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On the Geometry of the General Solution for the Vacuum Field
of the Point-Mass

Stephen J. Crothers

Sydney, Australia

E-mail: thenarmis@yahoo.com

The black hole, which arises solely from an incorrect analysis of the Hilbert solution,
is based upon a misunderstanding of the significance of the coordinate radius r. This
quantity is neither a coordinate nor a radius in the gravitational field and cannot of
itself be used directly to determine features of the field from its metric. The appropriate
quantities on the metric for the gravitational field are the proper radius and the curvature
radius, both of which are functions of r. The variable r is actually a Euclidean
parameter which is mapped to non-Euclidean quantities describing the gravitational
field, namely, the proper radius and the curvature radius.

1 Introduction

The variable r has given rise to much confusion. In the con-
ventional analysis, based upon the Hilbert metric, which is
almost invariably and incorrectly called the “Schwarzschild”
solution, r is taken both as a coordinate and a radius in
the spacetime manifold of the point-mass. In my previous
papers [1, 2] on the general solution for the vacuum field,
I proved that r is neither a radius nor a coordinate in the
gravitational field (Mg, gg), as Stavroulakis [3, 4, 5] has also
noted. In the context of (Mg, gg) r is a Euclidean parameter
in the flat spacetime manifold (Ms, gs) of Special Relativity.
Insofar as the point-mass is concerned, r specifies positions
on the real number line, the radial line in (Ms, gs), not in
the spacetime manifold of the gravitational field, (Mg, gg).
The gravitational field gives rise to a mapping of the distance
D=

∣
∣r − r0

∣
∣ between two points r, r0 ∈< into (Mg, gg).

Thus, r becomes a parameter for the spacetime manifold
associated with the gravitational field. If Rp ∈ (Mg, gg) is
the proper radius, then the gravitational field gives rise to a
mapping ψ,

ψ :
∣
∣r − r0

∣
∣ ∈ (<− <−)→Rp ∈ (Mg, gg) , (A)

where 06Rp<∞ in the gravitational field, on account of
Rp being a distance from the point-mass located at the point
Rp(r0)≡ 0.

The mapping ψ must be obtained from the geometrical
properties of the metric tensor of the solution to the vacuum
field. The r-parameter location of the point-mass does not
have to be at r0 =0. The point-mass can be located at any
point r0 ∈<. A test particle can be located at any point
r∈<. The point-mass and the test particle are located at
the end points of an interval along the real line through r0
and r. The distance between these points is D=

∣
∣r − r0

∣
∣.

In (Ms, gs), r0 and r may be thought of as describing 2-
spheres about an origin rc=0, but only the distance between

these 2-spheres enters into consideration. Therefore, if two
test particles are located, one at any point on the 2-sphere
r0 6=0 and one at a point on the 2-sphere r 6= r0 on the
radial line through r0 and r, the distance between them
is the length of the radial interval between the 2-spheres,
D=

∣
∣r − r0

∣
∣. Consequently, the domain of both r0 and r is

the real number line. In this sense, (Ms, gs) may be thought
of as a parameter space for (Mg, gg), because ψ maps the
Euclidean distance D=

∣
∣r − r0

∣
∣ ∈ (Ms, gs) into the non-

Euclidean proper distance Rp ∈ (Mg, gg): the radial line in
(Ms, gs) is precisely the real number line. Therefore, the
required mapping is appropriately written as,

ψ :
∣
∣r − r0

∣
∣ ∈ (Ms, gs)→Rp ∈ (Mg, gg) . (B)

In the pseudo-Euclidean (Ms, gs) the polar coordinates
are r, θ, ϕ, but in the pseudo-Riemannian manifold (Mg,
gg) of the point-mass and point-charge, r is not the radial
coordinate. Conventionally there is the persistent miscon-
ception that what are polar coordinates in Minkowski space
must also be polar coordinates in Einstein space. This how-
ever, does not follow in any rigorous way. In (Mg, gg) the
variable r is nothing more than a real-valued parameter,
of no physical significance, for the true radial quantities
in (Mg, gg). The parameter r never enters into (Mg, gg)
directly. Only in Minkowski space does r have a direct
physical meaning, as mapping (B) indicates, where it is
a radial coordinate. Henceforth, when I refer to the radial
coordinate or r-parameter I always mean r∈ (Ms, gs).

The solution for the gravitational field of the simple con-
figurations of matter and charge requires the determination of
the mapping ψ. The orthodox analysis has completely failed
to understand this and has consequently failed to solve the
problem.

The conventional analysis simply looks at the Hilbert
metric and makes the following unjustified assumptions, ta-
citly or otherwise;
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(a) The variable r is a radius and/or coordinate of some
kind in the gravitational field.

(b) The regions 0<r< 2m and 2m<r<∞ are both
valid.

(c) A singularity in the gravitational field must occur only
where the Riemann tensor scalar curvature invariant
(Kretschmann scalar) f =RαβγδRαβγδ is unbounded.

The orthodox analysis has never proved these assumptions,
but nonetheless simply takes them as given, finds for itself
a curvature singularity at r=0 in terms of f , and with
legerdemain reaches it by means of an ad hoc extension
in the ludicrous Kruskal-Szekeres formulation. However, the
standard assumptions are incorrect, which I shall demonstrate
with the required mathematical rigour.

Contrary to the usual practise, one cannot talk about
extensions into the region 0<r< 2m or division into R
and T regions until it has been rigorously established that
the said regions are valid to begin with. One cannot treat
the r-parameter as a radius or coordinate of any sort in the
gravitational field without first demonstrating that it is such.
Similarly, one cannot claim that the scalar curvature must be
unbounded at a singularity in the gravitational field until it
has been demonstrated that this is truly required by Einstein’s
theory. Mere assumption is not permissible.

2 The basic geometry of the simple point-mass

The usual metric gs of the spacetime manifold (Ms, gs) of
Special Relativity is,

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
. (1)

The foregoing metric can be statically generalised for the
simple (i. e. non-rotating) point-mass as follows,

ds2=A(r)dt2−B(r)dr2−C(r)
(
dθ2 + sin2 θdϕ2

)
, (2a)

A,B,C > 0 ,

where A,B,C are analytic functions. I emphatically remark
that the geometric relations between the components of the
metric tensor of (2a) are precisely the same as those of (1).

The standard analysis writes (2a) as,

ds2=A(r)dt2 −B(r)dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (2b)

and claims it the most general, which is incorrect. The
form of C(r) cannot be pre-empted, and must in fact be
rigorously determined from the general solution to (2a). The
physical features of (Mg, gg)must be determined exclusively
by means of the resulting gμμ ∈ (Mg, gg), not by foisting
upon (Mg, gg) the interpretation of elements of (Ms, gs) in
the misguided fashion of the orthodox relativists who, having
written (2b), incorrectly treat r in (Mg, gg) precisely as the
r in (Ms, gs).

With respect to (2a) I identify the coordinate radius, the
r-parameter, the radius of curvature, and the proper radius
as follows:

(a) The coordinate radius is D= |r − r0|.

(b) The r-parameter is the variable r.

(c) The radius of curvature is Rc=
√
C(r).

(d) The proper radius is Rp=
∫ √

B(r)dr.

The orthodox motivation to equation (2b) is to evidently
obtain the circumference χ of a great circle, χ ∈ (Mg, gg)
as,

χ=2πr ,

to satisfy its unproven assumptions about r. But this equation
is only formally the same as the equation of a circle in the
Euclidean plane, because in (Mg, gg) it describes a non-
Euclidean great circle and therefore does not have the same
meaning as the equation for the ordinary circle in the Euclid-
ean plane. The orthodox assumptions distort the fact that r is
only a real parameter in the gravitational field and therefore
that (2b) is not a general, but a particular expression, in which
case the form of C(r) has been fixed to C(r)= r2. Thus,
the solution to (2b) can only produce a particular solution,
not a general solution in terms of C(r), for the gravitational
field. Coupled with its invalid assumptions, the orthodox
relativists obtain the Hilbert solution, a correct particular
form for the metric tensor of the gravitational field, but
interpret it incorrectly with such a great thoroughness that
it defies rational belief.

Obviously, the spatial component of (1) describes
a sphere of radius r, centred at the point r0 =0. On this
metric r> r0 is usually assumed. Now in (1) the distance D
between two points on a radial line is given by,

D= |r2 − r1| = r2 − r1 . (3)

Furthermore, owing to the “origin” being usually fix-
ed at r1= r0 =0, there is no distinction between D and
r. Hence r is both a coordinate and a radius (distance).
However, the correct description of points by the spatial part
of (1) must still be given in terms of distance. Any point in
any direction is specified by its distance from the “origin”.
It is this distance which is the important quantity, not the
coordinate. It is simply the case that on (1), in the usual sense,
the distance and the coordinate are identical. Nonetheless, the
distance from the designated “origin” is still the important
quantity, not the coordinate. It is therefore clear that the
designation of an origin is arbitrary and one can select any
r0 ∈< as the origin of coordinates. Thus, (1) is a special case
of a general expression in which the origin of coordinates
is arbitrary and the distance from the origin to another point
does not take the same value as the coordinate designating it.
The “origin” r0 =0 has no intrinsic meaning. The relativists
and the mathematicians have evidently failed to understand
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this elementary geometrical fact. Consequently, they have
managed to attribute to r0 =0 miraculous qualities of which
it is not worthy, one of which is the formation of the black
hole.

Equations (1) and (2a) are not sufficiently general and
so their forms suppress their true geometrical characteristics.
Consider two points P1 and P2 on a radial line in Euclidean
3-space. With the usual Cartesian coordinates let P1 and P2
have coordinates (x1, y1, z1) and (x2, y2, z2) respectively.
The distance between these points is,

D=
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 =

=
√
|x1 − x2|2 + |y1 − y2|2 + |z1 − z2|2 > 0 .

(4)

If x1= y1= z1=0, D is usually called a radius and so
written D≡ r. However, one may take P1 or P2 as an origin
for a sphere of radius D as given in (4). Clearly, a general
description of 3-space must rightly take this feature into
account. Therefore, the most general line-element for the
gravitational field in quasi-Cartesian coordinates is,

ds2=Fdt2 −G
(
dx2 + dy2 + dz2

)
−

− H
(
|x− x0|dx+ |y − y0 |dy + |z − z0 |dz

)2
,

(5)

where F,G,H > 0 are functions of

D=
√
|x− x0|2 + |y − y0 |2 + |z − z0 |2= |r − r0| ,

and P0 (x0, y0 , z0) is an arbitrary origin of coordinates for a
sphere of radius D centred on P0 .

Transforming to spherical-polar coordinates, equation (5)
becomes,

ds2= −H|r − r0|
2dr2 + Fdt2−

−G
(
dr2 + |r − r0|

2dθ2 + |r − r0|
2 sin2 θdϕ2

)
=

=A(D)dt2−B(D)dr2− C(D)
(
dθ2+ sin2 θdϕ2

)
,

(6)

where A,B,C > 0 are functions of D= |r − r0|. Equation
(6) is just equation (2a), but equation (2a) has suppressed
the significance of distance and the arbitrary origin and is
therefore invariably taken with D≡ r> 0, r0 =0.

In view of (6) the most general expression for (1) for
a sphere of radius D= |r − r0|, centred at some r0 ∈<, is
therefore,

ds2= dt2 − dr2 −
(
r−r0

)2 (
dθ2 + sin2 θdϕ2

)
= (7a)

= dt2−

(
r−r0

)
2

|r−r0|2
dr2−

∣
∣r−r0

∣
∣2 (dθ2+sin2 θdϕ2

)
= (7b)

= dt2 −
(
d|r−r0|

)2
−
∣
∣r−r0

∣
∣2 (dθ2 + sin2 θdϕ2

)
. (7c)

The spatial part of (7) describes a sphere of radius D=
=
∣
∣r − r0

∣
∣, centred at the arbitrary point r0 and reaching to

some point r∈<. Indeed, the curvature radius Rc of (7) is,

Rc=

√(
r − r0

)2
=
∣
∣r − r0

∣
∣ , (8)

and the circumference χ of a great circle centred at r0 and
reaching to r is,

χ=2π
∣
∣r − r0

∣
∣ . (9)

The proper radius (distance) Rp from r0 to r on (7) is,

Rp=

|r−r0|∫

0

d
∣
∣r−r0

∣
∣ =

r∫

r0

[
r−r0∣
∣r−r0

∣
∣

]

dr=
∣
∣r−r0

∣
∣ . (10)

Thus Rp≡Rc≡D on (7), owing to its pseudo-
Euclidean nature.

It is evident by similar calculation that r≡Rc≡Rp in
(1). Indeed, (1) is obtained from (7) when r0 =0 and r> r0
(although the absolute value is suppressed in (1) and (7a)).
The geometrical relations between the components of the
metric tensor are inviolable. Therefore, in the case of (1), the
following obtain,

D= |r|= r ,

Rc=
√
|r|2=

√
r2= r ,

χ=2π|r|=2πr ,

Rp=

|r|∫

0

d |r| =

r∫

0

dr= r .

(11)

However, equation (1) hides the true arbitrary nature of
the origin r0 . Therefore, the correct geometrical relations
have gone unrecognized by the orthodox analysis. I note, for
instance, that G. Szekeres [6], in his well-known paper of
1960, considered the line-element,

ds2= dr2 + r2dω2 , (12)

and proposed the transformation r= r − 2m, to allegedly
carry (12) into,

ds2= dr2 + (r − 2m)2 dω2 . (13)

The transformation to (13) by r= r − 2m is incorrect:
by it Szekeres should have obtained,

ds2= dr2 + (r + 2m)
2
dω2 . (14)

If one sets r= r − 2m, then (13) obtains from (12).
Szekeres then claims on (13),
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“Here we have an apparent singularity on the
sphere r=2m, due to a spreading out of the
origin over a sphere of radius 2m. Since the
exterior region r > 2m represents the whole of
Euclidean space (except the origin), the interior
r < 2m is entirely disconnected from it and re-
presents a distinct manifold.”

His claims about (13) are completely false. He has made
an incorrect assumption about the origin. His equation (12)
describes a sphere of radius r centred at r=0, being identical
to the spatial component of (1). His equation (13) is precisely
the spatial component of equation (7) with r0 =2m and
r> r0 , and therefore actually describes a sphere of radius
D= r − 2m centred at r0=2m. His claim that r=2m
describes a sphere is due to his invalid assumption that
r=0 has some intrinsic meaning. It did not come from
his transformation. The claim is false. Consequently there is
no interior region at all and no distinct manifold anywhere.
All Szekeres did unwittingly was to move the origin for a
sphere from the coordinate value r0 =0 to the coordinate
value r0 =2m. In fact, he effectively repeated the same
error committed by Hilbert [8] in 1916, an error, which in
one guise or another, has been repeated relentlessly by the
orthodox theorists.

It is now plain that r is neither a radius nor a coordinate
in the metric (6), but instead gives rise to a parameterization
of the relevant radii Rc and Rp on (6).

Consider (7) and introduce a test particle at each of the
points r0 and r. Let the particle located at r0 acquire mass.
The coordinates r0 and r do not change, however in the
gravitational field (Mg, gg) the distance between the point-
mass and the test particle, and the radius of curvature of a
great circle, centred at r0 and reaching to r in the parameter
space (Ms, gs), will no longer be given by (11).

The solution of (6) for the vacuum field of a point-
mass will yield a mapping of the Euclidean distance D =
|r − r0| into a non-Euclidean proper radius RP (r) in the
pseudo-Riemannian manifold (Mg, gg), locally generated by
the presence of matter at the r-parameter r0 ∈ (Ms, gs), i. e.
at the invariant point Rp(r0)≡ 0 in (Mg, gg).

Transform (6) by setting,

Rc=
√
C(D(r))=

χ

2π
, (15)

D= |r − r0| .

Then (6) becomes,

ds2 = A∗(Rc)dt
2 −B∗(Rc)dR

2
c −

−R2c
(
dθ2 + sin2 θdϕ2

)
.

(16)

In the usual way one obtains the solution to (16) as,

ds2=

(
Rc − α
Rc

)

dt2 −

−

(
Rc

Rc − α

)

dR2c −R
2
c(dθ

2 + sin2 θdϕ2) ,

α=2m,

which by using (15) becomes,

ds2=

(√
C − α
√
C

)

dt2 −

−

( √
C

√
C−α

)
C ′2

4C

[
r−r0
|r−r0|

]2
dr2 − C(dθ2+ sin2 θdϕ2) ,

that is,

ds2=

(√
C − α
√
C

)

dt2 −

−

( √
C

√
C − α

)
C ′2

4C
dr2 − C(dθ2 + sin2 θdϕ2) ,

(17)

which is the line-element derived by Abrams [7] by a dif-
ferent method. Alternatively one could set r=Rc in (6), as
Hilbert in his work [8] effectively did, to obtain the familiar
Droste/Weyl/(Hilbert) line-element,

ds2=

(
r − α
r

)

dt2 −

(
r

r − α

)

dr2−

− r2(dθ2 + sin2 θdϕ2) ,

(18)

and then noting, as did J. Droste [9] and A. Eddington [10],
that r2 can be replaced by a general analytic function of
r without destroying the spherical symmetry of (18). Let
that function be C(D(r)), D= |r − r0|, and so equation
(17) is again obtained. Equation (18) taken literally is an
incomplete particular solution since the boundary on the
r-parameter has not yet been rigorously established, but
equation (17) provides a way by which the form of C(D(r))
might be determined to obtain a means by which all particular
solutions, in terms of an infinite sequence, may be con-
structed, according to the general prescription of Eddington.
Clearly, the correct form of C(D(r)) must naturally yield the
Droste/Weyl/(Hilbert) solution, as well as the true Schwarz-
schild solution [11], and the Brillouin solution [12], amongst
the infinitude of particular solutions that the field equations
admit. (Fiziev [13] has also shown that there exists an infinite
number of solutions for the point-mass and that the Hilbert
black hole is not consistent with general relativity.)

In the gravitational field only the circumference χ of a
great circle is a measurable quantity, from which Rc and Rp

6 S J. Crothers. On the Geometry of the General Solution for the Vacuum Field of the Point-Mass
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are calculated. To obtain the metric for the field in terms of
χ, use (15) in (17) to yield,

ds2=

(

1−
2πα

χ

)

dt2 −

(

1−
2πα

χ

)−1
dχ2

4π2
−

−
χ2

4π2
(
dθ2 + sin2 θdϕ2

)
,

α=2m.

(19)

Equation (19) is independent of the r-parameter entirely.
Since only χ is a measurable quantity in the gravitational
field, (19) constitutes the correct solution for the gravitational
field of the simple point-mass. In this way (19) is truely
the only solution to Einstein’s field equations for the simple
point-mass.

The only assumptions about r that I make are that the
point-mass is to be located somewhere, and that somewhere
is r0 in parameter space (Ms, gs), the value of which must
be obtained rigorously from the geometry of equation (17),
and that a test particle is located at some r 6= r0 in parameter
space, where r, r0 ∈<.

The geometrical relationships between the components
of the metric tensor of (1) must be precisely the same in
(6), (17), (18), and (19). Therefore, the circumference χ of a
great circle on (17) is given by,

χ=2π
√
C(D(r)) ,

and the proper distance (proper radius) Rp(r) on (6) is,

Rp(r)=

∫ √
B(D(r))dr .

Taking B(D(r)) from (17) gives,

Rp(D)=

∫ √ √
C

√
C − α

C ′

2
√
C
dr =

=

√
√
C(D)

(√
C(D)− α

)
+

+ α ln

∣
∣
∣
∣
∣
∣

√√
C(D) +

√√
C(D)− α

K

∣
∣
∣
∣
∣
∣
,

(20)

D= |r − r0| ,

K = const.

The relationship between r and Rp is,

as r→ r±0 , Rp(r)→ 0
+ ,

or equivalently,

as D→ 0+, Rp(r)→ 0+ ,

where r0 is the parameter space location of the point-mass.
Clearly 06Rp<∞ always and the point-mass is invariantly
located at Rp(r0)≡ 0 in (Mg, gg), a manifold with boundary.

From (20),

Rp(r0)≡ 0=

√
√
C(r0)

(√
C(r0)− α

)

+

+ α ln

∣
∣
∣
∣
∣
∣

√√
C(r0) +

√√
C(r0)− α

K

∣
∣
∣
∣
∣
∣
,

and so, √
C(r0)≡α, K =

√
α.

Therefore (20) becomes

Rp(r)=

√
√
C(|r−r0|)

(√
C(|r−r0|)− α

)

+

+α ln

∣
∣
∣
∣
∣
∣

√√
C(|r−r0|) +

√√
C(|r−r0|)− α

√
α

∣
∣
∣
∣
∣
∣
,

(21)

r, r0 ∈< ,

and consequently for (19),

2πα<χ<∞ .

Equation (21) is the required mapping. One can see
that r0 cannot be determined: in other words, r0 is entirely
arbitrary. One also notes that (17) is consequently singular
only when r= r0 in which case g00=0,

√
Cn(r0)≡α,

and Rp(r0)≡ 0. There is no value of r that makes g11=0.
One therefore sees that the condition for singularity in the
gravitational field is g00= 0; indeed g00(r0)≡ 0.

Clearly, contrary to the orthodox claims, r does not
determine the geometry of the gravitational field directly.
It is not a radius in the gravitational field. The quantity
Rp(r) is the non-Euclidean radial coordinate in the pseudo-
Riemannian manifold of the gravitational field around the
point Rp=0, which corresponds to the parameter point r0 .

Now in addition to the established fact that, in the case of
the simple (i .e . non-rotating) point-mass, the lower bound on
the radius of curvature

√
C(D(r0))≡α, C(D(r)) must also

satisfy the no matter condition so that when α=0, C(D(r))
must reduce to,

C(D(r))≡
∣
∣r − r0

∣
∣2 =(r − r0)

2 ; (22)

and it must also satisfy the far-field condition (spatially
asympotically flat),

lim
r→±∞

C(D(r))
(
r − r0

)2 → 1. (23)
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When r0 =0 equation (22) reduces to,

C(|r|)≡ r2 ,

and equation (23) reduces to,

lim
r→±∞

C(|r|)
r2

→ 1.

Furthermore, C(r) must be a strictly monotonically in-
creasing function of r to satisfy (15) and (21), and C ′(r) 6=0
∀ r 6= r0 to satisfy (17) from (2a). The only general form for
C(D(r)) satisfying all the required conditions (the Metric
Conditions of Abrams [7]), from which an infinite sequence
of particular solutions can be obtained [1] is,

Cn(D(r))=
(∣
∣r − r0

∣
∣n + αn

) 2
n

, (24)

n∈<+, r∈<, r0 ∈< ,

where n and r0 are arbitrary. Then clearly, when α=0,
equations (7) are recovered from equation (17) with (24),
and when r0 =0 and α=0, equation (1) is recovered.

According to (24), when r0 =0 and r> r0 , and n is
taken in integers, the following infinite sequence of particular
solutions obtains,

C1(r)= (r + α)
2 (Brillouin’s solution [12])

C2(r)= r
2 + α2

C3(r)= (r
3 + α3)

2
3 (Schwarzschild’s solution [11])

C4(r)= (r
4 + α4)

1
2 , etc.

When r0 =α and r∈<+, and n is taken in integers,
the following infinite sequence of particular solutions is
obtained,

C1(r)= r
2 (Droste/Weyl/(Hilbert) [9, 14, 8])

C2(r)= (r − α)2 + α2

C3(r)= [(r − α)3 + α3]
2
3

C4(r)= [(r − α)4 + α4]
1
2 , etc.

The Schwarzschild forms obtained from (24) satisfy Ed-
dington’s prescription for a general solution.

By (17) and (24) the circumference χ of a great circle in
the gravitational field is,

χ=2π
√
Cn(r)= 2π

(
|r − r0|

n + αn
) 1
n , (25)

and the proper radius Rp(r) is, from (21),

Rp(r)=

√
(
|r−r0|n+αn

)1
n

[(
|r−r0|n+αn

)1
n −α

]
+

+α ln

∣
∣
∣
∣
∣
∣

(
|r−r0|

n+αn
) 1
2n+

√(
|r−r0|n+αn

)1
n −α

√
α

∣
∣
∣
∣
∣
∣
.

(26)

According to (24),
√
Cn(D(r0))≡α is a scalar invari-

ant, being independent of the value of r0 . Nevertheless the
field is singular at the point-mass. By (21),

lim
r→±∞

R2p
|r − r0|2

=1 ,

and so,

lim
r→±∞

R2p
Cn(D(r))

= lim
r→±∞

R2p
|r−r0 |

2

Cn(D(r))
|r−r0 |

2

=1 .

Now the ratio χ
Rp

> 2π for all finite Rp, and

lim
r→±∞

χ

Rp
=2π ,

lim
r→r±0

χ

Rp
=∞ ,

so Rp(r0)≡ 0 is a quasiregular singularity and cannot be
extended. The singularity occurs when parameter r= r0 ,
irrespective of the values of n and r0 . Thus, there is no
sense in the orthodox notion that the region 0<r<α is
an interior region on the Hilbert metric, since r0 6=0 on
that metric. Indeed, by (21) and (24) r0 =α on the Hilbert
metric. Equation (26) amplifies the fact that it is the distance
D= |r − r0| that is mapped from parameter space into the
proper radius (distance) in the gravitational field, and a dis-
tance must be > 0.

Consequently, strictly speaking, r0 is not a singular point
in the gravitational field because r is merely a parameter for
the radial quantities in (Mg, gg); r is neither a radius nor
a coordinate in the gravitational field. No value of r can
really be a singular point in the gravitational field. However,
r0 is mapped invariantly to Rp=0, so r= r0 always gives
rise to a quasiregular singularity in the gravitational field, at
Rp(r0)≡ 0, reflecting the fact that r0 is the boundary on the
r-parameter. Only in this sense should r0 be considered a
singular point.

The Kretschmann scalar f =RαβγδRαβγδ for equation
(17) with equation (24) is,

f =
12α2

[Cn(D(r))]3
=

12α2

(
|r − r0|n + αn

) 6
n

. (27)

Taking the near-field limit on (27),

lim
r→ r±0

f =
12

α4
,

so f(r0)≡
12
α4 is a scalar invariant, irrespective of the values

of n and r0, invalidating the orthodox assumption that the
singularity must occur where the curvature is unbounded.
Indeed, no curvature singularity can arise in the gravitational

8 S J. Crothers. On the Geometry of the General Solution for the Vacuum Field of the Point-Mass



July, 2005 PROGRESS IN PHYSICS Volume 2

field. The orthodox analysis claims an unbounded curvature
singularity at r0 =0 in (18) purely and simply by its invalid
initial assumptions, not by mathematical imperative. It incor-
rectly assumes

√
Cn(r)≡Rp(r)≡ r, then with its additional

invalid assumption that 0<r<α is valid on the Hilbert
metric, finds from (27),

lim
r→ 0+

f(r)=∞ ,

thereby satisfying its third invalid assumption, by ad hoc
construction, that a singularity occurs only where the curva-
ture invariant is unbounded.

The Kruskal-Szekeres form has no meaning since the r-
parameter is not the radial coordinate in the gravitational
field at all. Furthermore, the value of r0 being entirely
arbitrary, r0 =0 has no particular significance, in contrast
to the mainstream claims on (18).

The value of the r-parameter of a certain spacetime event
depends upon the coordinate system chosen. However, the
proper radiusRp(D(r)) and the curvature radius

√
Cn(D(r))

of that event are independent of the coordinate system. This
is easily seen as follows. Consider a great circle centred at
the point-mass and passing through a spacetime event. Its
circumference is measured at χ. Dividing χ by 2π gives,

χ

2π
=
√
Cn(D(r)) .

Putting χ
2π =

√
Cn(D(r)) into (21) gives the proper ra-

dius of the spacetime event,

Rp(r)=

√
χ

2π

( χ
2π
− α

)
+ α ln

∣
∣
∣
∣
∣
∣

√
χ
2π +

√
χ
2π − α

√
α

∣
∣
∣
∣
∣
∣
,

2πα6χ<∞,

which is independent of the coordinate system chosen. To
find the r-parameter in terms of a particular coordinate sys-
tem set,

χ

2π
=
√
Cn(D(r))=

(∣
∣r − r0

∣
∣n + αn

) 1
n

,

so

|r − r0|=
[( χ
2π

)n
− αn

] 1
n

.

Thus r for any particular spacetime event depends upon
the arbitrary values n and r0 , which establish a coordinate
system. Then when r= r0 , Rp=0, and the great circum-
ference χ=2πα, irrespective of the values of n and r0 . A
truly coordinate independent description of spacetime events
has been attained.

The mainstream insistence, on the Hilbert solution (18),
without proof, that the r-parameter is a radius of sorts in
the gravitational field, the insistence that its r can, without

proof, go down to zero, and the insistence, without proof,
that a singularity in the field must occur only where the
curvature is unbounded, have produced the irrational notion
of the black hole. The fact is, the radius always does go
down to zero in the gravitational field, but that radius is
the proper radius Rp (Rp=0 corresponding to a coordinate
radius D=0), not the curvature radius Rc, and certainly not
the r-parameter.

There is no escaping the fact that r0 =α 6=0 in (18).
Indeed, if α=0, (18) must give,

ds2= dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
,

the metric of Special Relativity when r0 =0. One cannot
set the lower bound r0 =α=0 in (18) and simultaneously
keep α 6=0 in the components of the metric tensor, which is
effectively what the orthodox analysis has done to obtain the
black hole. The result is unmitigated nonsense. The correct
form of the metric (18) is obtained from the associated
Schwarzschild form (24): C(r)= r2, r0 =α. Furthermore,
the proper radius of (18) is,

Rp(r)=

r∫

α

√
r

r − α
dr ,

and so

Rp(r)=
√
r (r − α) + α ln

∣
∣
∣
∣

√
r +
√
r − α

√
α

∣
∣
∣
∣ .

Then,

r→α+⇒D= |r − α|= (r − α) → 0 ,

and in (Mg, gg),

r2≡C(r)→C(α)=α2⇒Rp(r)→Rp(α)= 0 .

Thus, the r-parameter is mapped to the radius of cur-
vature

√
C(r)= χ

2π by ψ1, and the radius of curvature is
mapped to the proper radius Rp by ψ2. With the mappings
established the r-parameter can be mapped directly to Rp
by ψ(r)=ψ2 ◦ψ1(r). In the case of the simple point-mass
the mapping ψ1 is just equation (24), and the mapping ψ2 is
given by (21).

The local acceleration of a test particle approaching the
point-mass along a radial geodesic has been determined by
N. Doughty [15] at,

a=

√
−grr (−grr) |gtt,r|

2gtt
. (28)

For (17) the acceleration is,

a=
α

2C
3
4
n

(
C

1
2
n − α

) 1
2

.
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Then,
lim
r→ r±0

a=∞,

since Cn(r0)≡α
2; thereby confirming that matter is indeed

present at the point Rp(r0)≡ 0.
In the case of (18), where r∈<+,

a=
α

2r
3
2 (r − α)

1
2

,

and r0 =α by (24), so,

lim
r→α+

a=∞ .

Y. Hagihara [16] has shown that all those geodesics which
do not run into the boundary at r=α on (18) are complete.
Now (18) with α<r<∞ is a particular solution by (24),
and r0 =α is an arbitrary point at which the point-mass is
located in parameter space, therefore all those geodesics in
(Mg, gg) not running into the point Rp(r0)≡ 0 are complete,
irrespective of the value of r0 .

Modern relativists do not interpret the Hilbert solution
over 0<r<∞ as Hilbert did, instead making an arbitrary
distinction between 0<r<α and α<r<∞. The modern
relativist maintains that one is entitled to just “choose” a
region. However, as I have shown, this claim is inadmissible.
J. L. Synge [17] made the same unjustified assumptions on
the Hilbert line-element. He remarks,

“This line-element is usually regarded as having
a singularity at r=α, and appears to be valid
only for r >α. This limitation is not commonly
regarded as serious, and certainly is not so if
the general theory of relativity is thought of
solely as a macroscopic theory to be applied to
astronomical problems, for then the singularity
r=α is buried inside the body, i. e. outside the
domain of the field equations Rmn=0. But if we
accord to these equations an importance com-
parable to that which we attach to Laplace’s eq-
uation, we can hardly remain satisfied by an ap-
peal to the known sizes of astronomical bodies.
We have a right to ask whether the general
theory of relativity actually denies the existence
of a gravitating particle, or whether the form
(1.1) may not in fact lead to the field of a particle
in spite of the apparent singularity at r=α.”

M. Kruskal [18] remarks on his proposed extension of the
Hilbert solution into 0<r< 2m,

“That this extension is possible was already in-
dicated by the fact that the curvature invariants
of the Schwarzschild metric are perfectly finite
and well behaved at r=2m∗.”

which betrays the very same unproven assumptions.
G. Szekeres [6] says of the Hilbert line-element,

“. . . it consists of two disjoint regions, 0 < r
< 2m, and r > 2m, separated by the singular
hypercylinder r=2m.”

which again betrays the same unproven assumptions.
I now draw attention to the following additional problems

with the Kruskal-Szekeres form.

(a) Applying Doughty’s acceleration formula (28) to the
Kruskal-Szekeres form, it is easily found that,

lim
r→ 2m−

a=∞.

But according to Kruskal-Szekeres there is no matter
at r=2m. Contra-hype.

(b) As r→ 0, u2−v2→−1. These loci are spacelike, and
therefore cannot describe any configuration of matter
or energy.

Both of these anomalies have also been noted by Abrams
in his work [7]. Either of these features alone proves the
Kruskal-Szekeres form inadmissible.

The correct geometrical analysis excludes the interior
Hilbert region on the grounds that it is not a region at all,
and invalidates the assumption that the r-parameter is some
kind of radius and/or coordinate in the gravitational field.
Consequently, the Kruskal-Szekeres formulation is meanin-
gless, both physically and mathematically. In addition, the
so-called “Schwarzschild radius” (not due to Schwarzschild)
is also a meaningless concept - it is not a radius in the
gravitational field. Hilbert’s r=2m is indeed a point, i. e. the
“Schwarzschild radius” is a point, in both parameter space
and the gravitational field: by (21), Rp(2m)= 0.

The form of the Hilbert line-element is given by Karl
Schwarzschild in his 1916 paper, where it occurs there in
the equation he numbers (14), in terms of his “auxiliary
parameter” R. However Schwarzschild also includes there

the equation R=
(
r3 + α3

) 1
3 , having previously established

the range 0<r<∞. Consequently, Schwarzschild’s auxi-
liary parameter R (which is actually a curvature radius)
has the lower bound R0=α=2m. Schwarzschild’s R2 and
Hilbert’s r2 can be replaced with any appropriate analytic
function Cn(r) as given by (24), so the range and the bound-
ary on r will depend upon the function chosen. In the case
of Schwarzschild’s particular solution the range is 0<r<∞

(since r0 =0, C3(r) =
(
r3 + α3

) 2
3 ) and in Hilbert’s par-

ticular solution the range is 2m<r<∞ (since r0 =2m,
C1(r)= r

2).
The geometry and the invariants are the important prop-

erties, but the conventional analysis has shockingly erred in
its geometrical analysis and identification of the invariants,
as a direct consequence of its initial invalidated assum-
ptions about the r-parameter, and clings irrationally to these
assumptions to preserve the now sacrosanct, but nonetheless
ridiculous, black hole.
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The only reason that the Hilbert solution conventionally
breaks down at r=α is because of the initial arbitrary and
incorrect assumptions made about the parameter r. There is
no pathology of coordinates at r=α. If there is anything
pathological about the Hilbert metric it has nothing to do
with coordinates: the etiology of a pathology must therefore
be found elewhere.

There is no doubt that the Kruskal-Szekeres form is a
solution of the Einstein vacuum field equations, however that
does not guarantee that it is a solution to the problem. There
exists an infinite number of solutions to the vacuum field
equations which do not yield a solution for the gravitational
field of the point-mass. Satisfaction of the field equations is
a necessary but insufficient condition for a potential solution
to the problem. It is evident that the conventional conditions
(see [19]) that must be met are inadequate, viz.,

1. be analytic;

2. be Lorentz signature;

3. be a solution to Einstein’s free-space field equations;

4. be invariant under time translations;

5. be invariant under spatial rotations;

6. be (spatially) asymptotically flat;

7. be inextendible to a wordline L;

8. be invariant under spatial reflections;

9. be invariant under time reflection;

10. have a global time coordinate.

This list must be augmented by a boundary condition at
the location of the point-mass, which is, in my formulation of
the solution, r→ r±0 ⇒ Rp(r)→ 0. Schwarzschild actually
applied a form of this boundary condition in his analysis.
Marcel Brillouin [12] also pointed out the necessity of such a
boundary condition in 1923, as did Abrams [7] in more recent
years, who stated it equivalently as, r→ r0⇒C(r)→α2.
The condition has been disregarded or gone unrecognised
by the mainstream authorities. Oddly, the orthodox analysis
violates its own stipulated condition for a global time coor-
dinate, but quietly disregards this inconsistency as well.

Any constants appearing in a valid solution must appear
in an invariant derived from the solution. The solution I
obtain meets this condition in the invariance, at r= r0 , of
the circumference of a great circle, of Kepler’s 3rd Law
[1, 2], of the Kretschmann scalar, of the radius of curvature
C(r0)=α

2, of Rp(r0)≡ 0, and not only in the case of the
point-mass, but also in all the relevant configurations, with
or without charge.

The fact that the circumference of a great circle ap-
proaches the finite value 2πα is no more odd than the
conventional oddity of the change in the arrow of time in
the “interior” Hilbert region. Indeed, the latter is an even
more violent oddity: inconsistent with Einstein’s theory. The
finite limit of the said circumference is consistent with the

geometry resulting from Einstein’s gravitational tensor. The
variations of θ and ϕ displace the proper radius vector,
Rp(r0)≡ 0, over the spherical surface of finite area 4πα2,
as noted by Brillouin. Einstein’s theory admits nothing more
pointlike.

Objections to Einstein’s formulation of the gravitational
tensor were raised as long ago as 1917, by T. Levi-Civita
[20], on the grounds that, from the mathematical standpoint,
it lacks the invariant character actually required of General
Relativity, and further, produces an unacceptable consequen-
ce concerning gravitational waves (i.e they carry neither
energy nor momentum), a solution for which Einstein vague-
ly appealed ad hoc to quantum theory, a last resort obviated
by Levi-Civita’s reformulation of the gravitational tensor
(which extinguishes the gravitational wave), of which the
conventional analysis is evidently completely ignorant: but
it is not pertinent to the issue of whether or not the black
hole is consistent with the theory as it currently stands on
Einstein’s gravitational tensor.

3 The geometry of the simple point-charge

The fundamental geometry developed in section 2 is the same
for all the configurations of the point-mass and the point-
charge. The general solution for the simple point-charge
[2] is,

ds2=

(

1−
α
√
Cn
+
q2

Cn

)

dt2−

(

1−
α
√
Cn
+
q2

Cn

)−1
×

×
C ′n

2

4Cn
dr2 − Cn(dθ

2 + sin2 θdϕ2) ,

(29)

Cn(r) =
(∣
∣r − r0

∣
∣n + βn

) 2
n

,

β = m+
√
m2 − q2 , q2 < m2 ,

n ∈ <+, r, r0 ∈< .

where n and r0 are arbitrary.
From (29), the radius of curvature is given by,

Rc=
√
Cn(r)=

(∣
∣r − r0

∣
∣n + βn

) 1
n

,

which gives for the near-field limit,

lim
r→ r±0

√
Cn(r)=

√
Cn(r0)=β=m+

√
m2 − q2 .

The expression for the proper radius is,

Rp(r) =

√
C(r)− α

√
C(r) + q2 +

+ m ln

∣
∣
∣
∣
∣
∣

√
C(r)−m+

√
C(r)−α

√
C(r)+q2

√
m2−q2

∣
∣
∣
∣
∣
∣
.
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Then
lim
r→ r±0

Rp(r)= Rp(r0)≡ 0 .

The ratio χ
Rp
> 2π for all finite Rp, and

lim
r→±∞

χ

Rp(r)
= 2π ,

lim
r→ r±0

χ

Rp(r)
=∞ ,

so Rp(r0)≡ 0 is a quasiregular singularity and cannot be
extended.

Now, since the circumference χ of a great circle is the
only measurable quantity in the gravitational field, the unique
solution for the field of the simple point-charge is,

ds2 =

(

1−
2πα

χ
+
4π2q2

χ2

)

dt2−

−

(

1−
2πα

χ
+
4π2q2

χ2

)−1
dχ2

4π2
−

−
χ2

4π2
(dθ2 + sin2 θdϕ2) ,

(30)

2π
(
m+

√
m2 − q2

)
<χ<∞ .

Equation (30) is entirely independent of the r-
parameter.

In terms of equation (29), the Kretschmann scalar takes
the form [21],

f(r)=

8

[

6
(
m
√
Cn(r)− q2

)2
+ q4

]

C4n(r)
, (31)

so

lim
r→ r±0

f(r)= f(r0)=
8
[
6
(
mβ − q2

)2
+ q4

]

β8

=

8

[

6
(
m2 +m

√
m2 − q2 − q2

)2
+ q4

]

(m+
√
m2 − q2)8

,

which is a scalar invariant. Thus, no curvature singularity
can arise in the gravitational field of the simple point-charge.

The standard analysis incorrectly takes
√
Cn(r)≡Rp(r)

≡ r, then with this assumption, and the additional invalid
assumption that 0<r<∞ is true on the Reissner-Nordstrom
solution, obtains from equation (31) a curvature singularity at
r=0, satisfying, by an ad hoc construction, its third invalid
assumption that a singularity can only arise at a point where
the curvature invariant is unbounded.

Equation (29) is singular only when g00=0; indeed
g00(r0)≡ 0. Hence, 06 g006 1.

Applying Doughty’s acceleration formula (28) to
equation (29) gives,

a=

∣
∣
∣m
√
Cn(r)− q2

∣
∣
∣

Cn(r)
√
Cn(r)− α

√
Cn(r) + q2

.

Then,

lim
r→ r±0

a=

∣
∣mβ − q2

∣
∣

β2
√
β2 − αβ + q2

=∞ ,

confirming that matter is indeed present at Rp(r0)≡ 0.

4 The geometry of the rotating point-charge

The usual expression for the Kerr-Newman solution is, in
Boyer-Lindquist coordinates,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
r2+a2

)
dϕ−adt

]2
−
ρ2

Δ
dr2−ρ2dθ2,

(32)

a =
L

m
, ρ2 = r2 + a2 cos2 θ ,

Δ = r2 − rα+ a2 + q2, 0 < r <∞ .

This metric is alleged to have an event horizon rh and
a static limit rb, obtained by setting Δ= 0 and g00=0
respectively, to yield,

rh=m±
√
m2 − a2 − q2

rb=m±
√
m2 − q2 − a2 cos2 θ .

These expressions are conventionally quite arbitrarily
taken to be,

rh=m+
√
m2 − a2 − q2

rb=m+
√
m2 − q2 − a2 cos2 θ ,

apparently because no-one has been able to explain away the
meaning of the the “inner” horizon and the “inner” static
limit. This in itself is rather disquieting, but nonetheless
accepted with furtive whispers by the orthodox theorists.
It is conventionally alleged that the “region” between rh and
rb is an ergosphere, in which spacetime is dragged in the
direction of the of rotation of the point-charge.

The conventional taking of the r-parameter for a radius
in the gravitational field is manifest. However, as I have
shown, the r-parameter is neither a coordinate nor a radius
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in the gravitational field. Consequently, the standard analysis
is erroneous.

I have already derived elsewhere [2] the general solution
for the rotating point-charge, which I write in most general
form as,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
Cn + a

2
)
dϕ− adt

]2
−
ρ2

Δ

C ′n
2

4Cn
dr2 − ρ2dθ2 ,

Cn(r) =
(∣
∣r − r0

∣
∣n + βn

) 2
n

, n ∈ <+ , (33)

r, r0 ∈ <, β = m+
√
m2 − q2 − a2 cos2 θ ,

a2 + q2 < m2, a =
L

m
, ρ2 = Cn + a

2 cos2 θ ,

Δ = Cn − α
√
Cn + q

2 + a2 ,

where n and r0 are arbitrary.
Once again, since only the circumference of a great circle

is a measurable quantity in the gravitational field, the unique
general solution for all configurations of the point-mass is,

ds2 =
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2

[(
χ2

4π2
+ a2

)

dϕ− adt

]2
−
ρ2

Δ

dχ2

4π2
− ρ2dθ2 ,

a2 + q2 < m2, a =
L

m
, ρ2 =

χ2

4π2
+ a2 cos2 θ , (34)

Δ =
χ2

4π2
−
αχ

2π
+ q2 + a2 ,

2π
(
m+

√
m2 − q2 − a2 cos2 θ

)
<χ<∞ .

Equation (34) is entirely independent of the r-parameter.
Equation (34) emphasizes the fact that the concept of a

point in pseudo-Euclidean Minkowski space is not attainable
in the pseudo-Riemannian gravitational field. A point-mass
(or point-charge) is characterised by a proper radius of zero
and a finite, non-zero radius of curvature. Einstein’s universe
admits of nothing more pointlike. The relativists have assum-
ed that, insofar as the point-mass is concerned, the Minkow-
ski point can be achieved in Einstein space, which is not
correct.

The radius of curvature of (33) is,

√
Cn(r)=

(
|r − r0|

n
+ βn

) 1
n , (35)

which goes down to the limit,

lim
r→ r±0

√
Cn(r)=

√
Cn(r0)=β=

=m+
√
m2 − q2 − a2 cos2 θ ,

(36)

where the proper radius Rp(r0)≡ 0. The standard analysis
incorrectly takes (36) for the “radius” of its static limit.

It is evident from (35) and (36) that the radius of curva-
ture depends upon the direction of radial approach. There-
fore, the spacetime is not isotropic. Only when a=0 is
spacetime isotropic. The point-charge is always located at
Rp(r0)≡ 0 in (Mg, gg), irrespective of the value of n, and
irrespective of the value of r0 . The conventional analysis
has failed to realise that its rb is actually a varying radius
of curvature, and so incorrectly takes it as a measurable
radius in the gravitational field. It has also failed to realise
that the location of the point-mass in the gravitational field
is not uniquely specified by the r-coordinate at all. The
point-mass is always located just where Rp=0 in (Mg, gg)
and its “position” in (Mg, gg) is otherwise meaningless.
The test particle has already encountered the source of the
gravitational field when the radius of curvature has the value
Cn(r0)=β. The so-called ergosphere also arises from the
aforesaid misconceptions.

When θ=0 the limiting radius of curvature is,

√
Cn(r0)=β=m+

√
m2 − q2 − a2 , (37)

and when θ= π
2 , the limiting radius of curvature is,

√
Cn(r0)=β=m+

√
m2 − q2 ,

which is the limiting radius of curvature for the simple point-
charge (i. e. no rotation) [2].

The standard analysis incorrectly takes (37) as the
“radius” of its event horizon.

If q=0, then the limiting radius of curvature when
θ=0 is,

√
Cn(r0)=β=m+

√
m2 − a2 , (38)

and the limiting radius of curvature when θ= π
2 is,

√
Cn(r0)=β=2m=α ,

which is the radius of curvature for the simple point-mass.
The radii of curvature at intermediate azimuth are given

generally by (36). In all cases the near-field limits of the radii
of curvature give Rp(r0)≡ 0.

