

c x1 . Substituting these into (3.47) and
going back to x= x2, we obtain the final solution in real numbers

x2 = ξ cosΩ t + ϑ sinΩ t −

−
AωΩϑ

2

cos
[(
Ω − ω

)
t − ω

c x1
]

Ω2 −
(
Ω − ω

)2 +
cos

[(
Ω + ω

)
t + ω

c x1
]

Ω2 −
(
Ω + ω

)2

 , (3.52)
while the solution for x3 differs only in the sign of A.

With this result we solve the chr.inv.-equations of deviating non-
geodesics (3.17).

For the cylindrical bar (solid-body detector) under consideration, we
assume v1 = 0, v2 = v3,Φ1 = 0,Φ2 =− k

m0
η2,Φ3 =− k

m0
η3, where v2 = v3

means that the initial conditions ξ and ϑ are the same in both the x2 and
x3 directions. Thus, the chr.inv.-deviation equations along the x0 = ct
and x1 directions, respectively, are

d2φ

dt2 = 0 ,
d2η1

dt2 = 0 , (3.53)

so we can put their solutions as φ= 0 and η1 = 0.
With all of the above, the chr.inv.-deviation equation along the x2

direction (it differs from that along the x3 direction by only the sign of
the A) takes the following form

d2η2

dt2 +
k

m0
η2 = −Aω cos

ω

c
(
ct + x1) dη2

dt
, (3.54)

which is like (3.44). So, the solutions η2 and η3 should be like (3.52).
Thus, we obtain solutions identical to (3.52), which are

η2 = ξ cosΩ t + ϑ sinΩ t −

−
AωΩϑ

2

cos
[(
Ω − ω

)
t − ω

c x1
]

Ω2 −
(
Ω − ω

)2 +
cos

[(
Ω + ω

)
t + ω

c x1
]

Ω2 −
(
Ω + ω

)2

 , (3.55)
η3 = ξ cosΩ t + ϑ sinΩ t −

−
AωΩϑ

2

cos
[(
Ω − ω

)
t − ω

c x1
]

Ω2 −
(
Ω − ω

)2 +
cos

[(
Ω + ω

)
t + ω

c x1
]

Ω2 −
(
Ω + ω

)2

 . (3.56)
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These are the exact solutions to the chr.inv.-equations of two deviat-
ing non-geodesics in the field of a weak plane gravitational wave. The
solutions lead us to the following conclusions:
1) The solutions φ= const and η1 = const mean that a gravitational

wave falling on a horizontally suspended solid-body bar does not
change the vertical size η1 of the bar and does not produce a time
shift φ on the clocks installed at its ends;

2) As is seen from the solutions for η2 (3.55) and η3 (3.56), grav-
itational waves can force the extremities of a solid-body bar to
undergo relative oscillations, transverse to the wave propagation:
a) forced relative oscillations at the frequency ω of the gravita-
tional waves; b) resonant oscillations that occur as soon as the fre-
quency of the gravitational wave becomes double the frequency
of the basic oscillation of the bar extremities (ω= 2Ω). Both of
these effects are of parametric origin: they are possible only if the
extremities of the bar have an initial relative oscillation (Ω, 0).
In the absence of initial relative oscillation, such a solid-body de-
tector does not respond to gravitational waves.

Owing to the theoretical results that we have obtained, we propose
a new experimental statement for solid-body detectors:
New experiment (solid-body detector)

Use such a solid-body detector (cylindrical bar), which is hori-
zontally suspended and having a laboratory induced oscillation of
its body so that there are relative oscillations of the bar extremi-
ties (Ω, 0). Such a system, according to the exact solution for a
solid-body detector, can have a parametric effect in the basic os-
cillations of the bar extremities due to a falling gravitational wave,
which can be registered as a piezo-effect in the bar.

3.7 Conclusions

The experimental statement on gravitational waves proceeds from the
equation of deviating geodesic lines and the equation of deviating non-
geodesics. Weber’s result was not based on an exact solution to the
equations, but on his approximate analysis of what could be expected:
he expected that a plane weak wave of the space metric may displace
two resting particles with respect to each other. Unlike Weber, here
we have obtained exact solutions of the deviation equation for both free



100 Chapter 3 Detecting Gravitational Waves

and spring-bound particles. According to the obtained exact solutions, a
gravitational wave can displace particles in a two-particle system only if
they are in motion with respect to each other or the local space (there is
no effect if they are at rest). In other words, gravitational waves produce
a parametric effect on a two-particle system. According to the solutions,
an altered detector construction can be proposed such that it might in-
teract with gravitational waves. These are: a) a free-mass detector, in
which the suspended mirrors have laboratory induced basic oscillations
relative to each other; b) a horizontally suspended cylindrical bar, the
extremities of which have basic relative oscillations induced by a labo-
ratory source.



Chapter 4 Non-quantum Teleportation.
Frozen Light

4.1 Trajectories of instant displacement. The zero-space and non-
quantum teleportation

So, the basic space-time of General Relativity is a four-dimensional
pseudo-Riemannian space, which, in general, is inhomogeneous, aniso-
tropic, curved, non-holonomic (rotating) and deforming. The space-
time interval in terms of physically observable quantities has the form

ds2 = c2dτ2 − dσ2, (4.1)

where
dτ =

(
1 −

w
c2

)
dt −

1
c2 vi dxi (4.2)

is the physically observable time interval, w= c2(1−
√
g00) is the gravi-

tational potential, vi is the linear velocity with which the space rotates,
dσ2 = hik dxidxk is the square of the physically observable spatial inter-
val, and hik is the physically observable chr.inv.-metric tensor.

Consider a particle moving at a space-time distance ds. Re-write
ds2 based on the formula (4.2). We obtain

ds2 = c2dτ2
(
1 −

v2

c2

)
, (4.3)

where v2 = hik vivk, while vi = dx i

dτ is the observable three-dimensional
velocity of the particle. So, the numerical value of the space-time inter-
val ds is a substantial number under v< c, zero under v= c, and an imag-
inary number under v> c.

Particles with non-zero rest-masses (m0 , 0) travel along real world-
trajectories (cdτ > dσ), if they have real relativistic masses, and along
imaginary world-trajectories (cdτ < dσ), if their relativistic masses are
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imaginary (tachyons). The world-lines of both of these kinds are non-
isotropic. In both cases relativistic masses are non-zero (m, 0). These
are particles of substance.

Massless particles are particles with zero rest-masses (m0 = 0), but
having non-zero relativistic masses (m, 0). They travel with the ve-
locity of light along world-trajectories of zero four-dimensional length
(ds= 0, cdτ= dσ, 0). These are isotropic trajectories. A particular
case of massless particles are light-like particles — the quanta of an
electromagnetic field (photons).

A condition under which a particle may realize an instant displace-
ment (teleportation) is the vanishing of the observable time interval dτ
(4.2). So, the teleportation condition is dτ= 0 or, according to (4.2),

w + vi ui = c2, (4.4)

where ui = dx i

dt is its three-dimensional coordinate velocity of the par-
ticle. Hence, the space-time interval by which the particle is instantly
displaced has the form

ds2 = −dσ2 = −

(
1 −

w
c2

)2
c2dt2 + gik dxidxk , 0 , (4.5)

where 1− w
c2 =

vi ui

c2 since dτ= 0.
As is seen from this formula, in such a case, the signature (+−−−)

usual to the space-time region of an ordinary observer transforms into
the signature (−+++) of the space-time region where particles are tele-
ported. In other words, the terms “time” and “three-dimensional space”
are interchanged in the region of teleportation: “time” of a teleporting
particle is “space” of an ordinary observer, and vice versa, “space” of
the teleporting particle is “time” of the ordinary observer.

Further, we will refer to instant interaction or instant information
transfer as the long-range action. A process in which a particle (media-
tor of the interaction) can realize the long-range action will be referred
to as the non-quantum teleportation.

Long-range action mediators are particles inherent in a completely
degenerate space-time (we have called it zero-space). We have called
such particles zero-particles. See §1.4 of Chapter 1 for detail.

Once a particle has entered into a local zero-space region at one
location of our regular space, it can be instantly connected to another
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particle that has simultaneously entered into another zero-space “gate”
at another distant location. From the viewpoint of an ordinary “exter-
nal” observer, such a connexion is realized instantly. Meanwhile, inside
the zero-space itself, completely degenerate particles transmit the inter-
action between these two locations with the coordinate velocities ui that
do not exceed the velocity of light.

Thus, we conclude that instant information transfer is naturally per-
mitted in the framework of General Relativity, despite the fact that the
real speeds of particles does not exceed the velocity of light. This is
a “space-time trick” due to the space-time geometry and topology: we
only see that information is transferred instantly, while it is transferred
by not-faster-than-light particles travelling in another space that seems
to us, the “external” observers, such as that there all intervals of time
and all three-dimensional spatial intervals are zero*.

Let us first consider substantial particles. As is easy to see, instant
displacement (teleportation) of such particles is possible along world-
trajectories, on which ds2 =−dσ2 , 0 is true. So, these trajectories rep-
resented in terms of physically observable quantities are purely spa-
tial lines of imaginary three-dimensional lengths dσ, although when
considered in the ideal world-coordinates t and xi the trajectories are
four-dimensional. In a particular case, where the space does not rotate
(vi = 0) or the linear velocity of its rotation vi is orthogonal to the coordi-
nate velocity ui of the teleporting particle and, hence, their scalar prod-
uct is vi ui = |vi||ui| cos

(
vi; ui)= 0, substantial particles can be teleported

only if gravitational collapse occurs (w= c2). In this case, the world-
trajectories of teleportation considered in the ideal world-coordinates
also become purely spatial ds2 = gik dxidxk.

The second case is massless (light-like) particles, for example —
photons. Since ds2 = 0 for massless particles by definition, such parti-
cles can be teleported along world-trajectories located in a space having
the metric

ds2 = −dσ2 = −

(
1 −

w
c2

)2
c2dt2 + gik dxidxk = 0 . (4.6)

*Themost complete theoretical investigation of the teleportation condition in spaces
of various metrics, including the real possibility of the non-quantum teleportation in
an Earth-bound laboratory using a strong electromagnetic field, is given in our recent
article: Rabounski D. and Borissova L. Non-quantum teleportation in a rotating space
with a strong electromagnetic field. Progress in Physics, 2022, vol. 18, no. 1, 31–49.
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As a result, we see that the photon teleportation space is character-
ized by the conditions ds2 = 0 and dσ2 = c2dτ2 = 0.

The obtained photon teleportation condition (4.6) is similar to the
light cone equation c2dτ2 − dσ2 = 0, where dσ, 0 and dτ, 0. The light
cone equation describes the light cone, elements of which are the world-
trajectories of massless (light-like) particles*. Hence, teleporting pho-
tons actually travel along trajectories that are elements of a cone, similar
to the light cone.

Considering the photon teleportation condition (4.6) from the view-
point of an ordinary observer, we can see the obvious fact that, in such a
case, the observable spatial metric dσ2 = hik dxidxk becomes degener-
ate: h= det ∥hik∥= 0. This casemeans actually the degenerate light cone.
Taking the relation g=−hg00 [3–5] into account, we conclude that,
in this case, the four-dimensional metric ds2 = gαβ dxαdxβ becomes as
well degenerate: g= det ∥gαβ∥= 0. The latter means that the signature
conditions that determine a pseudo-Riemannian space are broken, so
photon teleportation is carried out outside the basic space-time of Gen-
eral Relativity. We considered such a completely degenerate space-time
in §1.4 and §1.5 of Chapter 1 in this book, where we called it zero-space
since, from the viewpoint of an ordinary observer, all spatial and time
intervals in it are zero.

Under the conditions dτ= 0 and dσ= 0, the observable relativis-
tic mass m and frequency ω become zero. Hence, any particle with
zero rest-mass m0 = 0 when travelling in the zero-space (say, a teleport-
ing photon) looks like it has zero relativistic mass m= 0 and frequency
ω= 0 to an ordinary observer. Therefore, particles of this kind can be
considered the limiting case of massless (light-like) particles.

In §1.4 we have introduced a new term, zero-particles, for all parti-
cles that are inherent in the zero-space.

According to the wave-particle duality, every particle can be repre-
sented as a wave. In the framework of this concept, each mass-bearing
particle is determined by its own four-dimensional wave vector Kα=

∂ψ
∂xα ,

where ψ is the wave phase known also as eikonal. The eikonal equation
KαKα = 0 [2] manifests the fact that the length of a four-dimensional

*In contrast to the light cone equation, the photon teleportation equation (4.6) is
expressed in terms of the ideal world-coordinates t and x i, and not in terms of physically
observable quantities.
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vector remains unchanged in the four-dimensional pseudo-Riemannian
space. As was shown in §1.3, the eikonal equation for regular massless
light-like particles (regular photons) has the form

1
c2

(
∗∂ψ

∂t

)2

− hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0 , (4.7)

which is a travelling wave equation. The eikonal equation in a zero-
space region has the form (see §1.5 for detail)

hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0 , (4.8)

because there we have ω=
∗∂ψ
∂t = 0 and thus, the time term of the equa-

tion (4.7) becomes zero. This is a standing wave equation. Therefore, all
particles located in a zero-space region appear to an ordinary observer
as standing light waves, and the entire zero-space appears to him as a
system of standing light waves (a light-like hologram). This means that
an experiment for discovering the non-quantum teleportation of photons
should be linked to stationary (stopped) light.