Clearly, the limiting radius of curvature is minimum at the
poles and maximum at the equator. At the equator the effects
of rotation are not present. A test particle approaching the
rotating point-charge or the rotating point-mass equatorially
experiences the effects only of the non-rotating situation of
each configuration respectively. The effects of the rotation
manifest only in the values of azimuth other than π

2 . There is
no rotational drag on spacetime, no ergosphere and no event
horizon, i. e. no black hole.
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The effects of rotation on the radius of curvature will
necessarily manifest in the associated form of Kepler’s 3rd
Law, and the Kretschmann scalar [22].

I finally remark that the fact that a singularity arises in
the gravitational field of the point-mass is an indication that
a material body cannot collapse to a point, and therefore
such a model is inadequate. A more realistic model must be
sought in terms of a non-singular metric, of which I treat
elsewhere [23].

Dedication

I dedicate this paper to the memory of Dr. Leonard S.
Abrams: (27 Nov. 1924 — 28 Dec. 2001).
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This study looks at the field of inhomogeneities of time coordinates. Equations of
motion, expressed through the field tensor, show that particles move along time lines
because of rotation of the space itself. Maxwell-like equations of the field display its
sources, which are derived from gravitation, rotations, and inhomogeneity of the space.
The energy-momentum tensor of the field sets up an inhomogeneous viscous media,
which is in the state of an ultrarelativistic gas. Waves of the field are transverse, and
the wave pressure is derived from mainly sub-atomic processes — excitation/relaxation
of atoms produces the positive/negative wave pressures, which leads to a test of the
whole theory.

Contents

1. Inhomogeneity of observable time. Defining the field . . 15

2. The field tensor. Its observable components: gravita-
tional inertial force and the space rotation tensor . . . . . . 17

3. Equations of free motion. Putting the acting force in-
to a form like Lorentz’s force . . . . . . . . . . . . . . . . . . . . . . . 18

4. The field equations like electrodynamics . . . . . . . . . . . . . 19

5. Waves of the field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6. Energy-momentum tensor of the field . . . . . . . . . . . . . . . . 21

7. Physical properties of the field. . . . . . . . . . . . . . . . . . . . . . .22

8. Action of the field without sources . . . . . . . . . . . . . . . . . . . 23

9. Plane waves of the field under gravitation is neglec-
ted. The wave pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10. Physical conditions in atoms . . . . . . . . . . . . . . . . . . . . . . . . 26

11. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

1 Inhomogeneity of observable time. Defining the field

The meaning of Einstein’s General Theory of Relativity
consists of his idea that all properties of the world are derived
from the geometrical structure of space-time, from the world-
geometry, in other words. This is a way to geometrize phys-
ics. The introduction of his artificial postulates became only
of historical concern subsequent to his setting up of the
meaning of the theory — all the postulates are naturally
contained in the geometry of a four-dimensional pseudo-
Riemannian space with the sign-alternating signature (−+++)
or (+−−−) he assigned to the basic space-time of the theory.

Verification of the theory by experiments has shown that
the four-dimensional pseudo-Riemannian space satisfies our
observable world in most cases. In general we can say that
all that everything we can obtain theoretically in this space
geometry must have a physical interpretation.

Here we take a pseudo-Riemannian space with the sig-
nature (+−−−), where time is real and spatial coordinates
are imaginary, because the observable projection of a four-
dimensional impulse on the spatial section of any given
observer is positive in this case. We also assign to space-
time Greek indices, while spatial indices are Latin∗.

As it is well-known [1], dS=m0cds is an elementary
action to displace a free mass-bearing particle of rest-mass
m0 through a four-dimensional interval of length ds. What
happens to matter during this action? To answer this question
let us substitute the square of the interval ds2= gαβ dxαdxβ

into the action. As a result we see that

dS = m0cds = m0c
√
gαβ dxαdxβ , (1)

so the particle moves in space-time along geodesic lines (free
motion), because the field carries the fundamental metric
tensor gαβ . At the same time Einstein’s equations link the
metric tensor gαβ to the energy-momentum tensor of matter
through the four-dimensional curvature of space-time. This
implies that the gravitational field is linked to the field of
the space-time metric in the frames of the General Theory of
Relativity. For this reason one regularly concludes that the
action (1) displacing free mass-bearing particles is produced
by the gravitational field.

Let us find which field will manifest by the action (1) as a
source of free motion, if the space-time interval ds therein is
written with quantities which would be observable by a real
observer located in the four-dimensional pseudo-Riemannian
space.

A formal basis here is the mathematical apparatus of
physically observable quantities (the theory of chronometric
invariants), developed by Zelmanov in the 1940’s [2, 3]. Its
essence is that if an observer accompanies his reference body,

∗Alternatively, Landau and Lifshitz in their The Classical Theory of
Fields [1] use the space signature (−+++), which gives an advantage in
certain cases. They also use other notations for tensor indices: in their book
space-time indices are Latin, while spatial indices are Greek.
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his observable quantities are projections of four-dimensional
quantities on his time line and the spatial section — chrono-
metrically invariant quantities, made by projecting operators

bα= dxα

ds
and hαβ =−gαβ + bαbβ which fully define his

real reference space (here bα is his velocity with respect
to his real references). Thus, the chr.inv.-projections of a

world-vector Qα are bαQα=
Q0√
g00

and hiαQ
α=Qi, while

chr.inv.-projections of a world-tensor of the 2nd rank Qαβ

are bαbβQαβ =
Q00
g00 , hiαbβQαβ =

Qi0√
g00

, hiαh
k
βQ

αβ =Qik.

Physically observable properties of the space are derived

from the fact that chr.inv.-differential operators
∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi

= ∂
∂xi

+ 1
c2
vi

∗∂
∂t

are non-commutative
∗∂2

∂xi∂t
−

−
∗∂2

∂t ∂xi
= 1
c2
Fi

∗∂
∂t

and
∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
= 2
c2
Aik

∗∂
∂t

, and

also from the fact that the chr.inv.-metric tensor hik may not
be stationary. The observable characteristics are the chr.inv.-
vector of gravitational inertial force Fi, the chr.inv.-tensor of
angular velocities of the space rotation Aik, and the chr.inv.-
tensor of rates of the space deformations Dik, namely

Fi=
1
√
g00

(
∂w

∂xi
−
∂vi
∂t

)

,
√
g00=1−

w

c2
(2)

Aik=
1

2

(
∂vk
∂xi
−
∂vi
∂xk

)

+
1

2c2
(Fivk−Fkvi) , (3)

Dik=
1

2

∗∂hik
∂t

, Dik=−
1

2

∗∂hik

∂t
, Dk

k=
∗∂ ln
√
h

∂t
, (4)

where w is gravitational potential, vi=−c
g0i√
g00

is the linear

velocity of the space rotation, hik=−gik+ 1
c2
vivk is the

chr.inv.-metric tensor, and also h=det ‖hik‖, hg00=−g,
g=det ‖gαβ‖. Observable inhomogeneity of the space is
set up by the chr.inv.-Christoffel symbols Δijk=h

imΔjk,m,
which are built just like Christoffel’s usual symbols Γαμν =
= gασΓμν,σ using hik instead of gαβ .

A four-dimensional generalization of the main chr.inv.-
quantities Fi, Aik, and Dik (by Zelmanov, the 1960’s [4])
is: Fα=−2c2bβaβα, Aαβ = ch

μ
αhνβaμν , Dαβ = ch

μ
αhνβdμν ,

where aαβ = 1
2 (∇α bβ −∇β bα), dαβ =

1
2 (∇α bβ +∇β bα).

In this way, for any equations obtained using general
covariant methods, we can calculate their physically observ-
able projections on the time line and the spatial section of
any particular reference body and formulate the projections
in terms of their real physically observable properties, from
which we obtain equations containing only quantities mea-
surable in practice.

Expressing ds2= gαβ dx
αdxβ through the observable

time interval

dτ =
1

c
bαdx

α =
(
1−

w

c2

)
dt−

1

c2
vidx

i (5)

and also the observable spatial interval dσ2=hαβ dxαdxβ =
=hik dx

idxk (note, bi=0 for an observer who accompanies
his reference body), we come to the formula

ds2 = c2dτ 2 − dσ2. (6)

Using this formula, we can write down the action (1) to
displace a free mass-bearing particle in the form

dS = m0c
√
bαbβ dxαdxβ − hαβ dxαdxβ . (7)

If the particle is at rest with respect to the observer’s
reference body, then its observable displacement along his
spatial section is dxi=0, so its observable chr.inv.-velocity

vector equals zero; vi= dxi

dτ
=0. Such a particle moves only

along time lines. In this case, in the accompanying reference
frame, we have hαβ dx

αdxβ =hik dx
idxk=0 hence the

action is
dS = m0c bαdx

α, (8)

so the mass-bearing particle moves freely along time lines
because it is carried solely by the vector field bα.

What is the physical meaning of this field? The vector
bα is the operator of projection on time lines (non-uniform,
in general case) of a real observer, who accompanies his
reference body. This implies that the vector field bα defines
the geometrical structure of the real space-time along time
lines. Projecting an interval of four-dimensional coordinates
dxα onto the time line of a real observer in his accompanying
reference frame, we obtain the interval of real physical time

dτ = 1
c
bαdx

α=
(
1− w

c2

)
dt− 1

c2
vidx

i he observes. For his

measurements in the same spatial point, in other words, along

the same time line, dτ =
(
1− w

c2

)
dt. This formula and the

previous one lead us to the conclusion that the components
of the observer’s vector bα define a “density” of physically
observable time in his accompanying reference frame. As it
is easy to see, the observable time density depends on the
gravitational potential and, in the general case, on the rotation
of the space. Hence, the vector field bα in the accompanying
reference frame is the field of inhomogeneity of observable
time references. For this reason we will call it the field of
density of observable time.

In the same way, a field of the tensor hαβ =−gαβ + bαbβ
projecting four-dimensional quantities on the observer’s spa-
tial section is the field of density of the spatial section.

From the geometric viewpoint, we can illustrate the con-
clusions in this way. The vector field bα and the tensor field
hαβ of the accompanying reference frame of an observer,
located in a four-dimensional pseudo-Riemannian space,
“split” the space into time lines and a spatial section, proper-
ties of which (such as inhomogeneity, anisotropy, curvature,
etc.) depend on the physical properties of the observer’s
reference body. Owing to this “splitting” process, the field
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of the fundamental metric tensor gαβ , containing the geo-
metrical structure of this space, “splits” as well (7). Its
“transverse component” is the time density field, a four-
dimensional potential of which is the monad vector bα.
The “longitudinal component” of this splitting is the field
of density of the spatial section.

2 The field tensor. Its observable components: gravita-
tional inertial force and the space rotation tensor

Chr.inv.-projections of the four-dimensional vector potential
bα of a time density field are, respectively

ϕ =
b0
√
g00

= 1 , qi = bi = 0 . (9)

Emulating the way that Maxwell’s electromagnetic field
tensor is introduced, we introduce the tensor of a time density
field as the rotor of its four-dimensional vector potential

Fαβ = ∇α bβ −∇β bα =
∂bβ
∂xα

−
∂bα
∂xβ

. (10)

Taking into account that F00=F 00=0, as for any anti-
symmetric tensor of the 2nd rank, after some algebra we
obtain the other components of the field tensor Fαβ

F0i =
1

c2
√
g00 Fi , Fik =

1

c

(
∂vi
∂xk
−
∂vk
∂xi

)

, (11)

F ∙00∙ = −
1

c3
vkF

k, F ∙i0∙ = −
1

c2
√
g00 F

i, (12)

F ∙0k∙ = −
1
√
g00

(
1

c2
Fk+

2

c2
vmAmk−

1

c4
vkvmF

m

)

, (13)

F ∙ik∙ =
1

c3
vkF

i +
2

c
A∙ik∙ , F ik = −

2

c
Aik, (14)

F 0k = −
1
√
g00

(
1

c2
F k +

2

c2
vmA

mk

)

. (15)

We denote chr.inv.-projections of the field tensor just like
the chr.inv.-projections of the Maxwell tensor [5], to display
their physical sense. We will refer to the time projection

Ei =
F ∙i0∙√
g00

= −
1

c2
F i, Ei = hikE

k = −
1

c2
Fi (16)

of the field tensor Fαβ as “electric”. The spatial projection

Hik=F ik=−
2

c
Aik, Hik=himhknF

mn=−
2

c
Aik (17)

of the field tensor will be referred to as “magnetic”. So, we
arrive at physical definitions of the components:

The “electric” observable component of a time density
field manifests as the gravitational inertial force Fi.
The “magnetic” observable component of a time den-
sity field manifests as the angular velocity Aik of the
space rotation.

In accordance with the above, two particular cases of
time density fields are possible. These are:

1. If a time density field has Hik=0 and Ei 6=0, then the
field is strictly of the “electric” kind. This particular
case corresponds to a holonomic (non-rotating) space
filled with gravitational force fields;

2. A time density field is of the “magnetic” kind, if therein
Ei=0 and Hik 6=0. This is a non-holonomic space,
where fields of gravitational inertial forces are homo-
geneous or absent. This case is possible also if, ac-
cording to the chr.inv.-definition of the force

Fi =
1
√
g00

(
∂w

∂xi
−
∂vi
∂t

)

,
√
g00 = 1−

w

c2
, (18)

where the first term — a force of gravity would be re-
duced by the second term — is a centrifugal force of
inertia.

In addition to the field tensor Fαβ , we introduce the field
pseudotensor F ∗αβ dual and in the usual way [1]

F ∗αβ =
1

2
EαβμνFμν , F∗αβ =

1

2
EαβμνF

μν , (19)

where the four-dimensional completely antisymmetric dis-

criminant tensors Eαβμν = eαβμν√
−g

and Eαβμν = eαβμν
√
−g,

transforming regular tensors into pseudotensors in inhomoge-
neous anisotropic pseudo-Riemannian spaces, are not phys-
ically observable quantities. The completely antisymmetric
unit tensor eαβμν , being defined in a Galilean reference frame
in Minkowski space [1], does not have this quality either.
Therefore we employ Zelmanov’s chr.inv.-discriminant ten-
sors εαβγ = bσEσαβγ and εαβγ = bσEσαβγ [2], which in the
accompanying reference frame are

εikm =
eikm
√
h
, εikm = eikm

√
h . (20)

Using components of the field tensor Fαβ , we obtain
chr.inv.-projections of the field pseudotensor, which are

H∗i =
F ∗∙i0∙√
g00

= −
1

c
εikmAkm = −

2

c
Ω∗i, (21)

E∗ik = F ∗ik =
1

c2
εikmFm , (22)

where Ω∗i= 1
2 ε

ikmAkm is the chr.inv.-pseudovector of an-
gular velocities of the space rotation. Their relations to the
field tensor chr.inv.-projections express themselves just like
any chr.inv.-pseudotensors [5, 6], by the formulae

H∗i =
1

2
εimnHmn , H∗i =

1

2
εimnH

mn, (23)

εipqH∗i =
1

2
εipqεimnH

mn = Hpq, (24)

εikpH
∗p = Eik , E∗ik = −εikmEm , (25)
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where εipqεimn= δ
p
mδ

q
n− δ

q
mδ

p
n, see [1, 5, 6] for details.

We introduce the invariants J1=FαβF
αβ and J2=

=FαβF
∗αβ for a time density field. Their formulae are

J1 = FαβF
αβ =

4

c2
AikA

ik −
2

c4
FiF

i, (26)

J2 = FαβF
∗αβ = −

8

c3
FiΩ

∗i, (27)

so the time density field can be spatially isotropic (one of
the invariants becomes zero) under the conditions:

• the invariant AikAik of the space rotation field and the
invariant FiF i of the gravitational inertial force field
are proportional one to another AikAik= 1

2c2
FiF

i;

• FiΩ∗i=0, so the acting gravitational inertial force Fi
is orthogonal to the space rotation pseudovector Ω∗i;

• both of the conditions are realized together.

3 Equations of free motion. Putting the acting force into
a form like Lorentz’s force

Time lines are geodesics by definition. In accordance with the
least action principle, an action replacing a particle along a
geodesic line is minimum. Actually, the least action principle
implies that geodesic lines are also lines of the least action.
This is the physical viewpoint.

We are going to consider first a free mass-bearing particle,
which is at rest with respect to an observer and his reference
body. Such a particle moves only along a time line, so it
moves solely because of the action of the inhomogeneity of
time coordinates along the time line — a time density field.

The action that a time density field expends in displacing
a free mass-bearing particle of rest-mass m0 at dxα has
the value dS=m0c bαdx

α (8). Because of the least action,
variation of the action integral along geodesic lines equals
zero

δ

∫ b

a

dS = 0 , (28)

which, after substituting dS=m0cbαdx
α, becomes δ

∫ b
a
dS=

=m0c δ
∫ b
a
bαdx

α=m0c
∫ b
a
δbαdx

α+ m0c
∫ b
a
bαdδx

α where
∫ b
a
bαdδx

α= bαδx
α
∣
∣b
a
−
∫ b
a
dbαδx

α=−
∫ b
a
dbαδx

α. Because

δbα=
∂bα
∂xβ

δxβ and dbα=
∂bα
∂xβ

dxβ ,

δ

∫ b

a

dS = m0c δ

∫ b

a

(
∂bβ
∂xα

−
∂bα
∂xβ

)

dxβδxα. (29)

This variation is zero, so along time lines we have

m0c

(
∂bβ
∂xα

−
∂bα
∂xβ

)

dxβ = 0 . (30)

This condition, being divided by the interval ds, gives
general covariant equations of motion of the particle

m0c Fαβ U
β = 0 , (31)

wherein Fαβ is the time density field tensor and Uβ is the
particle’s four-dimensional velocity∗.

Taking chr.inv.-projections of (31) multiplied by c2, we
obtain chr.inv.-equations of motion of the particle

m0c
3F0σU

σ

√
g00

= 0 , m0c
2F i∙∙σU

σ = 0 , (32)

where the scalar equation gives the work to displace the
particle, and the vector equations its observable acceleration.

It is interesting to note that the left side of the equations,
which is the acting force, both in the general covariant form
and its chr.inv.-projections we have obtained, has the same
form as Lorentz’s force, which displaces charged particles in
electromagnetic fields [5]. From the mathematical viewpoint
this fact implies that the time density field acts on mass-
bearing particles as the electromagnetic field moves electric
charge.

Taking ds2= c2dτ 2− dσ2= c2dτ 2
(
1− v

2

c2

)
, that is for-

mula (4) into account, we obtain

Uα =
dxα

ds
=

1

c
√
1− v2

c2

dxα

dτ
, (33)

U0 =

1
c2
vkv

k + 1

√
g00

√
1− v2

c2

, U i =
1

c
√
1− v2

c2

vi. (34)

Using the components obtained for the field tensor Fαβ
(11–15) and taking into account that the observable velocity
of the particle we are considering is vi=0, we transform
the chr.inv.-equations of motion (32) into the final form. The
scalar equation becomes zero, while the vector equations
become m0F

i=0 or, substituting Ei=− 1
c2
F i (16),

m0c
2Ei = 0 , (35)

leading us to the following conclusions:

1. The “electric” and the “magnetic” components of a
time density field do not produce work to displace
a free mass-bearing particle along time lines. Such a
particle falls freely along its own time line under the
time density field;

2. In this case Ei=0, so the particle falls freely along its
own time line, being carryied solely by the “magnetic”
componentHik=−2cAik 6=0 of the time density field;

3. Inhomogeneity of the spatial section (the chr.inv.-
Christoffel symbols Δijk) or its deformations (the chr.
inv.-deformation rate tensor Dik) do not have an effect
on free motion along time lines.

∗Do not confound this vector Uα= dxα

ds
with the vector bα= dxα

ds
:

they are built on different dxα. The vector bα contains displacement of the
observer with respect to his reference body, while the vector Uα contains
displacement of the particle.
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In other words, the “magnetic” componentHik=−2cAik
of a time density field “screws” particles into time lines (a
very rough analogy). There are no other sources which could
cause particles to move along time lines, because observable
particles with the whole spatial section move from past into
future, hence Hik 6=0 everywhere in our real world. So, our
real space is strictly non-holonomic, Aik 6=0.

This purely mathematical result brings us to the very
important conclusion that under any conditions a real space
is non-holonomic at the “start”, that is, a “primordial non-
orthogonality” of the real spatial section to time lines. Cond-
itions such as three-dimensional rotations of the reference
body, are only additions, intensifying or reducing this start-
rotation of the space, depending on their relative directions∗.

We are now going to consider the second case of free
motion — the general case, where a free mass-bearing particle
moves freely not only along time lines, but also along the
spatial section with respect to the observer and his reference
body. Chr.inv.-equations of motion in this general case had
been deduced by Zelmanov [2]. They have the form

dE

dτ
−mFiv

i +mDikv
ivk = 0, E = mc2

d(mvi)

dτ
−mF i+2m

(
Di
k+A

∙i
k∙

)
vk+mΔinkv

nvk=0.

(36)

Let us express the equations through the “electric” and
the “magnetic” observable components of the acting field of
time density. Substituting Ei=− 1

c2
F i and Hik=−2cAik

into the Zelmanov equations (36), we obtain

dE

dτ
+mc2Eiv

i +mDikv
ivk = 0,

d(mvi)

dτ
+mc2

(
Ei +

1

c
Hikvk

)
+

+ 2mDi
kv
k +mΔinkv

nvk = 0.

(37)

From this we see that a free mass-bearing particle moves
freely along the spatial section because of the factors:

1. The particle is carried with a time density field by its
“electric”Ei 6=0 and “magnetic”Hik 6=0 components;

2. The particle is also moved by forces which manifest as
an effect of inhomogeneity Δink and deformations Dik
of the spatial section. As we can see from the scalar
equation, the field of the space inhomogeneities does

∗A similar conclusion had also been given by the astronomer
Kozyrev [7], from his studies of the interior of stars. In particular, besides
the “start” self-rotation of the space, he had come to the conclusion that
additional rotations will produce an inhomogeneity of observable time
around rotating bulky bodies like stars or planets. The consequences should
be more pronounced in the interaction of the components of bulky double
stars [8]. He was the first to used the term “time density field”. It is interesting
that his arguments, derived from a purely phenomenological analysis of
astronomical observations, did not link to Riemannian geometry and the
mathematical apparatus of the General Theory of Relativity.

not produce any work to displace free mass-bearing
particles, only the space deformation field produces
the work.

In particular, a mass-bearing particle can be moved freely
along the spatial section, solely because of the field of time
density. As it easy to see from equations (37), this is possible
under the following conditions

Dikv
ivk = 0 , Di

k = −
1

2
Δinkv

n, (38)

so it is possible in the following particular cases:

• if the spatial section has no deformations, Dik=0;

• if, besides the absence of the deformations (Dik=0),
the spatial section is homogeneous, Δink=0.

†

The scalar equations of motion (37) also show that, under
the particular conditions (38), the energy dE to displace the
particle at dxi equals the work

dE = −mc2Eidx
i (39)

the “electric” field component Ei expends for this displace-
ment. The vector equations of motion in this particular case
show that the “electric” and the “magnetic” components of
the acting field of time density accelerate the particle just
like external forces‡

dpi

dτ
= −mc2

(
Ei +

1

c
Hikvk

)
. (40)

Looking at the right sides of equations (39, 40), we
see that they have a form identical to the right sides of
the chr.inv.-equations of motion of a charged particle in the
electromagnetic field [5]. This implies also that the field of
time density acts on mass-bearing particles as an electromag-
netic field moves electric charge.

4 The field equations like electrodynamics

As is well-known, the theory of the electromagnetic field,
in a pseudo-Riemannian space, characterizes the field by a
system of equations known also as the field equations:

• Lorentz’s condition stipulates that the four-dimensional
vector potential Aα of the field remains unchanged just
like any four-dimensional vector in a four-dimensional
pseudo-Riemannian space

∇σ A
σ = 0 ; (41)

• the charge conservation law (the continuity equation)
shows that the field-inducing charge cannot be de-
stroyed, but merely re-distributed in the space

∇σ j
σ = 0 , (42)

†However the first condition Dik=0 would be sufficient.
‡Here the chr.inv.-vector pi=mvi is the particle’s observable impulse.
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where jα is the four-dimensional current vector; its
observable projections are the chr.inv.-charge density
scalar ρ= 1

c
√
g00

j0 and the chr.inv.-current density

vector ji, which are sources inducing the field;

• Maxwell’s equations show properties of the field, ex-
pressed by components of the field tensor Fαβ and
its dual pseudotensor F ∗αβ . The first group of the
Maxwell equations contains the field sources ρ and ji,
the second group does not contain the sources

∇σ F
ασ =

4π

c
jα, ∇σ F

∗ασ = 0 . (43)

We can put all the equations into chr.inv.-form, employ-
ing Zelmanov’s formula [2] for the divergence of a vector
Qα, where he expressed the divergence through chr.inv.-

projections ϕ= Q0√
g00

and qi=Qi of this vector

∇σQ
σ =

1

c

( ∗∂ϕ

∂t
+ ϕD

)

+ ∗∇i q
i −

1

c2
Fiq

i, (44)

where we use his notation for chr.inv.-divergence

∗∇i q
i =

∗∂qi

∂xi
+ qi

∗∂ ln
√
h

∂xi
=

∗∂qi

∂xi
+ qiΔ

j
ji . (45)

In particular, the chr.inv.-Maxwell equations, which are
chr.inv.-projections of the Maxwell general covariant equa-
tions (43), had first been obtained for an arbitrary field
potential by del Prado and Pavlov [9], Zelmanov’s students,
at Zelmanov’s request. The equations are

∗∇iE
i−
1

c
HikAik = 4πρ

∗∇kH
ik−

1

c2
FkH

ik−
1

c

( ∗∂Ei

∂t
+EiD

)

=
4π

c
ji





I, (46)

∗∇iH
∗i−

1

c
E∗ikAik = 0

∗∇k E
∗ik−

1

c2
FkE

∗ik−
1

c

( ∗∂H∗i

∂t
+H∗iD

)

=0





II, (47)

From the mathematical viewpoint, equations of the field
are a system of 10 equations in 10 unknowns (the Lorentz
condition, the charge conservation law, and two groups of
the Maxwell equations), which define the given vector field
Aα and its inducing sources in a pseudo-Riemannian space.
Actually, equations like these should exist for any four-
dimensional vector field, a time density field included. The
only difference should be that the equations should be chang-
ed according to a formula for the specific vector potential.

We are going to deduce such equations for the field bα

we are considering — equations of a time density field.
Because ϕ=1 and qi=0 are chr.inv.-projections of the

potential bα of a time density field, the Lorentz condition
∇σ bσ =0 for a time density field bα becomes the equality

D = 0 , (48)

where D=hikDik, being the spur of the deformation rate
tensor, is the rate of expansion of an elementary volume.
Actually, the obtained Lorentz condition (48) implies that
the value of an elementary volume filled with a time density
field remains unchanged under its deformations.

We now collect chr.inv.-projections of the tensor of a
time density field Fαβ and of the field pseudotensor F ∗αβ

together: Ei=− 1c2 Fi, H
ik=−2

c
Aik, H∗i=−2

c
Ω∗i, E∗ik=

= 1
c2
εikmFm. We also take Zelmanov’s identities for the

chr.inv.-discriminant tensors [2] into account

∗∂εimn
∂t

= εimnD ,
∗∂εimn

∂t
= −εimnD , (49)

∗∇k εimn = 0 ,
∗∇k ε

imn = 0 . (50)

Substituting the chr.inv.-projections into (46, 47) along
with the obtained Lorentz condition D=0 (48), we arrive at
Maxwell-like chr.inv.-equations for a time density field

1

c2
∗∇i F

i −
2

c2
AikA

ik = − 4πρ

2

c
∗∇k A

ik −
2

c3
FkA

ik −
1

c3

∗∂F i

∂t
= −

4π

c
ji





I, (51)

∗∇i Ω
∗i +

1

c2
FiΩ

∗i = 0

∗∇k (ε
ikmFm)−

1

c2
εikmFkFm+2

∗∂Ω∗i

∂t
=0





II, (52)

so that the field-inducing sources ρ and ji are

ρ = −
1

4πc2
(
∗∇i F

i − 2AikA
ik
)
, (53)

ji = −
1

2π
∗∇kA

ik −
1

2πc2
FkA

ik −
1

4πc2

∗∂F i

∂t
. (54)

The “charge” conservation law ∇σ jσ =0 (the continuity
equation), after substituting chr.inv.-projections ϕ= cρ and
qi= ji of the “current” vector jα, takes the chr.inv.-form

1

c2

∗∂

∂t

(
AikA

ik
)
+
1

c2
Fi

∗∂Aik

∂xk
−

∗∂2Aik

∂xi∂xk
+

+

(
1

c2
FiΔ

j
jk +

∗∂Δ
j
jk

∂xi
+Δ

j
jiΔ

l
lk

)

Aik−

−
1

2c2
F i

∗∂Δ
j
ji

∂t
−
1

c4
FiFkA

ik = 0 ,

(55)

The Lorentz condition (48), the Maxwell-like equations
(51, 52), and the continuity equation (55) we have obtained
are chr.inv.-equations of a time density field.

5 Waves of the field

Let us turn now to d’Alembert’s equations. We are going to
obtain the equations for a time density field.
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d’Alembert’s operator = gαβ ∇α∇β , being applied to a
field, may or may not be zero. The second case is known as
the d’Alembert equations with field-inducing sources, while
the first case is known as the d’Alembert equations without
sources. If the field has no sources, then the field is free. This
is a wave. So, the d’Alembert equations without sources are
equations of propagation of waves of the field.

From this reason, the d’Alembert equations for the vector
potential bα of a time density field without the sources

bα = 0 (56)

are the equations of propagation of waves of the time density
field. Chr.inv.-projections of the equations are

bσ bσ = 0 , hiσ bσ = 0 . (57)

We substitute chr.inv.-projections ϕ=1 and qi=0 of the
field potential bα into this. Then, taking into account that the
Lorentz condition for the field bα is D=0 (48), after some
algebra we obtain the chr.inv.-d’Alembert equations for the
time density field without sources

1

c2
FiF

i −DikD
ik = 0 ,

1

c2

∗∂F i

∂t
+ hkm

{ ∗∂Di
m

∂xk
+

∗∂A∙im∙
∂xk

+

+ Δikn
(
Dn
m − A

∙n
m∙

)
−Δnkm

(
Di
n − A

∙i
n∙

)
}

= 0 .

(58)

Unfortunately, a term like 1
a2
∂2qi

∂t2
containing the linear

speed a of the waves is not present, because of qi=0. For this
reason we have no possibility of saying anything about the
speed of waves traveling in time density fields. At the same
time the obtained equations (58) display numerous specific
peculiarities of a space filled with the waves:

1. The rate of deformations of a surface element in waves
of a time density field is powered by the value of
the acting gravitational inertial force Fi. If Fi=0, the
observable spatial metric hik is stationary;

2. If a space, filled with waves of a time density field, is
homogeneousΔikn=0 and also the acting force field is
stationary Fi= const, the spatial structure of the space
deformations is the same as that of the space rotation
field.

6 Energy-momentum tensor of the field

Proceeding from the general covariant equations of motion
along only time lines, we are going to deduce the energy-
momentum tensor for time density fields. It is possible to do
this in the following way.

The aforementioned equations m0c Fαβ U
β =0 (31),

being taken in contravariant (upper-index) form, are

m0cF
α∙
∙σ U

σ = 0 , (59)

where Uσ is the four-dimensional velocity of the particle. The
left side of the equations has the dimensions [ gramme/sec ] as
well as a four-dimensional force. Because of motion along
only time lines, such particle moves solely under the action
of a time density field whose tensor is Fαβ .

If this free-moving particle is not a point-mass, then it
can be represented by a current jα of the time density field.
On the other hand, such currents are defined by the 1st group
∇σFασ = 4πc j

α of the Maxwell-like equations of the field.
In this case equations of motion (59), drawing an analogy
with an electromagnetic field current, take the form

μFα∙∙σ j
σ = 0 . (60)

The numerical coefficient μ here is a new fundamental
constant. This new constant having the dimension[gramme/sec]
gives the dimensions [ gramme/cm2×sec2 ] to the left side of
the equations, making the left side a current of the acting
four-dimensional force (59) through 1 cm2 per 1 second.
The numerical value of this constant μ can be found from
measurements of the wave pressure of a time density field,
see formula (101) below. However it does not exclude that
future studies of the problem will yield an analytic formula
for μ, linking it to other fundamental constants.

Chr.inv.-projections of the equations (60)

μF0σj
σ

√
g00

= 0 , μF i∙∙σj
σ = 0 , (61)

after substituting the Fαβ components (11–15) take the form

μEk j
k = 0 , μc

(

ρEi −
1

c
Hi∙
∙k j

k

)

= 0 , (62)

where Ei is the “electric” observable component and Hik
is the “magnetic” observable component of the time density
field. Sources ρ and ji inducing the field are defined by the
1st group of the Maxwell-like chr.inv.-equations (51).

Actually, the term∗

fα = μFα∙∙σ j
σ (63)

on the left side of the general covariant equations of motion
(60) can be transformed with the 1st Maxwell-like group
∇βF σβ = 4πc j

σ to the form fα=
μc
4πFασ∇βF

σβ which is

fα =
μc

4π

[
∇β
(
FασF

σβ
)
− F σβ ∇βFασ

]
, (64)

where we express the second term in the form F σβ∇βFασ =
= 1

2F
σβ (∇βFασ +∇σFβα) =− 1

2 F
σβ (∇βFσα+∇σFαβ)=

=− 12F
σβ∇σFαβ = 1

2F
σβ∇αFσβ . Using this formula, we

transform the current fα (63) to the form

fα =
μc

4π
∇β

(

−FασF
βσ +

1

4
δβαFpqF

pq

)

, (65)

∗From the physical viewpoint, this term is a current of the acting four-
dimensional force, produced by the time density field.
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so we write the current fα in the form

fα = ∇β Tαβ (66)

just as electrodynamics does to deduce the energy-momentum
tensor Tαβ of electromagnetic fields. In this way, we obtain
the energy-momentum tensor of a time density field, which is

Tαβ =
μc

4π

(

−Fα∙∙σ F
βσ +

1

4
gαβFpqF

pq

)

, (67)

the form of which is the same as the energy-momentum
tensor of electromagnetic fields [1, 5] to within the coefficient
of its dimension. It is easy to see that the tensor is symmetric,
so its spur is zero, T σσ = gαβ T

αβ =0.
So forth we deduce the chr.inv.-projections of the energy-

momentum tensor of a time density field

q =
T00
g00

, J i =
c T i0√
g00

, U ik = c2T ik. (68)

After substituting the required components of the field
tensor Fαβ (11–15), we obtain

q =
μ

4πc

(

AikA
ik +

1

2c2
FkF

k

)

, (69)

J i = −
μ

2πc
FkA

ik, (70)

U ik = −
μc

4π

(

4Ai∙∙mA
mk +

1

c2
F iF k+

+ApqA
pqhik −

1

2c2
FpF

phik
)

.
(71)

In accordance with dimensions, the chr.inv.-projections
have the following physical meanings:

• the time observable projection q [ gramme/cm×sec2 ] is
the energy [ gm×cm2/sec2 ] this time density field con-
tains in 1 cm3. Actually, the chr.inv.-scalar q is the
observable density of the field;

• the mixed observable projection J i [ gramme/sec3 ] is
the energy the time density field transfers through 1
cm2 per second, in other words, this is the observable
density of the field momentum;

• the spatial observable projection U ik [ gm×cm/sec4 ] is
the tensor of the field momentum flux observable den-
sity, in other words, the field strength tensor.

7 Physical properties of the field

It has been proven by Zelmanov [10], that the chr.inv.-field
strength tensor U ik, can be written in covariant (lower index)
form as follows

Uik = p0hik − αik = phik − βik , (72)

where αik=βik+ 1
3 αhik is the viscous strength tensor of

the field. Zelmanov called αik the viscosity of the 2nd kind
(here α=hikαik=αnn is its spur). Its anisotropic part βik,
called the viscosity of the 1st kind, manifests as anisotropic
deformations of the space. The quantity p0 is that pressure
inside the medium, which equalizes its density in the absence
of viscosity, p is the true pressure of the medium∗. It is easy to
see that the viscous strength tensors αik and βik are chr.inv.-
quantities by their definitions.

By extracting the viscous strength tensors αik and βik
from the formula of the strength tensor Uik of a time density
field, we are going to deduce the equation of state of the
field.

Transforming U ik (71) into covariant form and also keep-
ing the formula for q (69) in the mind, we write

Uik = −qc
2hik−

−
μc

4π

(

4AimA
m∙
∙k +

1

c2
FiFk −

1

c2
FmF

mhik

)

,
(73)

which, after equating to Uik= p0hik−αik (72), gives the
equilibrium pressure in the field

p0 = −qc
2, (74)

while the viscous strength tensor of the field is

αik =
μc

4π

(

4AimA
m∙
∙k +

1

c2
FiFk −

1

c2
FmF

mhik

)

. (75)

Because the spur of this tensor αik, as it is easy to see, is
not zero, α=hikαik=−

μc
π

(
AikA

ik+ 1
2c2

FkF
k
)
6=0, the

tensor αik=βik+ 1
3 αhik has the non-zero anisotropic part

βik=
μc

4π

(

4AimA
m∙
∙k +

1

c2
FiFk−

−
1

3c2
FmF

mhik +
4

3
AmnA

mnhik

)

,

(76)

so viscous strengths of time density fields are anisotropic.
It is also easy to see that this anisotropy increases with the
value ApqApq of the space rotation.

Because the viscous strengths αik are anisotropic, the
equilibrium pressure p0=−qc2 and the true pressure p inside
the medium are different. The true pressure is

p =
μc

12π

(

AikA
ik +

1

2c2
FkF

k

)

, (77)

∗The equation of state of a medium is the relation between the pressure
p inside the medium and its density q. In a non-viscous medium or where
the viscous strengths are isotropic, the true pressure p is the same as the
equilibrium pressure p0. The equation of state of a dust medium has the
form p=0. Ultra-relativistic gases have the equation of state p= 1

3
qc2.

The equation of state of matter inside atomic nuclei is p= qc2. Vacuum and
μ-vacuum have the equation of state p=−qc2, see [5].
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which gives the equation of state for time density fields

p =
1

3
qc2. (78)

Finally, we write the strength tensor Uik= phik−βik of
a time density field in the form

Uik =
1

3
qc2hik − βik . (79)

So, we can conclude for the physical properties of time
density fields:

1. In general, a time density field is a non-stationary dis-
tributed medium, because its density may be q 6=const.
The field becomes stationary q=const under stationary
space rotation Aik=const, and stationary gravitational
inertial force Fi= const;

2. A time density field bears momentum, because J i=
=− μ

2πc
FkA

ik 6=0. So, the field can transfer impulse.

The field does not transfer impulse J i=0, if the space
does not rotate Aik=0. The absence of gravitation
does not affect the field’s transfer of impulse, because
the “inertial” part of the force Fi remains unchanged
even in the absence of gravitational fields;

3. A time density field is an emitting medium J i 6=0 in a
non-holonomic (rotating) space. In a holonomic (non-
rotating) space the field does not produce radiations;

4. A time density field is a viscous medium. The viscosity
αik (75), derived from non-zero rotation of the space
or from gravitational inertial force, is anisotropic. The
anisotropy βik increases with the space rotation speed.
The field is viscous anisotropic anyhow, because its
viscous strengths would be αik=0 and βik=0 only
if both Aik=0 and Fi=0. But in this case the field
density would be q=0, so the field itself is not there;

5. Therefore the equilibrium pressure p0 does not possess
a physical sense for time density fields; only the true
pressure is real p= p0− 13α;

6. The equation of state for time density fields is p= 1
3 qc

2

(78) indicating that such fields are in the state of an
ultrarelativistic gas — at positive density of the med-
ium its inner pressure becomes positive, the medium
is compressed.

8 Action of the field without sources

According to §27 of The Classical Theory of Fields [1],
an elementary action for a whole system consisting of an
electromagnetic field and a single charged particle, which
are located in a pseudo-Riemannian space, contains three
parts∗

∗In accordance with the least action principle, this action must have
a minimum, so the integral of the action between a pair of world-points

dS = dSm+dSmf+dSf =

= m0cds+
e

c
Aαdxα+aFαβ FαβdV dt ,

(80)

where Aα is the four-dimensional electromagnetic field po-
tential, Fαβ =∇αAβ−∇βAα is the electromagnetic field
tensor, dV = dxdydz is an elementary thee-dimensional vol-
ume filled with this field.

The first term Sm is “that part of the action which depends
only on the properties of the particles, that is, just the action
for free particles. . . . The quantity Smf is that part of the
action which depends on the interaction between the particles
and the field. . . . Finally Sf is that part of the action which
depends only on the properties of the field itself, that is, Sf
is the action for a field in the absence of charges”.

Because the action Sf must depend only on the field
properties, the action must be taken over the space volume,
filled with the field. The action must be scalar: only the 1st
field invariant J1=Fαβ Fαβ has this property. The 2nd field
invariant J2=Fαβ F∗αβ is pseudoscalar, not scalar, leading
to the detailed discussion in Landau and Lifshitz.

“The numerical value of a depends on the choice of
units for measurement of the field. . . . From now on we
shall use the Gaussian system of units; in this system a is a
dimensionless quantity equal to 1

16π
”.

According to §27 of The Classical Theory of Fields
we have dSf = aFαβ FαβdV dt= 1

16πc
Fαβ FαβdΩ, where

dΩ= cdtdV = cdtdxdydz is an elementary space (four-
dimensional) volume. So the action (80) takes the final form

dS = m0cds+
e

c
Aαdx

α +
1

16πc
Fαβ F

αβdΩ . (81)

According to this consideration, we write an elementary
action for the whole system consisting of a time density field
and a single mass-bearing particle, which falls freely along
time lines in a pseudo-Riemannian space, as follows

dS = dSm + dSmt = m0cds+ amtFαβF
αβdΩ =

= m0c bαdx
α + amtFαβF

αβdΩ ,
(82)

where Fαβ is the time density field tensor, amt is a constant
consisting of other fundamental constants.

The first term Sm is that part of the action for the in-
teraction between the particle and the time density field
carrying it into motion along time lines. The second term

and the action itself must be positive. A negative action could give rise
to a quantity with arbitrarily ”large” negative values, which cannot have a
minimum. Because in The Classical Theory of Fields Landau and Lifshitz
take a pseudo-Riemannian space with the signature (−+++), they write in
§3 that “. . . the clock at rest always indicates a greater time interval than the
moving one”. Therefore they put “minus” before the action. To the contrary,
we stick to a pseudo-Riemannian space with Zelmanov’s signature (+−−−),
because in this case three-dimensional observable impulse is positive. In
a space with such a signature, a regular observer takes his own flow of
observable time positive always, dτ > 0. Any particle, moving from past
into future, has also a positive count of its own time coordinate dt> 0 with
respect to the observer’s clock. Therefore we put “plus” before the action.
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Smt, depending only on the field properties, is the action
for the field in the absence of its sources. In the absence
of time density fields the second term Smt is zero, so only
Sm=m0cds remains here. A time density field is absent if
the space is free of rotation Aik=0 and gravitational inertial
forces Fi=0, therefore if the conditions g0i=0 and g00=1
are true. This situation is possible in a pseudo-Riemannian
space with a unit diagonal metric, which is the Minkowski
space of the Special Theory of Relativity, where there is
no gravitational field and no rotation. But in considering real
space, we are forced to take a time density field into account.
So we need to consider the terms Sm and Smt together.

The constant amt, according to its dimension, is the same
as the constant μ in the energy-momentum tensor of time
density fields, taken with the numerical coefficient a= 1

16π
,

in the Gaussian system of units.
As a result, we obtain the action (82) in the final form

dS = dSm+dSmt = m0c bαdx
α+

μ

16π
FαβF

αβdΩ . (83)

Because an action for a system is expressed through La-
grange’s function L of the system as dS=Ldt, we take the
action dSmt in the form dSmt=

μc
16π

FαβF
αβdV dt=Ldt,

for the Lagrangian of an elementary volume dV = dxdydz
of the field. We therefore obtain the Lagrangian density in
time density fields

Λ =
μc

16π
FαβF

αβ =
μ

4πc

(

AikA
ik −

1

2c2
FiF

i

)

. (84)

The term AikA
ik here, being expressed through the space

rotation angular velocity pseudovector Ω∗i, is

AkmA
km = εkmnΩ

∗nAkm = 2Ω∗nΩ
∗n, (85)

because εnkmΩ∗n= 1
2 ε

npqεnkmApq=
1
2

(
δ
p
kδ
q
m−δ

q
kδ
p
m

)
Apq=

=Akm and Ω∗n= 1
2 εnkmA

km. So the space rotation plays
the first violin, defining the Lagrangian density in time den-
sity fields. Rotation velocities in macro-processes are incom-
mensurably small in comparison with rotations of atoms and
particles. For instance, in the 1st Bohr orbit in an atom of
hydrogen, measuring the value of Λ in the units of the energy-
momentum constant μ, we have Λ' 9.1×1021μ. On the
Earth’s surface near the equator the value is Λ' 2.8×10−20μ,
so it is in order of 1042 less than in atoms. Therefore, because
the Lagrangian of a system is the difference between its
kinetic and potential energies, we conclude that time density
fields produce their main energy flux in atoms and sub-atomic
interactions, while the energy flux produced by the fields of
macro-processes is negligible.

9 Plane waves of the field under gravitation is neglected.
The wave pressure

In general, because the electric and the magnetic strengths
of a time density field are Ei=− 1c2

Fi and Hik=−1
c
Aik,

the chr.inv.-vector of its momentum density J i (70) can be
written as follows

J i = −
μ

2πc
FkA

ik = −
μc

4π
EkH

ik. (86)

We are going to consider a particular case, where the
field depends on only one coordinate. Waves of such a field
traveling in one direction are known as plane waves.

We assume the field depends only on the axis x1=x, so
only the component J1=− μ

2πc
FkA

1k of the field’s chr.inv.-
momentum density vector is non-zero. Then a plane wave of
the field travels along the axis x1=x. Assuming the space
rotating in xy plane (only the components A12=−A21 are
non-zeroes) and replacing the tensor Aik with the space
rotation angular velocity pseudovector Ω∗m in the form
εmikΩ∗m=

1
2 ε

mikεmpqA
pq= 1

2

(
δipδ

k
q−δ

k
p δ

i
q

)
Apq=Aik, we

obtain

J1 = −
μ

2πc
F2A

12 = −
μ

2πc
F2 ε

123Ω∗3 . (87)

It is easy to see that while a plane wave of the field travels
along the axis x1=x, the field’s “electric” and “magnetic”
strengths are directed along the axes x2= y and x3= z, i. e.
orthogonal to the direction the wave travels. Therefore waves
travelling in time density fields are transverse waves.

Following the arguments of Landau and Lifshitz in §47
of The Classical Theory of Fields [1], we define the wave
pressure of a field as the total flux of the field energy-
momentum, passing through a unit area of a wall. So the
pressure Fi is the sum

Fi = Tikn
k + T ′ikn

k (88)

of the spatial components of the energy-momentum tensor
Tαβ in a wave, falling on the wall, and of the energy-
momentum tensor T ′αβ in the reflected wave, projected onto
the unit spatial vector ~n(k) orthogonal to the wall surface.

Because the chr.inv.-strength tensor of a field is Uik=
= c2hiαhkβ T

αβ = c2Tik [2], we obtain

Fi =
1

c2
(
Uikn

k + U ′ikn
k
)
, (89)

where Uik= c2Tik and U ′ik= c
2T ′ik are the chr.inv.-strength

tensors in the falling wave and in the reflected wave. So the
three-dimensional wave pressure vector Fi has the property
of chronometric invariance.