At the end, we conclude that instant displacements of particles are
naturally permitted in the space-time of General Relativity. As was
shown above, the teleportation trajectories of real particles and photons
lie in different regions of the space-time. But it would be a mistake to
think that for teleportation it is necessary to accelerate a substantial par-
ticle to a superluminal speed (making it a tachyon), and to accelerate a
photon to infinite speed. No— as it is easy to see from the teleportation
condition w+ vi ui = c2, if the gravitational potential is strong enough
and the space rotates at a velocity comparable with the velocity of light,
then substantial particles can be teleported at regular subluminal speeds.
Photons can reach the teleportation condition easier, because they ini-
tially travel with the velocity of light. From the viewpoint of an ordi-
nary observer, as soon as the teleportation condition is realized in the
neighbourhood of a travelling particle, the particle “disappears” from
his observed world, although it continues its motion with a subluminal
(or light) coordinate velocity ui in another space-time region invisible
to us. Then, as soon as the particle’s velocity decreases, or if something
else violates the teleportation condition (for example, lowering the grav-
itational potential or the linear velocity with which the space rotates),
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the particle “appears” at the same observable moment of time at a dif-
ferent point in our observable space at that distance and in the direction
in which it travelled.

There is no problem with photon teleportation, since it is realized
along completely degenerate world-trajectories (g= 0) outside the basic
pseudo-Riemannian space (g< 0). On the other hand, the teleportation
trajectories of substantial particles are strictly non-degenerate (g< 0),
hence such trajectories lie in the pseudo-Riemannian space*. It presents
no problem because at any point in the pseudo-Riemannian space we
can place a tangential space of g⩽ 0 consisting of the regular pseudo-
Riemannian space (g< 0) and the zero-space (g= 0) as two different re-
gions of the same manifold. A space of g⩽ 0 is a natural generaliza-
tion of the basic space-time of General Relativity, permitting the non-
quantum teleportation of both photons and substantial particles.

Until this day, teleportation has had an explanation given only by
Quantum Mechanics [32]. It was previously achieved only in the strict
quantum fashion — quantum teleportation of photons in 1998 [33] and
of atoms in 2004 [34, 35]. Now the situation changes: with our theory
we can find physical conditions for teleportation of photons in a non-
quantum way, which is not due to the probabilistic laws of Quantum
Mechanics but according to the exact (non-quantum) laws of theGeneral
Theory of Relativity following the space-time geometry. We therefore
suggest referring to this phenomenon as the non-quantum teleportation.

The only difference is that from the viewpoint of an ordinary ob-
server the length of any parallel transported vector remains unchanged.
It is also an “observable truth” for vectors in a zero-space region, be-
cause the observer reasons only the standards (properties) of his pseudo-
Riemannian space anyway. The eikonal equation in a zero-space region,
expressed in his observable world-coordinates, is KαKα = 0. However,
the internal zero-space metric ds2 =−

(
1− w

c2

)2
c2dt2 + gik dxidxk = 0,

expressed in terms of the ideal world-coordinates t and xi, degenerates
into a three-dimensional metric dµ2 that, depending on the gravitational

*Any space of Riemannian geometry has a strictly non-degenerate metric (g< 0)
by definition. Pseudo-Riemannian spaces are a particular case of Riemannian spaces,
where the metric is sign-alternating. Einstein had chosen a four-dimensional pseudo-
Riemannian space with the signature (+−−−) or (−+++) as a basis to his theory.
Therefore, the basic space-time of the General Theory of Relativity has a strictly non-
degenerate metric (g< 0).
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potential w uncompensated by something else, is not invariant

dµ2 = gik dxidxk =

(
1 −

w
c2

)2
c2dt2 , inv . (4.9)

As a result of the zero-space metric, a four-dimensional vector, say,
the coordinate velocity vector Uα, degenerates in the zero-space into a
three-dimensional spatial vector U i, and its length when transporting
the vector parallel to itself does not remain unchanged

Ui U i = gik U iU k =

(
1 −

w
c2

)2
c2 , const . (4.10)

This means that although the observed geometry inside the zero-
space is Riemannian for an ordinary observer, the real geometry inside
the zero-space is non-Riemannian.

In connexion with the above results, it is important to remember
the “Infinite Relativity Principle”, introduced by Abraham Zelmanov.
Proceeding from his studies of relativistic cosmology [36–38], he had
arrived at the following conclusion:
Zelmanov’s Infinite Relativity Principle

In homogeneous isotropic cosmological models, the spatial infin-
ity of the Universe depends on our choice of the reference frame
fromwhich we observe the Universe (i.e., the observer’s reference
frame). If the three-dimensional space of the Universe, observed
in one reference frame, is infinite, it may be finite in another ref-
erence frame. The same is as well true for the time during which
the Universe evolves.

We have come to the “Finite Relativity Principle” here. As we have
showed, since there is a difference between the physically observable
world-coordinates and the ideal world-coordinates, the same space-time
region may look very different, when considered in different reference
frames. So, in the observable world-coordinates, the entire zero-space
is a point (dτ= 0, dσ= 0). On the other hand, dτ= 0 and dσ= 0 consid-
ered in the ideal world-coordinates is −

(
1− w

c2

)2
c2dt2 + gik dxidxk = 0,

which is a four-dimensional cone equation similar to the light cone equa-
tion c2dτ2 − dσ2 = 0. Actually, the Finite Relativity Principle for ob-
served objects is manifested here— an observed point is the entire zero-
space when considered in the ideal coordinates.
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4.2 The geometric structure of the zero-space

So, we have obtained that an ordinary real observer perceives the entire
zero-space as a space-time region determined by the observable condi-
tions of degeneration, which are dτ= 0 and dσ2 = hik dxidxk = 0. See
§1.4 for detail.

The physical sense of the first condition dτ= 0 is that an ordinary
observer perceives any two events in the zero-space as simultaneous, at
whatever distance from each other they are. We called such a way of
instant information transfer the long-range action.

The second condition dσ2 = 0 means the absence of any observable
distance between the event and the observer. Such “superposition” of an
observer and an object observed by him is only possible, if we assume
that our regular four-dimensional pseudo-Riemannian space meets the
zero-space at each point (as is “stuffed” with the zero-space).

Let us now turn to the mathematical interpretation of the degenera-
tion conditions.