Using our formulae for the density q (68) and the strength
tensor Uik (71) obtained for time density fields, we are going
to find the pressure a wave of such field exerts on a wall.

We consider the problem in a weak gravitational field,
assuming its potential w and the attracting force of gravity
negligible. We can do this because formulae (68) and (71)
contain gravitation in only higher order terms. So the space
rotation plays the first violin in the wave pressure Fi in
time density fields, gravitational inertial forces act there only
because of their inertial part.
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A plane wave travels along a single spatial direction: we
assume axis x1=x. In this case the chr.inv.-field strength
tensor Uik has the sole non-zero component U11. All the
other components of the strength tensor Uik are zero, which
simplifies this consideration.

We assume the space rotating around the axis x3= z (the
rotation is in the xy-plane) at a constant angular velocity
Ω. In this case A12=−A21=−Ω, A13=0, A23=0, so the
components of the rotation linear velocity vi=Aikx

k are
v1=−Ωy, v2=Ωx, v3=0. Then the components of the act-

ing gravitational inertial force will be F1=−
∂v1
∂t

=Ω
∂y
∂t
=

=Ωv2=Ω
2x, F2=−

∂v2
∂t

=Ω2y, F3=0. Because in this

case AikAik=2A12A12=2Ω2 and A1mAm∙∙1 =A1mA
mnh1n

=A12A
21h11=−Ω2h11, we obtain

q =
μ

4πc

[

2Ω2 +
1

2c2
Ω4
(
x2 + y2

)
]

, (90)

U11=
μc

4π

[

2Ω2h11−
1

c2
Ω4x2+

1

2c2
Ω4
(
x2+y2

)
h11

]

. (91)

We assume a coefficient of the reflection < as the ratio
between the density of the field energy q ′ in the reflected
wave to the energy density q in the falling wave. Actually,
because q ′=<q, the reflection coefficient < is the energy
loss of the field after the reflection.

We assume x=x0=0 at the reflection point on the
surface of the wall. Then we have U11= qc

2h11, which,
after substituting into (89), gives the pressure

F1 = (1 + <) qh11n
1 (92)

that a plane wave of a time density field exerts on the wall.
To bring this formula into final form in a Riemannian

space becomes a problem, because the coordinate axes are
curved there, and inhomogeneous. For this reason we cannot
define the angles between directions in a Riemannian space
itself, the angle of incidence and the angle of reflection of a
wave for instance. At the same time, to consider this problem
in the Minkowski space of the Special Theory of Relativity,
as done by Landau and Lifshitz for the pressure of plane
electromagnetic waves [1], would be senseless — because in
Minkowski space we have g00=1 and g0i=0, then Fi=0
and Aik=0, which implies no time density fields there.

To solve this problem correctly for a Riemannian space,
let us introduce a locally geodesic reference frame, following
Zelmanov. We therefore introduce a locally geodesic refer-
ence frame at the point of reflection of a wave on the surface
of a wall. Within infinitesimal vicinities of any point of such
a reference frame the fundamental metric tensor is

g̃αβ = gαβ+
1

2

(
∂2g̃αβ
∂x̃μ∂x̃ν

)

(x̃μ−xμ)(x̃ν−xν)+ . . . , (93)

i. e. its components at a point, located in the vicinities, are
different from those at the point of reflection to within only

the higher order terms, values of which can be neglected.
Therefore, at any point of a locally geodesic reference frame
the fundamental metric tensor can be considered constant,
while the first derivatives of the metric (the Christoffel sym-
bols) are zero.

As a matter of fact, within infinitesimal vicinities of any
point located in a Riemannian space, a locally geodesic
reference frame can be set up. At the same time, at any
point of this locally geodesic reference frame a tangential
flat Euclidean space can be set up so that this reference
frame, being locally geodesic for the Riemannian space, is
the global geodesic for that tangential flat space.

The fundamental metric tensor of a flat Euclidean space
is constant, so the values of g̃μν , taken in the vicinities of a
point of the Riemannian space, converge to the values of the
tensor gμν in the flat space tangential at this point. Actually,
this means that we can build a system of basis vectors ~e(α),
located in this flat space, tangential to curved coordinate lines
of the Riemannian space.

In general, coordinate lines in Riemannian spaces are
curved, inhomogeneous, and are not orthogonal to each other
(if the space is non-holonomic). So the lengths of the basis
vectors may sometimes be very different from unity.

We denote a four-dimensional vector of infinitesimal dis-
placement by d~r=(dx0, dx1, dx2, dx3), so that d~r=~e(α)dxα,
where components of the basis vectors ~e(α) tangential to the
coordinate lines are ~e(0)={e

0
(0), 0, 0, 0}, ~e(1)={0, e

1
(1), 0, 0},

~e(2)= {0, 0, e
2
(2), 0}, ~e(3)= {0, 0, 0, e

2
(3)}. The scalar product

of the vector d~r with itself is d~rd~r= ds2. On the other hand,
the same quantity is ds2= gαβ dxαdxβ . As a result we have
gαβ =~e(α)~e(β)= e(α)e(β)cos (x

α;xβ). So we obtain

g00 = e2(0) , g0i = e(0)e(i) cos (x
0;xi) , (94)

gik = e(i)e(k) cos (x
i;xk) . (95)

The gravitational potential is w= c2(1−
√
g00). So the

time basis vector ~e(0) tangential to the time line x0= ct,
having the length e(0)=

√
g00=1− wc2 , is smaller than unity

the greater is the gravitational potential w.
The space rotation linear velocity vi and, according to it,

the chr.inv.-metric tensor hik are

vi = −c e(i) cos (x
0;xi) , (96)

hik=e(i)e(k)

[
cos(x0;xi)cos(x0;xk)−cos(xi;xk)

]
. (97)

Harking back to the formula for the pressure F1 (92), that
a plane wave of a time density field traveling along the axis
x1=x exerts on a wall, we have

F1=(1+<) q
[
cos2(x0;x1)+1

]
n(1)e

2
(1) cos(x

1;n1), (98)

because according to the signature (+−−−), the spatial co-
ordinate axes in the pseudo-Riemannian space are directed
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opposite to the same axes xi in the tangential flat Euclidean
space.

We denote cos (x1;n1)= cos θ, where θ is the angle of
reflection. Assuming e(1)=1, n(1)=1, v(1)= v we obtain

the field density q= μ
2πc

Ω2
(
1+ v2
4c2

)
, so that the wave pres-

sure FN=F1 cos θ normal to the wall surface is

FN = (1 + <)

(

1 +
v2

c2

)

q cos2 θ , (99)

which, for low rotational velocities gives∗

FN = (1 + <) q cos
2 θ , q =

μ

2πc
Ω2. (100)

Most of rotations we observe are slow. The maximum of
the known velocities is that for an electron in the 1st Bohr
orbit (vb= 2.18×108 cm/sec). Therefore the ratio v2

c2
, taking

reaches a maximum numerical value of only 5.3×10−5.
The presence of wave pressure in time density fields

provides a way of measuring the numerical value of the
energy-momentum constant μ, specific for such fields. For
instance, a gyroscope, rotating around the axis x3= z, will
be a source of circular waves of the field of time density
propagating in the xy-plane. In this case the chr.inv.-field
strength tensor Uik has the non-zero components U11, U12,
U21. It is easy to calculate that the normal wave pressure of
a circular wave will be different from the pressure of a plane
wave (99) in only higher order terms. The same situation
applies for spherical waves†. Therefore the normal pressure
exerted by the waves on a wall orthogonal to the direction
x1=x, shall be

FN =
μ

2πc
(1 + <)Ω2 (101)

to within the higher order terms withheld. Rotations at 6×103

rpm (Ω= 100 rps) are achievable in modern gyroscopes, ro-
tations in atoms are much greater, taking their maximum
angular velocity to 4.1×1016 rps in the 1st Bohr orbit. A
torsion balance registers forces, values of which are about
10−5 dynes. Then in accordance with the formula (101), if
the wave pressure in an experiment is FN≈ 10−5 din/cm2,
derived from atomic transformations, the constant’s numer-
ical value will be in the order of μ≈ 10−28 gramme/sec.

Of course this is a crude supposition, based on the pre-
cision limits of measurement. Anyhow, the exact numerical
value of the energy-momentum constant μwill be ascertained
from special measurements with a torsion balance.

∗Formula (100) is the same as FN= (1+<) q cos2 θ — the normal
pressure exerted by a plane electromagnetic wave in Minkowski space, (see
§47 in The Classical Theory of Fields [1]). So the wave pressure of a time
density field depends on the reflection coefficient 06<6 1 in the same
way as the pressure of electromagnetic waves.

†In a real experiment such a gyroscope, being an arbitrarily thin disc,
will be a source of spherical waves of a time density field which propagates
in all spatial directions. The waves will merely have a maximum amplitude
in the gyroscope’s rotation plane xy.

10 Physical conditions in atoms

So we have obtained formulae for chr.inv.-projections of the
energy-momentum tensor of time density fields, which are
physically observable characteristics of such fields — the
energy density q (69), the momentum density J i (70), and
the strength tensor Uik (71).

The formulae must be valid everywhere, the inside of
atoms included. At the same time, physical conditions in
atoms are subject to Bohr’s quantum postulates. For an
external observer, an atom can be represented as a tiny
gyroscope, the rotations of which are ruled by the quantum
laws. The quantised rotations of electrons are sources of
a time density field, which shall be perceptible, because
of the super-rapid angular velocities up to the maximum
value in the 1st Bohr orbit Ωb= 4.1×1016 rps. This is a way
of formulating the physical conditions under which a time
density field exists in atoms.

Taking the above into account, we formulate the physical
conditions with postulates, which result from the application
of Bohr’s postulates to a time density field in atoms.

POSTULATE I A time density field in an atom remains un-
changed in the absence of external influences. The atom
radiates or absorbs waves of the time density field only in
transitions of the electrons between their stationary orbits.

Naturally, when an atom is in a stable state, all its elec-
trons are located in their orbits. Such a stable atom, having
a set of quantum orbital angular velocities, must possess
numerous quantum states of the time density field. The quan-
tum states are set up with the second postulate‡.

POSTULATE II A time density field is quantised in atoms.
Its energy density and the momentum density take quantum
numerical values which, in accordance with the quantization
of electron orbits, in n-th stationary orbit are

qn =
μ

2πc

(

1 +
v2n
4c2

)
v2n
R2n

, (102)

‡To introduce the second postulate we assume a reference frame in
an atom, where an electron rotates around the nucleus at the angular
velocity Ω in the xy-plane. Then A12=−A21=−Ω, A13=0,
A23=0. So out of all components of Ω∗i only Ω∗3 is non-zero: Ω∗3=

= 1
2
ε3mnAmn=

1
2

(
ε312A12+ε

321A21

)
= ε312A12=

e312√
h
A12=−

Ω√
h

and Ω∗3=
1
2
ε3mnA

mn= ε312A
12= e312

√
hA12=−

√
hΩ. In cal-

culating h=det ‖hik‖, it should be noted that the components of
the space rotation linear velocity vi=Aikx

k in this reference frame
are v1=−Ωy , v2=Ωx, v3=0. We obtain h11=1+

1
c2
Ω2y2,

h22=1+
1
c2
Ω2x2, h12=−

1
c2
Ω2xy , h33=1. Then h= det ‖hik‖=

=h11h22−(h12)
2=1+ 1

c2
Ω2(x2+y2). In the 1st Bohr orbit we have

1
c2
Ω2(x2 + y2)= 1

c2
Ω2R2= 5.3×10−5, so we can set h≈ 1 to within

the higher order terms withheld. Harking back to the formulae for Ω∗3 and
Ω∗3, we see that the space rotates in atoms at a constant angular velocity
Ω∗3=−Ω, Ω∗3=−Ω, then in the assumed reference frame we have

AikA
ik=2A12A

12=2Ω∗3Ω
∗3=2Ω2, and also F1 =−

∂v1
∂t
=Ω2x,

F2 =−
∂v2
∂t
=Ω2y , F3 =0, which is taken into account in Postulate II.
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Jn =
√
(JiJ i)n =

μ

2πc
Ω3nRn =

μ

2πc

v3n
R2n

. (103)

Calculating the field density in neighbouring levels n and
n+1, we take into account that the n-th orbital radius relates
to the 1st Bohr radius as Rn=n2Rb. As a result we obtain

q = qn−qn+1=

=
μ

2πc
Ω2b

{[
1

n6
−

1

(n+1)6

]

+
v2b
4c2

[
1

n8
−

1

(n+1)8

]}

,
(104)

so the difference between the field density in the neighbour
levels is inversely proportional to n7, and n� 1 gives

q = qn − qn+1 ≈
1

n7
3μ

πc
Ω2b , (105)

and q→ 0 for quantum numbers n→∞.
Theoretically, the non-zero field density, q 6=0, must

result in a flux of the field momentum (this flux is set up by
the field strength tensor Uik= 1

3 qc
2hik−βik). So an electron,

moving in its orbit, should be radiating a momentum flux of
the time density field (waves of the field). Because of the
momentum loss in the radiation, the electron’s own angular
velocity would decrease, contradicting the experimental facts
on the stability of atoms in the absence of external influences.
To obviate this contradiction the third postulate is,

POSTULATE III An atom radiates a quantum portion of mo-
mentum flux of a time density field, when an electron transits
from the n-th quantum level to the (n+1)-th level in the atom.
When an electron transits from the (n+1)-th level to the n-th
level, the atom absorbs the same portion of the momentum
flux, which is

U11=U
n
11−U

n+1
11 =

=
μc

2π
Ω2b

{[
1

n6
−

1

(n+1)6

]

−
v2b
4c2

[
1

n8
−

1

(n+1)8

]}

.
(106)

We assume in this formula that the atom radiates/absorbs
a plane wave of a time density field, which travels along the
x1=x axis. Taking this formula with n� 1, we have

U11 = Un11 − U
n+1
11 ≈

1

n7
3μc

π
Ω2b , (107)

which, for quantum numbers n→∞, gives U11→ 0. So for
quantum numbers n� 1 we have the ratio

U11 = qc2. (108)

In accordance with the correspondence principle, any
result of quantum theory at high quantum numbers must
coincide with the relevant classical results; any difference
being imperceptible. We therefore take into consideration the
formulae for q (69) and Uik (71) in atoms, obtained by the
methods of the classical theory of fields, under the condition

h≈ 1. As a result we get the formulae q = μ
2πc

Ω2
(
1+ v2

4c2

)

≈ μ
2πc

Ω2 and Uik=
μc
2π
Ω2
(
h11− v2

2c2
+ v2
4c2

h11

)
≈ μc
2π
Ω2,

leading to the same relationship U11= qc
2 that quantum

theory has given (108). So the correspondence principle is
valid for time density fields in atoms.

Postulate III has two consequences:

CONSEQUENCE I An atom undergoing excitation radiates the
momentum flux of a time density field, producing a positive
wave pressure in the field.

Calculating this positive pressure, orthogonal to the sur-
face of a wall (here θ is the angle of reflection, < is the
reflection coefficient) for quantum numbers n� 1, we obtain

FN = (1 + <) q cos
2 θ . (109)

CONSEQUENCE II An atom undergoing relaxation absorbs
the momentum flux of a time density field. In this case the
wave pressure in a time density field near the atom becomes
negative.

As a matter of fact, this negative pressure around a
relaxing atom should be

FN = − (1 + <) q cos
2 θ . (110)

That is, in accordance with this theory, excitation of
atoms causes radiation of waves of the time density field.
An effect derived from the radiation should be the positive
pressure of the waves. On the other hand, relaxing atoms,
absorbing waves of the time density field, should be sources
of negative wave pressure.

It is interesting that this effect is opposite to that which
atoms produce in an electromagnetic field — it is well-known
that relaxing atoms radiate electromagnetic waves, so they
produce a positive wave pressure in an electromagnetic field.

The predicted repulsion/attraction produced by atomic
processes, being outside the actions of electromagnetic or
gravitational fields, are peculiarities of only the theory of the
time density field herein. So the given conclusions open up
wide possibilities for checking the whole theory in practice.

In particular, for instance, if a torsion balance registered
the repulsing/attracting wave pressure FN derived from sub-
atomic excitation/relaxation processes, we will have obtained
the numerical value of the energy-momentum constant μ for
time density fields. After substituting q (105) into the wave
pressure FN, assuming cos θ=1, we arrive at a formula for
experimental calculations

μ =
πcn7

3Ω2b

FN
(1 + <)

. (111)

A torsion balance registered such forces at ∼10−5 dynes
in prior experiments. The torsion balance had a 2-in long
nylon thread, 15μm in diameter, and a 3-in long wooden
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balance suspended in the ratio 8:1 of the length. The balance
had a reflecting shield at the end of the long arm and a
lead load on the short arm. The torsion balance was located
inside a box isolated from air convection and light radiation.
Chemical reactions of the opposite directions, processes of
crystallization and dissolution were sources of a time density
field acting on the torsion balance. Prof. Kyril Stanyukovich
and Dr. Larissa Borissova assisted me in the experiments that
were repeated a number of time during a period of 2 years in
Moscow (Russia). The balance underwent deviations of up
to 90◦ in directions predicted by this theory.

Even heating up bodies and cooling down bodies gave
the same thermal influence, moving the balance in opposite
directions, according to the theory, so the discovered phe-
nomenon is outside thermal influences on torsion balance.

The techniques and measurements are very simply, and
could therefore be reproduced in any physical laboratory.
Anyway the experiments should be continued, with the aim
of determining the exact numerical value of the energy-
momentum constant μ for time density fields through for-
mula (111).

11 Conclusions

Let us collect the main results of this analysis.
By projecting an interval of four-dimensional coordinates

dxα onto the time line of an observer, who accompanies his
references (bi=0), we obtain an interval of physical time
dτ = 1c bαdx

α he observes. Observations at the same spatial
point give dτ =

√
g00 dt, so the operator of projection on time

lines bα defines observable inhomogeneity of time references
in the accompanying reference frame.

So, observable inhomogeneities of time references can
be represented as a field of “density” of observable time τ .
The projecting operator bα is the field “potential”, chr.inv.-
projections of which are ϕ=1 and qi=0.

The field tensor Fαβ =∇α bβ−∇β bα for time density
fields was introduced as well as Maxwell’s electromagnetic
field tensor. Its chr.inv.-projections Ei=− 1

c2
F i and Hik=

=−2
c
Aik are derived from the gravitational inertial force

and rotation of the space. We referred to the Ei and Hik
as the “electric” and “magnetic” observable components of
the time density field, respectively. We also introduced the
field pseudotensor F ∗αβ , dual of the Fαβ , and also the field
invariants.

Equations of motion of a free mass-bearing particle, being
expressed through the Ei and Hik, group them into an acting
force of a form similar to the Lorentz force. In particular if the
particle moves only along time lines, it moves solely because
of the “magnetic” component Hik 6=0 of a time density field.
In other words, the space rotation Aik effectively “screws”
particles into the time lines. Because observable particles
with the whole spatial section move from past into future,

a “starting” non-holonomity, Aik 6=0, will exist in our real
space that is a “primordial non-orthogonality” of the real
spatial section to the time lines. Other physical conditions
(gravitation, rotation, etc.) are only augmentations that in-
tensify or reduce this starting-rotation of the space.

A system of equations of a time density field consists of
Lorentz’s condition ∇σ bσ =0, two groups of Maxwell-like
equations, ∇σFασ = 4πc jα and ∇σF ∗ασ =0, and the con-
tinuity equation ∇σ jσ =0, which define the main properties
of the field and its-inducing sources. All the equations have
been deduced here in chr.inv.-form.

The energy-momentum tensor Tαβ we have deduced for
time density fields has the following observable projections:
chr.inv.-scalar q of the field density; chr.inv.-vector J i of the
field momentum density, and chr.inv.-tensor U ik of the field
strengths. Their specific formulas define physical properties
of such fields:

1. A time density field is non-stationary distributed med-
ium q 6= const, it becomes stationary, q= const, under
stationary rotation, Aik= const, of the space and stat-
ionary gravitational inertial force Fi= const;

2. The field bears momentum (J i 6=0 in the general case),
so it can transfer impulse;

3. In a rotating space, Aik 6=0, the field is an emitting
medium;

4. The field is viscous. The viscosity αik is anisotropic.
The anisotropy increases with the space rotation speed;

5. The equation of state of the field is p= 1
3 qc

2, so the
field is like an ultrarelativistic gas: at positive density
the pressure is positive — the medium compresses.

For a plane wave of the field considered, we have con-
cluded that waves of the time density fields are transverse.
The wave pressure in the fields is derived from atomic and
sub-atomic transformations mainly, because of huge rotat-
ional velocities. Exciting atoms produces a positive wave
pressure in the time density field, while the wave pressure
resulting from relaxing atoms is negative. This effect is oppo-
site to that of the electromagnetic field — relaxing atoms ra-
diate γ-quanta, producing a positive pressure of light waves.

Experimental tests have a basis in the predicted repulsion/
attraction, produced by sub-atomic processes, being outside
of known effects of electromagnetic or gravitational fields,
which are peculiarities only of this theory. A torsion balance
registered such forces at ∼10−5 dynes in prior experiments.
The registered repulsion/attraction is outside thermal effects
on the torsion balance.

The results we have obtained in this study imply that
even if inhomogeneity of time references is a tiny correction
to ideal time, a field of the inhomogeneities that is a time
density field, manifest as gravitational and inertial forces, has
a more fundamental effect on observable phenomena, than
those previouly supposed.
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This research shows that gravitational waves and gravitational inertial waves are linked
to a special structure of the Riemann-Christoffel curvature tensor. Proceeding from
this a classification of the waves is given, according to Petrov’s classification of
Einstein spaces and gravitational fields located therein. The world-lines deviation
equation for two free particles (the Synge equation) is deduced and that for two force-
interacting particles (the Synge-Weber equation) in the terms of chronometric invariants
— physical observable quantities in the General Theory of Relativity. The main result
drawn from the deduced equations is that in the field of a falling gravitational wave
there are not only spatial deviations between the particles but also deviations in the
time flow. Therefore an effect from a falling gravitational wave can manifest only
if the particles located on the neighbouring world-lines (both geodesics and non-
geodesics) are in motion at the initial moment of time: gravitational waves can act
only on moving neighbouring particles. This effect is purely parametric, not of a
resonance kind. Neither free-mass detectors nor solid-body detectors (the Weber pigs)
used in current experiments can register gravitational waves, because the experimental
statement (freezing the pigs etc.) forces the particles of which they consist to be at
rest. In aiming to detect gravitational waves other devices should be employed, where
neighbouring particles are in relative motion at high speeds. Such a device could, for
instance, consist of two parallel laser beams.
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1 Introduction and advanced results

The fact that gravitational waves have not yet been discover-
ed has attracted the attention of experimental physicists over
the last decade. Initial interest in gravitational waves arose
in 1968–1971 when Joseph Weber, professor at Maryland
University (USA), carried out his first experiments with

gravitational antennae. He registered weak signals, in com-
mon with all his independent antennae, which were separated
by up to 1000 km [1]. He supposed that some processes at
the centre of the Galaxy were the origin of the registered
signals. However such an interpretation had a significant
drawback: the frequency of the observed signals (more than
5 per month) meant that the energy spent by the signal’s
source, located at the centre of the Galaxy, should be more
than M�c

2×103 per annum (M� is the mass of the Sun,
c is the velocity of light). This energy expenditure is a
fantastic value, if we accept today’s bounds on the age of
the Galaxy [2, 3, 4].

In 1972 the experiments were approbated by the a com-
mon group of researchers working at Moscow University
and the Institute of Space Research (Moscow, Russia). Their
antennae were similar to Weber’s antennae, but they were
separated by 20 km. The registering system in their antennae
was better than that for the Weber detectors, making the
whole system more sensitive. But. . . 20 days of observations
gave no signals that would be more than noise [5].

The experiments were continued in 1973–1974 at labo-
ratories in Rochester University, Bell Company, and IBM
in USA [6, 7], Frascati, Münich, Meudon (Italy, Germany,
France) [8], Glasgow University (Scotland) [9] and other
laboratories around the world. The experimental systems
used in these attempts were more sensitive than those of
the Weber detectors, but none registered the Weber effect.

Because theoretical considerations showed that huge
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gravitational waves should be accompanied by other radia-
tions, the researchers conducted a search for radio outbreaks
[10] and neutron outbreaks [11]. The result was negative. At
the same time it was found that Weber’s registered effects
were related to solar and geomagnetic activities, and also to
outbreaks of space beams [12, 13].

The search for gravitational waves has continued. Higher
precision and more sensitive modifications of the
Weber antennae (solid detectors of the resonance kind) are
used in this search. But even the second generation of Weber
detectors have not led scientists to the expected results.
Besides gravitational antennae of the Weber kind, there are
antennae based on free masses. Such detectors consist of two
freely suspended masses located far from one another, within
the visibility of a laser range-finder. Supposed deviations of
the masses, derived from a gravitational wave, should be
registered by the laser beam.

So gravitational waves have not been discovered in ex-
periments. Nonetheless it is accepted by most physicists that
the discovery of gravitational waves should be one of the
main verifications of the General Theory of Relativity. The
main arguments in support of this thesis are:

1. Gravitational fields bear an energy described by the
energy-momentum pseudotensor [14, 15];

2. A linearized form of the equations of Einstein’s equa-
tions permits a solution describing weak plane gravi-
tational waves, which are transverse;

3. An energy flux, radiated by gravitational waves, can
be calculated through the energy-momentum pseudo-
tensor of the field [14, 15];

4. Such waves, because of their physical nature, are de-
rived from instability of components of the fundam-
ental metric tensor (this tensor plays the part of the
four-dimensional gravitational potential).

These theoretical considerations were placed into the
foreground of the theory for detecting gravitational waves,
the main part in the theory being played by the theoretical
works of Joseph Weber, the pioneer and famous expert in the
detection of gravitational waves [16]. His main theoretical
claim was that he deduced equations of deviation of world-
lines — equations that describe relative oscillations of two
non-free particles in a gravitational field, particles which are
connected by a force of non-gravitational nature. Equations
of deviation of geodesic lines, describing relative oscillations
of two free particles, was obtained earlier by Synge [17].
In general, relative oscillations of test-particles, both free
particles and linked (interacting) particles, are derived from
the space curvature∗, given by the Riemann-Christoffel four-
dimensional tensor. Equality to zero of all its components in
an area is the necessary and sufficient condition for the four-

∗As it is well-known, the space curvature is linked to the gravitational
field by the Einstein equations.

dimensional space (space-time) to be flat in the area under
consideration, so no gravitational fields exist in the area.

Thus the Synge-Weber equation provides a means for the
calculation of the relative oscillations of test-particles, de-
rived from the presence of the space curvature (gravitational
fields). Weber proposed a gravitational wave detector con-
sisting of two particles connected by a spring that imitates
a non-gravitational interaction between them. In his analysis
he made the substantial supposition that the under action of
gravitational waves the model will behave like a harmonic
oscillator where the forcing power is in the Riemann-
Christoffel curvature tensor. Weber made calculations and
theoretical propositions for the behaviour of this model. This
model is known as the quadrupole mass-detector [17].

The Weber calculations served as theoretical grounds for
creating a whole industry, the main task of which has been
the building of resonance type detectors, known as the Weber
detectors (the Weber pigs). It is supposed that the body of a
Weber detector, having cylindrical form, should be deformed
under the action of a gravitational wave. This deformation
should lead to a piezoelectric effect. Thus, oscillations of
atoms in the cylindrical pig, resulting from a gravitational
wave, could be registered. To amplify the effect in measure-
ments, the level of noise was lowered by cooling the cylinder
pigs down to temperature close to 0 K.

But the fact that gravitational waves have not yet been
discovered does not imply that the waves do not exist in
Nature. The corner-stone of this problem is that the Weber
theory of detection is linked to a search for waves of only a
specific kind — weak transverse waves of the space deforma-
tion (weak deformation transverse waves). However, besides
the Weber theory, there is the theory of strong gravitational
waves, which is independent of the Weber theory. Studies of
the theory of strong gravitational waves reached its peak in
the 1950’s.

Generally speaking, all theoretical studies of gravitational
waves can be split into three main groups:

1. The first group consists of studies whose task is to give
an invariant definition for gravitational waves. These
are studies made by Pirani [18, 19], Lichnerowicz [20,
21], Bel [22, 23, 24], Debever [25, 26, 27], Hély [28],
Trautman [29], Bondi [19, 30], and others.

2. The second group joins studies around a search for
such solutions to the Einstein equations for gravitation-
al fields, which, proceeding from physical considerat-
ions, could describe gravitational radiations. These are
studies made by Bondi [31], Einstein and Rosen [32,
33], Peres [34], Takeno [35, 36], Petrov [37], Kompa-
neetz [38], Robinson and Trautman [39], and others.

3. The task of works related to the third group is to study
gravitational inertial waves, covariant with respect of
transformations of spatial coordinates and also invar-
iant with respect of transformations of time [40, 41].
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The studies are based on the theory of physically
observable quantities — Zelmanov’s theory of chrono-
metric invariants [42, 43].

Most criteria for gravitational waves are linked to the
structure of the Riemann-Christoffel curvature tensor, hence
one assumes space curvature the source of such waves.

Besides these three main considerations, the theory of
gravitational waves is directly linked to the algebraical classi-
fication of spaces given by Petrov [37] (Petrov classification),
according to which three kinds for spaces (gravitational
fields) exist. They are dependent on the structure of the
Riemann-Christoffel curvature tensor:

1. Fields of gravitation of the 1st kind are derived from
island distributions of masses. An instance of such a
field is the that of a spherical distribution of matter (a
spherical mass island) described by the Schwarzschild
metric [44]. Spaces containing such fields approach a
flat space at an infinite distance from the gravitating
island.

2–3. Spaces containing gravitational fields of the 2nd and
3rd kinds cannot asymptotically approach a flat space
even, if they are empty. Such spaces can be curved
themselves, independently of the presence of gravitat-
ing matter. Such fields satisfy most of the invariant de-
finitions given to gravitational waves [40, 45, 46, 47].

It should be noted that the well-known solution that gives
weak plane gravitational waves [14, 15] is related to fields of
the sub-kind N of the 2nd kind by Petrov’s classification (see
p. 38). Hence the theory of weak plane gravitational waves is
a particular case of the theory of strong gravitational waves.
But, bseides this well-studied particular case, the theory of
strong gravitational waves contains many other approaches
to the problem and give other methods for the detection
of gravitational waves, different to the Weber detectors in
principle (see [48], for instance).

We need to look at the gravitational wave problem from
another viewpoint, by studying other cases of the theory of
strong gravitational waves not considered before. Exploring
such new approaches to the theory of gravitational waves is
the main task of this research.

At the present time there are many solutions of the gravi-
tational wave problem, but none of them are satisfactory. The
principal objective of this research is to extract that which is
common to every one of the theoretical approaches.

We will see further that this analysis shows, according to
most definitions given for gravitational waves, that a gravi-
tational field is assumed a wave field if the space where it
is located has the specific curvature described by numerous
particular cases of the Riemann-Christoffel curvature tensor.

Note that we mean the Riemannian (four-dimensional)
curvature, whose formula contains accelerations, rotations,
and deformations of the observer’s reference space. Analysis
of most wave solutions to the gravitational field equations

(Einstein’s equations) shows that such gravitational waves
have a deformation nature — they are waves of the space
deformations. The true nature of gravitational waves can be
found by employing the mathematical methods of chrono-
metric invariants (the theory of physically observable quant-
ities in the General Theory of Relativity), which show that the
space deformation (non-stationarity of the spatial observable
metric) consists of two factors:

1. Changes of the observer’s scale of distance with time
(deformations of the 1st kind);

2. Possible vortical properties of the acting gravitational
inertial force field (deformations of the 2nd kind).

Waves of the space deformations (of the 1st or 2nd
kind) underlie the detection attempts of the experimental
physicists.

Because such gravitational waves are expected to be
weak, one usually uses the metric for weak plane gravita-
tional waves of the 1st kind (which are derived from changes
of the distance scale with time).

The basis for all the experiments is the Synge-Weber
equation (the world-lines deviation equation), which sets
up a relation between relative oscillations of test-particles
and the Riemann-Christoffel curvature tensor. Unfortunately
Joseph Weber himself gave only a rough analysis of his
equation, aiming to describe the behaviour of a quadrupole
mass-detector in the field of weak plane gravitational waves.
In his analysis he assumed (without substantial reasons) that
space deformation waves of the 1st kind must produce a
resonance effect in a quadrupole mass-detector.

However, it would be more logical way, making no as-
sumptions or propositions, to solve the Synge-Weber equa-
tion aiming exactly. Weber did not do this, limiting himself
instead to only rough bounds on possible solutions.

In this research we obtain exact solutions to the Synge-
Weber equation in the fields of weak plane gravitational
waves. As a result we conclude that the expected relative
oscillations of test-particles, which originate in the space
deformation waves of the 1st kind, are not of the resonance
kind as Weber alleged from his analysis, but are instead
parametric oscillations.

This deviation between our conclusion and Weber’s false
conclusion is very important, because oscillations of a para-
metric kind appear only if test-particles are moving∗, whilst
in Weber’s statement of the experiment the particles are at
rest in the observer’s laboratory reference frame. All activi-
ties in search of gravitational waves using the Weber pigs
are concentrated around attempts to isolate the bulk pigs
from external affects — experimental physicists place them
in mines in the depths of mountains and cool them to 2 K,

∗In other words, if their velocities are different from zero. Parametric
oscillations merely add their effect to the relative motion of the moving
particles. Parametric oscillations cannot be excited in a system of particles
which are at rest with respect to each other and the observer.
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so particles of matter in the pigs can be assumed at rest with
respect to one another and to the observer. At present dozens
of Weber pigs are used in such experiments all around the
world. Experimental physicists spend billions and billions of
dollars yearly on their experiments with the Weber pigs.

Parametric oscillations do not appear in resting particles,
so the space deformation waves of the 1st kind can not excite
parametric oscillations in the Weber pigs. Therefore the grav-
itational waves expected by scientists cannot be registered by
solid-body detectors of the resonance kind (the Weber pigs).

Even so, everything said so far does not mean rejection of
the experimental search for gravitational waves. We merely
need to look at the problem from another viewpoint. We need
to remember the fact that our world is not a three-dimensional
space, but a four-dimensional space-time. For this reason we
need to turn our attention to the fact that relative deviations of
particles in the field of gravitational waves have both spatial
components and a time component. Therefore it would be
reasonable to propose an experiment by which, having a
detector under the influence of gravitational waves, we could
register both relative displacements of particles in the det-
ector and also corrections to time flow in the detector due to
the waves (the second task is much easier from the technical
viewpoint).

Here are two aspects for consideration. First, in solving
the Synge-Weber equations we must take its time component
into account; we must not neglect the time component.
Second, we should turn our attention to possible experimental
effects derived from gravitational waves of the 2nd (deform-
ation) kind, which appear if the acting gravitational inertial
force field is vortical, as it will be shown further that in
this case there is a field of the space rotation (stationary
or non-stationary)∗. Such experiments, aiming to register
gravitational waves of the 2nd kind are progressive because
they are much simpler and cheaper than the search for waves
of the 1st kind.

2 Theoretical bases for the possibility of registering
gravitational waves

Gravitational waves were already predicted by Einstein [37],
but what space objects could be sources of the waves is not
a trivial problem. Some link the possibility of gravitational
radiations to clusters of black holes. Others await powerful
gravitational radiations from super-dense compact stars of
radii close to their gravitational radii† r∼ rg . Although the

∗There are well-known Hafele-Keating experiments concerned with
displacing standard clocks around the terrestrial globe, where rotation of the
Earth space sensibly changes the measured time flow [49, 50, 51, 52].

†According to today’s mainstream concepts, the gravitational radius rg
of an object is that minimal distance from its centre to its surface, starting
from which this object is in a special state — collapse. One means that any
object going into collapse becomes a “black hole”. From the purely math-
ematical viewpoint, under collapse, the potential w of the gravitational field
of the object merely reaches its upper ultimate numerical value w = c2.

“black hole solution”, being under substantial criticism from
the purely mathematical viewpoint [53, 54, 55], makes
objects like black holes very doubtful, the existence of super-
dense neutron stars is outside of doubt between astronomers.
Gravitational waves at frequencies of 102–104 Hz should also
be radiated in super-nova explosions by explosion of their
super-dense remains [56].

The search for gravitational waves, beginning with
Weber’s observations of 1968–1971, is realized by using
gravitational antennae, the most promising of which are:

1. Solid-body detectors (the Weber cylinder pigs);

2. Antennae built on free masses.

A solid-body detector of the Weber kind is a massive
cylindrical pig of 1–3 metres in length, made with high
precision. This experiment supposes that gravitational waves
are waves of the space deformation. For this reason the waves
cause a piezoelectic effect in the pig, one consequence of
which is mechanical oscillations at low frequencies that can
be registered in the experiment. It is supposed that such
oscillations have a resonance nature. An immediate problem
is that such resonance in massive pigs can be caused by
very different external processes, not only waves of the
space deformation. To remove other effects, experimental
physicists locate the pigs in deep tunnels in mountains and
cool the pigs down to temperature close to 0 K.

An antenna of the second kind consists of two masses,
separated by Δl∼ 103–104 metres, and a laser range-finder
which should register small changes of Δl. Both masses are
freely suspended. This experiment supposes that waves of
the space deformation should change the distance between
the free masses, and should be registered by the laser range-
finder. It is possible to use two satellites located in the same
orbit near the Earth, having a range-finder in each of the
satellites. Such satellites, being in free fall along the orbit,
should be an ideal system for measurements, if it were not
for effects due to the terrestrial globe. In practice it would be
very difficult to divorce the effect derived from waves of the
space deformation (supposed gravitational waves) and many
other factors derived from the inhomogeneity of the Earth’s
gravitational field (purely geophysical factors).

The mathematical model for such an antenna consists of
two free test-particles moving on neighbouring geodesic lines
located infinitely close to one another. The mathematical
model for a solid-body detector (a Weber pig) consists of
two test-masses connected by a spring that gives a model
for elastic interactions inside a real cylindrical pig, in which
changes reveal the presence of a wave of the space deform-
ation.

From the theoretical perspective, we see that the possibi-
lity of registering waves of the space deformation (supposed
gravitational waves) is based on the supposition that particles
which encounter such a wave should be set into relative
oscillations, the origin of which is the space curvature. The

L. Borissova. Gravitational Waves and Gravitational Inertial Waves: A Theory and Experiments 33



Volume 2 PROGRESS IN PHYSICS July, 2005

strong solution for this problem had been given by Synge for
free particles [17]. He considered a two-parameter family
of geodesic lines xα=xα(s, v), where s is a parameter
along the geodesics, v is a parameter along the direction
orthogonal to the geodesics (it is taken in the plane normal
to the geodesics). Along each geodesic line v = const.

He introduced two vectors

Uα =
∂xα

∂s
, V α =

∂xα

∂v
, (2.1)

where α = 0, 1, 2, 3 denotes four-dimensional (space-time)
indexes. The vectors satisfy the condition

DUα

∂v
=
DV α

∂s
, (2.2)

(where D is the absolute derivative operator) that can be
easy verified by checking the calculation. The parameter
v is different for neighbouring geodesics; the difference
is dv. Therefore, studying relative displacements of two
geodesics Γ(v) and Γ(v+ dv), we shall study the vector
of their infinitesimal relative displacement

ηα =
∂xα

∂v
dv = V αdv . (2.3)

The deviation of the geodesic line Γ(v+ dv) from the
geodesic line Γ(v) can be found by solving the equation [17]

D2V α

ds2
=
D

ds

DV α

ds
=
D

ds

DUα

dv
=

=
D

dv

DUα

ds
+Rα ∙ ∙ ∙∙βγδU

βUδV γ ,

(2.4)

where Rα ∙ ∙ ∙∙βγδ is the Riemann-Christoffel curvature tensor.
This equality has been obtained using the relation [17]

D2V α

dsdv
−
D2V α

dvds
= Rα ∙ ∙ ∙∙βγδU

βUδV γ . (2.5)

For two neighbour geodesic lines, the following relation
is obviously true

DUα

ds
=
dUα

ds
+ ΓαμνU

μUν = 0 , (2.6)

where Γαβγ are Christoffel’s symbols of the 2nd kind. Then
(2.4) takes the form

D2V α

ds2
+Rα ∙ ∙ ∙∙βγδU

βUδV γ = 0 , (2.7)

or equivalently,

D2ηα

ds2
+Rα ∙ ∙ ∙∙βγδU

βUδηγ = 0 . (2.8)

It can be shown [17] that,

∂

∂s
(UαV

α)=Uα
DV α

ds
=Uα

DUα

dv
=
1

2

∂

∂v
(UαU

α) . (2.9)

The quantity UαU
α= gαβU

αUβ takes the numerical
value +1 for non-isotropic geodesics (substantial particles)
or 0 for isotropic geodesics (massless light-like particles).
Therefore

UαV
α = const . (2.10)

In the particular case where the vectors Uα and V α are
orthogonal to each to other at a point, where UαV α is true,
the orthogonality remains true everywhere along the Γ(v).

Thus relative accelerations of free test-particles are
caused by the presence the space curvature (Rα ∙ ∙ ∙∙βγδ 6=0),
and linear velocities of the particles are determined by the
geodesic equations (2.6).

Relative accelerations of test-particles, connected by a
force Φα of non-gravitational nature, are determined by the
Synge-Weber equation [16]. The Synge-Weber equation is
the generalization of equation (2.8) for that case where the
particles, each having the rest-mass m0, are moved along
non-geodesic world-lines, determined by the equation

DUα

ds
=
dUα

ds
+ ΓαμνU

μUν =
Φα

m0c2
. (2.11)

In this case the world-lines deviation equation takes the
form

D2ηα

ds2
+Rα ∙ ∙ ∙∙βγδU

βUδηγ =
1

m0c2
DΦα

dv
dv , (2.12)

which describes relative accelerations of the interacting
masses. In this case

∂

∂s
(Uαη

α) =
1

m0c2
Φαη

α, (2.13)

so the angle between the vectors Uα and ηα does not remain
constant for the interacting particles.

Equations (2.8) and (2.12) describe relative accelerations
of free particles and interacting particles, respectively. Then,
to obtain formulae for the velocity Uα it is necessarily to
solve the geodesic equations for free particles (2.6) and
the world-line equations for interacting particles (2.11). We
consider the equations (2.8) and (2.12) as a mathematical
base, with which we aim to calculate gravitational wave
detectors: (1) antennae built on free particles, and (2) solid-
body detectors of the resonance kind (the Weber detectors).

3 Invariant criteria for gravitational waves and their
link to Petrov’s classification

From the discussion in the previous paragraphs, one con-
cludes that a physical factor enforcing relative displacements
of test-particles (both free particles and interacting particles)
is the space curvature — a gravitational field wherein the
particles are located.

Here the next question arises. How well justified is the
statement of the gravitational wave problem?
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Generally speaking, in the General Theory of Relativity,
there is a problem in describing gravitational waves in a
mathematically correct way. This is a purely mathematical
problem, not solved until now, because of numerous diffic-
ulties. In particular, the General Theory of Relativity does
not contain a satisfactory general covariant definition for
the energy of gravitational fields. This difficulty gives no
possibility of describing gravitational waves as traveling
energy of gravitational fields.

The next difficulty is that when one attempts to solve
the gravitational wave problem using the classical theory
of differential equations, he sees that the gravitational field
equations (the Einstein equations) are a system of 10 non-
linear equations of the 2nd order written with partial de-
rivatives. No universal boundary conditions exist for such
equations.

The gravitational field equations (the Einstein equations)
are

Rαβ −
1

2
gαβR = −κTαβ + λgαβ , (3.1)

where Rαβ =Rσ ∙ ∙ ∙∙ασβ is Ricci’s tensor, R= gαβRαβ is the

scalar curvature, κ= 8πG
c2

is Einstein’s constant for gravi-
tational fields, G is Gauss’ constant of gravitation, λ is the
cosmological constant (λ-term).

When studying gravitational waves, one assumes λ=0.
Sometimes one uses a particular case of the Einstein equa-
tions (3.1)

Rαβ = κgαβ , (3.2)

in which case the space, where the gravitational field is
located, is called an Einstein space. If κ=0, we have an
empty space (without gravitating matter). But even in empty
spaces (κ=0) gravitational fields can exist, if the spaces are
of the 2nd and 3rd kinds by Petrov’s classification.

In accordance with the classical theory of differential eq-
uations, those gravitational fields that describe gravitational
waves are determined by solutions of the Einstein equations
with initial conditions located in a characteristic surface.
A wave is a Hadamard break in the initial characteristic
surface; such a surface is known as the wave front. The wave
front is determined as the characteristic isotropic surface
S {Φ(xα)= 0} for the Einstein equations. Here the scalar
function Φ satisfies the eikonal equation [20, 21]

gαβ∇α∇β = 0 , (3.3)

where ∇α denotes covariant differentiation with respect to
Riemannian coherence with the metric gαβ . The trajectories
along which gravitational waves travel (gravitational rays)
are bicharacteristics of the field equations, having the form

dxα

dτ
= gασ∇σΦ , (3.4)

where τ is a parameter along lines of the geodesic family.

But the general solution of the Einstein equations with
initial conditions in the hypersurface is unknown. For this
reason the next problem arises: it is necessary to formulate
an effective criterion which could determine solutions to the
Einstein equations with initial conditions in the characteristic
hypersurface.

There is another difficulty: there is no general covariant
d’Alembertian which, being in its clear form, could be in-
cluded into the Einstein equations.

Therefore, solving the gravitational wave problem re-
duces to the problem of formulating an invariant criterion
which could determine this family of the field equations as
wave equations.

Following this approach, analogous the classical theory
of differential equations, we encounter an essential problem.
Are functions gαβ(xσ) smooth when we set up the Cauchy
problem for the Einstein equation? A gravitational wave is
interpreted as Hadamard break for the curvature tensor field
in the initial characteristic hypersurface. The curvature tensor
field permits a Hadamard break only if the functions gαβ(xσ)
permit breaks in their first derivatives. In accordance with
Hadamard himself [20], the second derivatives of gαβ can
have a break in a surface S {Φ(xα)= 0}

[∂ρσ gαβ ] = aαβ lρ lσ , (lα ≡ ∂αΦ) (3.5)

only if a Hadamard break in the curvature tensor field [Rαβγδ]
satisfies the equations [21]

lλ[Rμαβν ] + lα[Rμβλν ] + lβ [Rμλαν ] = 0 . (3.6)

Proceeding from such an interpretation of the character-
istic hypersurface for the Einstein equations, and also sup-
posing that a break [Rαβγδ ] in the curvature tensor Rαβγδ
located in the front of a gravitational wave is proportional
to the tensor itself, Lichnerowitz [20, 21] formulated this
criterion for gravitational waves:

Lichnerowitz’ criterion The space curvature Rαβγδ 6=0
determines the state of “full gravitational radiations”,
only if there is a vector lα=0 satisfying the equations

lμRμαβν = 0 ,

lλRμαβν + lαRμβλν + lβRμλαν = 0 ,
(3.7)

and thus the vector lα is isotropic (lαlα=0). If
Rαβ =0 (the space is free of masses, so it is empty),
the equations (3.7) determine the state of “clear gravi-
tational radiations”.

There is also Zelmanov’s invariant criterion for gravita-
tional waves [40]∗, it is linked to the Lichnerowitz criterion.