The quantity cdτ is the chr.inv.-projection of the four-dimensional
coordinate interval dxα onto the time line: cdτ= bαdxα. The proper
world-vector of the observer bα by definition is not zero and dxα is not
zero as well. Then dτ= 0 is true at dσ2 = 0 only if the space-time metric
ds2 = c2dτ2 − dσ2 = gαβ dxαdxβ is degenerate, i.e., the determinant of
the fundamental metric tensor is zero

g = det ∥gαβ∥ = 0 . (4.11)

Similarly, the condition dσ2 = hik dxidxk = 0 means that the observ-
able three-dimensional metric is degenerate

h = det ∥hik∥ = 0 . (4.12)

Having both of the space-time degeneration conditions w+ vi ui = c2

and gik dxidxk =
(
1− w

c2

)2
c2dt2 substituted into dσ2 = hik dxidxk = 0,

we obtain the zero-space metric

ds2 =

(
1 −

w
c2

)2
c2dt2 − gik dxidxk = 0 . (4.13)

Hence, inside the zero-space (from the viewpoint of an “internal”
observer) the three-dimensional space is holonomic, and the rotation of
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the zero-space is present in the time component of its metric

(
1 −

w
c2

)2
c2dt2 =

(
vi ui

c2

)2

c2dt2. (4.14)

If w= c2 (the gravitational collapse condition), then the zero-space
metric (4.13) takes the form

ds2 = −gik dxidxk = 0 , (4.15)

i.e., the space-time metric becomes purely three-dimensional, and the
three-dimensional space becomes as well degenerate

g(3D) = det ∥gik∥ = 0 . (4.16)

Here the condition g(3D)= 0 originates in the fact that gik dxidxk is
sign-definite, so it can become zero only if the determinant of the three-
dimensional metric tensor gik is zero.

Because w+ vi ui = c2 in the zero-space, in the case of gravitational
collapse the condition vi ui = 0 is true.

We call the quantity vi ui = vu cos
(
vi; ui), which is the scalar product

of the linear velocity with which the space rotates and the coordinate
velocity of a zero-particle, the zero-particle chirality. Three cases of
the zero-particle chirality are possible:
1) If the zero-particle chirality is vi ui > 0, then the angle α between

the vi and ui is within 3π
2 <α< π

2 . Since the second degenera-
tion condition gik uiuk = c2

(
1− w

c2

)2
means u= c

(
1− w

c2

)
, hence

the gravitational potential is w< c2 in this case. This is the case
of a regular gravitational field;

2) If the zero-particle chirality is vi ui < 0, then the angle α is within
the range π

2 <α<
3π
2 , so w> c2 that means a super-strong gravita-

tional field;
3) The zero-particle chirality is vi ui = 0 only if α=

{
π
2 ; 3π

2

}
or w= c2

(gravitational collapse). Hence, the zero-particle chirality is zero
if either the particle’s velocity is orthogonal to the linear velocity
with which the space rotates, or the state of gravitational collapse
takes place (since under the gravitational collapse condition, the
modulus of the particle’s coordinate velocity is zero, u= 0).
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To obtain an illustrated view of the zero-space geometry, we use a
locally geodesic reference frame (see §1.14 for detail).

First, consider the geometric structure of the isotropic (light-like)
space. It is characterized by the condition c2dτ2 = dσ2 , 0. According to
this condition, time and the regular three-dimensional space meet each
other. Geometrically, this means that the time basis vector e⃗(0) coincides
with all three spatial basis vectors e⃗(i), i.e., time “falls” into space (this
fact does not mean that the spatial basis vectors coincide, because the
time basis vector is the same for the entire spatial frame). In other words,
cos

(
x0; xk)=±1 everywhere in the isotropic space. At cos

(
x0; xi)=+1

the time basis vector is co-directed with the spatial ones: e⃗(0)↑↑ e⃗(i). If
cos

(
x0; xi)=−1, then the time and spatial basis vectors are oppositely

directed: e⃗(0)↑↓ e⃗(i). The condition cos
(
x0; xk)=±1 can be expressed

through the gravitational potential w= c2(1−
√
g00), because, in a gen-

eral case, e(0) =
√
g00 (1.216). Finally, in a locally geodesic reference

frame (according to §1.14), we obtain the geometric conditions charac-
teristic of the isotropic space

cos
(
x0; xk) = ±1 , e(i) = e(0) =

√
g00 = 1 −

w
c2 , (4.17)

and, hence,

vi = ∓ ce(i) = ∓
√
g00 ci = ∓

(
1 −

w
c2

)
ci , (4.18)

hik =

(
1 −

w
c2

)2 [
1 − cos

(
xi; xk)] , (4.19)

where ci is the three-dimensional chr.inv.-vector of the physically ob-
servable velocity of light, for which ci ci = hik cick= c2.

The isotropic space exists at any point in the four-dimensional reg-
ular space as the light cone — a hypersurface with the metric

gαβ dxαdxβ = 0 , (4.20)

or, in the extended form,(
1 −

w
c2

)2
c2dt2 − 2

(
1 −

w
c2

)
vi dxidt + gik dxidxk = 0 , (4.21)

according to the formulae of the gravitational potentialw= c2(1−
√
g00)

and the linear velocity vi =−
cg0i
√
g00

with which the space rotates.



4.2 The geometric structure of the zero-space 111

This is a subspace of the four-dimensional space, which hosts mass-
less (light-like) particles travelling with the velocity of light. Because
the space-time interval in such a region is zero, all four-dimensional
directions inside it are equal (in other words, they are isotropic). There-
fore, this subspace is commonly referred to as the isotropic cone.

Let us now turn to the geometric structure of the zero-space. Since
w and vi in the basis form are w= c2(1− e(0)

)
and vi =−ce(i) cos

(
x0; xi),

the degeneration condition w+ vi ui = c2 in the basis form is

ce(0) = −e(i) ui cos
(
x0; xi) . (4.22)

The number of dimensions of a space is determined by the number
of the linearly independent basis vectors in it. In our formula (4.22),
which is the basis notation of the degeneration condition w+ vi ui = c2,
the time basis vector e⃗(0) is linearly dependent on all of the spatial basis
vectors e⃗(i). This means actual degeneration of the space-time. Hence,
our formula (4.22) is the geometric condition of degeneration.

Since the four-dimensional metric is zero in the zero-space, such a
space exists at any point of the isotropic (light) cone as a completely
degenerate subspace of it. Such a completely degenerate isotropic cone
is described by a somewhat different equation(

1 −
w
c2

)2
c2dt2 − gik dxidxk = 0 , (4.23)

or, due to the degeneration condition w+ vi ui = c2, by the equation

vi vk uiuk

c2 dt2 − gik dxidxk = 0 . (4.24)

The difference between the completely degenerate isotropic cone
and the regular isotropic (light) cone is that the first satisfies the de-
generation condition w+ vi ui = c2. Therefore, the physical conditions
inside a zero-space region are the ultimately degenerate case of the con-
ditions in the regular isotropic (light-like) space, which is the home of
photons. In other words, the long-range action is transmitted by special
photons — completely degenerate photons that exist under the physical
conditions of complete degeneration.

Since vi has the same formulation (4.18) both in the case of the com-
pletely degenerate isotropic cone and in the case of the regular isotropic
(light) cone, we arrive at the following important conclusion:



112 Chapter 4 Non-quantum Teleportation. Frozen Light

The completely degenerate isotropic cone is a cone of rotation at
the speed of light, just like the regular isotropic cone. In other
words, the zero-space rotates at each of its points with a linear
velocity equal to the velocity of light. Its rotation becomes slower
than light in the presence of a gravitational potential.