∗This criterion is named for Abraham Zelmanov, although it had been
published by Zakharov [40]. This happened because Zelmanov gave many
of his unpublished results, his unpublished criterion included, to Zakharov,
who completed his dissertation under Zelmanov’s leadership at that time.
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Zelmanov proceeded from the general covariant generaliza-
tion given for the d’Alembert wave operator

σ
σ ≡ g

ρσ∇ρ∇σ . (3.8)

Zelmanov’s criterion The space determines the state of
gravitational radiations, only if the curvature tensor:
(a) is not a covariant constant quantity (∇σRμαβγ =0);
(b) satisfies the general covariant condition

σ
σRμαβν = 0. (3.9)

Thus, as it was shown in [40], any empty space that
satisfies the Zelmanov criterion also satisfies the Lichne-
rowitz criterion. On the other hand, any empty space that
satisfies the Lichnerowitz criterion (excluding that trivial case
where ∇σRμαβγ =0) also satisfies the Zelmanov criterion.

There are also other criteria for gravitational waves, intro-
duced by Bel, Pirani, Debever, Maldybaeva and others [58].
Each of the criteria has its own advantages and drawbacks,
therefore none of the criteria can be considered as the final
solution of this problem. Consequently, it would be a good
idea to consider those characteristics of gravitational wave
fields which are common to most of the criteria. Such an
integrating factor is Petrov’s classification — the algebraic
classification of Einstein spaces given by Petrov [37], in
the frame of which those gravitational fields that satisfy the
condition (3.2) are classified by their relation to the algebraic
structure of the Riemann-Christoffel curvature tensor.

As is well known, the components of the Riemann-
Christoffel tensor satisfy the identities

Rαβγδ=−Rβαγδ=−Rαβδγ=Rγδαβ , Rα[βγδ]=0 . (3.10)

Because of (3.10), the curvature tensor is related to ten-
sors of a special family, known as bitensors. They satisfy
two conditions:

1. Their covariant and contravariant valencies are even;

2. Both covariant and contravariant indices of the tensors
are split into pairs and inside each pair the tensor
Rαβγδ is antisymmetric.

A set of tensor fields located in an n-dimensional Rie-
mannian space is known as a bivector set, and its represent-
ation at a point is known as a local bivector set. Every anti-
symmetric pair of indices αβ is denoted by a common index

a, and the number of the common indices is N =
n(n− 1)

2
.

It is evident that if n=4 we have N =6. Hence a bitensor
Rαβγδ→Rab, located in a four-dimensional space, maps
itself into a six-dimensional bivector space. It can be metrised
by introducing the specific metric tensor

gab → gαβγδ ≡ gαγgβδ − gαδgβγ . (3.11)

The tensor gab (a, b=1, 2, . . . N ) is symmetric and non-
degenerate. The metric gab, given for the sign-alternating

gαβ , can be sign-alternating, having a signature dependent
on the signature of the gαβ . So, for Minkowski’s signature
(+−−−), the signature of the gab is (+++−−−).

Mapping the curvature tensor Rαβγδ onto the metric
bivector space RN , we obtain the symmetric tensor Rab
(a, b=1, 2, . . . N ) which can be associated with a lambda-
matrix

(Rab − Λgab) . (3.12)

Solving the classic problem of linear algebra (reducing
the lambda-matrix to its canonical form along a real distance),
we can find a classificaton for Vn under a given n. Here
the specific kind of an Einstein space we are considering
is set up by a characteristic of the lambda-matrix. This
kind remains unchanged in that area where this characteristic
remains unchanged.

Bases of elementary divisors of the lambda-matrix for
any Vn have an ordinary geometric meaning as stationary
curvatures. Naturally, the Riemannian curvature Vn in a two-
dimensional direction is determined by an ordinary (single-
sheet) bivector V αβ =V α(1)V

β
(2), of the form

K =
RαβγδV

αβV γδ

gαβγδV αβV γδ
. (3.13)

If V αβ is not ordinary, the invariant K is known as the
bivector curvature in the given vector’s direction. Mapping
K onto the bivector space, we obtain

K =
RabV

aV b

gabV aV b
, a, b = 1, 2, . . . N. (3.14)

Ultimate numerical values of the K are known as stat-
ionary curvatures taken at a given point, and the vectors V a

corresponding to the ultimate values are known as stationary
not simple bivectors. In this case

V αβ =V α(1)V
β
(2) , (3.15)

so the stationary curvature coincides with the Riemannian
curvature Vn in the given two-dimension direction.

The problem of finding the ultimate values of K is the
same as finding those vectors V a where the K takes the
ultimate values, that is, the same as finding undoubtedly
stationary directions. The necessary and sufficient condition
of stationary state of the V a is

∂

∂V a
K = 0 . (3.16)

The problem of finding the stationary curvatures for
Einstein spaces had been solved by Petrov [40]. If the space
signature is sign-alternating, generally speaking, the station-
ary curvatures are complex as well as the stationary bivectors
relating to them in the Vn.

For four-dimensional Einstein spaces with Minkowski
signature, we have the following theorem [40]:
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THEOREM Given an ortho-frame gαβ = {+1,−1,−1,−1},
there is a symmetric paired matrix (Rab)

Rab =

(
M N

N −M

)

, (3.17)

where M and N are two symmetric square matrices of the
3rd order, whose components satisfy the relationships

m11+m22+m33 = −κ , n11+n22+n33 = 0 . (3.18)

After transformations, the lambda-matrix (Rab−Λgab)
where gαβ = {+1,+1,+1,−1,−1,−1} takes the form

(Rab−Λgab) =

=

(
M + iN + Λε 0

0 M − iN + Λε

)

≡

≡

(
Q(Λ) 0

0 Q̄(Λ)

)

,

(3.19)

where Q(Λ) and Q̄(Λ) are three-dimensional matrices, the
elements of which are complex conjugates, ε is the three-
dimensional unit matrix. The matrix Q(Λ) can have only
one of the following types of characteristics:

(1) [111]; (2) [21]; (3) [3]. It is evident that the initial
lambda-matrix can have only one characteristic drawn
from:

(1) [111, 111]; (2) [21, 21]; (3) [3, 3].

The bar in the second half of a characteristic implies that
elementary divisors in both matrices are complex conjugates.
There is no bar in the third kind because the elementary
divisors there are always real.

Taking a lambda-matrix of each of the three possible
kinds, Petrov deduced the canonical form of the matrix (Rab)
in a non-holonomic ortho-frame [40]

The 1st Kind

(Rab) =

(
M N
N −M

)

,

M =




α1 0 0
0 α2 0
0 0 α3



 ,

N =




β1 0 0
0 β2 0
0 0 β3



 ,

(3.20)

where
∑3

s=1 αs=−κ ,
∑3

s=1 βs=0 (so in this case there
are 4 independent parameters, determining the space struct-
ure by an invariant form),

The 2nd Kind

(Rab) =

(
M N
N −M

)

,

M =




α1 0 0
0 α2+1 0
0 0 α2−1



 ,

N =




β1 0 0
0 β2 1
0 1 β2



 ,

(3.21)

where α1+2α2=−κ , β1+2β2=0 (so in this case there
are 2 independent parameters determining the space structure
by an invariant form),

The 3rd Kind

(Rab) =

(
M N
N −M

)

,

M =




−κ3 1 0
1 −κ3 0
0 0 −κ3



 ,

N =




0 0 0
0 0 −1
0 −1 0



 ,

(3.22)

so no independent parameters determining the space structure
by an invariant form exist in this case.

Thus Petrov had solved the problemof reducing alambda-
matrix to its canonical form along a real path in a space of
the sign-alternating metric. Although this solution is obtained
only at given point, the classification obtained is invariant
because the results are applicable to any point in the space.

Real curvatures take the form

Λs = αs + iβs , (3.23)

in gravitational fields (spaces) of the 3rd kind, where the
quantities Λs are real: Λ1=Λ2=Λ3=−κ3 .

Values of some stationary curvatures in gravitational
fields (spaces) of the 1st and 2nd kinds can be coincident. If
they coincide, we have sub-kinds of the fields (spaces). The
1st kind has 3 sub-kinds: I (Λ1 6=Λ2 6=Λ3); D (Λ2=Λ3);
O (Λ1=Λ2=Λ3). If the space is empty (κ=0) the kind
O means the flat space. The 2nd kind has 2 sub-kinds: II
(Λ1 6=Λ2); N (Λ1=Λ2). Kinds I and II are called basic kinds.

In empty spaces (empty gravitational fields) the stationary
curvatures become the unit value Λ=0, so the spaces (fields)
are called degenerate.

Studying the algebraic structure of the curvature tensor
for known solutions to the Einstein equations, it was shown
that the most of the solutions are of the 1st kind by Petrov’s
classification. The curvature decreases with distance from
a gravitating mass. In the extreme case where the distance
becomes infinite the space approaches the Minkowski flat
space. The well-known Schwarzschid solution, describing
a spherically symmetric gravitational field derived from a
spherically symmetric island of mass located in an empty
space, is classified as the sub-kind D of the 1st kind [44].
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Invariant criteria for gravitational waves are linked to the
algebraic structure of the curvature tensor, which should be
associated with a given criterion from the aforementioned
types. The most well-known solutions, which are interpreted
as gravitational waves, are attributed to the sub-kind N (of
the 1st kind). Other solutions are attributed to the 2nd kind
and the 3rd kind. It should be noted that spaces of the 2nd
and 3rd kinds cannot be flat anywhere, because components
of the curvature tensor matrix ‖Rab‖ contain +1 and −1.
This makes asymptotical approach to a curvature of zero im-
possible, i .e. excludes asymptotical approach to Minkowski
space. Therefore, because of the structure of such fields,
gravitational fields in a space of the 2nd kind (the sub-kind
N) or the 3rd kind, are gravitational waves of the curvature
traveling everywhere in the space. Pirani [18] holds that
gravitational waves are solutions to gravitational fields in
spaces of the 2nd kind (the sub-kind N) or the 3rd kind by
Petrov’s classification. The following solutions are classified
as sub-kind N: Peres’ solution [34] where he describes flat
gravitational waves

ds2 = (dx0)2 − 2α(dx0 + dx3)2−

− (dx1)2 − (dx2)2 − (dx3)2;
(3.24)

Takeno’s solution [35]

ds2 = (γ + ρ)(dx0)2 − 2ρdx0dx3 − α(dx1)2−

− 2δdx1dx2 − β(dx2)2 + (ρ− γ)(dx3)2,
(3.25)

where α=α(x1−x0), and γ, ρ, β, δ are functions of
(x3=x0); Petrov’s solution [37], studied also by Bondi,
Pirani and Robertson in another coordinate system [19]

ds2 = (dx0)2 − (dx1)2 + α(dx2)2+

+2βdx2dx3 + γ(dx3)2,
(3.26)

where α, β, γ are functions of (x1+x0).
A detailed study of relations between the invariant criteria

for gravitational waves and Petrov’s classification had been
undertaken by Zakharov [40]. He proved:

THEOREM In order that a given space satisfies the state of
“pure gravitational radiations” (in the Lichnerowicz sense),
it is a necessary and sufficient condition that the space should
be of the sub-kind N by Petrov’s algebraical classification,
characterized by equality to zero of the values of the curva-
ture tensor matrix ‖Rab‖ in the bivector space.

THEOREM An Einstein space that satisfies Zelmanov’s cri-
terion can only be an empty space (κ=0) of the sub-kind
N. And conversely, any empty space V4 of the sub-kind N
(excluding the sole symmetric space∗ of this kind), that is
described by the metric

ds2 = 2dx0dx1 − sh2dx0(dx2)2 − sin2 dx0(dx3)2, (3.27)

∗A space is called symmetric, if its curvature tensor is a covariant
constant, i. e. if it satisfies the condition ∇σRαβγδ =0.

satisfies the Zelmanov criterion.

With these theorems we obtain the general relation be-
tween the Zelmanov criterion for gravitational wave fields
located in empty spaces and the Lichnerowicz criterion for
“pure gravitational radiations”:

An empty V4, satisfying the Zelmanov criterion for
gravitational wave fields, also satisfies the Lichnero-
wicz criterion for “pure gravitational radiations”. Con-
versely, any empty Vn, satisfying the Lichnerowicz
criterion (excluding the sole trivial Vn described by
the metric 3.27), satisfies the Zelmanov criterion. The
relation between the criteria in the general case is still
an open problem.

In [40] it was shown that all known solutions to the
Einstein equations in vacuum, which satisfy the Zelmanov
and Lichnerowicz criteria, can be obtained as particular cases
of the more generalized metric whose space permits a covar-
iant constant vector field lα

∇σl
α = 0 . (3.28)

It is evident that condition (3.10) leads automatically to
the first condition (3.7), hence this empty V4 is classified
as sub-kind N by Petrov’s classification and, also, there the
vector lα, playing a part of the gravitational field wave vector,
is isotropic lαlα=0 and unique. According to Eisenhart’s
theorem [60], the space V4 containing the unique isotropic
covariant constant vector lα (the absolute parallel vector field
lα, in other words), has the metric

ds2 = ε(dx0)2 + 2dx0dx1 + 2ϕdx0dx2+

+2ψdx0dx3+α(dx2)2+2γdx2dx3+β(dx3)2,
(3.29)

where ε, ϕ, ψ, α, β, γ are functions of x0, x2, x3, and
lα= δα1 . The metric (3.29), satisfying equations (3.2), is
the exact solution to the Einstein equations for vacuum,
and satisfies the Zelmanov and Lichnerowicz gravitational
wave criteria. This solution generalizes well-known solutions
deduced by Takeno, Peres, Bondi, Petrov and others, that
satisfy the aforementioned criteria [40].

The metric (3.29), taken under some additional conditions
[30], satisfies the Einstein equations in their general form
(3.1) in the case where λ=0 and the energy-momentum
tensor Tαβ describes an isotropic electromagnetic field where
Maxwell’s tensor Fμν satisfies the conditions

FμνF
μν = 0 , FμνF

∗μν = 0 , (3.30)

F ∗μν = 1
2 η

μνρσFρσ is the pseudotensor dual of the Maxwell
tensor, ημνρσ is the discriminant tensor. Direct substitution
shows that this metric satisfies the following requirements:
the Riner-Wheeler condition [61]

R = 0 , RαρR
ρβ =

1

4
δβα (RρσR

ρσ) = 0 , (3.31)
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and also the Nordtvedt-Pagels condition [62]

ημεγσ
(
Rδγ,σRετ −Rδε,σRγτ

)
, (3.32)

where Rδγ,σ = gσμ∇μRδγ , δαβ = g
α
β .

From the physical viewpoint we have an interest in isotro-
pic electromagnetic fields because an observer who accom-
panies it should be moving at the velocity of light [18, 21].
Hence, isotropic electromagnetic fields can be interpreted as
fields of electromagnetic radiation without sources. On the
other hand, according to Eisenhart theorem [60], a space
V4 with the metric (3.29) permits an absolute parallel vector
field lα= δα1 . Taking this fact and also the Einstein equations
into account, we conclude that the vector lα considered
in this case satisfies the Lichnerowicz criterion for “full
gravitational radiations”.

Thus the metric (3.29), satisfying the conditions

Rαβ −
1

2
gαβR = −κTαβ ,

Tαβ =
1

4
FρσF

ρσgαβ − FασF
∙σ
β ∙ ,

FαβF
αβ = 0 , FαβF

∗αβ = 0

(3.33)

and under the additional condition [30]

R2323 = R0232 = R0323 = 0 , (3.34)

is the exact solution to the Einstein equations which describes
co-existence of both gravitational waves and electromagnetic
waves. This solution does not satisfy the Zelmanov criterion
in the general case, but the solution satisfies it in some part-
icular cases where Tαβ 6=0, and also under Rαβ =0.

Wave properties of recursion curvature spaces were studi-
ed in [63]. A recursion curvature space is a Riemannian space
having a curvature which satisfies the relationship

∇σRαβγδ = lσRαβγδ . (3.35)

Because of Bianchi’s identity, such spaces satisfy

lσRαβγδ + lαRβσγδ + lβRσαγδ = 0 . (3.36)

Total classification for recursion curvature spaces had
been given by Walker [64]. His results [64] were applied to
the basic space-time of the General Theory of Relativity, see
[65] for the results. For the class of prime recursion spaces∗,
we are particularly interested in the two metrics

ds2=ψ(x0, x2)(dx0)2+2dx0dx1−(dx2)2−(dx3)2, (3.37)

ds2 = 2dx0dx1 + ψ(x1, x2)(dx1)2−

− (dx2)2 − (dx3)2, ψ > 0 .
(3.38)

∗A recursion curvature space is known as prime or simple, if it contains
n− 2 parallel vector fields, which could be isotropic or non-isotropic. Here
n is the dimension of the space.

For the metric (3.37) there is only one component of the

Ricci tensor that is not zero, R00=−12
∂2ψ
∂x22

, in the metric

(3.38) only R11=−12
∂2ψ
∂x22

is not zero. Einstein spaces with

such metrics can only be empty (κ=0) and flat (Rαβγδ =0).
This can be proven by checking that both metrics satisfy
conditions (3.31) and (3.32), which describe isotropic elec-
tromagnetic fields.

Both metrics are interesting from the physical viewpoint:
in these cases the origin of the space curvature is an isotropic
electromagnetic field. Moreover, if we remove this field from
the space, the space becomes flat. Besides these there are few
metrics which are exact solutions to the Einstein-Maxwell
equations, related to the class of isotropic electromagnetic
fields. Neither of the said metrics satisfy the Zelmanov and
Lichnerowicz criteria.

Minkowski’s signature permits only two metrics for non-
simple recursion curvature spaces. They are the metric

ds2 = ψ(x0, x2, x3)(dx0)2 + 2dx0dx1+

+K22(dx
2)2 + 2K23dx

2dx3 +K33(dx
3)2,

K22 < 0 , K22K33 −K2
23 < 0 ,

(3.39)

wherein ψ = χ1(x0)(a22(x
2)2 + 2a23x

2x3 + a33(x
3)2)+

+χ2(x
0)x2+χ3(x

0)x3, and the metric

ds2 = 2dx0dx1 + ψ(x1, x2, x3)(dx1)2+

+K22(dx
2)2 + 2K23dx

2dx3 +K33(dx
3)2,

(3.40)

wherein ψ = χ1(x1)(a22(x
2)2 + 2a23x

2x3 + a33(x
3)2)+

+χ2(x
1)x2+χ3(x

1)x3. Here aij , Kij (i, j=2, 3) are con-
stants.

Both metrics satisfy the conditions Rαβ =κgαβ only if
κ=0, reducing to the single relationship

K33a22 +K22a33 − 2K23a23 = 0 . (3.41)

In this case both metrics are of the sub-kind N by Petrov’s
classification. It is interesting to note that the metric (3.40) is
stationary and, at the same time, describes “pure gravitational
radiation” by Lichnerowicz. Such a solution was also ob-
tained in [65].

In the general case (Rαβ 6=κgαβ) the metrics (3.39) and
(3.40) satisfy conditions (3.32) and (3.33), so the metrics are
solutions to the Einstein-Maxwell equations that describe
co-existing gravitational waves and electromagnetic waves
without sources. In this general case both metrics satisfy the
Zelmanov and Lichnerowicz invariant criteria. The solution
(3.40) is stationary.

All that has been detailed above applies to gravitational
waves as waves of the space curvature, which exist in any
reference frame.

Additionally it would be interesting to study another
approach to the gravitational radiation problem, where the
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main issue is gravitational inertial waves, connected to the
given reference frame of an observer. This new approach is
linked directly to the mathematical apparatus of physically
observable quantities (the theory of chronometric invariants),
introduced by Zelmanov in 1944 [42, 43]. In order to under-
stand the true results given by gravitational wave experiments
it is necessary to master this mathematical apparatus, which
is described concisely in the in the next section.

4 Basics of the theory of physical observable quantities

In brief, the essence of the mathematical apparatus of physic-
ally observable quantities (the theory of chronometric invari-
ants), developed by Zelmanov in 1940’s [42, 43] is that, if
an observer accompanies his reference body, his observable
quantities are projections of four-dimensional quantities on
his time line and the spatial section — chronometrically invar-

iant quantities, made by the projecting operators bα= dxα

ds
and hαβ =−gαβ + bαbβ which fully define his real reference
space (here bα is his velocity with respect to his real refer-
ences). The chr.inv.-projections of a world-vector Qα are

bαQ
α=

Q0√
g00

and hiαQ
α=Qi, while chr.inv.-projections of

a world-tensor of the 2nd rank Qαβ are bαbβQαβ =
Q00
g00 ,

hiαbβQαβ =
Qi0√
g00

, hiαh
k
βQ

αβ =Qik. Physically observable

properties of the space are derived from the fact that the chr.

inv.-differential operators
∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi

= ∂
∂xi

+

+ 1
c2
vi
∗∂
∂t

are non-commutative, so that
∗∂2

∂xi∂t
−

∗∂2

∂t ∂xi
=

= 1
c2
Fi

∗∂
∂t

and
∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
= 2
c2
Aik

∗∂
∂t

, and also

from the fact that the chr.inv.-metric tensor hik may not
be stationary. The observable characteristics are the chr.inv.-
vector of gravitational inertial force Fi, the chr.inv.-tensor of
angular velocities of the space rotation Aik, and the chr.inv.-
tensor of rates of the space deformations Dik, namely

Fi=
1
√
g00

(
∂w

∂xi
−
∂vi
∂t

)

,
√
g00=1−

w

c2
(4.1)

Aik=
1

2

(
∂vk
∂xi
−
∂vi
∂xk

)

+
1

2c2
(Fivk−Fkvi) , (4.2)

Dik=
1

2

∗∂hik
∂t

, Dik=−
1

2

∗∂hik

∂t
, Dk

k=
∗∂ ln
√
h

∂t
, (4.3)

where w is the gravitational potential, vi=−c
g0i√
g00

is the

linear velocity of the space rotation, hik=−gik+ 1
c2
vivk

is the metric chr.inv.-tensor, and h=det ‖hik‖, hg00=−g,
g=det ‖gαβ‖. Observable inhomogeneity of the space is
set up by the chr.inv.-Christoffel symbols Δijk=h

imΔjk,m,

which are built just like Christoffel’s regular symbols Γαμν =
= gασΓμν,σ , but using hik instead of gαβ .

In this way, any equations obtained using general covar-
iant methods we can calculate their physically observable
projections on the time line and the spatial section of any
particular reference body and formulate the projections with
its real physically observable properties. From this we arrive
at equations containing only quantities measurable in prac-
tice. Expressing ds2= gαβ dx

αdxβ through the observable
time interval

dτ =
1

c
bαdx

α =
(
1−

w

c2

)
dt−

1

c2
vidx

i (4.4)

and also the observable spatial interval dσ2=hαβ dxαdxβ =
=hik dx

idxk (note that bi=0 for an observer who accom-
panies his reference body). We arrive at the formula

ds2 = c2dτ 2 − dσ2. (4.5)

From an“external” viewpoint, an observer’s three-
dimensional space is the spatial section x0= ct= const. At
any point of the space-time a local spatial section (a local
space) can be placed orthogonal to the time line. If there
exists a space-time enveloping curve for such local spaces,
then it is a spatial section everywhere orthogonal to the time
lines. Such a space is called holonomic. If no enveloping
curve exists for such local spaces, so there only exist spatial
sections locally orthogonal to the time lines, such a space
is called non-holonomic. A spatial section, placed in a holo-
nomic space, is everywhere orthogonal to the time lines,
i. e. g0i=0 is true there. In the presence of g0i=0 we have
vi=0, hence Aik=0. This implies that non-holonomity of
the space and its three-dimensional rotation are the same. In
a non-holonomic space g0i 6=0 and Aik 6=0. Hence Aik=0
is the necessary and sufficient condition of holonomity of the
space. So Aik is the tensor of the space non-holonomity.

Zelmanov had also found that the chr.inv.-quantities Fi
and Aik are linked to one another by two identities

∗∂Aik
∂t

+
1

2

( ∗∂Fk
∂xi

−
∗∂Fi
∂xk

)

= 0 , (4.6)

∗∂Akm
∂xi

+
∗∂Ami
∂xk

+
∗∂Aik
∂xm

+

+
1

2
(FiAkm + FkAmi + FmAik) = 0 ,

(4.7)

which are known as Zelmanov’s identities.
Components of the usual Christoffel symbols

Γαμν =
1

2
gασ
(
∂gμσ
∂xν

+
∂gνσ
∂xμ

−
∂gμν
∂xσ

)

. (4.8)

are linked to the chr.inv.-Christoffel symbols

Δijk =
1

2
him

( ∗∂hjm
∂xk

+
∗∂hkm
∂xj

−
∗∂hjk
∂xm

)

, (4.9)
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and other chr.inv.-chractersitics of the accompanying refer-
ence space of the given observer by the relations

Di
k + A

∙i
k∙ =

c
√
g00

(

Γi0k −
g0kΓ

i
00

g00

)

, (4.10)

F k = −
c2 Γk00
g00

, giαgkβ Γmαβ = hiqhksΔmqs. (4.11)

Here is the four-dimensional generalizationof the chr.inv.-
quantities Fi, Aik, and Dik (by Zelmanov, the 1960’s [57]):
Fα=−2c2bβaβα, Aαβ = ch

μ
αhνβaμν , Dαβ = ch

μ
αhνβdμν ,

where aαβ = 1
2 (∇α bβ −∇β bα), dαβ =

1
2 (∇α bβ +∇β bα).

Zelmanov also deduced formulae for chr.inv.-projections
of the Riemann-Christoffel tensor [42]. He followed the
same procedure by which the Riemann-Christoffel tensor
was built, proceeding from the non-commutativity of the
second derivatives of an arbitrary vector taken in the given
space. Taking the second chr.inv.-derivatives of an arbitrary
vector

∗∇i
∗∇kQl −

∗∇k
∗∇iQl =

2Aik
c2

∗∂Ql
∂t

+H
...j
lki∙Qj , (4.12)

he obtained the chr.inv.-tensor

H
...j
lki∙ =

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+ΔmilΔ

j
km −Δ

m
klΔ

j
im , (4.13)

which is like Schouten’s tensor from the theory of non-
holonomic manifolds [59]. The tensor H ...j

lki differs algebraic-
ally from the Riemann-Christoffel tensor because of the
presence of rotation of the space Aik in the formula (4).
Nevertheless its generalization gives the chr.inv.-tensor

Clkij =
1

4
(Hlkij −Hjkil +Hklji −Hiljk) , (4.14)

which possesses all the algebraic properties of the Riemann-
Christoffel tensor in this three-dimensional space. Therefore
Zelmanov called Ciklj the chr.inv.-curvature tensor, which
actually is the tensor of the observable curvature of the
observer’s spatial section. This tensor, describing the observ-
able curvature of the three-dimensional space of an observer,
possesses all the properties of the Riemann-Christoffel curva-
ture tensor in the three-dimensional space and, at the same
time, the property of chronometric invariance. Its contraction

Ckj = C ∙∙∙i
kij∙ = himCkimj , C = C

j
j = hljClj (4.15)

gives the chr.inv.-scalar C whose sense is the observable
three-dimensional curvature of this space.

Substituting the necessary components of the Riemann-
Christoffel tensor into the formulae for its chr.inv.-projections

Xik=−c2R
∙i∙k
0∙0∙
g00 , Y ijk=−cR

∙ijk
0 ∙∙∙√
g00

, Zijkl=c2Rijkl, and by lo-

wering indices Zelmanov obtained the formulae

Xij =
∗∂Dij
∂t

−
(
Dl
i + A

∙l
i∙

)
(Djl + Ajl)+

+
1

2
(∗∇iFj +

∗∇jFi)−
1

c2
FiFj ,

(4.16)

Yijk =
∗∇i (Djk + Ajk)−

∗∇j
(
Dik + Aik

)
+

+
2

c2
AijFk ,

(4.17)

Ziklj = DikDlj−DilDkj+AikAlj−AilAkj +

+2AijAkl − c
2Ciklj ,

(4.18)

where we have Y(ijk)=Yijk+Yjki+Ykij =0 just like the
Riemann-Christoffel tensor. Contraction of the spatial ob-
servable projection Ziklj step-by-step gives

Zil = DikD
k
l −DilD+AikA

∙k
l∙ +2AikA

k∙
∙l −c

2Cil , (4.19)

Z = hilZil = DikD
ik −D2 − AikA

ik − c2C . (4.20)

Besides these considerations, taken in an observer’s ac-
companying reference frame, Zelmanov considered a locally
geodesic reference frame that can be introduced at any point
of the pseudo-Riemannian space. Within infinitesimal vicin-
ities of any point of such a reference frame the fundamental
metric tensor is

g̃αβ = gαβ+
1

2

(
∂2g̃αβ
∂x̃μ∂x̃ν

)

(x̃μ−xμ)(x̃ν−xν)+ . . . , (4.21)

i. e. its components at a point, located in the vicinities, are
different to those at the point of reflection to within only
the higher order terms, values of which can be neglected.
Therefore, at any point of a locally geodesic reference frame
the fundamental metric tensor can betaken as constant, while
the first derivatives of the metric (the Christoffel symbols)
are zero.

As a matter of fact, within infinitesimal vicinities of any
point located in a Riemannian space, a locally geodesic
reference frame can be defined. At the same time, at any
point of this locally geodesic reference frame, a tangential
flat Euclidean space can be defined so that this reference
frame, being locally geodesic for the Riemannian space, is
the global geodesic for that tangential flat space.

The fundamental metric tensor of a flat Euclidean space
is constant, so values of g̃μν , taken in the vicinities of a point
of the Riemannian space converge to values of the tensor gμν
in the flat space tangential at this point. Actually, this means
that we can build a system of basis vectors ~e(α), located in
this flat space, tangential to curved coordinate lines of the
Riemannian space.

In general, coordinate lines in Riemannian spaces are
curved, inhomogeneous, and are not orthogonal to each other
(if the space is non-holonomic). So the lengths of the basis
vectors may be sometimes very different from unity.

We denote a four-dimensional vector of infinitesimal dis-
placement by d~r=(dx0, dx1, dx2, dx3). Then d~r=~e(α)dxα,
where components of the basis vectors ~e(α) tangential to the
coordinate lines are ~e(0)={e

0
(0), 0, 0, 0}, ~e(1)={0, e

1
(1), 0, 0},

~e(2)= {0, 0, e
2
(2), 0}, ~e(3)= {0, 0, 0, e

2
(3)}. The scalar product
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of the vector d~r with itself is d~rd~r= ds2. On the other hand,
the same quantity is ds2= gαβ dxαdxβ . As a result we have
gαβ =~e(α)~e(β)= e(α)e(β)cos (x

α;xβ). So we obtain

g00 = e2(0) , g0i = e(0)e(i) cos (x
0;xi) , (4.22)

gik = e(i)e(k) cos (x
i;xk) . (4.23)

The gravitational potential is w= c2(1−
√
g00). So, the

time basis vector ~e(0) tangential to the time line x0= ct,
having the length e(0)=

√
g00=1− wc2 is smaller than unity

the greater is the gravitational potential w.
The space rotation linear velocity vi and, according to it,

the chr.inv.-metric tensor hik are

vi = −c e(i) cos (x
0;xi) , (4.24)

hik=e(i)e(k)

[
cos(x0;xi)cos(x0;xk)−cos(xi;xk)

]
. (4.25)

This representation enablkes us to see the geometric sense
of physical quantities measurable in experiments, because we
represent them through pure geometric characteristics of the
observer’s space — the angles between coordinate axes etc.

This completes the basics of Zelmanov’s mathematical
apparatus of chronometric invariants (physically observable
quantities) that will be employed below with the aim of
studying the gravitational wave problem.

5 Gravitational inertial waves and their link to the
chronometrically invariant representation of Petrov’s
classification

Of all the experimental statements on the General Theory
of Relativity, including the search for gravitational wave
experiments, the most important case is that where the ob-
server is at rest with respect to his laboratory reference frame
and all physical standards located in it. Quantities measured
by the observer in an accompanying reference frame are
chronometrically invariant quantities (see the previous para-
graph for the details). Keeping this fact in mind, Zelmanov
formulated his chronometrically invariant criterion for grav-
itational waves. This criterion is invariant only for trans-
formations of coordinates of that reference system which is
at rest with respect to the laboratory references (the body
of reference). Such an approach, in contrast to the invariant
approach, permits us to interpret the results of measurement
in terms of physically observable quantities, providing the-
reby a means of comparing results given by the theory of
gravitational waves to results obtained from real physical
experiments.

In order to solve the problem of interpretation of ex-
perimental data on gravitational waves it is appropriate to
consider a more general case — fields of gravitational inertial
waves. Such fields are more general because they are ap-
plicable to both gravitational fields and the inertial field of

the observer’s reference frame. The mathematical method
that we propose to apply to this problem joins both fields
into a common field. The method itself does not differ for
each field: to set an invariant difference between gravitational
fields and the observer’s inertial field would be possible only
by introducing an additional invariant criterion.

Gravitational waves are determined independently of
both spatial coordinate frames and space-time reference fra-
mes. In contrast to gravitational waves, gravitational inertial
waves are determined only in the reference frame of an
observer, who observes them. They are determined with pre-
cision to within so-called “inner” transformations of coordi-
nates

(a) x̃0 = x̃0(x0, x1, x2, x3)

(b) x̃i = x̃i(x1, x2, x3) ,
∂x̃i

∂x0
= 0





(5.1)

which does not change the space-time reference frame itself.
Invariance with respect to (5.1) splits into invariance

with respect to (5.1a), so-called chronometric invariance,
and also invariance with respect to (5.1b), so-called spatial
invariance. Therefore a definition given for gravitational
inertial waves should be:

(1) chronometrically invariant;

(2) spatially covariant.

We then have a basis by which we introduce the chro-
nometrically invariant spatially covariant d’Alembert oper-
ator [40]∗

∗ = hik∗∇i
∗∇k −

1

a2

∗∂2

∂t2
, (5.2)

where hik=−gik is the chr.inv.-metric tensor (the phys-
ically observable metric tensor) in its contravariant (upper-
index) form, ∗∇i is the symbol for the chr.inv.-derivative
(the chr.inv.-analogue to the covariant derivative symbol∇σ),
a is the linear velocity at which attraction of gravity spreads,
∗∂
∂t

is the symbol for the chr.inv.-derivative with respect to
time.

A chronometrically invariant criterion for gravitational
inertial waves, formulated according to Zelmanov’s idea, is:

Zelmanov’s chr.inv.-criterion Chr.inv.-quantities f , char-
acterising the observer’s reference space, such as the
gravitational inertial force vector Fi, the space non-
holonomity (self-rotation) tensor Aik, the space defor-
mation rate tensor Dik, the spatial curvature tensor
Ciklj , and also scalar quantities, built on them, and also
the Riemann-Christoffel curvature tensor’s chr.inv.-
components Xij , Y ijk, Ziklj must satisfy equations
of the form

∗ f = A, (5.3)

∗This approach to the gravitational inertial wave problem was developed
by Zelmanov, although it had first been published by Zakharov because the
latter prepared his dissertation under Zelmanov’s leadership: see footnote
on page 35.
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where A is an arbitrary function of four-dimensional
world-coordinates, which has no more than first order
derivatives of the f .

The Zelmanov chr.inv.-criterion (5.3) was applied in an-
alyzing well-known solutions to the Einstein equations in
emptiness [40]. This criterion is true for the metrics (3.25)
in that case where the gravitational inertial force vector F i

is the wave function. But, at the same time, most of the
invariant criteria for gravitational waves are related to some
conditions and limitations imposed on the curvature tensor.
Therefore it would be most interesting to study relations
between gravitational wave criteria and gravitational inertial
wave criteria in that case where the Riemann-Christoffel
curvature tensor’s chr.inv.-components Xij , Y ijk, Ziklj are
the wave functions.

What is the relation between the Zelmanov invariant
criterion (3.9) and his chr.inv.-criterion (5.3)? This problem
was solved by Zakharov [40, 58]. His method was to express
equation (3.9) in chr.inv.-form. In chr.inv..-form (in the terms
of physically observable quantities) equation (3.9) takes the
form

∗ Xij=A
ij
(1) ,

∗ Y ijk=A
ijk
(2) ,

∗ Ziklj=A
iklj
(3) , (5.4)

where Aij(1), A
ijk
(2) , A

iklj
(3) are chronometrically invariant and

spatially invariant tensors, which have no more than first
order derivatives of the wave functions Xij , Y ijk, Ziklj .
Thus those gravitational fields that satisfy the Zelmanov
invariant criterion also satisfy the Zelmanov chr.inv.-criterion
(5.3), where the Riemann-Christoffel curvature tensor’s
physically observable components Xij , Y ijk, Ziklj play the
part of wave functions.

The necessary condition for gravitational inertial waves
is the fact that the chr.inv.-d’Alembert operator (5.2) is non-
trivial, mathematically expressed as follows:

1. Chr.inv.-quantities f are non-stationary, i. e.
∗∂f
∂t
6=0;

2. The quantities f are inhomogeneous, i. e. ∗∇ifk 6=0.

The wave functions Xij (4.16), Yijk (4.17) and Ziklj
(4.18) satisfy these requirements only if the mechanical
chr.inv.-characteristics of the observer’s reference space (the
chr.inv.-quantities Fi, Aik, Dik) and the geometric chr.inv.-
characteristic of the space (the chr.inv.-quantity Ciklj) also
satisfy these requirements. Zelmanov himself in [42] form-
ulated conditions of inhomogeneity inside a finite region
located in the observer’s space

∗∇iFk 6= 0 , ∗∇jAik 6= 0 ,

∗∇jDik 6= 0 , ∗∇jCik 6= 0 .
(5.5)

It is evident that under these conditions the wave func-
tions Xij , Y ijk, Ziklj shall be inhomogeneous.

The origin of non-stationary states of the gravitational
inertial force vector Fi (4.1) is the non-stationarity of the

gravitational potential w or the linear velocity of the space
rotation vi, consisting the force. Identities (4.6) and (4.7),
linking quantities Fi and Aik, lead us to conclude that the
source of non-stationary states of vi is the vortical nature of
the vector Fi, i. e. ∗∇kFi−∗∇iFk 6=0. The origin of non-
stationary states of the space deformation rate Dik (4.3)
and the space observable curvature Ciklj (4.14) is non-
stationarity of the physical observable metric tensor hik,
see [42],

hik = −gik +
g0ig0k
g00

= −gik +
1

c2
vivk . (5.6)

Thus, the origin of non-stationary states of the wave
functions Xij , Y ijk, Ziklj is the non-stationarity of com-
ponents of the fundamental metric tensor gαβ , namely:

(1) g00=
(
1− w

c2

)
2

;

(2) g0i=−1c vi
(
1− w

c2

)
;

(3) gik=−hik + 1
c2
vivk .

We consider each of the cases here,mindful of the need to
find theoretical grounds for gravitational wave experiments:

1. Non-stationary states of g00 manifest as a result of time
changes of the gravitational potential w. In experi-
ments this non-stationarity is derived from very dif-
ferent geophysical sources, which, in a particular case,
are due to changes in solar activity;

2. Non-stationary states of mixed components g0i are der-
ived from the non-stationarity of the space rotation
linear velocity vi and the gravitational potential w. The
quantities g00 and g0i are included in the formula for an
interval of observable time dτ =

√
g00dt +

g0i√
g00

dxi

[42, 43]. Thus under non-stationary states of g00 and
g0i in the observer’s laboratory (his reference frame)
a standard clock located there should have some cor-
rections (which change with time) with respect to a
standard clock located in an region where the quanti-
ties g00 and g0i are stationary.

3. Non-stationary states of gik are usually considered as
deformations of the three-dimensional space. But the
theory of physically observable quantities introduces
substantial corrections to this thesis. The approach of
Classical Mechanic looks at the spatial deformations as
1
2
∂gik
∂t

, but the theory of physically observable quant-
ities, taking properties of the observer into account,
gives rise to a corrected formula for the spatial deform-

ations which is Dik= 1
2
√
g00

∂
∂t

(
−gik + 1

c2
vivk

)
.∗

∗The presence of the minus sign here is a consequence of the fact that
we use the signature (+−−−), where plus is related to the time coordinate
while minus is attributed to spatial coordinates. The minus sign has been
chosen for the gik in the hik formula, because in this case the observable
spatial interval dσ=hik dxidxk is positive, which is an important fact in
the theory of physically observable quantities [42, 43].
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The formulae coincide in that particular case where
g00=1 (w=0) and g0i=0 (vi=0). If Fi=0, accord-
ing (to 4.6) the space rotation is stationary. If vi=0,
Aik=0. Thus the necessary and sufficient condition
to make w and vi simultaneously zero is Fi=0 and
Aik=0 [42, 43]. In this case the observer’s reference
frame falls freely and is free of rotations. Such refer-
ence frames are known as synchronous [15], because
there all clocks can be synchronized. Moreover, in
this case time can be integrated: in calculations of
the time interval dτ = dt between any two events, the
integral of dτ is independent of the way we take this
integral between the events (the path of integration).
If Fi 6=0 but Aik=0, it is impossible to synchronize
all the clocks simultaneously, but the synchronization
itself can be realized because of the proportionality
dτ =

√
g00dt there. If Aik 6=0, the synchronization is

impossible in principle, because the integral of dτ =

=
√
g00dt +

g0i√
g00

dxi depends on the path of integ-

ration [42, 43].

Synchronous reference frames, because of their simpli-
city and associated simple calculations, are of broad utility
in the General Theory of Relativity. In particular, they are
used in relativistic cosmology and the gravitational wave
problem. For instance, the well-known metric of weak plane
gravitational waves takes the form [14, 15]

ds2 = c2dt2 − (dx1)2 − (1− a)(dx2)2+

+2bdx2dx3 − (1 + a)(dx3)2,
(5.7)

where a= a(ct±x1), b= b(ct±x1). So in this metric there
is no gravitational potential (w=0) as soon as there is no
space rotation (vi=0). The condition w=0 prohibits the
ultimate transit to Newton’s theory of gravity. For this reason
we arrive at an important conclusion:

Weak plane gravitational waves are derived from
sources other than gravitational fields of masses∗.

An analogous situation arises in relativistic cosmology,
where, until now, the main part is played by the theory of a
homogeneous isotropic universe. Foundations of this theory
are built on the metric of a homogeneous isotropic space [42]

ds2 = c2dt2−

−R2
(dx1)2 + (dx2)2 + (dx3)2

[
1 + k

4

[
(dx1)2 + (dx2)2 + (dx3)2

]]2 ,

R = R(t) , k = 0,±1 .

(5.8)

When one substitutes this metric into the Einstein equa-
tions taken with a specific value of the cosmological constant

∗See §7 and §8 below for detailed calculations for the effect due to
weak plane gravitational waves in solid-body detectors of the Weber kind
(the Weber pigs) and also in antennae built on free masses.

(λ=0, λ< 0, λ> 0), he obtains a spectra of solutions, which
are known as Friedmann’s cosmological models [42].

Taking our previous conclusion on the origin of weak
plane gravitational waves into account, we come to a new
and important conclusion:

No gravitational fields derived from masses exist in
any Friedmann universe. Moreover, any Friedmann
universe is free of space rotations.

Currently there is no indubitable observational data sup-
porting the absolute rotation of the Universe. This problem
has been under considerable discussion between astronomers
and physicists over last decade, and remains open. Rotations
of bulk space bodies like planets, stars, and galaxies are
beyond any doubt, but these rotations do not imply the
absolute rotation of the whole Universe, including the ab-
solute rotation of its gravitational field if one will describe it
by the Friedmann models.

Looking back at the question of whether or not gravita-
tional inertial waves exist, or whether or not non-stationary
states of the wave functions Xij , Y ijk, Ziklj exist, we
conclude that non-stationary states of the quantities are de-
rived from:

1. A vortical nature of the field of the acting gravitational
inertial force Fi ;

2. Non-stationary states of the spatial components gik of
the fundamental metric tensor gαβ .

In the first case, the effect of gravitational inertial waves
manifests as non-stationary corrections to the observer’s time
flow.

In the second case, the observer’s time flow remains
unchanged, but gravitational waves are waves of only the
space deformation. Such pure deformation waves will de-
form a detector itself, so one simply waits for a gravitational
wave to cause a resonance effect in a solid-body detector of
the Weber kind [16]. Whether this conclusion is true or false
will be considered in §7 and §8. Here we consider only the
general theory of gravitational inertial waves and its relation
to the invariant theory of gravitational waves.

As we showed above, those gravitational fields that sat-
isfy the Zelmanov invariant criterion (3.9) also satisfy the
Zelmanov chr.inv.-criterion (5.3), where the wave functions f
are the Riemann-Christoffel tensor’s observable components
Xij , Y ijk, Ziklj . As it was shown in the previous paragraph,
“empty gravitational fields” (we mean gravitational fields
permeating empty spaces, where no mass islands of matter
exist) that satisfy the Zelmanov invariant criterion (3.9) are
related to the 2nd kind (the sub-kind N) by Petrov’s classifi-
cation. Therefore it is appropriate to specify the algebraical
kinds of the Riemann-Christoffel tensor in terms of physic-
ally observable quantities (chronometric invariants).

The whole problem of representing Petrov’s classification
in chronometrically invariant form has been solved in [66].
This solution, obtained Petrov in general covariant form [37],
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was obtained for an ortho-frame, taken at an arbitrary fixed
point of the space.

Chr.inv.-components of the Riemann-Christoffel curva-
ture tensor have the properties

Xij = Xji , Xk
k = −κ ,

Y[ijk] = 0 , Yijk = −Yikj .
(5.9)

Equations (4.16), (4.17), (4.18) in an ortho-frame are

Xij = −c
2R0i0j ,

Yijk = −cR0ijk ,

Ziklj = c2Riklj .

(5.10)

When we write equations Rαβ =κgαβ in the orth-frame,
we take the relationships (5.10) into account. Then, intro-
ducing three-dimensional matrices x and y such that

x ≡ ‖xik‖ = −
1

c2
‖Xik‖ ,

y ≡ ‖yik‖ = −
1

2c
‖εimnY

∙mn
k ∙ ∙ ‖ ,

(5.11)

where εimn is the three-dimensional discriminant tensor, we
represent the six-dimensional matrix Rab as follows

‖Rab‖ =

∥
∥
∥
∥
x y
y −x

∥
∥
∥
∥ , a, b = 1, 2, . . . 6 , (5.12)

satisfying the relations

x11 + x22 + x33 = −κ , y11 + y22 + y33 = 0 . (5.13)

Now, let us compose a lambda-matrix

‖Rab − Λgab‖ =

∥
∥
∥
∥
x+ Λε y
y −x− Λε

∥
∥
∥
∥ , (5.14)

where ε is the three-dimensional unit matrix. Then, after
transformations, we reduce this lambda-matrix to the form
∥
∥
∥
∥
x+iy+Λε 0

0 −x−iy−Λε

∥
∥
∥
∥ =

∥
∥
∥
∥
Q̄(Λ) 0
0 Q̄(Λ)

∥
∥
∥
∥ . (5.15)

The initial lambda-matrix can have one of the following
characteristics:

(1) [111, 111]; (2) [21, 21]; (3) [3, 3]. (5.16)

Then, using Petrov’s had obtained the canonical form of
the matrix ‖Rab‖ in the non-holonomic ortho-frame for each
of the three kinds of the curvature tensor [37], we express
the matrix ‖Rab‖ through components of the chr.inv.-tensors
Xij and Yijk [66]. We obtain

The 1st Kind

‖Rab‖ =

∥
∥
∥
∥
x y
y −x

∥
∥
∥
∥ ,

x =

∥
∥
∥
∥
∥
∥

x11 0 0
0 x22 0
0 0 x33

∥
∥
∥
∥
∥
∥
,

y =

∥
∥
∥
∥
∥
∥

y11 0 0
0 y22 0
0 0 y33

∥
∥
∥
∥
∥
∥
,

(5.17)

where

x11 + x22 + x33 = −κ , y11 + y22 + y33 = 0 . (5.18)

Using (5.11) we also express values of the stationary
curvatures Λi (i=1, 2, 3) through the Riemann-Christoffel
tensor’s physically observable components

Λ1 = −
1

c2
X11 +

i

c
Y123 ,

Λ2 = −
1

c2
X22 +

i

c
Y231 ,

Λ3 = −
1

c2
X33 +

i

c
Y312 .