This conclusion is exactly the same as that we have arrived at in our
previous study [39].

Finally, we conclude that the regular isotropic (light) cone contains
the degenerate isotropic cone, which is the entire zero-space, as a sub-
space embedded into it at its each point. This is a clear illustration of the
fractal structure of the world presented here as a system of the isotropic
cones embedded into each other.

4.3 Gravitational collapse in the zero-space. Completely degener-
ate black holes

As is known, a gravitational collapsar or black hole is a local region
of space (space-time), wherein the condition g00 = 0 is true. Because
the gravitational potential is defined as w= c2(1−

√
g00), the gravita-

tional collapse condition g00 = 0 means that the gravitational potential
is w= c2 in the region. We are going to consider how this condition can
be realized in the zero-space.

Asmentioned above, the first degeneration condition isw+vi ui= c2.
According to the condition, if vi ui = 0 in a local zero-space region, then
the gravitational potential is w= c2 therein. This means that, in the case
of vi ui = 0, the gravitational potential is strong enough to bring the local
region of the zero-space to gravitational collapse. We suggest referring
to such a region as a completely degenerate gravitational collapsar or,
equivalently, as a completely degenerate black hole.

Under the gravitational collapse condition w= c2, the second de-
generation condition becomes gik dxidxk = 0. Together with the above,
this means that three physical and geometric conditions are realized in
completely degenerate black holes

w = c2, vi ui = 0 , gik dxidxk = 0 , (4.25)

the physical sense of which is as follows:
1) The gravitational potential w inside every completely degenerate

black hole is strong enough to stop the regular light-speed rotation
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of the local region of the zero-space, i.e.

vi = ∓ ce(i) = ∓
√
g00 ci = ∓

(
1 −

w
c2

)
ci = 0 ; (4.26)

2) In this case, the time basis vector e⃗(0) has zero length (time intervals
are zero inside completely degenerate black holes)

e(0) =
√
g00 = 1 −

w
c2 = 0 ; (4.27)

3) In the zero-space, the condition cos
(
x0; xk)=±1 is true: the time

basis vector e⃗(0) matches all three spatial basis vectors e⃗(i) (time
“falls” into space). Hence, the previous condition e(0) = 0 means
that all three three-dimensional (spatial) basis vectors e⃗(i) have zero
length e(i) = 0 inside completely degenerate black holes

e(i) = e(0) =
√
g00 = 1 −

w
c2 = 0 ; (4.28)

4) The condition e(i) = 0 means that all three-dimensional coordinate
intervals are dxi = 0, i.e., the entire three-dimensional space inside
completely degenerate black holes is shrunk to a point. Hence, the
third condition gik dxidxk = 0 of the conditions inside completely
degenerate black holes (4.25) is due to dxi = 0.

Therefore, completely degenerate black holes are point-like objects
that keep light inside themselves due to their own extremely strong grav-
ity. In other words, they are “absolute black holes” of all gravitational
collapsars that are conceivable due to General Relativity.

4.4 Zero-particles as virtual photons. The geometric interpreta-
tion of Feynman diagrams

As is known, Feynman diagrams are a graphical description of the in-
teractions between elementary particles. The diagrams show that the
actual carriers of the interactions are virtual particles. In other words,
almost all physical processes are based on the emission and absorption
of virtual particles (say, virtual photons) by real particles of our world.

Another notable property of Feynman diagrams is that they are ca-
pable of describing particles and antiparticles (e.g., the electron and the
positron) at the same time. In this example, a positron is represented as
an electron which moves back in time.
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According to Quantum Electrodynamics, the interaction of parti-
cles at every branching point of Feynman diagrams conserves their four-
dimensional momentum. This suggests a possible geometric interpreta-
tion of Feynman diagrams in General Relativity.

In the four-dimensional pseudo-Riemannian space, which is the ba-
sic space-time of General Relativity, the following objects can get cor-
rect, formal definitions:
1) Mass-bearing particles — particles, the rest-masses of which are

non-zero (m0 , 0), and the trajectories are non-isotropic (ds, 0).
There are subluminal mass-bearing particles (real particles) and
superluminal mass-bearing particles (tachyons). Mass-bearing
particles include both particles and antiparticles, realizing their
motion from the past to the future and from the future to the past,
respectively;

2) Massless particles— particles with zero rest-masses (m0 = 0), but
non-zero relativistic masses (m, 0). Such particles travel along
isotropic trajectories (ds= 0) with the velocity of light. These are
light-like particles, e.g., photons. Massless particles include both
particle and antiparticle options as well;

3) Zero-particles — particles with zero rest-mass and zero relativis-
tic mass, which travel along trajectories in the completely degen-
erate space-time (zero-space). From the viewpoint of an ordinary
observer, whose home is our world, the physically observable time
stops on zero-particles. Therefore, both particle and anti-particle
options become nonsense for zero-particles.

Hence, to give a geometric interpretation of Feynman diagrams in
the space-time of General Relativity, we only need to give a formal def-
inition of virtual particles. Here is how to do it.

As is known according to Quantum Electrodynamics, virtual parti-
cles are those for which, contrary to regular ones, the regular relation
between energy and momentum

E2 − c2 p2 = E2
0 (4.29)

is not true. In other words, for virtual particles,

E2 − c2 p2 , E2
0 , (4.30)

where E =mc2, p2 =m2v2 and E0 =m0c2.
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In a pseudo-Riemannian space, the regular relation (4.29) is true.
It follows from the condition PαPα =m2

0 = const, 0 for mass-bearing
particles (non-isotropic trajectories), and from the condition PαPα = 0
for massless particles (isotropic trajectories). Substituting the respective
components of the momentum vector Pα, we obtain the regular relation
in the chr.inv.-form for mass-bearing particles

E2 − c2m2 vi vi = E2
0 , (4.31)

and that for massless ones, E2 − c2m2vi vi = 0, that is the same as

hik vivk = c2. (4.32)

But this is not true in the completely degenerate space (zero-space),
because the zero-space metric dµ2 (4.9) is not invariant: dµ2 , inv. As
a result, from the viewpoint of a hypothetical observer, whose home
is the zero-space, a degenerate four-velocity vector transported parallel
to itself does not conserve its length: UαUα , const (4.10). Therefore,
the regular relation between energy and momentum E2 − c2 p2 = const
(4.29) is not applicable to zero-particles, but another relation, which is
a sort of E2 − c2 p2 , const (4.30), is true. Because the latter is the main
property of virtual particles, we arrive at the conclusion:

Zero-particles can play the rôle of virtual particles, which, accord-
ing to Quantum Electrodynamics, are the material carriers trans-
mitting the interactions between regular particles of our world.
If this is so, then the entire zero-space is an “exchange buffer”,
through the capacity of which zero-particles transmit the interac-
tions between regular mass and massless particles of our world.