(5.19)

Thus, the components Xik are included in the real parts
of the stationary curvatures Λi, and components Yijk are
included in the imaginary parts. In spaces of the sub-kind D
(Λ2=Λ3) we have:X22=X33, Y231=Y312. In spaces of the
sub-kind O (Λ1=Λ2=Λ3) we have:X11=X22=X33=−κ3 ,
Y123=Y231=Y312. Hence Einstein spaces of the sub-kind O
have only real curvatures, while being empty they are flat.

For the 2nd kind we have

The 2nd Kind

‖Rab‖ =

∥
∥
∥
∥
x y
y −x

∥
∥
∥
∥ ,

x =

∥
∥
∥
∥
∥
∥

x11 0 0
0 x22+1 0
0 0 x33−1

∥
∥
∥
∥
∥
∥
,

y =

∥
∥
∥
∥
∥
∥

y11 0 0
0 y22 1
0 1 y22

∥
∥
∥
∥
∥
∥
,

(5.20)

where

x11 + x22 + x33 = −κ ,

x22 − x33 = 2 , y11 + 2y22 = 0 .
(5.21)

The stationary curvatures are

Λ1 = −
1

c2
X11 +

i

c
Y123 ,

Λ2 = −
1

c2
X22 − 1 +

i

c
Y231 ,

Λ3 = −
1

c2
X33 + 1 +

i

c
Y312 .

(5.22)
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From this we conclude that values of the stationary curv-
atures Λ2 and Λ3 can never become zero, so Einstein spaces
(gravitational fields) of the 2nd kind are curved in any case
— they cannot approach Minkowski flat space.

In spaces of the sub-kind N (Λ1=Λ2) in an ortho-frame
the relations are true

X11 = X22 − c2 = X33 + c
2,

Y123 = Y231 = Y312 = 0 ,
(5.23)

so the stationary curvatures are real. In an empty space
the matrices x and y become degenerate (its determinant
becomes zero). For this reason spaces of the sub-kind N are
degenerate, and, respectively, gravitational fields in spaces
of the sub-kind N are known as gravitational fields of the
2nd degenerate kind by Petrov’s classification. In emptiness
(κ=0) some elements of the matrices x and y take the
numerical values +1 and −1 thereby making an ultimate
transition to the Minkowski flat space impossible.

For the 3rd kind we have

The 3rd Kind

‖Rab‖ =

∥
∥
∥
∥
x y
y −x

∥
∥
∥
∥ ,

x =

∥
∥
∥
∥
∥
∥

0 1 0
1 0 0
0 0 0

∥
∥
∥
∥
∥
∥
,

y =

∥
∥
∥
∥
∥
∥

0 0 0
0 0 −1
0 −1 0

∥
∥
∥
∥
∥
∥
.

(5.24)

Here the stationary curvatures are zero and both of the
matrices x and y are degenerate. Einstein spaces of the 3rd
kind can only be empty (κ=0), but, at the same time, they
can never be flat.

From the equations deduced for the canonical form of
the matrix ‖Rab‖, we conclude: Yijk=0 can be true only in
gravitational fields of the 1st kind, which are derived from
island masses of matter in emptiness or vacuum. Therefore
we conclude that those gravitational fields where Yijk=0
is true in the observer’s accompanying reference frame can
only be of the 1st kind, having stationary curvatures which
are real.

Furthermore, in accordance with most of the criteria, the
presence of gravitational waves is linked to spaces of the
2nd (N) kind and the 3rd kind, where the matrix yik has
components equal to +1 or −1. Moreover, in fields of the
2nd (N) and 3rd kinds the values +1 or −1 are attributed
also to components of the matrix x. This implies that:

Those spaces which contain gravitational fields, satis-
fying the invariant criteria for gravitational waves,
are curved independently of whether or not they are

empty (Tαβ =0) or filled with matter (in such spaces
Tαβ = gαβ). In any case, gravitational radiations are
derived from interaction between two observable
componentsXij , Yijk of the Rimeann-Christoffel cur-
vature tensor.

The classification of gravitational fields built here applies
only to Einstein spaces, because solving this problem for
spaces of general kind, where Tαβ 6=κgαβ , would be very
difficult, for mathematical reasons. Considering the details of
these difficulties, we see that, having an arbitrary distribution
of matter in a space, the matrix ‖Rab‖, taken in a non-
holonomic ortho-frame, is not symmetrically doubled; on
the contrary, the matrix takes the form

‖Rab‖ =

∥
∥
∥
∥
x y
y′ z

∥
∥
∥
∥ , (5.25)

where the three-dimensional matrices x, y, z are built on the
following elements, respectively∗

xik = −
1

c2
Xik ,

zik =
1

c2
εimnεkpqZ

mnpq,

yik =
1

2c
εimnY

∙mn
k ∙ ∙ ,

(5.26)

and y′ implies transposition. It is evident that reduction of
this matrix to its canonical form is a very difficult problem.

Nevertheless Petrov’s classification permits us to con-
clude:

The physically observable components Xij and Y ijk

of the Riemann-Christoffel curvature tensor are differ-
ent in their physical origin†. Metrics can exist where
Y ijk=0 but Xij 6=0 and Ziklj 6=0. Such spaces are
of the 1st kind by Petrov’s classification; they have
real stationary curvatures. Such spaces do not satisfy
the invariant criteria for gravitational waves. Thus no
wave fields of gravity exist in spaces where Y ijk=0
but Xij 6=0 and Ziklj 6=0.

And further:

In solutions of the Einstein equations there are no
metrics where Y ijk 6=0 but Xij =0 and Ziklj =0.
Thus in wave fields of gravity Y ijk 6=0 and Xij 6=0
(and as well Ziklj 6=0: see the footnote) everywhere
and always.

∗In ortho-frames there is no difference between upper and lower

indices (see [37]). For this reason we can write zik =
1
c2
εimnεkpqZmnpq

and yik=
1
2c
εimnYkmn instead of zik =

1
c2
εimnεkpqZ

mnpq and

yik=
1
2c
εimnY

∙mn
k ∙ ∙ in formula (3.26). This note relates to all formulae

written in an ortho-frame. We met a similar case in formula (5.11),

where we can also write y≡ ‖yik‖ =−
1
2c
‖εimnYkmn‖ instead of

y≡ ‖yik‖ =−
1
2c

∥
∥εimnY ∙mnk ∙ ∙

∥
∥.

†We do not mention the third observable component Ziklj , because in
an ortho-frame the matrices x and z are connected by the equation x=−z.
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We will show that in Einstein spaces filled with gravi-
tational fields where the Riemann-Christoffel tensor’s ob-
servable components Xij , Y ijk, Ziklj play a part of the
wave functions, the quantity Xij is analogous to the electric
component of an electromagnetic field, while Y ijk is anal-
ogous to its magnetic component. All this will be discussed
in §7.

6 Wave properties of Einstein’s equations

In §2 we have showed that the gravitational field equations
(the Einstein equations) do not contain a general covariant
d’Alembert operator derived from the fundamental metric
tensor gαβ (where gαβ is considered as a “four-dimensional
gravitational potential”). Nevertheless this problem has been
solved in linear approximation in the case where gravitational
fields are occupy an empty space (Rαβ =0, “empty gravi-
tational fields”) [14, 15]. In this case a gravitational field
is considered as a tiny addition to a flat space background
described by the Minkowski metric. Thus

gαβ = δαβ + γαβ , (6.1)

where δαβ are components of the fundamental metric tensor
in a Galilean reference frame δαβ = {+1,−1,−1,−1}, and
γαβ describes weak corrections for the gravitational fields.
The contravariant fundamental metric tensor gαβ to within
the first order approximation of the γαβ is

gαβ = δαβ − γαβ , (6.2)

so the determinant of the tensor gαβ is

g = − (1 + γ) , γ = det ‖γαβ‖ . (6.3)

The requirement that components of the “additional”
metric γαβ must be infinitesimal fixes a prime reference
frame. If this requirement is true in a reference frame, it will
also be true after transformations

x̃α = xα + ξα, (6.4)

where ξα are infinitesimal quantities ξα� 1. Then we have

γ̃αβ = γαβ −
∂ξα
∂xβ

−
∂ξβ
∂xα

. (6.5)

Because of (6.1), we impose an additional requirement
on the tensor γαβ ; this requirement is [15]

∂ψα

∂xβ
= 0 , ψαβ = γαβ −

1

2
δαβ γ . (6.6)

Taking (6.6) into account, the Ricci tensor takes the form

Rαβ =
1

2
γαβ , (6.7)

where

≡ gαβ
∂2

∂xα∂xβ
=
1

c2
∂2

∂t2
−Δ ,

Δ =
∂2

∂x12
+

∂2

∂x22
+

∂2

∂x32
.

(6.8)

Here is the d’Alembert operator, Δ is the Laplace
operator. The calibrating requirements (6.6) are true in any
metric γαβ only if the quantities ξα are solutions of the
equation

ξα = 0 . (6.9)

In [15] the requirement

γαβ = 0 (6.10)

was imposed on the quantities γαβ , which is interpreted as
the equation of weak gravitational waves in emptiness — this
formula (6.10) is a standard wave equation that describes a
wave of the tensor field γαβ , traveling at the velocity c in
emptiness.

One usually considers the equation (6.10) as the basis
for the claim that the General Theory of Relativity predicts
gravitational waves, which travel at the speed of light.

If we have a weak plane gravitational wave, so the field
has changes along a single spatial direction (the x1 axis, for
instance), the formula (6.10) takes the form

(
1

c2
∂2

∂t2
−

∂2

∂x12

)

γαβ = 0 , (6.11)

and solutions of it can be any function of ct±x1. After
numerous transformations of the function γαβ [14, 15] it
obtains that in the field of a weak plane gravitational wave
only the following components are non-zero: γ22=−γ33≡a,
γ23≡ b. Thus, those weak plane gravitational waves that
satisfy the Einstein equations in emptiness are transverse.

Thus if some additional requirements are imposed upon
the Einstein equations in emptiness, the equations describe
weak plane waves of the space deformation, the space metric
of which is [15]

ds2 = c2dt2 − (dx1)2 − (1+ a)(dx2)2+

+ 2bdx2dx3 − (1− a)(dx3)2,
(6.12)

where a and b are functions of ct±x1. The field of gravi-
tation, described by the metric (6.12), is of the sub-kind N by
Petrov’s classification, so it satisfies most of invariant criteria
for gravitational waves.

The metric (6.12) has been written in a synchronous
reference frame, so its space deforms, falls freely, and, at
the same time, has no rotations. Hence, under the given
assumptions, weak plane gravitational waves are waves of
“pure” deformation of the space. This conclusion is the main
reason why experimental physicists, and Weber in particular
[16], expect that gravitational waves will cause a “pure”
deformation effect in detectors.
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Calculations for the interaction between a Weber solid-
body detector and a weak plane gravitational wave field
will be given in §7. Here we continue our argument for the
wave nature of the Einstein equations in strong gravitational
fields in the case where matter is arbitrarily distributed in the
space. This research will be given in the terms of physically
observable quantities for the reason that we will consider
situations derived from different factors, generating gravita-
tional wave fields, not only the space deformation.

The Einstein equations in the case where matter is arbitr-
arily distributed are [42]

∗∂D

∂t
+DjlD

jl+AjlA
lj+

(
∗∇j −

1

c2
Fj

)

F j =

= −
κ

2

(
ρc2 + U

)
+ λc2,

(6.13)

∗∇j
(
hijD −Dij − Aij

)
+
2

c2
FjA

ij = κJ i, (6.14)

∗∂Dik
∂t

− (Dij + Aij)
(
D
j
k + A

∙j
k∙

)
+DDik+

+3AijA
∙j
k∙ +

1

2
(∗∇iFk +

∗∇kFi)−
1

c2
FiFk−

− c2Cik =
κ

2

(
ρc2hik+2Uik−Uhik

)
+λc2hik .

(6.15)

Here ∗∇j denotes the chr.inv.-derivative, while the quan-

tities ρ= T00
g00 , J i=

cT i0√
g00

, U ik= c2T ik (from which we

have U =hikUik) are the chr.inv.-components of the energy-
momentum tensor Tαβ of matter: the physically observable
density ρ, the physically observable impulse density vector
J i, and the physically observable stress-tensor U ik.

Zelmanov had deduced [42] that the chr.inv.-spatial cur-
vature tensor Ciklj is linked to a chr.inv.-tensor Hiklj ,
which is like Schouten’s tensor [67], by the equation

Hlkij = Clkij +
1

c2
(
2AkjDjl + AijAkl+

+AjkDil + AklDij + AliDjk
) (6.16)

and contracted tensors Hlk=H ∙ ∙ ∙ i
lik∙ and Clk=C ∙ ∙ ∙ ilik∙ are re-

lated as follows

Hlk = Clk +
1

c2
(
AkjD

j
l + AljD

j
k + AklD

)
. (6.17)

Taking the definition Dik=
1
2

∗∂hik
∂t

into account, and
Clk from (6.17), we reduce (6.15) to the form

1

2

∗∂2hik
∂t2

−DijD
j
k+D

(
Dik−Aik

)
+2AijA

∙j
k∙+

+
1

2

(
∗∇iFk −

∗∇kFi
)
−
1

c2
FiFk − c

2Hik =

= κUik + λc
2hik .

(6.18)

The quantity Hik, by definition, is

Hik=H
∙∙∙j
ijk∙=

∗∂Δ
j
ij

∂xk
−
∗∂Δ

j
ik

∂xj
+ΔmijΔ

j
km−Δ

m
ikΔ

j
jm, (6.19)

where Δmjm =
∗∂ ln

√
h

∂xj
.

Taking into account (6.17), (6.19), and also Zelmanov’s
identities (4.6), (4.7) that link Fi and Aik, we reduce (6.18)
to the form

∗ hik = 2
∗∂2 ln

√
h

∂xi∂xk
−
2

c2

(
∗∇iFk +

∗∂Aik
∂t

)

−

−
4

c2
(
AijA

∙j
k∙ −DijD

j
k

)
−
2D

c2
(
Dik + Aik

)
+

+ 2
(
hpqΔmpqΔik,m +Δ

m
ijΔ

j
km

)
−

−hpm
∗∂

∂xp

( ∗∂him
∂xk

+
∗∂hkm
∂xi

)

+

+κ

(

ρhik +
2

c2
Uik −

U

c2
hik

)

+ 2λhik ,

(6.20)

where ∗ is the chr.inv.-d’Alembert operator, applied here to
the chr.inv.-metric tensor hik (the observable metric tensor
of the observer’s three-dimensional space)∗.

If we equate the right part of (6.20) in zero, the whole eq-
uation becomes a wave equation with respect to hik, namely

∗ hik =
1

c2

∗∂2hik
∂t2

− hjm
∗∂2hik
∂xj∂xm

. (6.21)

In this case the spatial components of the Einstein equa-
tions describe gravitational inertial waves of the spatial met-

ric hik, which travel at the velocity u= c
(
1− w

c2

)
which

depends on the value of the gravitational potential w. This
coincides with the results recently obtained by Rabounski
[48]. If w=0, the waves travel at the velocity of light. The
greater is w the smaller is u. The wave’s velocity u becomes
zero in the extreme case where w= c2 which occurs under
collapse, hence under collapse gravitational waves stop —
they become standing gravitational waves.

It is evident from the mathematical viewpoint, that redu-
cing the right side of (6.20) to zero is a very difficult task,
because the whole equation is a system of 6 nonlinear equa-
tions of the 2nd order, in which numerous variables are
linked by relationships (6.13) and (6.14). Systems such as
this cannot be solved analytically in general, but we can
obtain solutions for various specific metrics.

Because experimental physicists. in their search for gravi-
tational waves, propound experimental statements for detect-
ing weak wave fields of gravitation, we are going to study a
linearized form of the equation (6.20).

∗Components of the chr.inv.-metric tensor hik satisfy the requirements
∗∇jhik= ∗∇jhki =

∗∇jhik =0. For this reason we can apply the chr.inv.-

d’Alembert operator ∗ = 1
c2

∗∂2

∂t2
− hik∗∇∗i ∇k to it.
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For (6.20) in emptiness, the linear approximation is∗

∗ hik = 2
∗∂2 ln

√
h

∂xi∂xk
−
2

c2

(
∗∇iFk +

∗∂Aik
∂t

)

. (6.22)

As a matter of fact, equation (6.22) describes weak plane
gravitational inertial waves without sources, if the wave field
satisfies the obvious chr.inv.-condition

∗∂2 ln
√
h

∂xi∂xk
=
1

c2

(
∗∇iFk +

∗∂Aik
∂t

)

. (6.23)

In other words, the field of the observable metric tensor
hik is a wave field if there are some relations between
the inhomogeneity of the gravitational inertial force field,
the non-stationary rotation of the space, and the volume
transformations of the space element, taken in the field†. The
condition (6.23) is true for the well-known metric of weak
plane gravitational waves (6.12), because in the metric (6.12)
we have Fi=0, Aik=0,

√
h=
√
1−a2−b2≈ 1. Thus:

Weak plane gravitational waves in emptiness are also
weak plane gravitational inertial waves of the spatial
observable metric hik.

As shown in [41], the metric (6.12) satisfies the Zelmanov
chr.inv.-criterion for gravitational waves, where the wave
functions are the Riemann-Christoffel tensor’s physically
observable components Xij , Y ijk, Ziklj . Hence weak plane
gravitational inertial waves (waves of the space curvature)
can exist in emptiness, because of the Einstein equations. We
have shown above that such wave gravitational fields can also
exist in spaces of the sub-kind N by Petrov’s classification
(such spaces are curved themselves, and matter contributes
only an additional component to the initial curvature). Hence
such fields satisfy most of the known invariant criteria for
gravitational waves.

As we showed above, on page 46, that fields of gravita-
tional radiations cannot exist in spaces of the 1st kind by
Petrov’s classification. In spaces of the 1st kind Y ijk=0.
Therefore it would be logical to express the Einstein equations
in the physically observable components Xij , Y ijk, Ziklj of
the Riemann-Christoffel curvature tensor, aiming to find rela-
tions between the ch.inv.-quantities Xij , Y ijk, Ziklj and the
physically observable components of the energy-momentum
tensor Tαβ of distributed matter (ρ, J i, Uik, see page 48).

In chr.inv.-components the Einstein equations become

Z ∙ ∙mk
mk ∙ ∙ = κ

(
ρc2 + U

)
− 2λc2,

Y im ∙
∙ ∙m = κJ i,

Xik −Xhik + Z
m∙∙∙
∙ imk =

=
κ

2

(
ρc2hik + 2Uik − Uhik

)
+ λc2hik ,

(6.24)

∗In obtaining this formula, in the initial equation (6.20), we neglect
products of the chr.inv.-quantities and of their derivatives.

†The integral of
√
hdx1dx2dx3 is the volume of an element of the

space. Here the differentials dxi themselves and an interval, where values
of the xi change where we take the integral, do not depend on x0 [42].

if matter is distributed arbitrarily. Here X =hikXik is the
trace (spur) of the tensor Xik.

From here we see that the physical observable com-
ponents of the Riemann-Christoffel tensor have different
physical origins:

1. Quantities Xij (and as well Ziklj) are linked to the
mass density ρ and the stress-tensor Uik;

2. Quantities Y ijk are linked to the impulse density J i

of matter.

As we showed above, on page 46, in all the widely known
metrics which satisfy both the invariant criteria and the
chr.inv.-criterion for gravitational waves, we have Y ijk 6=0,
although Xij (and as well Ziklj) can be zero. This fact leads
us to a very important conclusion:

Gravitational waves and gravitational inertial waves
are mainly waves of the field of the Y ijk physically
observable component of the Riemann-Christoffel
curvature tensor‡.

But this conclusion does not mean that only waves of the
field Y ijk can be discovered. As we will see in §7, relative
accelerations of test-particles are derived from wave fields
of all three observable components Xij , Y ijk, Ziklj of the
Riemann-Christoffel tensor. Our conclusion means:

If in a space, filled with a gravitational field, Y ijk=0
is true, the structure of the space itself prohibits the
gravitational field from being a wave.

Contracting (6.26) and taking (6.24) into account, we
obtain

X =
κ

2

(
U − ρc2

)
− 2λc2. (6.25)

In an empty space where there are no λ-fields, the trace
of Xij and the contracted quantity Z ∙ ∙mk

mk ∙ ∙ are zero, as well
as the contracted quantity Y im ∙

∙ ∙m . Thus the chr.inv.-Einstein
equations (6.24) in emptiness take the form§

Z ∙ ∙mk
mk ∙ ∙ = 0 , X = 0 ,

Y im ∙
∙ ∙m = 0 ,

Xik + Z
m∙∙∙
∙ imk = 0 ,

(6.26)

so, while the quantities Xik and Ziklj are connected to one
another, the quantity Y ijk (which, being non-zero, Y ijk 6=0,
permits gravitational fields to be a wave) is the independent
observable component of the Riemann-Christoffel tensor.

‡Quadrupole mass-detectors, in particular, solid-body detectors (the
Weber pigs) can only register waves of the Xij component, not waves
of Y ijk if its particles are at rest in the initial moment of time (see §7 and
§8 for details). Thus, the Weber experimental statement is false at its base.

§As a matter of fact, equality to zero of inflected forms of a tensor does
not imply that the tensor quantity itself is zero. Thus, equalities X =0,
Y im ∙
∙ ∙m=0, Z

∙ ∙mk
mk ∙ ∙ =0 do not imply that the quantities Xik, Y ijk, Ziklj

themselves are zero. Therefore the chr.inv.-Einstein equations in emptiness
(6.24) permit gravitational waves if, of course, Y ijk 6=0.
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7 Expressing Synge-Weber equation (the world-lines
deviation equation) in the terms of physical observ-
able quantities, and its exact solutions

In the previous paragraphs we focused our attention on
general criteria, which differentiate gravitational wave fields
from other gravitational fields in the General Theory of
Relativity. As a result, we have found the main properties
of gravitational wave fields.

We are now going to introduce a substantial criticism of
the contemporary theoretical foundations of current attempts
to detect gravitational waves by solid-body detectors of the
resonance kind (the Weber pigs) and quadrupole mass de-
tectors in general.

As we showed in the previous paragraphs, only gravita-
tional fields located in spaces where the Riemann-Christoffel
curvature tensor has a specific structure, permit the presence
of gravitational waves. Therefore it would be reasonable
to design experiments by which a physical detector could
register wave changes of the four-dimensional (space-time)
curvature∗ — the waves of the Riemann-Christoffel curvature
tensor field.

Such a physical detector could be a system of two test-
particles: their relative world-trajectories will necessarily
undergo changes through the action of a wave of the space
curvature. These systems are described by the world-lines
deviation equation — the Synge equation of geodesic devia-
tion (2.8) if these are two free particles, and the Synge-Weber
equation (2.12) if the particles are connected by a force of
non-gravitational nature.

We propose gravitational wave detectors of two possible
kinds. The system of two free particles is known as a detector
built on free masses. In practice such a detector consists of
two freely suspended massive bodies, separated by a suitable
distance. The system of two particles connected by a spring
is known as a quadrupole mass-detector— this is a detector of
the resonance kind, a typical instance of which is the Weber
cylindrical pig.

To understand how a graviational wave would affect
the different types of detectors we need to make specific
calculations for their behaviour in gravitational wave fields.
But before making the calculations, it is required to describe
the behaviour of two test-particles in regular gravitational
fields (of non-wave nature) in the terms of physically ob-
servable quantities (chronometric invariants). This analysis
will show how different kinds of gravitational inertial waves
cause relative deviation (both spatial and time displacements)
of two test-particles.

We will solve this problem first for a system two free

∗It is important to note that the expected gravitational waves are waves
of the space-time curvature, not merely of the spatial curvature of the three-
dimensional space. Consequently, waves of the four-dimensional curvature
must produce changes not only in the distance between test-particles in a
detector, but also in the time flow for the particles.

particles as described by the Synge equation (2.8) where the
right side is zero. The problem for spring-connected particles,
described by the Synge-Weber equation (2.12), will be solved
in the same way except that there will be a non-gravitational
force acting, so that the right side of the equation will be
non-zero.

Relative accelerations of free test-particles D
2ηα

ds2
as a

whole and the quantity Rα ∙∙∙∙βγδ are derived from components
of the Riemann-Christoffel world-tensor, contracted with
components of the particles’ four-dimensional velocity vector
Uβ and their relative deviation vector ηγ , namely — from
the quantity Rα ∙∙∙∙βγδU

βUδηγ . To determine what effect is
introduced by each observable component of the Riemann-
Christoffel tensor into the spatial and time relative displace-
ments, described by the relative displacement world-vector
ηα, we consider the geodesic deviation equation (2.8), keep-

ing the term D2ηα

ds2
as a whole and the quantity Rα ∙∙∙∙βγδ without

expressing it in terms of the Christoffel symbols and their
derivatives.

As well as any general covariant equation, the geodesic
deviation equation (2.8) can be projected onto the observer’s
time line and spatial section (his three-dimensional space) as
given in [42, 43] or on page 40 herein. Denoting

Mα ≡
D2ηα

ds2
+Rα ∙∙∙∙βγδU

βUδηγ = 0 , (7.1)

let us find equations which are its projection on the time line

M0
√
g00

=
g0α
√
g00

Mα =
√
g00M

0 −
1

c
viM

i = 0 , (7.2)

and its projection on the spatial section

M i = 0 . (7.3)

To find the equations in expanded form we need first
to find the chr.inv.-projections of them, consisting of the
quantities ηα and Uα. Projections of the ηα onto the time
line and spatial section are, respectively

ϕ ≡
η0
√
g00

, ni ≡ ηi, (7.4)

other components of the ηα are expressed through its phys-
ically observable components ϕ and ni as follows

η0 =
ϕ+ 1

c vkn
k

√
g00

, ηi = −
ϕ

c
vi − ni . (7.5)

The time and spatial components of the particles’ world-
velocity vector Uα are derived from the chr.inv.-definitions
given by the theory of chronometric invariants for the space-
time interval ds and the observable chr.inv.-velocity vector vi

ds = cdτ

√

1−
v2

c2
, vi =

dxi

dτ
, v2 = hikv

ivk, (7.6)
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so the required quantities U0 and U i are

U0 =
1

√
1− v2

c2

dt

dτ
, U i =

vi

c
√
1− v2

c2

. (7.7)

A formula for the time function dt/dτ is obtained from∗

gαβ U
αUβ = gαβ

dxα

ds

dxβ

ds
= 1 , (7.8)

which can be reduced to the quadratic equation
(
dt

dτ

)2
−

2viv
i

c2
(
1− w

c2

)
dt

dτ
+

+
1

(
1− w

c2

)2

(
1

c2
vivkv

ivk − 1

)

= 0 ,

(7.9)

which has two solutions
(
dt

dτ

)

1

=

1
c2
viv

i+1

1− w
c2

,

(
dt

dτ

)

2

=

1
c2
viv

i−1

1− w
c2

. (7.10)

The first solution is related to a space where time flows
from past into future (a regular observer’s space), the second
solution is related to a space where time flows from future
into past with respect to a regular observer’s time flow (the
mirror Universe [70, 71]). Taking only the first root, U0 takes
the form

U0 =

1
c2
viv

i + 1
√
1− v2

c2

(
1− w

c2

) . (7.11)

Substituting formulae (7.5), (7.7), (7.11) into D2ηα

ds2
+

+Rα ∙∙∙∙βγδU
βUδηγ =0 (7.1), and expressing the components

of the Riemann-Christoffel tensor Rα ∙∙∙∙βγδ in terms of its phys-
ically observable components Xij , Y ijk, Ziklj , we obtain a
formula for the relative spatial oscillations of two free test-
particles

D2ηi

ds2
=

1

c2−v2

(

Y ∙ ∙ i
mk∙v

k−Xi
m−

1

c2
Z ∙ ∙ i ∙
mk∙nv

kvn
)

ηm. (7.12)

From this formula we see that:
The relative spatial deviations of two free particles can
be caused by all three observable components of the
Riemann-Christoffel curvature tensor. Moreover, each
of the components acts on the particles in a different
way: (1) the field of Xik acts the particles only if
they are at rest with respect to the observer’s space
references, so the field ofXik can move particles only
if they are at rest at the initial moment of time; (2) the
fields of Y ijk and Ziklj can displace the particles with
respect of each to other only if they are in motion
(vi 6=0) — the effect of Ziklj is perceptible if the
particles move at speeds close to the velocity of light.

∗That is the evident equality.

Thus, with measurement taken by any observer, the phys-
ically observable components of the Riemann-Christoffel
curvature tensor are of 3 different kinds:

1. The component Xik —of “electric kind”, because it
can displace even resting particles;

2. The component Y ijk — of “magnetic kind”, because it
can displace only moving particles;

3. The component Ziklj of “magnetic relativistic kind”,
because it causes an effect only in particles moving at
relativistic speeds.

Besides the observable spatial component ηi of the rel-
ative deviation vector ηα there is also its observable time
component ϕ, which indicates the difference between time
flows measured by clocks located at each of the particles.

We then obtain the relative time deviation equation for
two free test-particles

√
g00
D2η0

ds2
−
1

c
vi
D2ηi

ds2
=

= −
√
g00R

0 ∙∙∙
∙βγδU

βUδηγ +
1

c
viR

i ∙∙∙
∙βγδU

βUδηγ .

(7.13)

Taking (7.10) into account and substituting the formulae
for U0, η0, U i, ηi into (7.11), then, expressing R0 ∙∙∙∙βγδ in
terms of physically observable quantities, we reduce formula
(7.13) to its final form

√
g00
D2η0

ds2
−
1

c
vi
D2ηi

ds2
=

=
1

c2−v2

[
1

c
Xik

(
ni−

ϕ

c
vk
)
vk+

1

c
Yimkv

ivkηm
]

.

(7.14)

Looking at this formula we note one simple thing about
the effect of gravitational waves on the system of two free
particles:

The time observable component of the relative devi-
ation vector for two free particles undergoes oscilla-
tions due only to theXik and Y ijk observable compo-
nents of the Riemann-Christoffel curvature tensor, not
its Ziklj component. Moreover, the fields of both the
components Xik and Y ijk act on the particles only if
they are in motion with respect to the space references.
If the particles are at rest with respect to each other
and the observer (vi=0), the fact that the space has
a Riemannian curvature makes no difference to the
time flow measured in the particles.

It should be added that if the particles are in motion
with respect to the space references and the observer, the
effect of Xik is both linearly and quadratically dependent
on the speed, whilst the effect of Y ijk is only quadratically
dependent on the speed.

Thus, there is no complete analogy between the phys-
ically observable components of the Riemann-Christoffel
curvature tensor and Maxwell’s electromagnetic field tensor.
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The components Xik can be interpreted “electric” only in
relative spatial displacements of two particles. In relative
time deviations between the particles (the difference between
the time flow measured in the them both) both Xik and Y ijk

act on them depending on the particles’ velocity with respect
to the space references and the observer, so in this case both
Xik and Y ijk are of the “magnetic” kind. Therefore the terms
“electric” and “magnetic” are only applicable relative to
observable components of the Riemann-Chrstoffel curvature
tensor. This terminology is strictly true in that case where
the particles have only relative spatial deviations, while the
time flow is the same on the both world lines.

A formula for the observable relative time deviation
ϕ=

η0√
g00

between two free particles can be obtained from

the requirement that the scalar product Uαηα remains un-
changed along geodesic trajectories, so Uαηα= const must
be true along trajectories of free particles. For this reason, if
the vectors Uα and ηα are orthogonal, they are orthogonal on
the entire world-trajectory [17]. Formulating the orthogon-
ality condition Uαηα= const in terms of physically observ-
able quantities, we introduce some corrections to the results
obtained in [17].

In terms of physically observable quantities the ortho-
gonality condition Uαηα= const, because it is actually the
same as U0η0 + Ukηk= const, reduces to

ϕ−
1

c
niv

i = const×

√

1−
v2

c2
. (7.15)

From this we see that the vectors Uα and ηα are ortho-
gonal only if v2= c2, i. e. Uα is isotropic: gαβUαUβ =0.
So if Uα and ηα are orthogonal, we have the deviation
equation for two isotropic geodesics — world-lines of light-
like particles moving at the velocity of light. We defer this
case for the moment and consider only the case of two
neighbour non-isotropic geodesics. In the particular case
when two particles are moving on neighbouring geodesics,
and are at rest with respect to the observer and his references
(only the time flow is different in the particles), formula
(7.15) leads to ϕ= const.

This formula verifies our previous conclusion that the
particles have a time deviation only if they are in motion. The
greater their velocity with respect to the space reference and
the observer, the greater the deviation between the time flow
on both world-lines. Thus measurement of time deviations
between two particles in gravitational waves and gravita-
tional inertial waves would be easier in experiments where
the particles move at high speeds. In practice such an exper-
imental statement could be realized using light-like particles
(in particular, photons). A time deviation of two photons in
gravitational wave fields can manifest as changes in the fre-
quencies of two parallel light rays (laser beams, for instance),
while a spatial deviation of the photons can manifest as
changes in the phases of the light rays. Calculations of these

effects will be presented in future article. Here we focus our
attention on particles of non-zero rest-massm0 6=0 (so-called
mass-bearing particles), which are at rest with respect to the
space references and the observer or, alternatively, moving
at sub-light speeds.

In equations (7.10) and (7.12), we kept the second absol-

ute derivative D
2ηα

ds2
of the relative deviation vector ηα as a

whole, because we were concerned only with the effects in-
troduced by the Riemannian curvatureto the relative spatial

acceleration D2ηi

ds2
and relative time acceleration D2η0

ds2
of

two free test-particles.
But if we wish to obtain solutions to the world-lines

deviation equation, we need to express the quantity D2ηα

ds2
and also Rα ∙∙∙∙βγδ in terms of the Christoffel symbols and their
derivatives.

We are now going to obtain solutions to the deviation
equation for geodesic lines (the Synge equation).

Taking the definition

Dηα

ds
=
dηα

ds
+ Γαμνη

μUν (7.16)

into account, we obtain

D2ηα

ds2
=
d2ηα

ds2
+
dΓαμν
ds

ημUν + 2Γαμν
dημ

ds
Uν+

+Γαμνη
μ dU

ν

ds
+ ΓαρσΓ

ρ
μνη

μUνUσ = 0 .

(7.17)

We write Rα ∙∙∙∙βγδ as

Rα ∙∙∙∙βγδ =
∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓσβδΓ
α
γσ − Γ

σ
βγΓ

α
σδ , (7.18)

express dU
α

ds
via the geodesic equations

dUα

ds
= −ΓαμνU

μUν , (7.19)

and use the definition

dΓαμν
ds

=
∂Γαμν
∂xσ

Uσ. (7.20)

Using the auxiliary formulae we obtain from (7.17) the
Synge equation (the geodesic lines deviation equation) in its
final form

d2ηα

ds2
+ 2Γαμν

dημ

ds
Uν +

∂Γαβδ
∂xγ

UβUδηγ = 0 . (7.21)

This is a differential equation of the 2nd order with
respect to the quantity ηα: the equation is a system of
4 differential equations with respect to the quantities η0

and ηi (i=1, 2, 3). The variable coefficients Γαμν and their
derivatives must be taken for that gravitational field, whose
waves act on two free test-particles in our experiment. The
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world-quantities Uν (ν=0, 1, 2, 3) can be found as solutions
to the geodesic equations

dUν

ds
+ ΓνμρU

μUρ = 0 (7.22)

only if the particles move with respect to the space references
and the observer. If the particles are at rest with respect to the
observer and his references, the components of their world-
velocity vector Uν are

U0 =
1
√
g00

, U i = 0 , (7.23)

and, according to (7.13–7.15), their relative time deviation is
zero, ϕ=0 (the time flow measured on both geodesic lines
is the same).

Current detectors used in the search for gravitational
wave radiations are of such a construction that the particles
therein, which detect the waves, are almost at rest with
respect of each other and the observer. Experimental phys-
icists, following Joseph Weber and his methods, think that
gravitational waves can cause the rest-particles to undergo a
relative displacement. With the current theory of the gravi-
tational wave experiment, the experimental physicists limit
themselves to the expected amplitude and energy of waves
arriving from a proposed source of a gravitational wave field.

However, to set up the gravitational wave experiment
correctly, we need to eliminate all extraneous assumptions
and traditions. We merely need to obtain exact solutions to
the world-lines deviation equation, applied to detectors of
that kind which this experiment uses.

Detectors described by the geodesic lines deviation equa-
tion (the Synge equation), which we consider in this section,
are known as “antennae built on free masses”. We shall
consider such detectors first.

The detectors consist of two freely suspended masses
which are at rest with respect of each other and the observer,
and separated by an appreciable distance. These could be two
mirrors, located in a near-to-Earth orbit, for instance. Each
of the mirrors is fitted with a laser range-finder, so we can
measure the distance between them with high precision.

In order to interpret the possible results of such an exper-
iment, we need to solve the Synge equation (7.21), expressing
its solutions in the terms of physically observable quantities
(chronometric invariants). Following “tradition”, we solve
the Synge equation for particles which are at rest with respect
to each other and the observer’s space references. So we
consider that case where the particles’ observable velocities
are zero (vi=0).

At first, because we are going to obtain solutions to
the Synge equation in chr.inv.-from, we need to know the
physically observable characteristics of the observer’s refer-
ence space through which we express the solutions. We find
the chr.inv.-characteristics from the geodesic equations taken

in the main chr.inv.-from [42]

dm

dτ
−
m

c2
Fiv

i +
m

c2
Dikv

ivk = 0 , (7.24)

d

dτ
(mvi) + 2m

(
Di
k + A

∙i
k∙

)
vk −mF i+

+mΔinkv
nvk = 0 ,

(7.25)

for each of the particles (because both particles are at rest
with respect to one another, their geodesic equations are
the same). Here m is the particle’s relativistic mass, which,
because in the case we are considering vi=0, reduces to
the rest-mass m=m0. Then the geodesic equations take the
very simple form

dm

dτ
= 0 , (7.26)

mF i = 0 , (7.27)

so in this case the chr.inv.-vector of gravitational inertial
force is F i=0: the particles are in free fall. In this case

we can transform coordinates so that g00=0 and ∂g0i
∂t

=0

[42]. This implies that the Synge initial equation (7.19) can
be solved correctly only for gravitational fields where the
potential is weak w=0 (i. e. g00=1) and where the space

rotation is stationary ∂Aik
∂t

=0. It should be noted that the
metric of weak plane gravitational waves, the only metric
used in the theory of gravitational wave experiments, satisfies
these requirements.

Because ϕ= 1
c niv

i (7.15), in the case we are consider-
ing the time observable component ϕ of the relative deviation
vector ηα is zero ϕ=0. For this reason we consider only the
observable spatial component of the Synge equation (7.21).

In the accompanying reference frame (where the observer
accompanies his references), according to the theory of chro-
nometric invariants [42, 43], in the absence of gravitational
fields w=0 and also gravitational inertial forces Fi=0, we

have: d
ds
= 1
c
d
dτ

, U0= 1√
g00

=1 , U i= 1
c
vi, η0=−g0iηi,

Γi00=−
1
c2

(
1− w

c2

)2
F i=0, Γi0k=

1
c

(
1− w

c2

)(
Di
k+A

∙i
k∙+

+ 1
c2
vkF

k
)
= 1
c

(
Di
k+A

∙i
k∙

)
. Employing now the formulae

for the Synge equation (7.21) under vi=0, we obtain the
Synge equation in chr.inv.-form∗

d2ηi

dτ 2
+ 2
(
Di
k + A

∙i
k∙

)dηk

dτ
= 0 . (7.28)

The quantity d
dτ
=

∗∂
∂t
+vi

∗∂
∂xi

[42, 43] here is

d

dτ
=

∂

∂t
, (7.29)

∗As we mentioned, if the particles are at rest vi=0, the chr.inv.-time
component of the Synge equation becomes zero.

L. Borissova. Gravitational Waves and Gravitational Inertial Waves: A Theory and Experiments 53



Volume 2 PROGRESS IN PHYSICS July, 2005

so the chr.inv.Synge -equation (7.28) takes its final form

∂2ηi

∂t2
+ 2
(
Di
k + A

∙i
k∙

)∂ηk

∂t
= 0 . (7.30)

We find the exact solution to the Synge chr.inv.-equation
(7.30) in the field of weak plane gravitational waves∗. In the
case we are considering (vi=0) we have

Fi = 0 , Aik = 0 ,

D22 = −D33 =
1

2

∂a

∂t
, D23 =

1

2

∂b

∂t
.

(7.31)

Substituting the requirements into the initial equation
(7.30) we obtain a system of three equations

∂2η1

∂t2
= 0 , (7.32)

∂2η2

∂t2
+
∂a

∂t

∂η2

∂t
−
∂b

∂t

∂η3

∂t
= 0 , (7.33)

∂2η3

∂t2
−
∂a

∂t

∂η3

∂t
−
∂b

∂t

∂η2

∂t
= 0 . (7.34)

The solution of (7.32) is

η1 = η1(0) + η̇
1
(0)t , (7.35)

where η1(0) is the particle’s initial deviation, η̇1(0) is its initial
velocity.

This system can be easy solved in two particular cases
of a linear polarized wave: (1) b=0, and (2) a=0.

In the first case (b=0) we obtain

∂η2

∂t
= C1 e

−a,
∂η3

∂t
= C2 e

+a, (7.36)

where C1 and C2 are integration constants. Because values
of a are weak, we can decompose e−a into series. Then,
assuming higher order terms infinitesimal, we obtain

∂η2

∂t
= C1 (1− a) ,

∂η3

∂t
= C2 (1 + a) . (7.37)

Assuming also that a falling gravitational wave is mono-
chrome, bearing a constant amplitude A and a frequency ω,

a = A sin
ω

c

(
ct± x1

)
, (7.38)

we integrate the system (7.37). As a result we obtain

η2 = C1

[
t+

A

ω
cos

ω

c

(
ct± x1

)]
+D1 , (7.39)

η3 = C2

[
t−

A

ω
cos

ω

c

(
ct± x1

)]
+D2 , (7.40)

∗Where the metric (5.7) is ds2= c2dt2− (dx1)2− (1− a)(dx2)2+
+2bdx2dx3− (1+ a)(dx3)2.

whereD1 andD2 are integration constants. Assuming x1=0
at the initial moment of time t=0, we easily express the
integration constants C1, C2, D1, D2 through the initial
conditions. Finally, we obtain solutions

η2 = η̇2(0)

[
t+

A

ω
cos

ω

c

(
ct± x1

)]
+η2(0)−

A

ω
η̇2(0) , (7.41)

η3 = η̇3(0)

[
t−

A

ω
cos

ω

c

(
ct± x1

)]
+η3(0)−

A

ω
η̇3(0) , (7.42)

where η2(0), η
3
(0) and η̇2(0), η̇

3
(0) are the initial numerical values

of the relative deviation η and relative velocity η̇ of the
particles along the x2 and x3 axes, respectively.

We have now obtained the exact solutions to the Synge
equation (the geodesic lines deviation equation). From the
solutions we see,

If at the initial moment of time t=0, two free particles
are at rest with respect to each other and the observer
η̇2(0)= η̇

3
(0)=0, weak plane gravitational waves of the

deformation kind (waves of the Riemannian curva-
ture) cannot force the particles to go into relative
motion. If at the initial moment of time the particles
are in motion, the waves augment the particles’ initial
motion, accelerating them.

Thus our purely mathematical analysis of detectors built on
free masses leads to the final conclusion:

Weak plane gravitational waves of the deformation
kind (the Riemannian curvature’s waves) cannot be
detected by any antenna composed on free masses, if
the masses are at rest with respect to each other and
the observer.

8 Criticism of Weber’s conclusions on the possibility of
detecting gravitational waves by solid-body detectors
of the resonance kind

Historically, the first gravitational wave detector was the qua-
drupole mass-detector built in 1964 by Prof. Joseph Weber
with his students David Zipoy and Robert Forward at Mary-
land University [70]. It was an aluminium cylindrical pig
weighing 1.5 tons, suspended by a steel “thread” in a vacuum
camera. At the point of connection between the pig and the
thread, the pig was covered by a piezoelectric quartz film
linked to a highly sensitive voltmeter. Weber expected that
a falling gravitational wave should make relative displace-
ments of the butt-ends of the cylindrical pig — extension or
compression of the pig. In other words, they expected that
falling gravitational waves will deform the pig, necessarily
causing a piezoelectric effect in it. Modified by Sinsky [71],
the first detector gave a possibility of registering a 10−16cm
relative displacement of its butt-ends.

Later, Weber built a system of two pigs. That system
worked through the principle of coincident frequencies of
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the signals registered in both pigs. The pigs had a relax-
ation time about 30 sec, were tuned for the frequency 104 rps,
and were separated by 2 km. In 1967 Weber and his team
registered coincident signals (to a precision within 0.2 sec)
which appeared about once a month [1]. The registered
relative displacements of the butt-ends in the pigs were
∼3×10−10cm. Weber supposed that the origin of the observed
signals were gravitational wave radiations.

Weber subsequently even used 6 pigs, one of which was
located at Argonne National Laboratory (Illinois), the other
5 pigs located in his laboratory at Maryland University.
The distance between the laboratories wss about 1000 km.
The detectors were tuned for 1660 Hz — the frequency of
supposed gravitational radiations excited from collapsing su-
pernovae. During several months of observations, numerous
coincident signals were registered [72]. A second cycle of
the observations gave the same positive result [73]. Weber
interpreted the registered signals as proof that strong gravi-
tational radiations exist in the Galaxy. A peculiarity of those
experiments was that the pigs located both in Illinois and
Maryland were isolated as much as possible from external
electromagnetic and seismic influences.

After Weber’s pioneering experiments, experimental
physicists built many similar detectors, much more sensitive
than those of Weber. However, in contrast to those of Weber,
not one of them registered any signals.

Therefore, using the world-lines deviation theory de-
veloped here in the terms of physically observable quantities,
we are going to:

(1) investigate what in principle can be registered by a
solid-body detector (a Weber pig) and

(2) compare our conclusion with that explanation given by
Weber himself for his observed signals.

From the theoretical viewpoint we can conceive of a
solid-body cylindrical detector as consisting of two test-
particles, connected by a spring [16]. It is supposed that
the system falls freely. It is also supposed that at the initial
moment of time, when we start our measurements, the par-
ticles are at rest with respect to us (the observers) and each
other. This is the standard problem statement, not only of
Weber [16] or ourselves, but also of any other theoretical
physicist.

The behaviour of two neighbouring particles in their
motion along their neighbouring world-lines is described
by the world-lines deviation equation. If the particles are
not free, but connected by a non-gravitational force Φα

(a spring, for instance), the Synge-Weber equation (2.12)

applies, namely D
2ηα

ds2
+ Rα ∙ ∙ ∙∙βγδU

βUδηγ = 1
m0c2

DΦα

dv
dv.

This is an inhomogeneous differential equation of the 2nd
order with respect to the relative deviation vector ηα of the
particles. In order to solve the world-lines deviation equation

we need to write D2ηα

ds2
and DΦα

dv
dv in expanded form.

Because both terms contain the Christoffel symbols Γαμν ,
it would be reasonable to express the components of the
Riemann-Christoffel tensor Rα ∙ ∙ ∙∙βγδ in terms of the Γαμν and
their derivatives: in collecting similar terms some of them
will cancel out (the same situation arose when we made the
same calculations for the geodesic lines deviation equation).

Using formulae (7.17) and (7.18), and the quantity dUα
ds

from the world-line equation of a particle moved by a non-
gravitational force Φα (2.11), we obtain

dUα

ds
= −ΓαρσU

ρUσ +
Φα

m0c2
. (8.1)

Expanding the formula for DΦ
α

dv
dv

DΦα

dv
dv =

∂Φα

∂v
dv + ΓαμνΦ

μ ∂x
v

∂v
dv =

=
∂Φα

∂xσ
ησ + ΓαμνΦ

μην
(8.2)

and substituting this into the world-lines deviation equation
in its initial form (2.12), takeing into account that (8.1) and
(8.2), we obtain

d2ηα

ds2
+ 2Γαμν

dημ

ds
Uν +

∂Γαβδ
∂xγ

UβUδηγ =

=
1

m0c2
∂Φα

∂xσ
ησ.

(8.3)

This is the final form of the world-lines deviation equation for
two test-particles connected by a spring. The quantities ηα

and Uα are connected by (2.13): ∂
∂s
(Uαη

α) = 1
m0c2

Φαη
α.

In a gravitational wave detector like Weber’s, the cy-
lindrical pig is isolated as much as possible from external
influences of thermal, electromagnetic, seismic and another
origins. To minimise external influences, experimental physi-
cists place the detectors in mines located deep inside mount-
ains or otherwise deep beneath the terrestrial surface, and
cool the pigs to 2 K. Therefore particles of matter in the
butt-ends and the pig in general, can be assumed at rest with
respect to one another and to the observer.

Following Weber, experimental physicists expect that a
falling gravitational wave will deform the pig, displacing its
butt-ends with respect to each other. Relative displacements
of the butt-ends of a pig are supposed to result in a piezo-
electric effect which can be registered by a piezo-detector. In
other words, experimental physicists expect that oscillations
of the acting gravitational wave field give rise to a force in the
world-lines deviation equation (the Synge-Weber equation),
thereby displaceing the test-particles which were at rest at the
initial moment of time. Oscillations of the acting gravitational
wave field force the butt-ends of the pig to oscillate. As
soon as the frequency of the pig’s oscillations coincides
with the falling wave’s frequency, the amplitude of the pig’s
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oscillations will increase significantly because of resonance,
so the amplitude becomes measurable. Therefore the Weber
detectors are said to be of the resonance kind.

Before ratifying the aforesaid conclusions it would be
reasonable to study the world-lines deviation equation for
two interacting test-particles that model a Weber pig, because
this equation is the theoretical basis of all experimental
attempts to register gravitational waves made by Weber and
his followers during more than 30 years.

We will study this equation, proceeding from its form
(8.3), because formula (8.3) gives a possibility of obtaining
exact solutions to the relative deviation vector ηα; not the
initial equation (2.12). Following analysis of the solutions
we will come to a conclusion as to what effect a falling
gravitational wave has on the detector∗.

When we need to give a theoretical interpretation of
experimental results, it is very important to analyse the results
in the terms of physically observable quantities because such
quantities can be registered in practice. For this reason we
will study the behaviour of the Weber model (the system
of two particles, connected by a non-gravitational force) in
the terms of physically observable quantities (chronometric
invariants) as we did in §7 when we solved a similar problem
for the system of two free particles.

In detail, our task here is to consider commonly the
world-lines equation (2.11) and the world-lines deviation
equation (8.3), both written in chr.inv.-form. Note that the

relationship (2.13), that is ∂
∂s
(Uαη

α) = 1
m0c2

Φαη
α, gives

the exact solution for the quantity ϕ. The ϕ is the chr.inv.-
time component of the relative deviation world-vector ηα

with respect to which the world-lines deviation equation (8.3)
is written. For this reason there is no need here to solve the
chr.inv.-time projection of the world-lines deviation equation
(8.3). We solve instead the relationship (2.13).

The world-lines equation (2.11) in chr.inv.-form is

dm

dτ
−
m

c2
Fiv

i +
m

c2
Dikv

ivk =
σ

c
, (8.4)

d

dτ
(mvi)+2m

(
Di
k+A

∙i
k∙

)
vk−mF i+Δiknv

kvn=f i, (8.5)

where σ≡ Φ0√
g00

and f i≡Φi are chr.inv.-components of the

prevailing non-gravitational force Φα. In the case of the
Weber model where the particles are at rest with respect to
the observer (vi=0), the chr.inv.-equations (8.4) and (8.5)
become

σ = 0 , (8.6)

m0F
i = −f i. (8.7)

The condition σ=0 comes from the fact that, when
a particle is at rest its relativistic mass becomes the rest-
mass m=m0. Thus resting particles are under the action

∗It is evident that equation (8.3) can be solved also for other forcing
fields, which can be of a non-wave origin.

of only the spatial observable components f i of the non-
gravitational force Φα, so that the f i are of the same value
as the acting gravitational inertial force F i, but acts in the
opposite direction. Looking at definition (4.1), given by the
theory of physical observable quantities for the gravitational
inertial force F i, we see that in this case the non-gravitational
force f i acts on a resting particle only if at least one of the
following factor holds:

1. Inhomogeneity of the gravitational potential ∂w
∂xi
6=0;

2. Non-stationarity of the vector of the space rotation

linear velocity ∂vi
∂t
6=0.

If neither factor holds, F i=0 and hence f i=0, in which
case both interacting particles, which are at rest with respect
to each other and the observer, behaviour like free particles:
their connecting force Φα does not manifest. Looking at the
well-known metric (5.7) that describes weak plane gravita-
tional waves, we see there that F i=0, Aik=0 and hence
vi=0. Therefore:

Weak plane gravitational waves described by the met-
ric (5.7) cannot be registered by a solid-body detect-
or of the resonance kind (a Weber detector).

Writing the relationship (2.13) in chr.inv.-form, we obtain

d

dτ



ϕ−
1
c niv

i

√
1− v2

c2



 =
σϕ− fini

mc
, (8.8)

where again, ϕ≡ η0√
g00

and ni≡ ηi are chr.inv.-components

of the relative deviation world-vector ηα.
From this we see that the angle between the vectors Uα

and ηα is a variable depending on many factors, including
the velocity vi of the particles. At speeds close to that of
light c, the angle increases. At v= c formula (8.8) becomes
senseless: the denominator on the left side becomes zero.

If both particles are at rest, formula (8.8) becomes

dϕ

dτ
= −

fin
i

m0c
=
Fin

i

c
, (8.9)

so that in the case of interacting rest-particles, in contrast to
free ones, there is the time observable component ϕ of the
relative deviation vector ηα. This implies that there are not
only relative spatial displacements of the particles, but also a
deviation between measurements of time made by the clocks
of both particles. The “time deviation” ϕ can be found by
integrating (8.9). We obtain

ϕ =
1

c

∫
Fin

i + const , (8.10)

so the value of the “time deviation” ϕ increases with time.
It Note that ϕ

τ
=0 only if the vector F i (and hence, in

this case, also f i) is orthogonal to the vector ni, so that
Fin

i=− 1
m0
fin

i=0.
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The integral (8.10) is the solution to the chr.inv.-time
component of the world-lines deviation equation (8.3). This
solution for ϕ itself, being a chronometric invariant, is a
physically observable quantity.

We are now going to obtain solutions to the remaining
three chr.inv.-equations with respect to ηα:

1

c2
d2ηi

dτ 2
+ 2Γi00

1

c

dη0

dτ
U0 + 2Γik0

1

c

dηk

dτ
U0+

+
∂Γi00
∂x0

U0U0η0 +
∂Γi00
∂xk

U0U0ηk =
1

m0c2
∂Φi

∂xσ
ησ,

(8.11)

— the chr.inv.-spatial components of the world-lines deviation
equation (8.3), in the case of two rest-particles ds= cdτ .

In the left side of (8.11) we substitute the formulae for
the quantities Γi00, Γ

i
00, U

0, η0, given on page 53, and also
derivatives of the quantities. Then we transform the right part
of (8.11) as follows

∂Φi

∂xσ
ησ =

∂f i

∂x0
η0 +

∂f i

∂xk
ηk =

ϕ

c

∗∂f i

∂t
+

∗∂f i

∂xk
nk, (8.12)

where we use the definitions of the chr.inv.-derivative oper-

ators (see page 40):
∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi

= ∂
∂xi

+ 1
c2
vi
∗∂
∂t

.

The initial equation (8.11) becomes

d2ni

dτ 2
+2
(
Di
k+A

∙i
k∙

)dnk

dτ
−
2

c

dϕ

dτ
F i+

2

c2
Fkn

kF i−

−
ϕ

c

∗∂F i

∂t
−
∗∂F i

∂xk
nk=

1

m0

(
ϕ

c

∗∂f i

∂t
+
∗∂F i

∂xk
nk
)

.

(8.13)

Owing to the particular conditions (8.7) and (8.9), derived
from the requirement that the particles are at rest (vi=0),
formula (8.13) becomes much more simple

d2ni

dτ 2
+ 2
(
Di
k+A

∙i
k∙

)dnk

dτ
= 0 , (8.14)

which is the final form for the chr.inv.-spatial deviation eq-
uation for two rest-particles, connected by a non-gravitational
force.

Equation (8.14) is like the chr.inv.-spatial deviation equa-
tion for two free rest-particles (7.30) — the chr.inv.-spatial
part of the Synge general covariant equation. The difference

is that (8.14) contains derivatives d
dτ
= 1√

g00
∂
∂t

, while (7.30)

contains ∂
∂t

. This difference is derived from the fact that
(7.30) is applicable to gravitational fields where Fi=0, the

potential w is neglected and hence ∂vi
∂t
=0, while (8.14)

describes the relative deviation of two particles located in
gravitational fields where Fi 6=0.

The required condition Fi 6=0 implies:

1. In this region the gravitational potential is w 6=0, hence,
because the interval of physical observable time is

dτ =
(
1− w

c2

)
dt− 1

c2
vidx

i, the time flow differences

at different points inside the region. In particular, if
vi=0, synchronization of clocks located at different
points cannot be conserved. In the more general case
where vi 6=0, clocks located at different points cannot
be synchronized [42, 43];∗

2. If the gravitational inertial force field F i is vortical,

the space rotation is non-stationary ∂vi
∂t
6=0.

Let us get back to the chr.inv.-spatial equation for two
particles connected by a non-gravitational force (8.14). There
are quantities Dik and Aik, so relative accelerations of the
particles can be derived from both the space deformations
and rotation. In this problem statement, w implies that the
gravitational potential of a distant source of gravitational
radiations. So in a gravitational wave experiment we should
specify the acting gravitational field as weak w

c2
≈ 0, hence in

the experiment the chr.inv.-gravitational inertial force vector

Fi (4.1) becomes Fi≈ ∂w∂xi
− ∂vi
∂t

. There are as well d
dτ
= ∂
∂t

.

We solve equation (8.14) in two cases, aiming to find
what kind of gravitational field fluctuations were registered
by Weber and his colleagues.

First case: Aik=0, Dik 6=0.

In this case equation (8.14), with w
c2
≈ 0, is the same as the

chr.inv.-world-lines deviation equation for two free particles
(7.30). As it was shown in §7, with solutions of equation
(7.30) considered, a gravitational wave can affect the system
of two free particles only if the particles are in motion at the
initial moment of time. In that case a gravitational wave can
only augment the initial motion of the particles. If they are at
rest gravitational waves can have no effect on the particles.

∗To realize the condition w 6=0 it is not necessary to have a wave
gravitational field. In particular,w 6=0 is true even in stationary gravitational
fields derived from island masses (like Schwarzschild’s metric). Moreover,
the phenomenon of different time flow in the Earth gravitational field is
well-known from experimental tests of the General Theory of Relativity:
a standard clock, located on the terrestrial surface, shows time which is
∼10−9sec different from time measured by the same standard clock, located
in a balloon a few kilometers above the terrestrial surface (the difference
increases with the duration of the experiment). But such corrections of time
are not linked to the presence of gravitational waves.

There time corrections can also be registered, the origin of which are
wave changes of the gravitational potential w. They can be interpreted as
waves of the gravitational inertial force field F i. In this case corrections to
standard clocks, located at different points, should bear a relation to wave
changes of w.

The presence of the space rotation vi 6=0 changes the time flow as well.
Experiments, where a standard clock was moved by a jet plane around the
world [49, 50, 51, 52], showed differential time flow with respect to the
same standard clock located at rest at the air force base. Such difference
of measured time, called the desynchronization correction, depends on
the flight direction — with or opposite to Earth’s rotation. Although such
corrections are derived from the Earth rotation (the reference space rotation),
in the “background” of such corrections there could also be registered
additional tiny corrections derived from the rapid stationary rotation field of
a massive space body, located far from the Earth.
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When Aik=0 the chr.inv.-world-lines deviation equation
(8.14), describing a Weber detector, coincides with equation
(7.30), and we conclude:

A Weber detector (a solid-body detector of the reson-
ance kind) will have no response to a falling gravita-
tional wave of the pure deformation kind, if the par-
ticles of which the detector is composed are at rest
at the initial moment of measurements (the situation
assumed in the Weber experiment).

Second case: Dik=0, Aik 6=0.

We assume that the space rotation has a constant angular
velocity ω around the x3 axis, while the linear velocity of
this rotation is vi=ω ∙ik∙x

k� c. For the background metric,
following the classical approach [14, 15], we use the Min-
kowski line element, where the gravitational waves are super-
imposed as tiny corrections to it. Then the components of vi

are
v1 = −ωx2, v2 = ωx1, v3 = 0 , (8.15)

and the space metric in its expanded form is

ds2 = c2dt2 + 2ω (x2dx1 − x1dx2)dt−

− (dx1)2 − (dx2)2 − (dx3)2.
(8.16)

This metric describes the four-dimensional space of a
uniformly rotating reference frame, whose rotational linear
velocity is negligible with respect to c.

Components of the tensor Aik are

A∙12∙ = ω∙12∙ = −ω , A∙21∙ = ω∙21∙ = ω , A∙31∙ = 0 . (8.17)

Substituting (8.17) into the chr.inv.-world-lines deviation
equation (8.14) we obtain a system of deviation equations

∂2η1

∂t2
− 2ω

∂η2

∂t
= 0 , (8.18)

∂2η2

∂t2
+ 2ω

∂η1

∂t
= 0 , (8.19)

∂2η3

∂t2
= 0 , (8.20)

which commonly describe behaviour of two neighboring rest-
particles in a uniformly rotating reference frame.

Equation (8.20) can be integrated immediately

η3 = η3(0) + η̇
3
(0)t , (8.21)

where η3(0) and η̇3(0) are the initial values of the relative

displacement and velocity of the particles along the x3 axis.
In integrating equations (8.19) and (8.20), we introduce

the notation ∂η1

∂t
≡x and ∂η2

∂t
≡ y. Then we have

ẋ− 2ωy = 0

ẏ + 2ωx = 0

}

. (8.22)

We differentiate the first equation with respect to t

ẍ = 2ωẏ (8.23)

and substitute ẏ= ẍ/2ω into the second one. We obtain a
harmonic oscillation equation

ẍ+ 4ω2x = 0 , (8.24)

with respect to the relative velocity x= ∂η1

∂t
of the particles.

The solution to (8.24) is

x =
∂η1

∂t
= C1 cos 2ωt+ C2 sin 2ωt , (8.25)

where C1 and C2 are integration constants, which can be
obtained from the initial conditions. Thus we obtain

∂η1

∂t
=

(
∂η1

∂t

)

(0)

cos 2ωt+
1

2ω

(
∂2η1

∂t2

)

(0)

sin 2ωt , (8.26)

where terms marked with zero are the initial values of the
relative velocity and acceleration of the particles. Integrating
(8.26), we obtain

η1 =
η̇1(0)

2ω
sin 2ωt−

η̈1(0)

4ω2
cos 2ωt+B1 , (8.27)

where B1 is an integration constant. Obtaining B1 from the
initial conditions, we obtain the final formula for η1

η1 =
η̇1(0)

2ω
sin 2ωt−

η̈1(0)

4ω2
cos 2ωt+ η1(0) +

η̈1(0)

4ω2
. (8.28)

In the same fashion we obtain a formula for η2

η2 =
η̇2(0)

2ω
sin 2ωt−

η̈2(0)

4ω2
cos 2ωt+ η2(0) +

η̈2(0)

4ω2
. (8.29)

By the exact solutions (8.21), (8.28), (8.29), obtained
for the world-lines deviation equation taken in chr.inv.-form
(8.14), it follows that:

Stationary rotations of the space cannot force two
neighbouring particles to initiate relative motion, if
they are at rest at the initial moment of time.

In common with the result obtained in §7, where we
discussed gravitational wave detectors built on free masses,
we arrive at a final conclusion for the possibilities of gravita-
tional wave detectors:

Behaviour of both a gravitational wave detector built
on free masses and a sold-body detector (a Weber
pig) are similar. The only difference is that a solid-
body detector can register both the time observable
component and spatial observable components of the
relative deviation vector, while a free-mass detector
can register only spatial observable deviations. De-
formations and stationary rotation of the space do not
affect detectors of either kind.
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Thus neither deformations nor stationary rotation of the
space can not induce relative motion in the butt-ends of a
Weber detector, if they are at rest. However Weber and his
teamregistered signals. The question therefore arises:

What signals did Weber register, and why, during the
past 30 years, have his signals remained undetected
by other researchers using superior detectors of the
Weber kind?

We assume that the signals registered by Weber and
his team, were much more than noise, and beyond doubt.
Therefore, according to our theoretical analysis of the beha-
viour of solid-body detectors in weak gravitational waves,
we make the following suppositions:

1. Weber registered signals which were an effect made in
the pig by a vortex of the gravitational inertial force
field. In other words, the origin of the signals could be
rapid non-stationary rotation of a distant object in the
depths of space;

2. The particles of the aluminium cylindrical pig, used by
Weber, had substantial thermal motions. In this case
parametric oscillations could appear as an effect of a
falling gravitational wave. But in order to get such
a real effect, the “background thermal oscillations”
should be substantial;

3. The signals were registered only by Weber and his
team. Not one signal has been registered by other
experimental physicist during the subsequent 30 years,
using superior detectors of the Weber kind. Either
Weber registered gravitational waves derived from a
non-stationary rotating object in the Universe, which
occurred as a unique and short-lived phenomenon, or
his original detector had a substantial peculiarity that
made it differ in principle from the detectors used by
other scientists.

We consider Weber’s theory, aiming to ascertain what he
registered with his solid-body detector.

9 Criticism of Weber’s theory of detecting gravitational
waves

In his book in 1960 [16], Weber propounded his theoretical
arguments for the detection of gravitational waves by means
of a solid-body detector of the resonance kind. He built
his theory on the world-lines deviation equation for two
particles, connected by a non-gravitational force (a spring, for
instance). This is equation (2.12), being a modification of the
well-known deviation equation for two free particles deduced
by Synge (2.8), is known as the Synge-Weber equation. We
considered both equations in detail above.

There is no doubt that the Synge-Weber equation is valid.
Our main claim here is that Weber himself, in his analysis
of the equation in order to build the theory for detecting
gravitational waves, introduced a substantial assumption:

Weber’s assumption 1 A falling gravitational wave should
produce relative displacements of the butt-ends of a
cylindrical pig.

So he obtained the same principle that he introduced, pre-
cluding himself from any possibility of obtaining anything
else.

This line of reasoning constitutes a vicious circle. It
would be been more reasonable and honest to have solved the
world-lines deviation equation. Then he would have obtained
exact solutions to the equation as was done in the previous
sections herein.

In detail Weber’s assumption 1 leads to the fact that,
having a system of two test-particles connected by a spring,
the resulting distance vector between them should be [16]

ηα = rα + ξα, rα � ξα, (9.1)

where the initial distance vector rα is the such that

Drα

ds
= 0 . (9.2)

He supposed as well that ηα→ rα in the ultimate case
where the friction rises infinitely or the Riemann-Christoffel
curvature tensor becomes zero Rα ∙∙∙∙βγδ =0 [16].

Taking the main supposition (9.1) into account, Weber
transforms the Synge-Weber equation (2.12) into

D2ξα

ds2
+Rα ∙ ∙ ∙∙βγδU

βUδ (rγ + ξγ) =
1

m0c2
fα, (9.3)

where fα is the difference between non-gravitational forces
of the particles’ interaction. Weber assumes fα the sum of
the elasticity force fα1 =−K

α
σ ξ

σ that restores the particles,

and the oscillation relaxing force fα2 =−cD
α
σ
Dξσ

ds
, where

Kασ and Dασ are the elasticity and friction coefficients, re-
spectively. Then (9.3) takes the form

D2ξα

ds2
+

1

m0c
Dασ
Dξσ

ds
+

1

m0c2
Kασ ξ

σ =

= −Rα ∙ ∙ ∙∙βγδU
βUδ (rγ + ξγ) .

(9.4)

Weber introduced additional substantial assumptions:

Weber’s assumption 2 The whole detector is in the state
of free falling;

Weber’s assumption 3 The reference frame in his labor-
atory is such that the Christoffel symbols can be as-
sumed zero.

Because of these assumptions, and the condition |r|� |ξ|,
Weber writes equation (9.4) as follows

d2ξα

dt2
+

1

m0
Dασ

dξσ

dt
+

1

m0c2
Kασ ξ

σ = −c2Rα ∙ ∙ ∙∙0σ0 r
σ. (9.5)

Looking at the right side of Weber’s equation (9.5) we
see his fourth hidden assumption:
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Weber’s assumption 4 Particles located on two neighbour-
ing world-lines in the Weber experimental statement
(the butt-ends of his cylindrical pig) are at rest at the
initial moment of time, so U i=0.

In §7, where we considered chr.inv.-equations of motion
for two particles connected by a non-gravitational force (8.4)
and (8.5), we came to the conclusion: a reference frame
where interacting particles (Φα 6=0) are at rest (vi=0) can-
not be in astate of free fall. Really, the free fall condition is
F i=0. Equation m0F

i=−f i (8.7), which is the chr.inv.-
form of spatial equations of motion of the interacting partic-
les, implies that when F i=0, f i=0. Therefore:

The Weber assumption 2 is inapplicable to his exper-
imental statement.

Moreover, a reference frame where the Christoffel sym-
bols are zero can be applicable only at a point, it is unap-
plicable to a finite region. At the same time, in the Weber
experimental statement, the detector itself is a system of
two particles located at the distance η from each other.
In a Riemannian space the Riemann-Christoffel curvature
tensor is different from zero, so the Riemannian coherence
objects (the Christoffel symbols Γαβγ) cannot be reduced to
zero by coordinate transformations. We can merely choose
a reference system where, at a given point P , the coherence
objects are zero (Γαβγ)P =0. Such a reference frame is known
as a geodesic reference frame [37]. Therefore:

The Weber assumption 3 is inapplicable to his exper-
imental statement.

Thus if we retain the rest-condition U i=0 and the free
fall condition in the Weber equation (9.4), there must still be
the non-gravitational force Φα=0. So the Weber equation
becomes the free particles deviation equation, which in
chr.inv.-form is (7.30).

If we reject free fall in the Weber equation (9.4), but
retain U i=0, it takes the same form as (8.14), which is
not a free oscillation equation, in which case weak plane
gravitational waves can act on the particles only if they are
in motion at the initial moment of time.

Collecting these results we conclude that:

The Weber equation (9.4) is incorrect, because the
free fall condition in common with the rest-condition
for two neighbouring particles, connected by a non-
gravitational force, lead to the requirement that this
force should be zero, thus contradicting the initial
conditions of the Weber experimental statement.

It is evident that in aiming to determine the sort of effects
a falling gravitational wave has on a free-mass detector or
a Weber detector, it would be reasonable to consider a case
where the particles are in motion U i 6=0. In this case, before
solving the deviation equation (2.8) for two free particles or
(2.12) for two interacting particles (depending on the type of
detector used), we should solve the equations of motion for
free particles (2.6) or forced particles (2.11), respectively.

It should be noted that the main structure of motion is
determined by the left (geometrical) side of equations of
motion, while the right side introduces only an additional
effect into the motion.

In my previous articles [74, 75, 76] common exact sol-
utions to the geodesic equations and the deviation equation
had been obtained in the field of weak plane gravitational
waves, described by the metric (6.12). The exact solutions
had been obtained in general covariant form.

The solutions to the equations of motion for a free partic-
le, equations (2.6), in a linear polarized harmonic wave
a=A sin ωc (ct±x

1), b=0 are as follows

U0 + U1 = ε = const , (9.6)

U1 = −
1

4ε

[(
U2(0)

)2
e2A sin

2ω
c (ct±x

1)+

+
(
U3(0)

)2
e−2A sin

ω
c (ct±x

1)
]

a
+ U1(0) ,

(9.7)

U2 = U2(0) e
A sin ω

c (ct±x
1), (9.8)

U3 = U3(0) e
A sin ω

c (ct±x
1), (9.9)

where U1(0), U
2
(0), U

3
(0) are the initial values of the particle’s

velocity along each of the spatial axes.
From the solutions two important conclusions follow:

1. A weak plane gravitational wave, falling in the x1

direction, acts on free particles only if they have non-
zero velocities in directions x2 and x3 orthogonal to
the wave motion.

2. The presence of transverse oscillations in the plane
(x2, x3) leads also to longitudinal oscillations in the
direction x1.

The solutions to the free-particles deviation equation
(2.8) in the field of a weak plane gravitational wave are

η1 =
A
[(
U3(0)

)2
−
(
U2(0)

)2]

2ε2

(
η1(0) + η̇

1
(0)t
)
×

× sin
ω

c
(ct± x1) +

AL

2εω
cos

ω

c
(ct± x1) +

+

{

η̇1(0) −
A
[(
U3(0)

)2
−
(
U2(0)

)2]

2ε2
ωη1(0)

}

t +

+ η1(0) −
AL

2ε
,

(9.10)

η2 = η̇2(0)

[
t+

A

ω
cos

ω

c
(ct±x1)

]
+η2(0)−

A

ω
η̇2(0)−

−
AU2(0)

ε

{

η̇1(0)

[
t−

1

ω
cos

ω

c
(ct± x1)

]
−

−
(
η1(0)+η̇

1
(0) t

)
cos

ω

c
(ct±x1)+

η̇1(0)

ω
+η1(0)

}

,

(9.11)
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η3 = η̇3(0)

[
t−

A

ω
cos

ω

c
(ct±x1)

]
+η3(0)+

A

ω
η̇3(0)−

+
AU3(0)

ε

{

η̇1(0)

[
t−

1

ω
cos

ω

c
(ct± x1)

]
−

−
(
η1(0)+η̇

1
(0) t

)
cos

ω

c
(ct±x1)−

η̇1(0)

ω
−η1(0)

}

,

(9.12)

where

L=U2(0)η̇
2
(0)−U

3
(0)η̇

3
(0)=

η1(0)

ε

[(
U3(0)

)2
−
(
U2(0)

)2]
. (9.13)

The solutions η1, η2, η3 are the relative deviations of two
free particles in directions orthogonal to the direction of the
wave’s motion. The deviations are actually generalizations
of the solutions (7.41) and (7.42), where the particles were
at rest. The only difference is that here (9.10–9.12) there are
additional parts, where the particles’ initial velocities U2(0)
and U3(0) are added.

Here we see that, besides regular harmonic oscillations,
the term t cos ωc (ct±x

1) describes oscillations with an am-
plitude that increases without bound with time. Another
substantial difference is that, in contrast to solutions (7.35),
(7.42), (7.43) given for rest-particles, the solutions (9.10),
(9.11), (9.12) contain longitudinal oscillations — they are
described by solution (9.10). Both harmonic oscillations
and unbounded-rising oscillations exist there only if, at the
initial moment of time, the particles are in motion along x2

and x3 (orthogonal to the x1 direction of the wave’s motion).
So, we come to our final conclusions on both free-mass

detectors and solid-body detectors of gravitational waves:

The greater the velocities of particles (atoms and
molecules) in a gravitational wave detector (built on
either free masses or of the Weber kind), the more
sensitive is the detector to a falling weak plane gravi-
tational wave. In current experiments researchers cool
the Weber pigs to super low temperatures, about 2 K,
aiming to minimize the inherent oscillations of the
particles of which they consist. This is a counter-
productive procedure by which experimental phys-
icists actually reduce the sensitivity of the Weber
detectors to practically zero. We see the same vicious
drawback in current experiments with free-mass det-
ectors, where such a detector consists of two satellites
located in the same orbit near the Earth. Because the
observer (a laser range-finder) is located in one of the
satellites, both satellites are at rest with respect to each
other and the observer. All the current experiments
cannot register gravitational waves in principle. In a
valid experiment for discovering gravitational waves,
the particles of which the detector consists must be
in as rapid motion as possible. It would be better
to design a detector using two laser beams directed
parallel to each other, because of the light velocity of
the moving particles (photons). The indicative quanti-
ties to be observed are the light frequency and phase.
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By recurring to Geometric Probability methods, it is shown that the coupling constants,
αEM ;αW ;αC associated with Electromagnetism, Weak and the Strong (color) force
are given by the ratios of the ratios of the measures of the Shilov boundaries
Q2 = S1 × RP 1; Q3 = S2 × RP 1; S5, respectively, with respect to the ratios
of the measures μ[Q5]/μN [Q5] associated with the 5D conformally compactified real
Minkowski spacetime M̄5 that has the same topology as the Shilov boundary Q5 of the
5 complex-dimensional poly-disc D5. The homogeneous symmetric complex domain
D5 = SO(5, 2)/SO(5)× SO(2) corresponds to the conformal relativistic curved 10
real-dimensional phase space H10 associated with a particle moving in the 5D Anti
de Sitter space AdS5. The geometric coupling constant associated to the gravitational
force can also be obtained from the ratios of the measures involving Shilov boundaries.
We also review our derivation of the observed vacuum energy density based on the
geometry of de Sitter (Anti de Sitter) spaces.

1 The fine structure constant and Geometric Probability

Geometric Probability [21] is the study of the probabilities
involved in geometric problems, e. g., the distributions of
length, area, volume, etc. for geometric objects under stated
conditions. One of the most famous problem is the Buffon’s
Needle Problem of finding the probability that a needle of
length l will land on a line, given a floor with equally
spaced parallel lines a distance d apart. The problem was
first posed by the French naturalist Buffon in 1733. For l < d
the probability is

P =
1

2π

∫ 2π

0

dθ
l| cos(θ)|

d
=

4l

2πd

∫ π/2

0

cos(θ) =

=
2l

πd
=
2ld

πd2
.

(1)

Hence, the Geometric Probability is essentially the ratio
of the areas of a rectangle of length 2d, and width l and
the area of a circle of radius d. For l > d, the solution is
slightly more complicated [21]. The Buffon needle problem
provides with a numerical experiment that determines the
value of π empirically. Geometric Probability is a vast field
with profound connections to Stochastic Geometry.

Feynman long ago speculated that the fine structure con-
stant may be related to π. This is the case as Wyler found long
ago [1]. We will based our derivation of the fine structure
constant based on Feynman’s physical interpretation of the
electron’s charge as the probability amplitude that an electron
emits (or absorbs) a photon. The clue to evaluate this prob-
ability within the context of Geometric Probability theory is
provided by the electron self-energy diagram. Using Feyn-
man’s rules, the self-energy Σ(p) as a function of the el-

ectron’s incoming (outgoing) energy-momentum pμ is given
by the integral involving the photon and electron propagator
along the internal lines

− iΣ(p) = (−ie)2 ×

×
∫

d4k

(2π)4
γμ

i

γρ(pρ − kρ)−m
−igμν
k2

γν .
(2)

The integral is taken with respect to the values of the
photon’s energy-momentum kμ. By inspection one can see
that the electron self-energy is proportional to the fine struc-
ture constant αEM = e2, the square of the probability ampli-
tude (in natural units of ~ = c = 1) and physically represents
the electron’s emission of a virtual photon (off-shell, k2 6=0)
of energy-momentum kρ at a given moment, followed by an
absorption of this virtual photon at a later moment.

Based on this physical picture of the electron self-energy
graph, we will evaluate the Geometric Probability that an
electron emits a photon at t =−∞ (infinite past) and re-
absorbs it at a much later time t=+∞ (infinite future). The
off-shell (virtual) photon associated with the electron self-
energy diagram asymptotically behaves on-shell at the very
moment of emission (t =−∞) and absorption (t =+∞).
However, the photon can remain off-shell in the intermediate
region between the moments of emission and absorption by
the electron.

The topology of the boundaries (at conformal infinity) of
the past and future light-cones are spheres S2 (the celestial
sphere). This explains why the (Shilov) boundaries are es-
sential mathematical features to understand the geometric
derivation of all the coupling constants. In order to describe
the physics at infinity we will recur to Penrose’s ideas [10]
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of conformal compactifications of Minkowski spacetime by
attaching the light-cones at conformal infinity. Not unlike the
one-point compactification of the complex plane by adding
the points at infinity leading to the Gauss-Riemann sphere.
The conformal group leaves the light-cone fixed and it does
not alter the causal properties of spacetime despite the rescal-
ings of the metric. The topology of the conformal compact-
ification of real Minkowski spacetime M̄4=S

3×S1/Z2=
=S3×RP 1 is precisely the same as the topology of the
Shilov boundary Q4 of the 4 complex-dimensional poly-
disc D4. The action of the discrete group Z2 amounts to an
antipodal identification of the future null infinity I+ with
the past null infinity I−; and the antipodal identification
of the past timelike infinity i− with the future timelike
infinity, i+, where the electron emits, and absorbs the photon,
respectively.

Shilov boundaries of homogeneous (symmetric spaces)
complex domains, G/K [7, 8, 9] are not the same as the or-
dinary topological boundaries (except in some special cases).
The reason being that the action of the isotropy group K of
the origin is not necesarily transitive on the ordinary topolo-
gical boundary. Shilov boundaries are the minimal subspaces
of the ordinary topological boundaries which implement the
Maldacena-’T Hooft-Susskind holographic principle [13] in
the sense that the holomorphic data in the interior (bulk)
of the domain is fully determined by the holomorphic data
on the Shilov boundary. The latter has the property that the
maximum modulus of any holomorphic function defined on
a domain is attained at the Shilov boundary.

For example, the poly-disc D4 of 4 complex dimensions
is an 8 real-dim Hyperboloid of constant negative scalar
curvature that can be identified with the conformal relativistic
curved phase space associated with the electron (a particle)
moving in a 4D Anti de Sitter space AdS4. The poly-
disc is a Hermitian symmetric homogeneous coset space
associated with the 4D conformal group SO(4, 2) since
D4=SO(4, 2)/SO(4)×SO(2). Its Shilov boundaryShilov
(D4)=Q4 has precisely the same topology as the 4D con-
formally compactified real Minkowski spacetimeQ4= M̄4=
=S3×S1/Z2=S3×RP 1. For more details about Shilov
boundaries, the conformal group, future tubes and holo-
graphy we refer to the article by Gibbons [12] and [7, 16].

In order to define the Geometric Probability associated
with this process of the electron’s emission of a photon at i−

(t=−∞), followed by an absorption at i+ (t=+∞), we must
take into account the important fact that the photon is on-shell
k2=0 asymptotically (at t=±∞), but it can move off-shell
k2 6= 0 in the intermediate region which is represented by
the interior of the conformally compactified real Minkowski
spacetime Q4= M̄4=S

3×S1/Z2=S3×RP 1.
Denoting by μ̂[Q4] the measure-density (the measure-

current) whose flux through the future and past celestial
spheres S2 (associated with the future/past light-cones) at
timelike infinity i+, i−, respectively, is V (S2)μ̂[Q4]. The net

flux through the two celestial spheres S2 at timelike infinity
i± requires an overall factor of 2 giving then the value of
2V (S2)μ̂[Q4]. The Geometric Probability is defined by the
ratio of the measures associated with the celestial spheres
S2 at i+, i− timelike infinity, where the photon moves on-
shell, relative to the measure of the full interior region of
Q4= M̄4=S

3×S1/Z2=S3×RP 1, where the photon can
move off-shell, as it propagates from i− to i+:

α =
2V (S2) μ̂[Q4]

μ[Q4]
. (3)

The ratio (μ̂[Q4]/μ[Q4] ) can be re-written in terms of
the ratios of the normalized measures of

M̄5 = Q5 = Shilov [D5] = S4×S1/Z2 = S4×RP 1, (4)

namely, in terms of the normalized measures of the conform-
ally compactified 5D Minkowski spacetime. This is achieved
as follows [4]

μ̂[Q4]

μ[Q4]
=

1

V (S4)

μN [Q5]

μ[Q5]
, (5)

resulting from the embeddings (inmersions ) of D4 → D5.
The origin of the factor V (S4) in the r. h. s of (5), as

one goes from the ratio of measures in Q4 to the ratio
of the measures in Q5, is due to the reduction from the
action of the isotropy group of the origin SO(5) × SO(2)
on Q5, to the action of the isotropy group of the origin
SO(4)×SO(2) onQ4, furnishing an overall reduction factor
of V [SO(5)/SO(4)] = V (S4). The 5 complex-dimensional
poly-disc D5 = SO(5, 2)/SO(5)×SO(2) is the 10 real-dim
Hyperboloid H10 corresponding to the conformal relativistic
curved phase space of a particle moving in 5D Anti de Sitter
Space AdS5. This picture is also consistent with the Kaluza-
Klein compactification procedure of obtaining 4D EM from
pure Gravity in 5D. TheH10 can be embedded in the 11-dim
pseudo-Euclidean R9,2 space, with two-time like directions.
This is where 11-dim lurks into our construction.

Next we turn to the Hermitian metric on D5 constructed
by Hua [8] which is SO(5, 2)-invariant and is based on
the Bergmann kernel [15] involving a crucial normalization
factor of 1/V (D5). However, the standard normalized mea-
sure μN [Q5] based on the Poisson kernel and involving a
normalization factor of 1/V (Q5) is not invariant under the
full group SO(5, 2). It is only invariant under the isotropy
group of the origin SO(5)×SO(2). In order to construct an
invariant measure on Q5 under the full group SO(5, 2) one
requires to introduce a crucial factor related to the Jacobian
measure involving the action of the conformalgroupSO(5, 2)
on the full bulk domain D5. As explained by [4] one has:

μN [Q5]

μ[Q5]
=

1

V (Q5)
||J −1C || =

=
1

V (Q5)

√
||J −1C (J ∗C)−1|| =

1

V (Q5)

√
||J −1R || =
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=
1

V (Q5)

√√
|det g|−1 =

1

V (Q5)
[|det(g)|]−

1
4 =

=
1

V (Q5)
[V (D5)]

1
4 ,

(6)

the z dependence of the complex Jacobian is no longer
explicit because the determinant of the SO(5, 2) matrices
is unity.

This explains very clearly the origins of the factor
[V (D5)]

1
4 in Wyler’s formula for the fine structure constant

[1]. This reduction factor of V (Q5) is in this case given by
V (D5)

1
4 . As we shall see below, the power of 1

4 is related
to the inverse of the dim(S4)= 4. This summarizes, briefly,
the role of Bergmann kernel [15] in the construction by Hua
[8], and adopted by Wyler [1], of the Hermitian metric of a
bounded homogenous (symmetric) complex domain. To sum
up, we must perform the reduction from V (Q5)→V (Q5)/

V (D5)
1
4 in the construction of the normalized measure

μN [Q5] . This approach is very different than the interpreta-
tion given by Smith [3] and later adopted by Smilga [5].

Hence, the Geometric Probability ratio becomes

μ̂[Q4]

μ[Q4]
=

1

V (S4)

μN [Q5]

μ[Q5]
=

=
1

V (S4)

1

V (Q5)
[ V (D5) ]

1
4 ≡

1

αG
.

(7a)

This last ratio, for reasons to be explained below, is
nothing but the inverse of the geometric coupling strength of
gravity, 1/αG. The relationship to the gravitational constant
is based on the definition of the coupling appearing in the
Einstein-Hilbert Lagrangian (R/16πG), as follows

(16πG)(m2
Planck) ≡ αEM αG = 8π ⇒

G =
1

16π

8π

m2
Planck

=
1

2m2
Planck

⇒

Gm2
proton =

1

2

(
mproton

mPlanck

)2
∼ 5.9×10−39,

(7b)

and in natural units ~ = c =1 yields the physical force
strength of Gravity at the Planck Energy scale 1.22×1019

GeV. The Planck mass is obtained by equating the Schwarz-
schild radius 2GmPlanck to the Compton wavelength
1/mPlanck associated with the mass; where mPlanck

√
2 =

= 1.22×1019 GeV and the proton mass is 0.938 GeV. Some
authors define the Planck mass by absorbing the factor of√
2 inside the definition of mPlanck=1.22×10

19 GeV.
The role of the conformal group in Gravity in these ex-

pressions (besides the holographic bulk/boundaryAdS/CFT
duality correspondence [13]) stems from the MacDowell-
Mansouri-Chamseddine-West formulation of Gravity based
on the conformal group SO(3, 2) which has the same number
of 10 generators as the 4D Poincare group. The 4D vielbein

eaμ which gauges the spacetime translations is identified with

the SO(3, 2) generator A[a5]μ , up to a crucial scale factor R,
given by the size of the Anti de Sitter space (de Sitter space)
throat. It is known that the Poincare group is the Wigner-
Inonu group contraction of the de Sitter Group SO(4, 1)
after taking the throat size R =∞. The spin-connection ωabμ
that gauges the Lorentz transformations is identified with
the SO(3, 2) generator A[ab]μ . In this fashion, the eaμ, ω

ab
μ

are encoded into the A[mn]μ SO(3, 2) gauge fields, where
m,n run over the group indices 1, 2, 3, 4, 5. A word of
caution, Gravity is a gauge theory of the full diffeomorphisms
group which is infinite-dimensional and which includes the
translations. Therefore, strictly speaking gravity is not a
gauge theory of the Poincare group. The Ogiovetsky theorem
shows that the diffeomorphisms algebra in 4D can be gen-
erated by an infinity of nested commutators involving the
GL(4, R) and the 4D Conformal Group SO(4, 2) generators.

In [17] we have shown why the MacDowell-Mansouri-
Chamseddine-West formulation of Gravity, with a cosmolo-
gical constant and a topological Gauss-Bonnet invariant term,
can be obtained from an action inspired from a BF-Chern-
Simons-Higgs theory based on the conformal SO(3, 2)
group. The AdS4 space is a natural vacuum of the theory.
The vacuum energy density was derived to be the geometric-
mean between the UV Planck scale and the IR throat size
of de Sitter (Anti de Sitter) space. Setting the throat size
to coincide with the future horizon scale (of an accelerated
de Sitter Universe) given by the Hubble scale (today) RH ,
the geometric mean relationship yields the observed value of
the vacuum energy density ρ ∼ (LP )−2(RH)−2=(LP )−4×
× (L2P /R

2
H)∼ 10

−122M4
Planck. Nottale [23] gave a different

argument to explain the small value of ρ based on Scale
Relativistic arguments. It was also shown in [17] why the
Euclideanized AdS2n spaces are SO(2n− 1, 2) instantons
solutions of a non-linear sigma model obeying a double self
duality condition.

Therefore, the Geometric Probability αEM for an elec-
tron to emit a photon at t = −∞ and to absorb it at t = +∞
agrees with the Wyler’s celebrated expression for the fine
structure constant

αEM =
2V (S2)μ̂[Q4]

μ[Q4]
= (8π)

1

V (S4)

1

V (Q5)
×

× [V (D5)]
1
4 =

9

8π4

(
π5

24×5!

)1
4

=
1

137.03608
,

(8)

after one inserts the values of the volumes:

V (D5) =
π5

24×5!
, V (Q5) =

8π3

3
, V (S4) =

8π2

3
. (9)

In general

V (Dn) =
πn

2n−1n!
, V (Sn−1) =

2πn/2

Γ(n/2)
, (10a)
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V (Qn)=V (S
n−1×RP 1)=V (Sn−1)×V (RP 1) =

=
2πn/2

Γ(n/2)
× π =

2π(n+2)/2

Γ(n/2)
.

(10b)

Objections were raised to Wyler’s original expression
by Robertson [2]. One of them was that the hyperboloids
(discs) are not compact and whose volumes diverge since
the Lobachevsky metric diverges on the boundaries of the
poly-discs. Gilmore explained [2] why one requires to use
the Euclideanized regularized volumes as Wyler did. Further-
more, in order to resolve the scaling problems of Wyler’s
expression, Gilmore showed why it is essential to use dimen-
sionless volumes by setting the throat sizes of the Anti de
Sitter hyperboloids to r=1, because this is the only choice
for r where all elements in the bounded domains are also
coset representatives, and therefore, amount to honest group
operations. Hence the so-called scaling objections against
Wyler raised by Robertson were satisfactory solved by Gil-
more [2].

The question as to why the value of αEM obtained in
Wyler’s formula is precisely the value of αEM observed
at the scale of the Bohr radius aB , has not been solved,
to my knowledge. The Bohr radius is associated with the
ground ( most stable ) state of the Hydrogen atom [3].
The spectrum generating group of the Hydrogen atom is
well known to be the conformal group SO(4, 2) due to
the fact that there are two conserved vectors, the angular
momentum and the Runge-Lentz vector. After quantization,
one has two commuting SU(2) copies SO(4) = SU(2) ×
SU(2). Thus, it makes physical sense why the Bohr-scale
should appear in this construction. Bars [14] has studied
the many physical applications and relationships of many
seemingly distinct models of particles, strings, branes and
twistors, based on the (super) conformal groups in diverse
dimensions. In particular, the relevance of two-time physics
in the formulation of M,F, S theory has been advanced by
Bars for some time. The Bohr radius corresponds to an energy
of 137.036×2×13.6 eV∼ 3.72×103 eV. It is well known that
the Rydberg scale, the Bohr radius, the Compton wavelength
of electron, and the classical electron radius are all related to
each other by a successive scaling in products of αEM .

2 The fiber bundle interpretation of the Wyler formula

Having found Wyler’s expression from Geometric Probabili-
ty, we shall present a Fiber Bundle interpretation of the Wyler
expression by starting with a Fiber bundle E over the base
curved-space D5 = SO(5, 2)/SO(5) × SO(2). The sub-
group H=SO(5) of the isotropy group K=SO(5)×SO(2)
acts on the Fibers F =S4 (the internal symmetry space).
Locally, and only locally, the Fiber bundle E is the product
D5×S4. However, this is not true globally. On the Shilov
boundary Q5, the restriction of the Fiber bundle E to the

Shilov boundary Q5 is written by E|Q5 and locally is the
product of Q5 × S4, but this is not true globally. For this
reason one has that the volume V (E|Q5) 6= V (Q5 × S4) =
=V (Q5)×V (S4). But instead, V (E|Q5)=V (S

4)×
(V (Q5)/V (D5)

1/4).
This is the reasoning behind the construction of the

quantity μ̂[Q4]/μ[Q4] that has the units of a density. Its
inverse μ[Q4]/μ̂[Q4] is the volume associated with the re-
striction of the Fiber Bundle E to the Shilov boundary Q5:
V (E|Q5) = V (S4)× (V (Q5)/V (D5)1/4).