We have concluded in §4.2 that zero-particles are completely degen-
erate photons. They can also exist in collapsed regions of the zero-space,
wherein the gravitational collapse condition is true (see §4.3 for detail).
Hence, virtual particles of two kinds can be presupposed according to
General Relativity:
1) Virtual photons — regular completely degenerate photons;
2) Virtual collapsars — completely degenerate photons located in

collapsed regions of the zero-space.
As a result, we arrive at a conclusion that all interactions between

regular mass-bearing and massless particles in the basic space-time of
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General Relativity (four-dimensional pseudo-Riemannian space), are
affected through an exchange buffer, inside which the zero-space acts.
The material carriers of the interactions inside such a buffer are virtual
particles of the two aforementioned kinds.

In §1.5 of Chapter 1, when considering particles in the framework
of the wave-particle duality, we have obtained that the eikonal equation
for zero-particles is a standing wave equation of stopped light (1.130).
Hence, virtual particles are actually standing light waves, and the in-
teraction between regular particles of our regular space-time is trans-
mitted through a system of standing light-like waves (a standing-light
hologram) that fills the exchange buffer (zero-space).

Everything that we have proposed here is so far the only explana-
tion of virtual particles and virtual interactions given by the geomet-
ric method of General Relativity and in accordance with the geometric
structure of the four-dimensional space (space-time). It is possible that
this method will create a link between Quantum Electrodynamics and
the General Theory of Relativity.

4.5 Frozen light

Here we summarize our recent results, detailed in our 2011 publication
[40], in which we presented a theory of frozen light in the framework of
General Relativity. This result has also been presented at the 2011 APS
March Meeting [41].

In the summer of 2000, Lene V. Hau, who pioneered light-slowing
experiments over many years in the 1990s at Harvard University, first
obtained light slowed down to a rest state. In her experiment, light was
stored, for milliseconds, in ultracold atoms of sodium (with a gaseous
cloud of the atoms cooled down to within a millionth of a degree of ab-
solute zero). This state was then referred to as frozen light or stopped
light. An anthology of the primary experiments is given in her publi-
cations [42–46]. After the first success of 2000, Lene Hau still contin-
ues the study: in 2009, light was stopped for 1.5 second at her labora-
tory [47].

Then the frozen light experiment was repeated, during one year, by
two other groups of experimentalists. The group headed by Ronald L.
Walsworth and Mikhail D. Lukin of the Harvard-Smithsonian Center
for Astrophysics stopped light in a room-temperature gas [48]. In the
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experiments conducted by Philip R. Hemmer at the Air Force Research
Laboratory in Hanscom (Massachusetts), light was stopped in a cooled-
down solid [49].

The best-of-all survey of all experiments on this subject was given in
Lene Hau’s Frozen Light, which was first published in 2001, in Scientific
American [45]. Then an extended version of this paper was reprinted in
2003, in a special issue of the journal [46].

On the other hand, the frozen light problem meets our theoretical
research of the 1990s, which was produced independently of the ex-
perimentalists (we knew nothing about the experiments until January
2001, when the first success in stopping light was widely advertised in
the scientific press). Our task was to reveal what kinds of particles could
theoretically inhabit the space (space-time) of General Relativity. See
Chapter 1 of this book for detail. We have obtained that, aside for mass-
bearing and massless (light-like) particles, particles of the third kind
can also exist. Such particles (we called them zero-particles) inhabit a
space with a completely degenerate metric, which is the limiting case
of the light-like (particularly degenerate) space. This means that zero-
particles are the limiting case of photons: they are completely degener-
ate photons, in other words. Zero-particles can be hosted by both regular
regions and collapsed regions of the completely degenerate space. In the
latter case, they exist under the gravitational collapse condition. From
the viewpoint of an ordinary observer, the completely degenerate space
(zero-space) looks like a local volume, wherein all observable time in-
tervals and all three-dimensional observable intervals are zero. Once
a photon has entered into such a zero-space “gate” at one location of
our regular space, it can be instantly connected to another photon which
has entered into a similar “gate” at another location. This is the way
for the non-quantum teleportation. Also, the regular relation between
energy and momentum is not true for zero-particles. This means that
zero-particles may play the rôle of virtual particles, which are the ma-
terial carriers of the interaction between regular particles of our world.
All this has been explained in detail earlier in this Chapter.

In addition, from the point of view of an ordinary observer, zero-
particles should appear as standing light waves — waves of stopped
light. The latter corresponds to the result registered in the frozen light
experiment: in this experiment, a stopped light beam is “stored” in the
atomic vapour and remains invisible to the observer until the point in
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time when it is released again in its regularly “traveling state”. (See the
original reports about the frozen light experiments referred above.)

This means that the frozen light experiment pioneered at Harvard
by Lene Hau is an experimental “foreword” to the discovery of zero-
particles and, hence, a way for the non-quantum teleportation.

With these we can mean frozen light as a new state of matter, which
differs from the others (solid, gas, liquid, plasma).

4.6 Conclusions

The geometric structure of the four-dimensional space (space-time) of
General Relativity therefore allows the possibility of such particles that
are the limiting case of photons and endowed with zero rest-mass (like
photons), but their relativistic masses are also zero. Therefore, we call
them zero-particles. Such particles are inherent in a space with the com-
pletely degenerate metric (zero-space), which is the limiting case of the
(particularly degenerate) light-like space. In other words, these particles
are completely degenerate photons.

Zero-particles can belong to two types of regions of the zero-space:
ordinary regions of the zero-space and those in the state of gravitational
collapse. In the latter case, they exist only under the gravitational col-
lapse condition.

The completely degenerate space (zero-space) looks like a local
space volume, in which all observable time intervals and observable
spatial three-dimensional intervals are identically zero. As soon as a
photon enters the zero-space through a “gateway” at a point in our reg-
ular (non-degenerate) space, it can be instantly connected to another
photon that has entered an analogous “gateway” at another point. This
is a form of the non-quantum teleportation of photons.

The classical relation between energy and momentum is not true for
zero-particles. It follows that the zero-particles play a rôle of virtual par-
ticles which are the material carriers of the interaction between regular
particles of our Universe.

The frozen light experiment, first performed in 2000 by Lene Hau,
holds the key to the discovery of zero particles and therefore to the non-
quantum teleportation.
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In the novel Far Rainbow, written by Arcady and Boris Strugatsky 60
years ago, one of the characters remembers the following. . .

“. . .Being a schoolboy he was surprised by the problem: move
things across vast spaces in no time. The goal was set to con-
tradict any existing views of absolute space, space-time, kappa-
space. . . At that time they called it “punch of Riemannian fold”.
Later it would be dubbed “hyper-infiltration”, “sigma-infiltration”,
or “zero-contraction”. At length it was named zero-transportation
or “zero-T” for short. This produced “zero-T-equipment”, “zero-
T-problems”, “zero-T-tester”, “zero-T-physicist”.
— What do you do?
— I’m a zero-physicist.
A look full of surprise and admiration.
— Excuse me, could you explain what zero-physics is? I don’t
understand a bit of it.
— Well. . . Neither do I.”