The reason why one embeds D4→D5 and Q4→Q5
is because the space Q4=S3×RP 1 is not large enough
to implement the action of the SO(5) group, the compact
version of the Anti de Sitter Group SO(3, 2) that is required
in the MacDowell-Mansouri-Chamseddine-West formulation
of Gravity. However, the space Q5=S

4×RP 1 is large
enough to implement the action of SO(5) via the internal
symmetry space S4=SO(5)/SO(4). This justifies the em-
bedding procedure of D4→D5. This Fiber Bundle inter-
pretation is not very different from Smith’s interpretation
[3]. Following the Fiber Bundle interpretation of the volume
V (E|Q5)=V (S

4)× (V (Q5)/V (D5)1/4), we will now
prove why

2V (S2) =
μ(S1)

μ̂(S1)
= 8π . (11)

The space S1 is associated with the U(1) group action
and naturally encodes the U(1) gauge invariance linked to
Electromagnetism ( EM ). The result of eq-(11) is what will
allow us to define αEM as the ratio of the ratios of suitable
measures in S1 and Q4, respectively,

αEM =
2V (S2) μ̂[Q4]

μ[Q4]
=
(μ(S1)/μ̂(S1))

(μ[Q4]/μ̂[Q4])
. (12)

We may notice that S1 ≡ Q1 (very special case) since the
circle is both the Shilov and ordinary topological boundary of
the disc D1. However, Q2 ≡ S1×S1/Z2 = S1×RP 1. Once
again, we will write the ratio of the measures in Q1=S1

in terms of the ratio of the normalized measures in Q2

via the reduction from S1×S1/Z2 to S1. This requires the
embedding (inmersion) of D1→D2 in order to construct the
measures onD1, Q1 as induced from the measures in D2, Q2
resulting from the embedding (inmersion):

μ̂(S1)

μ(S1)
=
μ̂(Q1)

μ(Q1)
=

1

V (S1/Z2)

μN [Q2]

μ[Q2]
=

=
1

V (S1/Z2)

1

(V (Q2)/V (D2)
.

(13)

Notice that μ̂(S1) as explained before is a measure-
density on S1. Likewise, μ̂(Q4) was a measure-density on
Q4. We should not confuse these measure-densities with the
normalized measures in one-higher dimension.
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By inserting the values of the measures and using

V (S1/Z2) = V (RP 1) = π , V (D2) =
π2

2×2!
,

V (Q2) =
2π2

Γ(1)
= 2π2,

(14)

it yields then

μ(S1)

μ̂(S1)
= (2π2) (π)

1

(π2/2×2!)
= 8π = 2 V (S2) (15)

as claimed. Therefore, 2V (S2) = μ(S1)/μ̂(S1) = 8π is the
crucial factor appearing in Wyler’s formula which admits a
natural Geometric probability explanation which is very dif-
ferent from the different interpretations provided in [3, 4, 5].

The Fiber Bundle interpretation associated with the
U(1) ∼ SO(2) group is the following. The Fiber bundle
E is defined over the curved space D2=SO(2, 2)/SO(2)×
SO(2). The subgroup H =SO(2)∼U(1) of the isotropy
group K =SO(2)×SO(2) acts on the fibers identified with
the symmetry space S1 (where the U(1) group acts). The
Fiber bundle E locally can be written as D2×S1 but not
globally. The restriction of the Fiber bundle E to the Shilov
boundary Q2=S1×S1/Z2=S1×RP 1 is E|Q2 and locally
can be written as Q2 × S1, but not globally. This is why the
volume V (E|Q2) 6= V (Q2) × V (S1) but instead it equals
(V (Q2)/V (D2))× V (S1/Z2) = 2V (S2) = 8π.

Concluding, the Geometric Probability that an electron
emits a photon at t=−∞ and absorbs it at t=+∞ is given
by the ratio of the ratios of measures, and it agrees with
Wheeler’s ideas that one must normalize the couplings with
respect to the geometric coupling strength of Gravity:

αEM =
2V (S2)μ̂[Q4]

μ[Q4]
=
(μ(S1)/μ̂(S1))

(μ[Q4]/μ̂[Q4])
=

= (8π)
1

V (S4)

1

V (Q5)
[V (D5)]

1
4 =

1

137.03608
.

(16)

The second important conclusion that can be derived
from Geometric Probability theory is the general numerical
values of the exponents sn appearing in the factors V (Dn)sn .
The normalization factor V (Q5)/V (D5)1/4 in the construc-
tion of the ratio of measures μN [Q5]/μ[Q5] involves in
this case powers of the type V (D5)

1/4. The power of 1
4

is related to the inverse of the dim(S4)= 4 (the internal
symmetry space SO(5)/SO(4)). From eq-(13) we learnt
that the reduction factor of V (Q2)/V (D2) was V (D2); i. e.
the exponent is unity. The power of unity is related to the
inverse of the dim(S1/Z2)= 1. Thus, the arguments based
on Geometric Probability leads to normalized measures by
factors of V (Qn)/V (Dn)sn and whose exponents sn are
given by the inverse of the dimensions of the internal sym-
metry spaces sn=(dim(S

n−1))−1. There is a different in-
terpretation of these factors V (Dn)

sn given by Smith [3].

In general, for other homogeneous complex domains, this
power is given by the inverse of the dimension of the internal
symmetry space.

3 The weak and strong coupling constants from Geo-
metric Probability

We turn now to the derivation of the other coupling constants.
The Fiber Bundle picture of the previous section is essential
in our construction. The Weak and the Strong geometric
coupling constant strength, defined as the probability for
a particle to emit and later absorb a SU(2), SU(3) gauge
boson, respectively, can both be obtained by using the main
formula derived from Geometric Probability after one iden-
tifies the suitable homogeneous domains and their Shilov
boundaries to work with. We will show why the weak and
strong couplings are given by

αWeak =
(μ[Q2]/μ̂[Q2])

(μ[Q4]/μ̂[Q4])
=
(μ[Q2]/μ̂[Q2])

αG
=

=
(μ[Q2]/μ̂[Q2])

(8π/αEM )
,

(17)

and

αColor =
(μ[S4]/μ̂[S4])

(μ[Q4]/μ̂[Q4]
=
(μ[S4]/μ̂[S4])

αG
=

=
(μ[S4]/μ̂[S4])

(8π/αEM )
.

(18)

At this point we must emphasize that we define αweak,
αcolor as g2w, g2c instead of the conventional (g2w/4π),
(g2c/4π) definitions used in the Renormalization Group prog-
ram. The Shilov boundary of (D2) is Q2=S

1×RP 1

but is not large enough to accommodate the action of the
isospin group SU(2). One needs a Fiber Bundle over D3=
=SO(3, 2)/SO(3)×SO(2)whose subgroupH =SO(3) of
the isotropy group K =SO(3)×SO(2) acts on the internal
symmetry space S2 (the fibers). Since the coset space
SU(2)/U(1) is a double-cover of the S2 as one goes from
the SO(3) action to the SU(2) action one must take into
account an extra factor of 2. This is the reason why one
jumps to one-dimension higher from Q2 to Q3=S2×RP 1,
because the coset SU(2)/U(1) is a double-cover of the
sphere S2=SO(3)/SO(2) and can accommodate the action
of the SU(2) group.

By following the same procedure as above, i. e. by re-
writing the ratio of the measures (μ̂[Q2]/μ[Q2]) in terms
of the ratio of the measures (μN [Q3]/μ[Q3]) via the em-
beddings of D2→D3, one has

(μ̂[Q2]/μ[Q2]) =
1

V (SU(2)/U(1))

μN [Q3]

μ[Q3]
. (19)

Notice that because SU(2) is a 2− 1 covering of the
SO(3), this implies that the measure

V (SU(2)/U(1))=2V (SO(3)/U(1))=2V (S2)=8π . (20)

C. Castro. On Geometric Probability, Holography, Shilov Boundaries and the Four Physical Coupling Constants of Nature 67



Volume 2 PROGRESS IN PHYSICS July, 2005

As indicated above, because the dimension of the internal
symmetry space is dim(S2)= 2, the construction of the
normalized measure μN [Q3] will require a reduction of
V (Q3) by a factor of V (D3) raised to the power of
(dim(S2))−1= 1

2 :

μN [Q3]

μ[Q3]
=

1

V (Q3)/V (D3)1/2
=

1

V (Q3)
V (D3)

1/2. (21)

Therefore, the ratio of the measures is

μ̂[Q2]

μ[Q2]
=

1

2V (S2)

1

V (Q3)
V (D3)

1/2, (22)

whose Fiber Bundle interpretation is that the volume of the
Fiber Bundle over D3, but restricted to the Shilov boundary
Q3, and whose structure group is SU(2) (the double cover
of SO(3)), is V (E|Q3) = 2V (S2) × (V (Q3)/V (D3)1/2).
Thus, that the Geometric probability expression is

αWeak =
(μ[Q2]/μ̂[Q2])

(μ[Q4]/μ̂[Q4])
=
(μ[Q2]/μ̂[Q2])

(8π/αEM )
=

= 2V (S2)V (Q3)
1

V (D3)1/2
αEM
8π

= 0.2536,

(23)

that corresponds to the weak geometric coupling constant
αW at an energy of the order of

E =M = 146 GeV ∼
√
M2
W+

+M2
W−

+M2
Z , (24)

after we have inserted the expressions

V (S2) = 4π , V (Q3) = 4π
2 , V (D3) =

π3

24
, (25a)

into the formula (23). The relationship to the Fermi coupling
GFermi goes as follows (after indentifying the energy scale
E =M = 146 GeV):

GF ≡
αW
M2
⇒ GF m

2
proton =

(αW
M2

)
m2
proton =

= 0.2536 ×

( mproton

146 GeV

)2
∼ 1.04×10−5

(25b)

in very good agreement with experimental observations.
Once more, it is unknown why the value of αWeak ob-

tained from Geometric Probability corresponds to the energy
scale related to the W+,W−, Z0 boson mass, after sponta-
neous symmetry breaking.

Finally, we shall derive the value of αColor from eq-
(18). Since S4 is not large enough to accommodate the
action of the color group SU(3) one needs to work with one-
dimension higher S5 , that can be interpreted as the boundary
of the 6D Ball B6=SU(4)/U(3)=SU(4)/SU(3)×U(1).
Thus, the SU(3) group is part of the isotropy group K =
=SU(3)×U(1) that defines the coset space B6. In this

special case the Shilov and ordinary topological boundaries
of B6 coincide with S5 [3]. Hence, following the same
procedures as above, the ratio of the measures in S4 (bound-
ary of B5) can be re-written in terms of the ratio of the
measures in S5 (boundary of B6) via the embeddings of
B5→B6 as follows:

μ̂[S4]

μ[S4]
=

1

V (S4)

μN [S
5]

μ[S5]
=

1

V (S4)

1

V (S5)/V (B6)1/4
=

=
1

V (S4)

1

V (S5)
V (B6)

1/4,

(26)

since the exponent of the reduction factor V (B6)1/4 is given
by (dim(S4))−1= 1

4 . Notice, again, that μ̂[S4] is the measure-
density in S4 and must not be confused with the normalized
measures.

Therefore, one arrives at

αColor = V (S4) V (S5)
1

V (B6)1/4
αEM
8π

= 0.6286, (27)

that corresponds to the strong coupling constant at an energy
related to the pion masses [3]:

E = 241 MeV ∼
√
m2
π+ +m

2
π− +m

2
π0 (28)

and where we have used the expressions:

V (S4) =
8π2

3
, V (S5) = 4π3 , V (B6) =

π3

6
. (29)

The pions are the known lightest quark/antiquark pairs
that feel the strong interaction [3]. For a detailed analysis of
volumes of compact manifolds (coset spaces) see [24].

Once again, it is unknown why the value of αColor
obtained from Geometric Probability (28) corresponds to
the energy scale related to the masses of the three pions
[3]. Masses of the fundamental particles were derived in [3]
based on the definitions that mass is the probability amplitude
for a particle to change direction.

To conclude, by defining the geometric coupling con-
stants α= g2 as the Geometric Probability to emit (and later
absorb) a gauge boson, all the three geometric coupling
constants, αEM ;αWeak;αColor are given by the ratios of the
ratios of the measures of the Shilov boundaries Q2=S

1×
RP 1; Q3 = S2 ×RP 1; S5, respectively, with respect to the
ratios of the measures μ[Q5]/μN [Q5] associated with the 5D
conformally compactified real Minkowski spacetime M̄5 that
has the same topology as the Shilov boundary Q5 of the 5
complex-dimensional poly-discD5. The latter corresponds to
the conformal relativistic curved 10 real-dimensional phase
space H10 associated with a particle moving in the 5D Anti
de Sitter space AdS5. The ratios of particle masses, like
the proton to electron mass ratio mp/me∼ 6π5 has also
been calculated using the volumes of homogeneous bounded
domains [3, 4].

68 C. Castro. On Geometric Probability, Holography, Shilov Boundaries and the Four Physical Coupling Constants of Nature



July, 2005 PROGRESS IN PHYSICS Volume 2

It is not known whether this procedure would work for
Grand Unified Theories based on the groups

SU(5), SO(10), E6, E7, E8 . (30)

Beck [6] has obtained all the Standard Model parameters
by studying the numerical minima (and zeros) of certain po-
tentials associated with the Kaneko coupled two-dim lattices
based on Stochastic Quantization methods. The results above
and by Smith [3] are analytical rather than being numerical
[6] and it is not clear if there is any relationship between these
two approaches. Noyes has proposed an iterated numerical
hierarchy based on Mersenne primes Mp = 2

p−1 for certain
values of p= primes [18] and obtained many numerical
values for the physical parameters. Pitkanen has developed
methods to calculate the physical masses recurring to a p-adic
hierarchy of scales based on Mersenne primes [19].

An important connection between anomaly cancellation
in string theory and perfect even numbers was found in
[22]. These are numbers which can be written in terms of
sums of its divisors, including unity, like 6 = 1 + 2 + 3,
and are of the form P (p)= 1

2 2
p(2p− 1) if, and only if,

2p − 1 is a Mersenne prime. Not all values of p= prime
yields primes. The number 211− 1 is not a Mersenne prime,
for example. The number of generators of the anomaly free
groups SO(32), E8 × E8 of the 10-dim superstring is 496
which is an even perfect number. Another important group
related to the unique tadpole-free bosonic string theory is the
SO(213) = SO(8192) group related to the bosonic string
compactified on the E8 × SO(16) lattice. The number of
generators of SO(8192) is an even perfect number since
213− 1 is a Mersenne prime. For an introduction to p-adic
numbers in Physics and String theory see [20]. A lot more
work needs to be done to be able to answer the question: Is
all this just a mere numerical coincidence or is it design?
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On the Generalisation of Kepler’s 3rd Law for the Vacuum
Field of the Point-Mass

Stephen J. Crothers

Sydney, Australia

E-mail: thenarmis@yahoo.com

I derive herein a general form of Kepler’s 3rd Law for the general solution to Einstein’s
vacuum field. I also obtain stable orbits for photons in all the configurations of the
point-mass. Contrary to the accepted theory, Kepler’s 3rd Law is modified by General
Relativity and leads to a finite angular velocity as the proper radius of the orbit goes
down to zero, without the formation of a black hole. Finally, I generalise the expression
for the potential function of the general solution for the point-mass in the weak field.

1 Introduction

In previous papers [1, 2] I derived the general solution for
Einstein’s vacuum field and showed that black holes do not
exist in Einstein’s universe. In those papers I also obtained
expressions for Kepler’s 3rd Law for the simple (i. e. non-
rotating) point-mass and the simple point-charge. In this
paper I obtain expressions for Kepler’s 3rd Law for the
rotating point-mass and the rotating point-charge. Owing to
the rotation of the source of the field, Kepler’s 3rd Law for
the polar orbit is not the same as that for the equatorial orbit,
so that stable photon orbits are also different in the polar and
equatorial orbits, showing that in the rotating configurations
spacetime is no longer isotropic.

The expressions I obtain readily reduce to those I have
previously derived for the non-rotating configurations.

2 Definitions

I have already shown [3] that the most general static metric
for the point-mass is,

ds2=A(D)dt2 −B(D)dD2 − C(D)
(
dθ2 + sin2 θdϕ2

)
,

D = |r − r0| ,

A,B,C > 0 ,

where r0 is an arbitrary real number. With respect to this
metric I identify the coordinate radius, the r-parameter, the
radius of curvature, and the proper radius thus:

1. The coordinate radius is D= |r − r0| .
1. The r-parameter is the variable r .

2. The radius of curvature is R=
√
C(D) .

3. The proper radius is Rp=
∫ √

B(D) dD .

3 The equatorial orbit

The general Kerr-Newman form in Boyer-Lindquist coordi-
nates is,

ds2=
Δ

ρ2
(
dt− a sin2 θdϕ

)2
−

−
sin2 θ

ρ2
[(
R2+a2

)
dϕ−adt

]2
−
ρ2

Δ
dR2−ρ2dθ2.

This can be written as,

ds2=

(
Δ− a2 sin2 θ

ξ

)

dt2 −
ξ

Δ
dR2 −

− ξdθ2 +

[
a2Δsin4 θ −

(
R2 + a2

)2
sin2 θ

ξ

]

dϕ2−

−

[
2aΔsin2 θ − 2a

(
R2 + a2

)
sin2 θ

ξ

]

dtdϕ ,

(1)

where I have previously shown [2, 3] in the case of the
rotating point-charge,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n+βn

) 2
n

, r0 ∈<, r∈< ,

β=m+
√
m2 − a2 cos2 θ − q2 ,

a2 + q2<m2 , n∈<+, ξ= ρ2=R2 + a2 cos2 θ ,

a=
L

m
, Δ=R2 − αR+ a2 + q2 ,

0< |r − r0|<∞ ,

where L is the angular momentum, and n and r0 are arbitrary.
I have also shown previously that Kepler’s 3rd Law for

the simple point-mass is,

ω2=
α

2R3
, (2)

where
lim
r→ r±0

√
Cn(r)=R0=α=2m ∀ r0 ,

is a scalar invariant; and for the simple point-charge is,

ω2=
α

2R3
−
q2

R4
, (3)
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where, ∀ r0 ,

lim
r→ r±0

√
Cn(r)=R0=β=m+

√
m2 − q2, q2<m2 ,

is a scalar invariant.
In the case of the equatorial orbit, θ= π

2 and θ̇=0, so
(1) becomes,

ds2=

(
Δ− a2

ξ

)

dt2 −
ξ

Δ
dR2 +

+

[
a2Δ−

(
R2 + a2

)2

ξ

]

dϕ2 −

−

[
2aΔ− 2a

(
R2 + a2

)

ξ

]

dtdϕ .

(4)

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + βn

) 2
n

,

β=m+
√
m2 − q2 , q2<m2 ,

ξ=R2 , Δ=R2 − αR+ a2 + q2 ,

0< |r − r0|<∞ .

Consider the associated Lagrangian, where the dot indi-
cates ∂/∂τ ,

L=
1

2

[
Δ− a2

ξ
ṫ2 −

ξ

Δ
Ṙ2
]

+

+
1

2

[
a2Δ−

(
R2 + a2

)2

ξ

]

ϕ̇2 −

−
1

2

[
2aΔ− 2a

(
R2 + a2

)

ξ

]

ṫ ϕ̇ .

(5)

Then,

∂L

∂R
−

∂

∂τ

(
∂L

∂Ṙ

)

=0⇒
ξΔ′ − ξ′

(
Δ− a2

)

2ξ2
ṫ2+

+
ξ
[
a2Δ′ − 4R

(
R2 + a2

)]

2ξ2
ϕ̇2−

−
ξ′
[
a2Δ−

(
R2 + a2

)2]

2ξ2
ϕ̇2−

−
ξ (2aΔ′ − 4aR)− ξ′

[
2aΔ− 2a

(
R2 + a2

)]

2ξ2
ṫϕ̇+

+
Δξ′ − ξΔ′

2Δ2
Ṙ2 +

ξ

Δ
R̈=0 .

(6)

Taking R= const. reduces (6) to,
{
ξ
[
a2Δ′ − 4R

(
R2 + a2

)]
−

− ξ′
[
a2Δ−

(
R2 + a2

)2]}
ω2 −

−
{
ξ (2aΔ′−4aR)−ξ′

[
2aΔ−2a

(
R2+a2

)]}
ω +

+ ξΔ′ − ξ′
(
Δ− a2

)
=0 ,

(7)

where ω= ϕ̇

ṫ
. The solutions for ω are,

ω=
aαR− 2aq2 ±R2

√
2αR− 4q2

a2αR− 2a2q2 − 2R4
.

In order for this to reduce to the non-rotating configura-
tions, the plus sign must be taken so,

ω=
aαR− 2aq2 +R2

√
2αR− 4q2

a2αR− 2a2q2 − 2R4
, (8)

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + βn

) 2
n

,

β=m+
√
m2 − q2 , q2<m2 ,

α=2m,

0< |r − r0|<∞ .

Equation (8) is Kepler’s 3rd Law for the equatorial plane
of the rotating point-charge. I remark that the radius of
curvature in the equatorial orbit is precisely that for the
simple point-charge. The expression for Kepler’s 3rd Law
for the equatorial plane of the rotating point-mass is obtained
from (8) by setting q=0,

ω=
aαR+R2

√
2αR

a2αR− 2R4
,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + αn

) 2
n

,

α=2m,

0< |r − r0|<∞ ,

in which case the radius of curvature in the equatorial orbit
is precisely that for the simple point-mass.

Taking the near-field limit on (8) gives,

lim
r→ r±0

ω=
aαβ − 2aq2 + β2

√
2αβ − 4q2

a2αβ − 2a2q2 − 2β4
, (9)

which is a scalar invariant.
When a=0 and q 6=0, equation (8) reduces to,

ω2=
α

2R3
−
q2

R4
,

which recovers Kepler’s 3rd Law (3) for the simple point-
charge. If a= q=0, equation (8) reduces to,

ω2=
α

2R3
,

β=α=2m,

which recovers Kepler’s 3rd Law (2) for the simple point-
mass.
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When a=0 and q 6= 0, (9) reduces in the near-field
limit, to

lim
r→ r±0

ω2=
α

2β3
−
q2

β4
,

β = m+
√
m2 − q2 ,

the scalar invariant of Kepler’s 3rd Law for the simple point-
charge; and when a= q=0, (9) reduces to the near-field
limit,

lim
r→ r±0

ω2=
1

2α2
,

α=2m,

the scalar invariant for Kepler’s 3rd Law for the simple point-
mass, as originally obtained by Karl Schwarzschild [4] for
his particular solution.

4 Photons in equatorial orbit

Setting θ= π
2 in (1) and setting (1) equal to zero gives,

[
a2Δ−

(
R2 + a2

)2]
ω2−

−
[
2aΔ− 2a

(
R2 + a2

)]
ω +

(
Δ− a2

)
=0 ,

(10)

from which it follows,

ω=
ϕ̇

ṫ
=
a
(
q2 − αR

)
+R2

√
R2 − αR+ a2 + q2

a2q2 − αa2R− a2R2 −R4
. (11)

Equating (8) to (11) gives,

aαR− 2aq2 +R2
√
2αR− 4q2

a2αR− 2a2q2 − 2R4
=

=
a
(
q2 − αR

)
+R2

√
R2 − αR+ a2 + q2

a2q2 − αa2R− a2R2 −R4
,

(12)

α=2m,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + βn

) 2
n

,

β=m+
√
m2 − q2, q2<m2 ,

r0 ∈<, n∈<
+ ,

for the radius of curvature Rph−e=R=
√
Cn(rph−e) of the

equatorial orbit of a photon for the rotating point-charge.
When a=0 equation (12) reduces to,

Rph−e=
√
Cn(rph−e)=

3α+
√
9α2 − 32q2

4
,

recovering the stable radius of curvature for the photon orbit
about the simple point-charge [2]. When a= q =0, equation
(12) reduces to,

Rph−e=
√
Cn(rph−e)=

3α

2
=3m, (13)

which recovers the stable radius of curvature for the photon
around the simple point-mass [1].

When n=1 and r0 =α, equation (13) gives,

Rph−e=
√
Cn(rph−e)= rph−e=3m,

This radius is taken incorrectly by the orthodox relativists as
a measurable proper radius in the gravitational field of the
simple point-mass. The actual proper radius associated with
(13) is,

Rp=
α
√
3

2
+ α ln

(
1 +
√
3

√
2

)

,

which is a scalar invariant for the photon orbit about the
point-mass.

The expression for the radius of curvature of the stable
photon equatorial orbit for the rotating point-mass is obtained
from (12) by setting q= 0, thus

aαR+R2
√
2αR

a2αR− 2R4
=
aαR−R2

√
R2 − αR+ a2

αa2R+ a2R2 +R4
,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + αn

) 2
n

,

α=2m,

r0 ∈<, n∈<
+ .

5 The polar orbit

According to (1), if R=
√
Cn(r) is a function of t,

R=R(t, θ)= =
√
Cn(r(t))=

(
|r(t)− r0|

n + βn
) 1
n ,

β=m+
√
m2 − q2 − a2 cos2 θ ,

so if ṙ=0, Ṙ=0.
In the polar orbit there is no loss of generality in taking

ϕ= const., ϕ̇=0. Then (1) becomes,

ds2=
Δ− a2 sin2 θ

ξ
dt2 −

ξ

Δ
dR2 − ξdθ2 , (14)

R2=Cn(r)=
(∣
∣r − r0

∣
∣n+βn

) 2
n

, r0 ∈<, r∈< ,

β=m+
√
m2 − a2 cos2 θ − q2 ,

a2 + q2<m2 , n∈<+, ξ= ρ2=R2 + a2 cos2 θ ,

a=
L

m
, Δ=R2 − αR+ a2 + q2 ,

0< |r − r0|<∞ .

Consider the associated Lagrangian,

L=
1

2

[
Δ− a2 sin2 θ

ξ
ṫ2 −

ξ

Δ
Ṙ2 − ξθ̇2

]

.
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Then,

∂L

∂R
−
∂

∂τ

(
∂L

∂Ṙ

)

=
1

2

[
ξΔ′− ξ′(Δ−a2 sin2 θ)

ξ2
ṫ2
]

+

−
1

2

[
(Δξ′ − ξΔ′)

Δ2
Ṙ2 + ξ′θ̇2

]

+
ξ

Δ
R̈=0 .

(15)

If Ṙ=0, then (15) yields,

ω2=
θ̇2

ṫ2
=
ξΔ′ − ξ′(Δ− a2 sin2 θ)

ξ′ξ2
=

=
αR2 − αa2 cos2 θ − 2q2R

2R (R2 + a2 cos2 θ)
2 =

=
αCn − αa2 cos2 θ − 2q2

√
Cn

2
√
Cn (Cn + a2 cos2 θ)

2 ,

(16)

β=m+
√
m2 − a2 cos2 θ − q2 , a2 + q2<m2 ,

n∈<+ r0 ∈< ,

0< |r − r0|<∞ .

Equation (16) is Kepler’s 3rd Law for the polar orbit of
the rotating point-charge. I remark that the angular velocity
depends upon azimuth.

Let a=0, q 6=0, then (16) reduces to,

ω2=
α

2R3
−
q2

R4
,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + βn

) 2
n

, β=m+
√
m2 − q2,

q2 < m2, r0 ∈<, n∈<
+ ,

0< |r − r0|<∞,

which recovers Kepler’s 3rd Law (3) for the simple point-
charge. Setting a= q=0 reduces (16) to,

ω2=
α

2R3
,

R2=Cn(r)=
(∣
∣r − r0

∣
∣n + αn

) 2
n

,

n∈<+, r(0)∈< ,

0< |r − r0|<∞,

which recovers Kepler’s 3rd Law (2) for the simple point-
mass.

Taking the near-field limit on (16),

lim
r→ r±0

ω2=
αβ2 − αa2 cos2 θ − 2q2β

2β (β2 + a2 cos2 θ)
2 , (17)

which is a scalar invariant, subject to azimuth, for the polar
orbit of the rotating point-charge.

When q=0, a 6=0, equation (16) reduces to,

ω2=
αR2 − αa2 cos2 θ

2R (R2 + a2 cos2 θ)
2 =

=
αCn − αa2 cos2 θ

2
√
Cn (Cn + a2 cos2 θ)

2 ,

(18)

β=m+
√
m2 − a2 cos2 θ , a2<m2 ,

n∈<+ r0 ∈< ,

0< |r − r0|<∞ .

This is Kepler’s 3rd Law for the polar orbit of the rotating
point-mass.

Taking the near-field limit on (18),

lim
r→ r±0

ω2=
αβ2 − αa2 cos2 θ

2β (β2 + a2 cos2 θ)
2 , (19)

which is a scalar invariant, subject to azimuth, for the polar
orbit of the rotating point-mass.

Thus, ω varies with azimuth as does R=
√
Cn(r). At

the poles of the rotating point-charge,

R2=Cn(r)=
(
|r − r0|

n + βn
) 2
n ,

β=m+
√
m2 − a2 − q2 ,

ω2=
αR2 − αa2 − 2q2R

2R (R2 + a2)
2 ,

(20)

and at the equator,

R2=Cn(r)=
(
|r − r0|

n + βn
) 2
n ,

β=m+
√
m2 − q2 ,

ω2=
α

2R3
−
q2

R4
.

(21)

It is noted that at the momentary equator in a polar orbit,
the radius of curvature and Kepler’s 3rd Law are precisely
those for the simple point-charge.

In the case of the rotating point-mass, at the poles,

R2=Cn(r)=
(
|r − r0|

n + βn
) 2
n ,

β=m+
√
m2 − a2 ,

ω2=
αR2 − αa2

2R (R2 + a2)
2 ,

(22)

and at the equator,

R2=Cn(r)=
(
|r − r0|

n + βn
) 2
n ,

β=2m=α ,

ω2=
α

2R3
.

(23)
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At the momentary equator in a polar orbit the radius of
curvature and Kepler’s 3rd Law are precisely those for the
simple point-mass.

6 Photons in the polar orbit

Setting (14) equal to zero, with Ṙ=0, gives

ω2=
Δ− a2 sin2 θ

ξ2
=
R2 − αR+ a2 cos2 θ + q2

(R2 + a2 cos2 θ)
2 . (24)

Denote the stable photon radius of curvature for a photon
in polar orbit by Rph−p=

√
Cn(rph−p). Then equating (24)

to (16) gives,

2R3ph−p − 3αR
2
ph−p +

+
(
2a2 cos2 θ + 4q2

)
Rph−p + αa

2 cos2 θ=0 ,

R2ph−p=Cn(rph−p)=
(
|rph − r0|

n + βn
) 2
n ,

β=m+
√
m2 − a2 cos2 θ − q2, a2 + q2<m2 ,

r0 ∈<, n∈<+ .

(25)

Equation (25) gives the stable photon radius of curvature
in the polar orbit. The orbit has a variable radius of curvature
with azimuth.

When a=0, q 6=0, equation (25) reduces to

Rph−p=
√
Cn(rph−p)=

3α+
√
9α2 − 32q2

4
, (26)

Cn(rph−p)=
(∣
∣rph−p − r0

∣
∣n + βn

) 2
n

,

β=m+
√
m2 − q2, q2<m2 ,

r0 ∈<, n∈<
+ ,

which recovers the radius of curvature for the stable orbit
of a photon about the simple point-charge. When a= q=0,
(25) reduces to,

Rph−p=
√
Cn(rph−p)=

3α

2
, (27)

Cn(rph−p)=
(∣
∣rph−p − r0

∣
∣n + αn

) 2
n

,

α=2m, r0 ∈<, n∈<
+ ,

which recovers the curvature radius for the stable orbit of a
photon about the simple point-mass. When n=1 and r0 =α,
equation (27) gives,

Rph−p=
√
Cn(rph−p)= rph−p=3m,

which is the stable radius of curvature for the photon about
the simple point-mass, but which is misinterpreted by the
orthodox relativists as a measurable proper radius.

To obtain the stable photon radius of curvature of the
polar orbit for the rotating point-mass, set q=0 in (25),

2R3ph−p − 3αR
2
ph−p + 2a

2 cos2 θRph−p +

+ αa2 cos2 θ=0 ,

R2ph−p=Cn(rph−p)=
(
|rph − r0|

n + βn
) 2
n ,

β=m+
√
m2 − a2 cos2 θ, a2<m2 ,

r0 ∈<, n∈<+ .

(28)

7 Potential functions in the weak field

In the case of the rotating point-charge,

g00 =
Δ− a2 sin2 θ

ρ2
, (29)

Δ=Cn(r)− α
√
Cn(r) + a

2 + q2 ,

ρ2=Cn(r) + a
2 cos2 θ .

The potential Φ for a general metric is given by,

g00 = (1− Φ)
2
=1− 2Φ + Φ2 .

In the weak field,

g00≈ 1− 2Φ .

Now (29) gives,

g00 =
Cn(r)− α

√
Cn(r) + a

2 cos2 θ + q2

Cn(r) + a2 cos2 θ
=

= 1−
α
√
Cn(r)− q2

Cn(r) + a2 cos2 θ
,

so the potential is,

Φ=
α
√
Cn(r)− q2

2 (Cn(r) + a2 cos2 θ)
, (30)

Cn(r)=
(∣
∣r − r0

∣
∣n+βn

) 2
n

, r0 ∈< ,

β=m+
√
m2 − a2 cos2 θ − q2 ,

a2 + q2<m2 , n∈<+ ,

0< |r − r0|<∞ .
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The potential therefore depends upon azimuth.
The potential for the rotating point-mass is obtained from

(30) by setting q=0,

Φ=
α
√
Cn(r)

2 (Cn(r) + a2 cos2 θ)
, (31)

Cn(r)=
(∣
∣r − r0

∣
∣n+βn

) 2
n

, r0 ∈< ,

β=m+
√
m2 − a2 cos2 θ ,

a2<m2 , n∈<+ ,

0< |r − r0|<∞ .

If a=0 the potential for the simple point-charge is re-
covered from (30),

Φ=
α

2
√
Cn(r)

−
q2

2Cn(r)
, (32)

Cn(r)=
(∣
∣r − r0

∣
∣n+βn

) 2
n

, r0 ∈< ,

β=m+
√
m2 − q2 ,

q2<m2 , n∈<+ ,

0< |r − r0|<∞ ,

and if a= q=0 the potential for the simple point-mass is
recovered,

Φ=
α

2
√
Cn(r)

, (33)

Cn(r)=
(∣
∣r − r0

∣
∣n+αn

) 2
n

, r0 ∈< n∈<+ ,

0< |r − r0|<∞ .

According to (30), orbit in the equatorial gives equations
(32) for the simple point-charge. According to (31), orbit
in the equatorial gives equations (33) for the simple point-
mass. For orbits in the polar, equations (32) and (33) are
momentarily realised at the equator for a test particle orbiting
the rotating point-charge and the rotating point-mass respect-
ively. Thus, the effects of rotation of the source of the field
do not manifest for a test particle in an equatorial orbit.

Taking the near-field limit on (30) gives,

lim
r→ r±0

Φ=
αβ − q2

2 (β2 + a2 cos2 θ)
, (34)

β=m+
√
m2 − a2 cos2 θ − q2 ,

a2 + q2<m2 .

The potential approaches a finite limit with azimuth.
The limiting values for the simpler configurations are easily
obtained from (34) in the obvious way.
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On the Vacuum Field of a Sphere of Incompressible Fluid

Stephen J. Crothers

Sydney, Australia

E-mail: thenarmis@yahoo.com

The vacuum field of the point-mass is an unrealistic idealization which does not occur in
Nature — Nature does not make material points. A more realistic model must therefore
encompass the extended nature of a real object. This problem has also been solved for
a particular case by K. Schwarzschild in his neglected paper on the gravitational field
of a sphere of incompressible fluid. I revive Schwarzschild’s solution and generalise it.
The black hole is necessarily precluded. A body cannot undergo gravitational collapse
to a material point.

1 Introduction

In my previous papers [1, 2] concerning the general solution
for the point-mass I showed that the black hole is not con-
sistent with General Relativity and owes its existence to a
faulty analysis of the Hilbert [3] solution. In this paper I shall
show that, along with the black hole, gravitational collapse
to a point-mass is also untenable. This was evident to Karl
Schwarzschild who, immediately following his derivation of
his exact solution for the mass-point [4], derived a particular
solution for an extended body in the form of a sphere of
incompressible, homogeneous fluid [5]. This is also an ideal-
ization, and so too has its shortcomings, but represents a
somewhat more plausable end result of gravitational collapse.

The notion that Nature makes material points, i. e. masses
without extension, I view as an oxymoron. It is evident that
there has been a confounding of a mathematical point with
a material object which just cannot be rationally sustained.
Einstein [6, 7] objected to the introduction of singularities in
the field but could offer no viable alternative, even though
Schwarzschild’s extended body solution was readily at his
hand.

The point-mass and the singularity are equivalent.
Abrams [8] has remarked that singularities associated with
a spacetime manifold are not uniquely determined until a
boundary is correctly attached to it. In the case of the point-
mass the source of the gravitational field is identified with
a singularity in the manifold. The fact that the vacuum field
for the point-mass is singular at a boundary on the manifold
indicates that the point-mass does not occur in Nature. Oddly,
the conventional view is that it embodies the material point.
However, there exists no observational or experimental data
supporting the idea of a point-mass or point-charge. I can
see no way an electron, for instance, could be compressed
into a material point-charge, which must occur if the point-
mass is to be admitted. The idea of electron compression is
meaningless, and therefore so is the point-mass. Eddington
[9] has remarked in similar fashion concerning the electron,

and relativistic degeneracy in general.
I regard the point-mass as a mathematical artifice and

consider it in the fashion of a centre-of-mass, and therefore
not as a physical object. In Newton’s theory of gravitation,
r=0 is singular, and equivalently in Einstein’s theory, the
proper radius Rp(r0)≡ 0 is singular, as I have previously
shown. Both theories therefore share the non-physical nature
of the idealized case of the point-mass.

To obtain a model for a star and for the gravitational
collapse thereof, it follows that the solution to Einstein’s
field equations must be built upon some manifold without
boundary. In more recent years Stavroulakis [10, 11, 12] has
argued the inappropriateness of the solutions on a manifold
with boundary on both physical and mathematical grounds,
and has derived a stationary solution from which he has
concluded that gravitational collapse to a material point is
impossible.

Utilizing Schwarzschild’s particular solution I shall ex-
tend his result to a general solution for a sphere of incom-
pressible fluid.

2 The general solution for Schwarzschild’s incompress-
ible sphere of fluid

At the surface of the sphere the required solution must
maintain a smooth transition from the field outside the sphere
to the field inside the sphere. Therefore, the metric for the
interior and the metric for the exterior must attain the same
value for the radius of curvature at the surface of the sphere.
Furthermore, owing to the extended nature of the sphere,
the exterior metric must take the form of the metric for
the point-mass, but with a modified invariant containing the
factors giving rise to the field, reflecting the non-pointlike
nature of the source, thereby treating the source as a mass
concentrated at the centre-of-mass of the sphere, just as
in Newton’s theory. Schwarzschild has achieved this in his
particular case. He obtained the following metric for the field
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inside his sphere,

ds2=

(
3 cosχa − cosχ

2

)2
dt2 −

−
3

κρ0
dχ2 −

3 sin2 χ

κρ0

(
dθ2 + sin2 θdϕ2

)
,

(1)

sinχ=

√
κρ0
3

η
1
3 , η= r3 + ρ ,

ρ=
(κρ0
3

)−3
2

[
3

2
sin3 χa −

9

4
cosχa

(

χa −
1

2
sin 2χa

)]

,

κ=8πk2 ,

06χ6χa<
π

2
,

where ρ0 is the constant density of the fluid, k2 Gauss’
gravitational constant, and the subscript a denotes values at
the surface of the sphere. Metric (1) is non-singular.

Schwarzschild’s particular metric outside the sphere is,

ds2=
(
1−

α

R

)
dt2 −

(
1−

α

R

)−1
dR2 −

− R2
(
dθ2 + sin2 θdϕ2

)
,

(2)

R3= r3 + ρ , α=

√
3

κρ0
sin3 χa ,

06χa<
π

2
,

ra6 r <∞ .

Metric (2) is non-singular for an extended body.
In the case of the simple point-mass (i. e. non-rotating, no

charge) I have shown elsewhere [13] that the general solution
is,

ds2=

[
(
√
Cn−α)√
Cn

]

dt2−

[ √
Cn

(
√
Cn−α)

]
C ′n

2

4Cn
dr2−

−Cn(dθ
2 + sin2 θdϕ2) ,

(3)

Cn(r) =
(∣
∣r − r0

∣
∣n + αn

) 2
n

, α = 2m,

n ∈ <+ , r∈<, r0 ∈ < ,

0< |r − r0|<∞ ,

where n and r0 are arbitrary.
Now Schwarzschild fixed his solution for r0 =0. I note

that his equations, rendered herein as equations (1) and (2),
can be easily generalised to an arbitrary r0 ∈< and arbitrary
χ0 ∈< by replacing his r and χ by |r − r0| and |χ − χ0|
respectively. Furthermore, equation (3) must be modified to

account for the extended configuration of the gravitating
mass. Consequently, equation (1) becomes,

ds2=

[
3 cos

∣
∣χa − χ0

∣
∣− cos

∣
∣χ− χ0

∣
∣

2

]2

dt2 −

−
3

κρ0
dχ2 −

3 sin2
∣
∣χ− χ0

∣
∣

κρ0

(
dθ2 + sin2 θdϕ2

)
,

(4)

sin
∣
∣χ− χ0

∣
∣ =

√
κρ0
3
η
1
3 , η=

∣
∣r − r0

∣
∣3 + ρ ,

ρ=

(
κρ0
3

)−3
2
{
3

2
sin3

∣
∣χa − χ0

∣
∣ −

−
9

4
cos
∣
∣χa − χ0

∣
∣
[∣
∣χa − χ0

∣
∣−

1

2
sin 2

∣
∣χa − χ0

∣
∣
]}

,

κ=8πk2 , r0 ∈< , r∈< , χa ∈< , χ0 ∈< ,

06 |χ− χ0|6 |χa − χ0|<
π

2
,

and outside the sphere, equation (2) becomes,

ds2=
(
1−

α

R

)
dt2 −

(
1−

α

R

)−1
dR2 −

− R2
(
dθ2 + sin2 θdϕ2

)
,

(5)

R3=
∣
∣r − r0

∣
∣3 + ρ, α=

√
3

κρ0
sin3

∣
∣χa − χ0

∣
∣ ,

n∈<+ , r0 ∈< , r∈< , χ0 ∈< , χa ∈< ,

06 |χa − χ0|<
π

2
,

|ra − r0|6 |r − r0|<∞ ,

and outside the sphere, equation (3) becomes,

ds2=

[
(
√
Cn−α)√
Cn

]

dt2−

[ √
Cn

(
√
Cn−α)

]
C ′n

2

4Cn
dr2−

−Cn(dθ
2 + sin2 θdϕ2) ,

(6)

Cn(r)=
(∣
∣r − r0

∣
∣n + εn

) 2
n

,

α=

√
3

κρ0
sin3

∣
∣χa − χ0

∣
∣ ,

ε=

√
3

κρ0

{
3

2
sin3

∣
∣χa − χ0

∣
∣ −

−
9

4
cos
∣
∣χa − χ0

∣
∣
[∣
∣χa − χ0

∣
∣−

1

2
sin 2

∣
∣χa − χ0

∣
∣
]} 1

3

,

r0 ∈< , r∈< , n ∈ <
+ , χ0 ∈< , χa ∈< ,
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|ra − r0|6 |r − r0|<∞ .

The general solution for the interior of the incompressible
Schwarzschild sphere is given by (4), and (6) gives the
general solution on the exterior of the sphere.

Consider the general form for a static metric for the
gravitational field [13],

ds2=A(D)dt2 −B(D)dD2 − C(D)
(
dθ2 + sin2 θdϕ2

)
,

D = |r − r0| ,

A,B,C > 0 ∀ r 6= r0 .

With respect to this metric I identify the real r-parameter,
the radius of curvature, and the proper radius thus:

1. The real r-parameter is the variable r.

2. The radius of curvature is Rc=
√
C(D).

3. The proper radius is Rp=
∫ √

B(D) dD.

According to the foregoing, the proper radius of the
sphere of incompressible fluid determined from inside the
sphere is, from (4),

Rp=

χa∫

χ0

√
3

κρ0

(χ− χ0)
|χ− χ0|

dχ=

√
3

κρ0

∣
∣χa − χ0

∣
∣ . (7)

The proper radius of the sphere cannot be determined
from outside the sphere. According to (6) the proper radius
to a spacetime event outside the sphere is,

Rp=

∫ √ √
Cn√

Cn − α

C ′n
2
√
Cn

dr =

=K +

√
√
Cn(r)

(√
Cn(r)− α

)
+

+ α ln

∣
∣
∣
∣

√√
Cn(r) +

√√
Cn(r)− α

∣
∣
∣
∣ ,

(8)

K = const.

At the surface of the sphere the proper radius from outside
has some value Rpa , for some value ra of the parameter r.
Therefore, at the surface of the sphere,

Rpa =K +

√
√
Cn(ra)

(√
Cn(ra)− α

)
+

+ α ln

∣
∣
∣
∣

√√
Cn(ra) +

√√
Cn(ra)− α

∣
∣
∣
∣ .

Solving for K,

K =Rpa −

√
√
Cn(ra)

(√
Cn(ra)− α

)
−

− α ln

∣
∣
∣
∣

√√
Cn(ra) +

√√
Cn(ra)− α

∣
∣
∣
∣ .

Substituting into (8) for K gives for the proper radius
from outside the sphere,

Rp(r)=Rpa +

√
√
Cn(r)

(√
Cn(r)− α

)
−

−

√
√
Cn(ra)

(√
Cn(ra)− α

)
+

+ α ln

∣
∣
∣
∣
∣
∣

√√
Cn(r) +

√√
Cn(r)− α

√√
Cn(ra) +

√√
Cn(ra)− α

∣
∣
∣
∣
∣
∣
.

(9)

Then by (9), for |r − r0|> |ra − r0|

|r − r0|→ |ra − r0|⇒Rp→R+pa ,

but Rpa cannot be determined.
According to (4) the radius of curvature Rc=Pa at the

surface of the sphere is,

Pa =

√
3

κρ0
sin
∣
∣χa − χ0

∣
∣ . (10)

Furthermore, inside the sphere,

G

Rp
6 2π ,

and

lim
χ→χ±0

G

Rp
=2π ,

where G=2πRc is the circumference of a great circle.
But outside the sphere,

G

Rp
> 2π ,

with the equality only when Rp→∞.
The radius of curvature of (6) at the surface of the sphere

is
√
Cn(ra) so,

√
Cn(ra)=

(∣
∣ra − r0

∣
∣n + εn

) 1
n

. (11a)

At the surface of the sphere the measured circumference
Ga of a great circle is,

Ga=2πPa=2π
√
Cn(ra) .

Therefore, at the surface of the sphere equations (10) and
(11a) are equal,

(∣
∣ra − r0

∣
∣n + εn

) 1
n

=

√
3

κρ0
sin
∣
∣χa − χ0

∣
∣ , (11b)

and so,

|ra − r0|=

[(
3

κρ0

)n
2

sinn
∣
∣χa − χ0

∣
∣− εn

] 1
n

. (11c)
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The variable r is just a parameter for the radial quantities
Rp and Rc associated with (6). Similarly, χ is also a param-
eter for the radial quantities Rp and Rc associated with (4).
I remark that r0 and χ0 are both arbitrary, and independent
of one another, and that |r − r0| and |χ − χ0| do not of
themselves denote radii in any direct way. The arbitrary
values of the parameter “origins”, r0 and χ0, are simply
boundary points on r and χ respectively. Indeed, by (7),
Rp(χ0)≡ 0, and by (9), Rp(ra)≡Rpa , irrespective of the
values of r0, ra , and χ0. The centre-of-mass of the sphere of
fluid is always located precisely at Rp(χ0)≡ 0. Furthermore,
Rp(r) for |r − r0|< |ra − r0| has no meaning since inside
the sphere (4) describes the geometry, not (6).