This passage might be a good afterword to our research study. In the
early 1960s, words like “zero-space” or “zero-transportation” sounded
science-fiction or at least something to be brought to real life generations
from now.

But science is progressing faster then we think. The results obtained
in this book suggest that the variety of existing particles, along with the
types of their interactions, is not limited to those known to contempo-
rary physics. We should expect that further advancements in experi-
mental technique will discover zero-particles, which inhabit the degen-
erate space-time (zero-space) and can be observed as waves of “stopped
light” (standing light waves). From the viewpoint of an ordinary ob-
server, zero-particles travel instantly, despite the fact that they actually
travel with the velocity of light in zero-space. For this reason, they can
realize zero-transportation.
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Therefore, we are sure that it would be a mistake to believe or take
for granted that most Laws of Nature have already been discovered by
contemporary science. What seems more likely is that we are just at the
very beginning of a long, long road to the Unknown World.



Bibliography

1. Levi-Civita T. Nozione di parallelismo in una varietà qualunque e conse-
quente specificazione geometrica della curvatura Riemanniana.Rendicon-
ti del Circolo Matematico di Palermo, 1917, tome 42, 173–205.

2. Landau L.D. and Lifshitz E.M. The Classical Theory of Fields. Pergamon
Press, Oxford, 1951.
Translated from the 1st Russian edition published in 1939. Section refer-
ences are given from the final 4th English edition, expanded twicely from
the 1st edition, Butterworth-Heinemann, 1979.

3. Zelmanov A. L. Chronometric Invariants. Translated from the 1944 PhD
thesis, American Research Press, Rehoboth, New Mexico, 2006.

4. Zelmanov A. L. Chronometric invariants and accompanying frames of
reference in the General Theory of Relativity. Soviet Physics Doklady,
1956, vol. 1, 227–230.
Translated from: Doklady Academii Nauk SSSR, 1956, vol. 107, no. 6,
815–818.

5. Zelmanov A. L. On the relativistic theory of an anisotropic inhomogene-
ous universe. The Abraham Zelmanov Journal, 2008, vol. 1, 33–63.
Translated from: Proceedings of the 6th Soviet Conference on the Prob-
lems of Cosmogony, held in 1957 in Moscow, USSR Acad. Science Pub-
lishers, Moscow, 1959, 144–174 (in Russian).

6. Cattaneo C. General Relativity: relative standard mass, momentum, en-
ergy, and gravitational field in a general system of reference. Nuovo Cim-
ento, 1958, vol. 10, 318–337.

7. Cattaneo C. On the energy equation for a gravitating test particle. Nuo-
vo Cimento, 1959, vol. 11, 733–735.

8. Cattaneo C. Conservation laws in General Relativity. Nuovo Cimento,
1959, vol. 13, 237–240. vol. 11, 733–735.

9. Cattaneo C. Problèmes d’interprétation en relativité générale. Colloques
internationaux du CNRS, no. 170 “Fluides et champ gravitationel en rela-
tivité générale”, Éditions du CNRS, Paris, 1969, 227–235.

10. Hafele J. C. Relativistic behaviour of moving terrestrial clocks. Nature,
July 18, 1970, vol. 227, 270–271.



122 Bibliography

11. Hafele J. Performance and results of portable clocks in aircraft. PTTI 3rd
Annual Meeting, November 16–18, 1971, 261–288.

12. Hafele J. C. Relativistic time for terrestrial circumnavigations. American
Journal of Physics, 1972, vol. 40, 81–85.

13. Hafele J. and Keating R. Around the world atomic clocks: predicted rela-
tivistic time gains. Science, July 14, 1972, vol. 177, 166–168.

14. Hafele J. and Keating R. Around the world atomic clocks: observed rela-
tivistic time gains. Science, July 14, 1972, vol. 177, 168–170.

15. Demonstrating relativity by flying atomic clocks. Metromnia, the UK’s
National Measurement Laboratory Newsletter, issue 18, Spring 2005.

16. Zelmanov A. L. Relationship of the orthometric monad formalism to
chronometric and kinemetric invariants. Soviet Physics Doklady, 1976,
vol. 21, 147–150.
Translated from: Doklady Academii Nauk SSSR, 1976, vol. 227, no. 1,
78–81.

17. Schouten J. A. und Struik D. J. Einführung in die neuren Methoden der
Differentialgeometrie. Noordhoff, Groningen, 1938.
First published in Zentralblatt für Mathematik, 1935, Bd. 11 und Bd. 19.

18. Lie S. Theorie der Transformationsgruppen. First published by Teubner,
Leipzig, in 3 volumes: vol. 1, 1888; vol. 2, 1890; vol. 3, 1893 (reprinted by
Chelsea Publishing, American Mathematical Society, New York, 1970).

19. Killing W. Über die Grundlagen der Geometrie. Crelle’s Journal für die
reine und angewandte Mathematik, 1892, Bd. 109, 121–186.

20. Petrov A. Z. Einstein Spaces. Pergamon Press, Oxford, 1969.
21. Rabounski D. and Borissova L. Exact theory to a gravitational wave detec-

tor. New experiments proposed. Progress in Physics, 2006, vol. 2, no. 2,
31–38.

22. Rabounski D. and Borissova L. Exact solution for a gravitational wave de-
tector. 2008 APS April Meeting, April 12–15, 2008, St. Louis, Missouri.

23. Borissova L. Gravitational waves and gravitational inertial waves accord-
ing to the General Theory of Relativity. The Abraham Zelmanov Journal,
2010, vol. 3, 25–70.

24. Weber J. General Relativity and Gravitational Waves. Interscience Pub-
lishers, New York, 1961.

25. Synge J. L. Relativity: the General Theory. North Holland, Amsterdam,
1960.

26. Weber J. Gravitational-wave-detector events. Physical Review Letters,
1968, vol. 20, 1307–1308.

27. Weber J. Evidence for discovery of gravitational radiation. Physical Re-
view Letters, 1969, vol. 22, 1320–1324.



Bibliography 123

28. Weber J. Gravitational radiation experiments. Physical Review Letters,
1970, vol. 24, 276–279.

29. Borissova L. B. Quadrupole mass-detector in a field of weak plane gravita-
tional waves. Russian Physics Journal, 1978, vol. 21, no. 10, 1341–1344.
Translated from: Izvestiia Vysshikh Uchebnykh Zavedenii, ser. Fizika,
1978, no. 10, 109–114.

30. Lefschetz S. Differential equations: geometric theory. Interscience Pub-
lishers, New York, 1957.

31. Kamke E. Differentialgleichungen: Lösungsmethoden und Lösungen.
Chelsea Publishing Co., New York, 1959.
First published as: Kamke E. Differentialgleichungen. Lösungsmethoden
und Lösungen. Gewöhnliche Differentialgleichungen, S. Hirzel Verlag,
Leipzig 1942.

32. Bennett C. H., Brassard G., Crepeau C., Jozsa R., Peres A., and Woot-
ters W.K. Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels. Physical Review Letters, 1993, vol.
70, 1895–1899.

33. Boschi D., Branca S., De Martini F., Hardy L., and Popescu S. Experi-
mental realization of teleporting an unknown pure quantum state via dual
classical and Einstein-Podolsky-Rosen channels. Physical Review Letters,
1998, vol. 80, 1121–1125.

34. Riebe M., Häffner H., Roos C. F., Hänsel W., Benhelm J., Lancas-
ter G. P. T., Korber T.W., Becher C., Schmidt-Kaler F., James D. F. V., and
Blatt R. Deterministic quantum teleportation with atoms. Nature, June 17,
2004, vol. 429, 734–736.

35. Barrett M.D., Chiaverini J., Schaetz T., Britton J., Itano W.M., Jost J. D.,
Knill E., Langer C., Leibfried D., Ozeri R., and Wineland D. J. Deter-
ministic quantum teleportation of atomic qubits. Nature, June 17, 2004,
vol. 429, 737–739.

36. Zelmanov A. L. On the formulation of the problem of the infinity of space
in the General Theory of Relativity. Soviet Physics Doklady, 1959, vol. 4,
161–164. Translated from: Doklady Academii Nauk SSSR, 1959, vol. 124,
no. 5, 1030–1033.

37. Rabounski D. Zelmanov’s Anthropic Principle and the Infinite Relativity
Principle. Progress in Physics, 2006, vol. 2, no. 1, 35–37.

38. Rabounski D. Biography of Abraham Zelmanov (1913–1987). The Abra-
ham Zelmanov Journal, 2008, vol. 1, xx–xxvi.

39. Rabounski D. On the speed of rotation of isotropic space: insight into the
redshift problem. The Abraham Zelmanov Journal, 2009, vol. 2, 208–223.

40. Rabounski D. and Borissova L. A theory of frozen light according to Gen-
eral Relativity. The Abraham Zelmanov Journal, 2011, vol. 4, 3–27.



124 Bibliography

41. Rabounski D. and Borissova L. A theory of frozen light according to Gen-
eral Relativity. 2011 APS March Meeting, March 21–25, 2011, Dallas,
Texas.

42. Hau L.V., Harris S. E., Dutton Z., Behroozi C. H. Light speed reduction
to 17 metres per second in an ultracold atomic gas. Nature, February 18,
1999, vol. 397, 594–598.

43. Liu C., Dutton Z., Behroozi C. H., Hau L.V. Observation of coherent op-
tical information storage in an atomic medium using halted light pulses.
Nature, January 25, 2001, vol. 409, 490–493.

44. Dutton Z., Budde M., Slowe C., Hau L.V. Observation of quantum shock
waves created with ultra-compressed slow light pulses in a Bose-Einstein
condensate. Science, July 27, 2001, vol. 293, 663–668.

45. Hau L.V. Frozen light. Scientific American, July 17, 2001, vol. 285, no. 1,
52–59.

46. Hau L.V. Frozen light. Scientific American Special Edition “The Edge of
Physics”, May 31, 2003, 44–51.

47. Zhang R., Garner S. R., Hau L.V. Creation of long-term coherent optical
memory via controlled nonlinear interactions in Bose-Einstein conden-
sates. Physical Review Letters, December 4, 2009, vol. 103, 233602.

48. Phillips D. F., Fleischhauer A., Mair A., Walsworth R. L., Lukin M.D.
Storage of light in atomic vapor. Physical Review Letters, January 29,
2001, vol. 86, no. 5, 783–786.

49. Turukhin A.V., Sudarshanam V. S., Shahriar M. S., Musser J. A., Ham
B. S., Hemmer P. R. Observation of ultraslow and stored light pulses in a
solid. Physical Review Letters, January 14, 2002, vol. 88, no. 2, 023602.



About the authors

Dmitri Rabounski (b. 1965, Moscow, Russia). Since 1983 he was trained by
Prof. Kyril Stanyukovich (1916–1989), a prominent scientist in gas dynam-
ics and General Relativity. He was also trained with Dr. Abraham Zelmanov
(1913–1987), a famous cosmologist and researcher in General Relativity. He
was also trained by Dr. Vitaly Bronshten (1918–2004), the well-known expert
in the physics of destruction of bodies in the atmosphere. Dmitri Rabounski
has published about 50 scientific papers and 3 books on General Relativity. In
2005, he started a new journal on physics, Progress in Physics, where he is
the Editor-in-Chief. In 2008, he started a new journal on General Relativity,
The Abraham Zelmanov Journal, while continuing his scientific studies as an
independent researcher.

Larissa Borissova (b. 1944, Moscow, Russia) is a graduate of the Sternberg
Astronomical Institute (Faculty of Physics, Moscow University). Since 1964
she was trained by Dr. Abraham Zelmanov (1913–1987), a famous cosmolo-
gist and researcher in General Relativity. Since 1968 she worked with Prof.
Kyril Stanyukovich (1916–1989), a prominent scientist in gas dynamics and
General Relativity. In 1975, Larissa Borissova got a “Candidate of Science”
degree (Soviet PhD) in gravitational waves. She has published about 50 sci-
entific papers and 3 books on General Relativity. In 2005, Larissa Borissova
became a co-founder and Editor of Progress in Physics, and in 2008, an Edi-
tor of The Abraham Zelmanov Journal. She has since continued her scientific
studies as an independent researcher.



Cover image: “A military scientist operates a laser in a test environment”. This image
or file is a work of a U.S. Air Force employee, taken during the course of the person’s
official duties. As a work of the U.S. Federal Government, the image or file is in the
public domain. See http://www.de.afrl.af.mil/Gallery/index.aspx for details. Source:
http://en.wikipedia.org/wiki/File:Military_laser_experiment.jpg

Titlepage image: The enigmatic woodcut by an unknown artist of the Middle Ages.
It is referred to as the Flammarion Woodcut because its appearance in page 163 of
Camille Flammarion’s L’Atmosphère: Météorologie populaire (Paris, 1888), a work on
meteorology for a general audience. The woodcut depicts a man peering through the
Earth’s atmosphere as if it were a curtain to look at the inner workings of the Universe.
The caption “Un missionnaire du moyen àge raconte qu’il avait trouvé le point où le ciel
et la Terre se touchent. . . ” translates to “A medieval missionary tells that he has found
the point where heaven [the sense here is “sky”] and Earth meet. . . ”

Book format: 60× 90 1/16
Typeface family: Tempora TLF
Default font size: 11 pt



Particles Here
and Beyond the Mirror
Three kinds of particles inherent
in the space-time of General Relativity

by D. Rabounski and L. Borissova

The 4th revised edition

New Scientific Frontiers
London, 2023