According to (11b), equation (9) can be written as,

Rp(r)=Rpa +

√
√
Cn(r)

(√
Cn(r)− α

)
−

−

√√
√
√
√

3

κρ0
sin
∣
∣χa − χ0

∣
∣

(√
3

κρ0
sin
∣
∣χa − χ0

∣
∣− α

)

+

(12)

+ α ln

∣
∣
∣
∣
∣
∣
∣
∣

√√
Cn(r) +

√√
Cn(r)−α√√

3

κρ
0

sin|χa−χ0| +
√√

3

κρ
0

sin|χa−χ0|−α

∣
∣
∣
∣
∣
∣
∣
∣

,

α=

√
3

κρ0
sin3

∣
∣χa − χ0

∣
∣ .

Note that in (4), |χ − χ0| cannot grow up to π
2 , so

that Schwarzschild’s sphere does not constitute the whole

spherical space, which has a radius of curvature of
√

3
κρ0

.

From (4) and (6),

α

Pa
= sin2

∣
∣χa − χ0

∣
∣ , α=

κρ0
3
P 3a . (13)

The volume of the sphere is,

V =

(
3

κρ0

) 3
2

χa∫

χ0

sin2 |χ− χ0|

(
χ− χ0

)

|χ− χ0|
dχ ×

×

π∫

0

sin θdθ

2π∫

0

dϕ =

= 2π

(
3

κρ0

) 3
2
(

|χa − χ0| −
1

2
sin 2|χa − χ0|

)

,

so the mass of the sphere is,

M = ρ0V =
3

4k2

√
3

κρ0

(

|χa − χ0| −
1

2
sin 2|χa − χ0|

)

.

Schwarzschild [5] has also shown that the velocity of
light inside his sphere of incompressible fluid is given by,

vc=
2

3 cosχa − cosχ
,

which generalises to,

vc=
2

3 cos
∣
∣χa − χ0

∣
∣− cos

∣
∣χ− χ0

∣
∣ . (14)

At the centre χ=χ0, so vc reaches a maximum value
there of,

vc=
2

3 cos
∣
∣χa − χ0

∣
∣− 1

,

Equation (14) is singular when cos
∣
∣χa − χ0

∣
∣ = 1

3 , which
means that there is a lower bound on the possible radii of
curvature for spheres of incompressible, homogeneous fluid,
which is, by (13) and (6),

Pa (min)=
9

8
α=

√
8

3κρ0
, (15a)

and consequently, by equation (11a),

|ra − r0|(min)=

[(
9α

8

)n
− εn

] 1
n

=

=

[(
8

3κρ0

)n
2

− εn
] 1
n

,

(15b)

from which it is clear that a body cannot collapse to a material
point.

From (13), a sphere of given gravitational mass α
k2 ,

cannot have a radius of curvature, determined from outside,
smaller than,

Pa (min)=α ,

so
|ra − r0|(min)= [α

n − εn]
1
n ,

α=

√
3

κρ0
sin3

∣
∣χa − χ0

∣
∣ .

3 Kepler’s 3rd Law for the sphere of incompressible
fluid

There is no loss of generality in considering only the equator-
ial plane, θ= π

2 . Equation (6) then leads to the Lagrangian,

L=
1

2

[(√
C − α
√
C

)

ṫ2 −

( √
C

√
C − α

)
(√̇

C
)2
− Cϕ̇2

]

,

where the dot indicates ∂/∂τ .
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Let R=
√
Cn(r). Then,

∂

∂τ

∂L

∂Ṙ
−
∂L

∂R
=

R

R− α
R̈+

α

2R2
ṫ2 −

−
α

2 (R− α)
Ṙ2 −R ϕ̇2=0 .

Now let R= const. Then,

α

2R2
ṫ2=R ϕ̇2 ,

so

ω2=
α

2R3
=

α

2C
3
2

=
α

2
(∣
∣r − r0

∣
∣n + εn

) 3
n

. (16)

Equation (16) is Kepler’s 3rd Law for the sphere of in-
compressible fluid.

Taking the near-field limit gives,

ω2a= lim
|r−r0|→ |ra−r0|

+
ω2=

α

2
(∣
∣ra − r0

∣
∣n + εn

) 3
n

.

According to (11b) and (10) this becomes,

ω2a=
α

2
(

3
κρ0

) 3
2

sin3
∣
∣χa − χ0

∣
∣
=

α

2P 3a
.

Finally, using (13),

ωa=
sin3 |χa − χ0|

α
√
2

, (17)

α=

√
3

κρ0
sin3

∣
∣χa − χ0

∣
∣ .

In contrast, the limiting value of ω for the simple point-
mass [4] is,

ω0 =
1

α
√
2
,

α=2m.

When Pa is minimum, (17) becomes,

ω2a=
16

27α
, (18)

α=
16

27

√
6

κρ0
.

Clearly, equation (17) is an invariant,

ωa=

√
κρ0
6
.

4 Passive and active mass

The relationship between passive and active mass manifests,
owing to the difference established by Schwazschild, be-
tween what he called “substantial mass” (passive mass) and
the gravitational (i .e. active) mass. He showed that the for-
mer is larger than the latter.

Schwarzschild has shown that the substantial mass M is
given by,

M =2πρ0

(
3

κρ0

)3
2
(

χa −
1

2
sin 2χa

)

,

0 6 χa <
π

2
,

and the gravitational mass is,

m=
αc2

2G
=
1

2

√
3

κρ0
sin3 χa=

κρ0
6
P 3a =

4π

3
P 3aρ0 ,

Pa=

√
3

κρ0
sinχa ,

0 6 χa <
π

2
.

I have generalised Schwarzschild’s result to,

M =2πρ0

(
3

κρ0

)3
2
(∣
∣χa − χ0

∣
∣−

1

2
sin 2

∣
∣χa − χ0

∣
∣
)

,

m=
αc2

2G
=
1

2

√
3

κρ0
sin3

∣
∣χa − χρ0

∣
∣ =

=
κρ0
6
P 3a =

4π

3
P 3aρ0 ,

(19)

Pa=

√
3

κρ0
sin
∣
∣χa − χ0

∣
∣ ,

06
∣
∣χa − χ0

∣
∣ <

π

2
,

where G is Newton’s gravitational constant. Equation (19)
is only formally the same as that for the Euclidean sphere,
because the radius of curvature Pa is not a Euclidean quan-
tity, and cannot be measured in the gravitational field.

The ratio between the gravitational mass and the sub-
stantial mass is,

m

M
=

2 sin3
∣
∣χa − χ0

∣
∣

3
(∣∣χa − χ0

∣
∣− 1

2 sin 2
∣
∣χa − χ0

∣
∣) .

Schwarzschild has shown that the naturally measured fall
velocity of a test particle, falling from rest at infinity down
to the surface of the sphere of incompressible fluid is,

va= sinχa ,
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which I generalise to,

va= sin
∣
∣χa − χ0

∣
∣ .

The quantity va is the escape velocity.
Therefore, as the escape velocity increases, the ratio m

M
decreases, owing to the increase in the mass concentration.

In the case of the fictitious point-mass,

lim
|χa−χ0|→ 0

(m
M

)
=1 .

However, according to equation (14), for an incompress-
ible sphere of fluid,

cos
∣
∣χa − χ0

∣
∣
min

=
1

3
,

so (m
M

)

max
≈ 0.609 .

Finally,

as
∣
∣χa − χ0

∣
∣ →

π

2
,
m

M
→

4

3π
.

Dedication

I dedicate this paper to the memory of Dr. Leonard S.
Abrams: (27 Nov. 1924 — 28 Dec. 2001).
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Laws of motion are derived based on power rather than on force. I show how power
extends the law of inertia to include curvilinear motion and I also show that the law of
action-reaction can be expressed in terms of the mutual time rate of change of kinetic
energies instead of mutual forces. I then compare the laws of motion based on power
to Newton’s Laws of Motion and I investigate the relation of power to Leibniz’s notion
of vis viva. I also discuss briefly how the metaphysics of power as the cause of motion
can be grounded in a modern version of occasionalism for the purpose of establishing
an alternative foundation of mechanics. The laws of motion derived in this paper along
with the metaphysical foundation proposed come in defense of the hypotheses that
time emerges as an ordered progression of now and that gravitation is the effect of
energy transfer between an unobservable substance and all matter in the Universe.

1 Introduction

This paper’s central aim is the derivation of laws of motion
based on the notion of power rather than on the classical
notion of force. Although the derivation of laws of motion
is traditionally a subject of mechanics, several references
are made herein to the history and philosophy of science.
This is necessary because this paper deals primarily with the
foundations of mechanics. Specifically, the hypothesis that
power is the cause of motion, as contrasted to the Newtonian
hypothesis according to which force is the cause of motion,
leads to a major revision of the foundations of Classical
Mechanics.

Most contemporary philosophers of science focus on the
foundational problems of General Relativity and Quantum
Mechanics and, unlike their seventeenth-century counter-
parts, think of Classical Mechanics as unproblematic. Butter-
field mentions two errors found in this view that correspond
to what he calls the matter-in-motion picture and the particle-
in-motion picture [1]. According to the matter-in-motion
picture, for example, bodies are collections of particles sep-
arated by voids, can move in vacuum and interact with
each other, whilst their motion is completely determined
by Newton’s Second Law. This view has become a part
of an “educated layperson’s” common sense nowadays but
according to Butterfield it is problematic: it does not offer,
amongst other things, any explanation of the mechanism(s)
of the assumed interactions but resorts to concepts such
as forces acting across an intervening void (“action-at-a-
distance”).

The failure of modern theories to provide solutions to the
foundational problems of Classical Mechanics is partly due
to the fact that alternative rigid foundations have not been
proposed but issues seem to have been further perplexed.

Quantum uncertainty and the four-dimensional space-time of
relativity have taken the place of the determinism and of the
unobservable absolute space and universal time of Classical
Mechanics. Mysterious action-at-a-distance still prevails in
the quantum world and attempts to quantize gravity and unite
Quantum Mechanics with General Relativity have failed to
this date. In presenting an alternative system of laws of
motion based on power, I aim primarily in the investigation
of a new foundation, which offers an alternative approach
for solutions to some of the unsolved problems of Classical
Mechanics.

In a similar way to the matter-in-motion picture, the
notion of force has also become part of an “educated lay-
person’s” common sense, thanks to the empirical support the
laws of mechanics have enjoyed over the past 300 years. It
is well known, however, that Newton was heavily criticized
for his use of the notion of force in an effort to ground his
physics on his metaphysics and there is still considerable
interest in the metaphysics of his Principia. In Science and
Hypothesis, Poincaré writes [2]:

When are two forces equal? We are told that it is
when they give the same acceleration to the same
mass, or when acting in opposite directions they are
in equilibrium. This definition is a sham.

In Principles of Dynamics, Donald T. Greenwood offers
an introduction to the issues raised by Newton’s concept of
force [3]:

The concept of force as a fundamental quantity in
the study of mechanics has been criticized by various
scientists and philosophers of science from shortly
after Newton’s enunciation of the laws of motion
until the present time. Briefly, the idea of a force, and
a field force in particular, was considered to be an
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intellectual construction, which has no real existence.
It is merely another name for the product of mass
and acceleration, which occurs in the mathematics
of solving a problem. Furthermore, the idea of force
as a cause of motion should be discarded since the
assumed cause and effect relationship cannot be
proven. (Italics added)

The questions raised from Newton’s definition of force
and postulation of absolute space are well known to the
philosophers of science and will be further discussed in
sections 4, 5 and 6. In the following two sections, 2 and
3, I will show that using the notion of power as a priori
principle, laws of motion can be derived with remarkably
different definitions of inertia and action-reaction. I will
then argue in section 4, where I discuss the relation of this
alternative system of laws to Newton’s, that the existence of
a more general principle of motion is even acknowledged by
Newton, in his own writings. In section 5, the relation of the
notion of power to Leibniz’s notion of vis viva is examined.
Then, in section 6, I discuss how the metaphysics of power
can be grounded in a modern version of occasionalism for the
purpose of establishing an alternative foundation of Classical
Mechanics. I argue that the alternative foundation proposed,
along with an appropriate space-time structure, support a new
hypothesis about time and about the nature of gravitation.

2 The axiom of motion

I begin the derivation of the laws of motion by stating the
axiom of motion, an expression relating the velocity and the
time rate of change of momentum of a particle, to a scalar
quantity called the time rate of change of kinetic energy, also
known as (instantaneous) power. The status of this axiom is
assumed here to be that of a priori truth as opposed to a
self-evident or empirical principle.

Axiom of Motion: The time rate of change of the kinetic
energy of a particle is equal to the scalar product of its
velocity and time rate of change of its momentum.

Denoting the kinetic energy by Ek and the momentum by p,
the axiom of motion can be expressed as follows:

dEk
dt

=
dp
dt
∙
dr
dt
, (1)

where r is the position vector of the particle. The momentum
p is defined as

p = m
dr
dt
. (2)

If the mass m of the particle is independent of time t
and position r, then by combining equations (1) and (2), the
time rate of change of the kinetic energy Ek can be written
as follows:

dEk
dt

= m
d2r
dt2
∙
dr
dt
. (3)

Corollary I: The kinetic energy of a particle with a constant
mass m is given by

Ek =
1

2
mv ∙ v , (4)

where v is defined as

v =
dr
dt
. (5)

Proof: From equation (3) we obtain

dEk
dt

= m
d2r
dt2
∙
dr
dt
= m

dr
dt
∙
d

dt

(
dr
dt

)

= m
d

dt

(
1

2

dr
dt
∙
dr
dt

)

,

which yields

Ek =
1

2
m
dr
dt
∙
dr
dt
=
1

2
mv ∙ v . (6)

The axiom of motion is the only principle required for
deriving the laws of motion, as it will be shown in the next
section.

3 The laws of motion

Law of Inertia: If the time rate of change of the kinetic
energy of a particle is zero, the particle will continue in
its state of motion.

Proof: If the time rate of change of the kinetic energy of a
particle is zero, then from equation (3) we obtain

m
d2r
dt2
∙
dr
dt
= 0 . (7)

Assuming m remains constant, the following satisfy eq-
uation (7)

dr
dt
= v0 , (8)

dr
dt
= 0 , (9)

d2r
dt2
∙ v = 0 , (10)

where v0 is a constant. Thus, solutions to equation (7) include
motion with a constant velocity v0, given by equation (8), or a
state of rest, given by equation (9) and in both these cases the
time rate of change of kinetic energy is zero. These are trivial
solutions to equation (7) arising when either the velocity or
the acceleration of the particle, are null vectors. Yet, these
two trivial solutions result in the simplest kinematic states
possible and the only two states allowed when there are no
forces acting on a particle according to Newton’s First Law.
However, if power is postulated as the cause of motion there
is another trivial solution, that of uniform circular motion, as
it will be shown below.
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General solutions to equation (10) include all curvilinear
paths with a constant kinetic energy Ek. The requirement
of a constant kinetic energy could have been included in the
statement of the law of inertia but this is obviously redundant
since, if the time rate of change of the kinetic energy is
zero then kinetic energy is constant. Clearly, the states of
motion resulting from (8) and (9) are trivial solutions to (10)
with zero velocity and zero acceleration, respectively. From
equations (5), (6) and (10) we obtain:

d2r
dt2
∙
dr
dt
= 0⇔

dr
dt
∙
dr
dt
= v ∙ v =

2Ek
m

= k , (11)

where k is a constant equal to twice the kinetic energy per
unit mass. Thus, all motion paths that satisfy equation (10)
also satisfy the following equation

dr
dt
∙
dr
dt
= k , (12)

which is equivalent to the statement that the magnitude of
velocity, or the speed, must be constant. In the case of motion
in a plane, v can be expressed in polar coordinates as follows:

v =
dr

dt
r̂ + r

dθ

dt
θ̂ . (13)

From equations (12) and (13) we obtain:

(
dr

dt

)2
+

(

r
dθ

dt

)2
= k2. (14)

A trivial solution to equation (14) is uniform circular
motion given by

r(t) = r r̂(t) , (15)

where r is a constant radius and the unit radial vector r̂
rotates at a constant rate dθ/dt. In the context of this law
of inertia, if a particle is in uniform circular motion and the
time rate of change of its kinetic energy remains zero, the
state of uniform circular motion will be maintained. Notice
that no claim of any sort is made herein that zero power is
the cause of uniform circular motion. Obviously, a zero of
something cannot be the real cause of anything. The only
claim made is that if a particle is in uniform circular motion
-or in any other curvilinear path that satisfies equation (12) —
and power, the postulated cause of motion, remains zero then
the particle will continue in its state of motion. I would like
to stretch this point because, as it will be discussed further
in chapter 4, the laws of motion presented in this paper can
be considered as an alternative to Newton’s Laws of Motion.
Thus, one should refrain from evaluating these laws in the
context of Newtonian mechanics, since the two systems of
laws are grounded in different metaphysics. The question
then of how a particle is set on a uniform circular motion in
the first place is a metaphysical one and it will be placed in
its proper context in chapter 6.

Non-trivial solutions to equation (14) include motion
in a plane where the magnitude of the velocity v remains
constant up to sign changes. Such motion possibilities are
virtually unlimited, including for instance motion in eight-
shaped figures and cycloid paths. However, some of these
paths may represent physical possibilities and others may
not. Uniform circular motion is a physical possibility in
both micro and macro scales and this has been confirmed
empirically. The choice of specific curvilinear motions over
others as an effect of inertia, if power is postulated to be the
cause of motion, is the subject of metaphysics discussed in
section 6. The law of inertia presented in this section is a
statement that the state of such motions is maintained in the
absence of a cause, if power is postulated to be the cause of
motion. However, the law does not provide a justification for
the existence or preference of certain states of motions over
others in the absence of a cause of motion.

General solutions to equation (12) in three-dimensional
Euclidean space include motion along any curve. It is known
from differential geometry that if a curve is regular, then there
exists a reparametrization such that the curve has unit speed
[4]. Thus, a particle can be made to move with constant
speed along any curve in space using proper arc-length
reparametrization resulting in constant kinetic energy and
as a consequence, zero power.

The law of inertia is a statement about the tendency of
particles to maintain their state of motion when the time rate
of change in their kinetic energy is zero and this tendency
is called inertia. Again, the law of inertia was derived based
on the metaphysical hypothesis that power is the cause of
motion. A consequence from such hypothesis is that the set
of “cause-free” paths now includes all paths where the kinetic
energy remains constant, instead of just uniform rectilinear
motion and the state of rest defined in Newtonian mechanics.
As it will be discussed in section 4.1, from an empirical
viewpoint it is irrelevant whether one considers just recti-
linear or curvilinear motion as an effect of inertia, since
no experiment can be devised to prove that in the case of
a freely moving particle. This is because, there is always a
cause present affecting the motion of all particles. In the case
of Newtonian mechanics, this cause is a gravity force and in
the case of the laws of motion discussed in this paper there is
always a power cause acting and giving rise to gravitational
effects as it will be discussed in chapter 6.

Corollary II: If the time rate of change of the kinetic energy
of a particle is zero, linear momentum is conserved.

Proof: As a direct consequence of the law of inertia, if the
time rate of change of kinetic energy is zero and the velocity
is denoted by v, then from equations (1) and (5) we obtain

dp
dt
∙ v = 0 . (16)

By using equation (2) and since v is not the null vector
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in general, we obtain from equation (16) the result:

d(mv)
dt

= 0⇒ (mv)2 − (mv)1 = 0⇒

⇒ (mv)2 = (mv)1 = mv = const .
(17)

Equation (17) is the mathematical statement of the theo-
rem of the conservation of linear momentum [5].

Law of Interaction: To every action there is an equal and
opposite reaction; that is, in an isolated system of two
particles acting upon each other, the mutual time rate of
change of kinetic energies are equal in magnitude and
opposite in sign.

Proof: We denote the two interacting particles asm1 andm2.
Furthermore, we denotem1 as the agent causing the action in
the system. The total kinetic energy of the interacting system
of particles is the sum of the kinetic energies of the two
particles:

Ek = Ek1 + Ek2 . (18)

From equations (1), (5) and (18) we obtain

dEk
dt

=
dp1
dt
∙ v1 +

dp2
dt
∙ v2 , (19)

where v1 and v2 are the velocities of the two particles with
momentum p1 and p2, respectively.

Next, we consider the mutual time rate of change of
kinetic energy imposed by the particles upon each other. The
time rate of change of kinetic energy of particle m2, denoted
as Ek2 , is equal to the action imposed on it by particle m1,
denoted as Ek12 and given by

dEk2
dt

=
dp2
dt
∙ v2 =

dEk12
dt

. (20)

The time rate of change of the kinetic energy of particle
m1 is equal to the sum of the time rate of change of the
kinetic energy of the system due to its action as an agent and
that imposed on it by particle m2 in the form of a reaction
and denoted as Ek21

dEk1
dt

=
dEk
dt

+
dEk21
dt

=
dp1
dt
∙ v1 . (21)

By combining equations (19), (20) and (21), we obtain
the result:

dEk12
dt

= −
dEk21
dt

. (22)

Equation (22) is the mathematical statement of the law
of interaction. According to the law, the reaction on a horse
pulling on a cart, — to use Newton’s example in the Principia
— is equal to the action applied by the horse on the cart. In
general, part of the action produced by the horse is used to
change its own state of motion and the remaining to change
that of the cart. In the case where the total action of the

horse is reacted by the cart, from equation (21) it may be
seen that dEk/dt is equal to zero and the state of motion
does not change. Then, in this special case, action is equal to
reaction by definition. This can serve the purpose of clearing
any confusion that may arise when the action by the horse
on the cart is thought to be equal to the total action produced
by the horse, a statement that is not true in the most general
case.

The philosophical issues arising from the law of inter-
action will be discussed in more detail in section 4.

Corollary III: In an isolated system of two particles acting
upon each other and both having velocity v, the mutual
time rate of change of momentum vectors are equal in
magnitude and opposite in direction.

Proof: By denoting the mutual momentum vectors by p12
and p21, from equations (1), (5) and (22) we obtain

dp12
dt
∙ v = −

dp21
dt
∙ v⇔

(
dp12
dt

+
dp21
dt

)

∙ v = 0 . (23)

Since v is not in general a null vector, we obtain the
result:

dp12
dt

= −
dp21
dt

. (24)

In the case where v is orthogonal to the sum of the mutual
time rate of change of the momentum vectors of the two
particles, then equation (23) will still hold. However, in this
case, the mutual time rate of change of momentum vectors
will not in general be equal in magnitude and opposite in
direction.

The axiom of motion of section 2, together with the law
of inertia and the law of interaction, combined further with
the axiom of conservation of energy of isolated systems,
provide a framework for deriving the differential equations
of motion of particles and by extension of rigid bodies in
dynamical motion. Next, I will examine the relation of the
laws of motion presented in this section to Newton’s Laws
of Motion.

4 Power versus force

Newton stated his laws of motion in Philosophiae Naturalis
Principia Mathematica (Mathematical Principles of Natural
Philosophy), first published in 1686 [6]. The Principia was
revised by Newton in 1713 and 1726. Using modern termin-
ology, the laws can be stated as follows [3]:

First Law: Every body continuous in its state of rest, or of
uniform motion in a straight line, unless compelled to
change that state by forces acting upon it.

Second Law: The time rate of change of linear momentum
of a body is proportional to the force acting upon it and
occurs in the direction in which the force acts.

Third Law: To every action there is an equal and opposite
reaction and thus, the mutual forces of two bodies acting
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upon each other are equal in magnitude and opposite in
direction.

4.1 Newton’s First Law: A priori truth or an experi-
mental fact?

Newton’s First Law can be deduced from the law of inertia
stated in section 3 and specifically from equations (8) and
(9), or from corollary II. According to the law of inertia,
when the time rate of change of the momentum of a particle
is zero, then that particle will either remain at rest or move
in a straight line with constant velocity v0.

It is interesting to recall Newton’s comments in Principia
that follow the First Law [6]:

Projectiles continue in their motions, so far as they are
not retarded by the resistance of the air, or impelled
downwards by the force of gravity. A top, whose parts
by their cohesion are continuously drawn aside from
rectilinear motion, do not cease its rotation, otherwise
than as it is retarded by the air. The greater bodies of
the planets and comets, meeting with less resistance in
freer spaces, preserve their motions both progressive
and circular for a much longer time.

The first part of Newton’s comments regarding the pro-
jectile motion is problematic from an empirical perspective.
No experiment can be devised where a projectile will move
in the absence of gravity. Thus, there can be no cause free
motion experiments in the context of Newtonian mechanics
in order to observe what the resulting motion would be
if the cause were to be removed. Therefore, it seems that
Newton was referring to a thought experiment than to a well-
established empirical fact. Furthermore, in the remaining part
of Newton’s comment regarding the First Law, things become
even more interesting as he attempts to draw conclusions re-
garding the validity of the First Law from the motion of
rotating bodies, such as spinning disks and planets. This is
obviously a peculiar attempt for a connection between the
rectilinear motion the First Law deals exclusively with, and
rotational motion in the absence of a resisting medium. It ap-
pears that Newton’s attempt to provide conclusive empirical
support of the First Law is fraught with difficulties simply
because no experiments can be devised from which the First
Law can be inferred from the phenomena and rendered
general by induction. This fact turns out to conflict with
Newton’s statement in the general scholium in book III of
the Principia [6]:

In this philosophy particular propositions are inferred
from the phenomena, and afterwards rendered general
by induction. Thus it was that the impenetrability, the
mobility, and the impulsive forces of bodies, and the
laws of motion and gravitation, were discovered.

The First Law and specifically the statement that bodies
remain at rest or move uniformly in a straight line unless
a force acts upon them, does not comply with the rules of

the (experimental) philosophy Newton claims to abide with.
The First Law does not deal with circular orbits, even if
such orbits were employed by Newton as an example in his
attempt to justify it. The First Law is actually an axiom,
which must be accepted without proof, and not a statement
derived via the use of inductive methodology. This is again
due to the fact that no experiment can be devised on our
planet for the purpose of observing what the motion of a
projectile would be when there is no force acting upon it.
According to Newton’s Law of Universal Gravitation, gravity
forces act upon a body unless it is set in motion in a region of
space sufficiently far away from the influence of other bodies.
Is then Newton alluding to the possibility of the existence
of a more general First Law similar to the law of inertia of
section 3? Let us recall what Poincaré said [2]:

The Principle of Inertia. — A body under the action of
no force can only move uniformly in a straight line.
Is this a truth imposed on the mind à priori? If this
be so, how is it that the Greeks have ignored it? How
could they have believed that motion ceases with the
cause of motion? Or, again, that every body, if there is
nothing to prevent it, will move in a circle, the noblest
of all forms of motion? If it be said that the velocity
of a body cannot change, or there is no reason for it
to change, may we not just as legitimately maintain
that the position of a body cannot change, or that
the curvature of its path cannot change, without the
agency of an external cause? Is, then, the principle of
inertia, which is not an à priori truth, an experimental
fact? Have there ever been experiments on bodies
acted on by no forces? And, if so, how did we know
that no forces were acting?

Poincaré continues with his discussion of the principle of
inertia by stating that

Newton’s First Law could be the consequence of
a more general principle, of which the principle of
inertia is only a particular case.

In turn, I argue that the axiom of motion, equation (1), can
serve the role of this more general principle and Newton’s
First Law is indeed a special case of a more general law of
inertia, such as the one derived in section 3.

Thus, I essentially argue that Newton’s First Law makes
reference to phenomena that are just two possibilities within
a broader range of possibilities mandated by a more general
principle of inertia, such as the law of inertia of section 3. As
I will demonstrate in the proceedings, the same holds true
with Newton’s Third Law. There, matters are even clearer
regarding my argument that Newton’s laws are just a special
case of the laws presented in section 3.

4.2 Newton’s Second Law: The metaphysical cause of
motion

The mathematical expression of Newton’s Second Law, after
a suitable choice of units is made is the following [3]:
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F =
dp
dt
=

d

dt
(mv) . (25)

With the Second Law, Newton defines force as the cause
of motion and equates it to the time rate of change of
momentum. The laws of motion presented in section 3,
based on the axiom of motion, challenge the notion that the
Newtonian force is the cause of motion and the metaphysical
foundation of mechanics. However, in these laws of motion,
the metaphysics of force are replaced by those of the time
rate of change of kinetic energy, also known as power. In
a way analogous to Newton’s Second Law, the axiom of
motion stated in section 2 can be expressed as follows

P =
d(Ek)

dt
, (26)

where P is the (instantaneous) power and Ek the kinetic
energy of a particle.

When we say force is the cause of motion, we are
talking metaphysics. . .

writes Poincaré in Science and Hypothesis [2]. This statement
made by Poincaré also applies when the time rate of change
of kinetic energy, or power, is defined as the cause of motion.
Whether using force or power, the physics of the associated
laws of motion must be grounded in some metaphysics and
this is done in section 6. It is important to understand that the
particular choice of a quantity to assume the role of the cause
of motion becomes the link between the empirical world of
physics and the metaphysics of what exists and is real. Thus,
although one can choose either force or power as the basis of
stating laws of motion, the metaphysical foundations of such
laws will turn out to be profoundly different. Newton used his
notion of force to ground his physics in the metaphysics of
absolute space and time. In section 6, I will discuss how the
notion of power grounds the physics of the laws of motion of
section 3 in the metaphysics of a modern version of Cartesian
occasionalism and a dual space-time account. It turns out that
the view of the world implied by such metaphysics is very
different from the Newtonian or Leibnizian ones.

Besides the difference in metaphysics, the alternative
to Newton’s second law given by equation (26) offers an
advantage in resolving some philosophical issues regarding
the foundations of Classical Mechanics and in particular the
need to consider fictitious forces when applying Newton’s
Second Law in non-inertial reference frames. In the case
of observers at rest in accelerated reference frames in either
rectilinear or uniform circular motion, the time rate of change
of kinetic energy is zero and thus no additional fictitious
power cause is needed to explain the state of motion. Again,
this is only true if power is defined as the cause of motion.
If force is defined as the cause of motion then in both non-
inertial reference frames mentioned fictitious causes must
be considered. Specifically, in the case of rectilinear motion,
observers at rest in an accelerated frame must assume inertial

fictitious forces acting and in the case of observers at rest in a
uniformly rotating reference frame, centrifugal forces acting
must be assumed.

The same conclusion holds in the case of fictitious Cori-
olis forces acting on freely moving particles in rotating
reference frames. Since such fictitious forces are always
orthogonal to the velocity of a particle in motion, for rotating
observers it turns out that the time rate of change of kinetic
energy of the particle is equal to zero, as obtained by equation
(1). The same result is true for observers at rest since in that
case the time rate of change of momentum of a freely moving
particle is zero. Fictitious forces need to be considered re-
gardless of whether force or power is defined as the cause
of motion when a force analysis is carried out. However,
when power is defined as the cause of motion, there are
no philosophical issues arising from the need to consider
fictitious causes of motion in non-inertial reference frames
and this is the point just made. Thus, the transition from force
to power as the cause of motion leads to a compatibility
with the epistemological principle which states that every
phenomenon is to receive the same interpretation from any
given moving coordinate system. This epistemological prin-
ciple also plays an important role in the axiomatic foundation
of the theory of relativity [7].

4.3 Newton’s Third Law: a special case of a more gen-
eral action-reaction law?

Newton’s Third Law may be deduced from the law of inter-
action of section 3 and in particular from equation (24) of
corollary III. In the scholium following the Laws of Motion,
Newton attempts to provide additional support for the Third
Law through a host of observations related to various modes
of mechanical interaction between bodies. From the closing
comments in the scholium, some interesting conclusions can
be drawn [6]:

. . .But to treat of mechanics is not my present business.
I was aiming to show by those examples the greater
extent and certainty of the third Law of Motion. For
if we estimate the action of the agent from the product
of its force and velocity and likewise the reaction of
the impediment from the product of the velocities of
its several parts, and the forces of resistance arising
from friction, cohesion, weight, and acceleration of
those parts, the action and reaction in the use of all
sorts of machines will be found always equal to one
another. And so far as the action is propagated by the
intervening instruments, and at last impressed upon
the resisting body, the ultimate action will be always
contrary to the reaction. (Italics added)

It is clear that Newton was well aware of the product of
velocity and force being a measure of action and of reaction,
as defined in the law of interaction of section 3. Newton
actually made use of the law of interaction in his scholium
above to justify some particular situations where his Third
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Law of action-reaction does not apply directly. But why is it
the case that Newton stated his Third Law in terms of forces
and not in terms of the product of force and velocity he
mentions in his scholium quoted above? Why does it appear
that a more general law was used to justify some particular
situations Newton’s Third Law does not directly apply to,
but the latter was stated as a law of mechanics? The answer
can be found in the attempt to model gravity in Newtonian
mechanics as the effect of mutual attraction caused by central
forces acting at a distance. The Third Law had to be stated
in terms of the mutual action-reaction forces being equal in
magnitude and opposite in direction to justify the particular
form of Newton’s Law of Universal Gravitation. But again,
the Third Law fails the requirement set forth by the rules of
the experimental philosophy of Newton, for it being deduced
from the phenomena; it is just another axiom that must be
accepted without proof. Forces acting on different bodies,
and especially celestial ones, cannot be experimentally det-
ermined to be equal. Only forces acting on the same body
can be determined to be equal by experiment.

I have shown that even Newton himself made both in-
direct and direct use of the notion of power in an attempt
to provide a general justification of his Third Law. Can we
simply assume that Newton was unaware that there is a single
principle that could serve as the basis of a system of laws
of mechanics that are in a certain way more general than his
laws? I suspect that he was aware of it. But the consequences
from stating laws based on this principle of motion would
be devastating on the metaphysics of force. If force were
to be just an intellectual construction and not the cause of
motion, then Newton’s whole system of the world was at
stake. Motion then would have to be explained based on
some other metaphysics, such as Cartesian occasionalism for
example and the notion that all causes are due to God, or
Spinoza’s doctrine that everything is a mode of God [8], or
even Leibniz’s notion of a living force.

5 Power versus vis viva

Leibniz rejected the doctrine of Cartesian occasionalism and
Newtonian substantivalism but his efforts to ground his rel-
ationism on the metaphysics of a living force were also met
with difficulties. Leibniz realized that for motion to be real,
it must be grounded on something that is not mere relation,
something absolute and unobservable that serves as its cause
[8]. Leibniz stated his laws of motion in his unpublished
during his lifetime work Dynamica de Potentia et Legibus
Naturae Corporeae in which he attempted to explain the
world in terms of the conservation laws of vis viva and
momentum of colliding bodies.

The laws of inertia and interaction of section 3 were
derived from the axiom of motion of section 2. The latter is
related to the living force, or vis viva, defined by Leibniz as
being a real metaphysical property of a substance. Leibniz

measure of vis viva is the quantity mv2, in contrast to the
Cartesian definition of the quantity of motion being equal to
size multiplied by speed, and later redefined by Newton as
being equal to the product of mass and velocity. In turn, the
axiom of motion stated in section 2 is related to the time
rate of change of vis viva, the quantity Leibniz argued is
conserved and a real metaphysical property of a substance,
in an effort to support his relational account of space-time.

Leibniz’s definition of vis viva as a real metaphysical
property of a substance is fraught with difficulties. Roberts
has argued that, in his later communications with Samuel
Clarke, who was a defender of Newton’s substantivalism,
Leibniz seems to commit to a richer space-time structure
that can support absolute velocities [9]. Roberts’ work has
cast light into a little known, or maybe misinterpreted, aspect
of Leibniz’s metaphysics. Specifically, into Leibniz’s efforts
to come up with laws of motion based on vis viva being
a measure of force, while at the same time his relationism
implies a space-time structure that is a well-founded pheno-
menon. This might be an indication of Leibniz’s later real-
ization that relationism fails unless absolute velocities are
supported by a richer space-time structure than what is com-
monly referred to as Leibnizian space-time. In section 6, I
define an account of space-time that can support relationism
and absolute velocities in an attempt to ground the physics of
the axiom and laws of motion in the metaphysics of power.

Along these lines, in a similar way to the link between the
Newtonian force and momentum, the former being the time
rate of change of the latter, I argue that vis viva is actually a
quantity of motion and power, its time rate of change, is the
cause of motion. In this way the similarities between the laws
of conservation of momentum and vis viva become evident,
because they are both defined as quantities of motion. In
essence, I argue, the time rate of change of vis viva is the real
metaphysical cause of motion. Of course, such a switch in
the definitions is not compatible with Leibniz’s metaphysics.
This is because the time rate of change of the kinetic energy
of a body moving with constant linear velocity, or even in
uniform circular motion, is zero. A zero of something cannot
assume the role of a real metaphysical property of a sub-
stance and the cause of motion in a Leibnizian world. Despite
these metaphysical difficulties I will deal with in more detail
in the next section, on the physics side it is clear that the
laws of motion of section 3 were derived from a quantity
that is proportional to the time derivative of vis viva. Thus,
they have a direct link to Leibniz’s Laws of Motion [8].
Specifically, Leibniz’s laws of conservation of vis viva and
momentum can be derived from the laws of inertia and in-
teraction of section 3, respectively, but the details are left out.

6 The metaphysics of power

Before I discuss the metaphysics of power and specifically
the notion that power is the cause of motion, I will briefly
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review the philosophical debate about the ontology of space-
time. I argue that the space-time debate and the debate about
the cause of motion are closely related in the sense that
an answer to the former provides an answer to the latter.
Thus, I essentially argue that the space-time debate is not a
mere philosophical one and its resolution will have a decisive
impact on which laws of motion and gravitation are assigned
the status of “laws of nature” as opposed to that of mere
heuristics.

6.1 The space-time debate

The publication of Newton’s Principia in 1686 was the cause
of the start of one of the most interesting debates in the
history of the philosophy of science, dealing mainly with
the ontology of space-time. Leibniz ignited the debate by
arguing that Newton’s substantival space-time, the notion
that space and time exist independently of material things
and their spatiotemporal relations, was not a well-founded
phenomenon. Leibniz confronted Newtonian substantivalists
with his relationism, based on which space is defined as
the set of (possible) relations among material things and
the only well-defined quantities of motion are relative ones
[10]. Newton just grounded his physics in the metaphysics
of force and absolute space and time. For Newton, the only
well-defined quantities of motion are the absolute ones, like
absolute position, velocity and acceleration. Substantivalism
and relationism then appear in modern literature as two
completely different accounts of space-time.

The key issue regarding the space-time debate, which is
still alive by the way, is whether it does really make sense
to speak of either a substantival or a relational account of
space-time. Since diametrically opposite views of this kind
have only led to sharp conflict and irreconcilable differences,
maybe it would make sense to investigate whether both a
substantival and relational space-time is a possibility. This
two-level approach seems not to have been considered seri-
ously because it implies a superfluous world. However, both
Newtonian substantivalism and Leibnizian relationism are
fraught with difficulties. On one hand, the metaphysics of
Newtonian force require the postulation of unobservables,
like absolute space. On the other hand, in Leibniz’s rel-
ationism, for motion to be real, it must be grounded in
something that is not mere relation, something absolute and
unobservable that serves as its cause, what Leibniz called
a vis viva [9]. The differences seem to reconcile when a
two-level, or if I may call it a dual, space-time account is
postulated and I will throw in here the term substantival
relationism.

6.2 From cause-free motion to gravitation

The hypothesis about the duality of space-time just put for-
ward is next examined in the context of gravitation and
its observable effects, i. e. the motion of celestial bodies

and free-falling particles. This step is of great importance
since any laws of motion must account for all observable
phenomena including those that are attributed to gravitation.
Newton accomplished the step of grounding the physics of
the Laws of Motion to his metaphysics of substantival space
and universal time, by assuming that the cause of gravitation
was also some type of force. Next, in what was a remarkable
achievement in the history of science, he derived the famous
Law of Universal Gravitation (LUG). In a similar way, I
argue that power is the cause of gravitation in order to
maintain a compatibility with the axiom and laws of motion
of sections 2 and 3, respectively. Thus, the time rate of
change of a potential energy function Ep(r) is the cause of
gravitation and equation (1), the axiom of motion, becomes

dEk
dt

=
dp
dt
∙
dr
dt
= −

dEp
dt

. (27)

The law of conservation of mechanical energy can be
derived from equation (27) as follows:

dEk
dt

= −
dEp
dt
⇔

d

dt
(Ek + Ep) = 0 ⇔

⇔ Ek + Ep = const .
(28)

The Law of Universal Gravitation may be restated as
follows:

Law of Universal Gravitation: All particles move in such a
way as for the time rate of change of their kinetic energy
to be equal the time rate of change of their potential
energy.

In fact, I argue that Newton’s Law of Universal Gravita-
tion is a statement about the form of the potential function
Ep(r) in equation (27) and thus it can assume a variety
of interpretations regarding mechanisms giving rise to it.
If we postulate that energy transfer affects all particles in
motion, in accordance with equation (27), this can support
the hypothesis that gravitation is the result of energy transfer
between all bodies in motion with some substance. Sub-
stantival space-time can serve the role of this substance and
can facilitate the energy transfer to and from all bodies in
motion and in such a way that all spatiotemporal quantities
evolve according to certain rules giving rise to the well-
known potential function Ep(r) first discovered by Newton.

Since the above metaphysics are compatible with the
concept of a mechanical universe, one could then postulate
the existence of some type of mechanism that facilitates
the transfer of energy between all bodies in motion and
substantival space-time. This mechanism must be part of the
substance level, whereas at the phenomenal level its effect is
the observed motions. According to this dual scheme, at the
phenomenal level the only well-founded quantities of motion
are relative ones and space-time is relational, whereas, at the
substance level, the only well-defined quantities of motion
are the absolute ones and the space-time is substantival.
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6.3 A new foundation of mechanics

The hypothesis just made, attributing gravitation to energy
transfer between all bodies in motion and substantival space-
time requires that at every instance something must ac-
complish this task and bring about the perceived effects.
I will relate this to occasionalism in the following way:
according to Nicolas Malebranche and other seventeenth-
century Cartesian occasionalists, what we actually call causes
are really no more than occasions on which, in accordance
with his own laws, God acts to bring about the effect [11].
If one were to replace the notion of God by the notion of
a mechanism, then a modern (or mechanical) occasionalist
could assert that what we actually call causes are no more
than occasions on which a mechanism acts to bring about the
effect. In this sense we immediately resolve two more issues:
first, time emerges as an ordered progression of instances, or
nows, on which the mechanism acts to bring about the effect.
Then, the matter-in-motion picture [1] is better illuminated by
asserting that all motion and interactions of material bodies
are facilitated by a mechanism that operates based on its own
rules rather than taking place due to forces or based on rules
inherent in the bodies themselves.

The concept of time as a collection of nows is in fact
similar to that found in Barbour [12]. The main difference
with the view I express here is that time emerges due to the
actions of a mechanism hidden in substantival space-time in
an orderly fashion and has a direction, i. e. there is an arrow
of time. More importantly, the universal clock of Newton is
now part of the mechanism that resides in substantival space-
time but at the phenomenal level time and motion cannot be
separated because there is no motion without time and no
time without motion, i. e. time and motion are inextricably
related.

What I argue essentially is that gravitation has an external
cause to the phenomenal level and space-time is a substance
of some kind that facilitates the energy transfer required for
the manifestation of gravitational effects. These ideas may
not be completely new. What is new here is the derivation
of a system of laws of motion based on the notion of power.
Power allows grounding the physics that all phenomena
are caused by energy transfer, including those attributed to
gravitation, to the metaphysics of substantival space-time
being a giant mechanism and a substance. Since the times of
the Greeks, Anaximander of Miletus (c. 650 BCE) expressed
the view that

The apeiron, from which the elements are formed, is
something that is different (from the elements).

Then, Newton argued that all motion must be referenced to
an absolute, unobservable space. Even in general relativity
space-time retains its substantival account and it exists in-
dependently of the events occurring in it [10]. Baker has
argued that the space-time of general relativity must be a
substance and attempts to support this claim of his based

on the observed expansion of the Universe [13]. Baker’s
argument about the requirement of a carrier of gravitational
energy from its source to a detector, if it is to be compelling,
must apply to all forms of energy transfer traditionally as-
sumed to take place in vacuum. But such generalization can
be further coupled with the hypothesis that some causes are
external to the world of observable phenomena. In Wiithrich
there are references made to the hypothesis that gravity forces
have an external cause in an attempt to explain the failure in
quantizing the field equations of general relativity [14]. Thus,
arguments have already been made in favor of the hypothesis
that space-time is some kind of a substance and that any
causal connections attributed to gravitation are apparent.
Usually, arguments leading to such provocative hypotheses
are treated at the level of epistemological skepticism but
as McCabe argues the hypothesis, for instance, that our
universe is part of a computer simulation implementation
generates empirical predictions and it is therefore a falsifiable
hypothesis [15]. One question that arises from this discussion
is the following: does the existence of external causes imply
that our world is some type of virtual reality? My own
answer to this important question is both yes and no. Yes,
because according to the hypothesis there are external causes
to the world of perceived phenomena and thus part of another
world. No, because a cause being external and unobservable
does not preclude it being part of an all-encompassing entity,
which we can call Universe. Therefore, the answer to the
question seems to depend on how one defines Universe. But
the presence of external causes to the world of observable
phenomena must not be rejected a priori on the basis that
it leads to the provocative virtual reality hypothesis and
experimental physics must pursue seriously its falsification
or corroboration. Although such task is highly challenging,
the state-of-the-art in precision instrumentation has reached
levels that allow the initiation of a program of this nature.

7 Summary

The axiom and laws of motion presented in sections 2 and
3, respectively, are:

Axiom of Motion: The time rate of change of the kinetic
energy of a particle is the scalar product of its velocity
and time rate of change of its momentum.

Law of Inertia: If the time rate of change of the kinetic
energy of a particle is zero, the particle will continue in
its state of motion.

Law of Interaction: To every action there is an equal and
opposite reaction; that is, in an isolated system of two
particles acting upon each other, the mutual time rate of
change of kinetic energies are equal in magnitude and
opposite in sign.

A restatement of the Law of Universal Gravitation was
presented in section 6 as follows:
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Law of Universal Gravitation: All particles move in such a
way as for the time rate of change of their kinetic energy
to be equal to the time rate of change of their potential
energy.

In section 4, I argued that the above laws of motion are, in a
certain sense, more general than Newton’s, and that this claim
is even supported by Newton’s own writings, especially in the
case of the Third Law. Furthermore, in section 5, I discussed
the relation of the axiom and laws of motion to Leibniz’s laws
of the conservation of vis viva and momentum. I argued that
kinetic energy can be defined as a quantity of motion and its
time derivative as the cause of motion, in a similar way to
the Newtonian force being the time derivative of momentum
and a postulated cause of motion.

In section 6, I discussed how the axiom and laws of
motion of sections 2 and 3, combined further with a modified
version of Cartesian occasionalism and a dual space-time
account form an alternative foundation of classical mechanics
in the context of a mechanical Universe. Specifically, I pro-
posed a substantival-relational account of space-time and a
mechanism residing in the substance level whose actions
coordinate all motion and interactions. I argued that the
proposed foundation supports the hypothesis about gravita-
tion being the effect of energy transfer between all bodies in
motion and substantival space-time and I stated a version of
the Law of Universal Gravitation which is compatible with
the hypothesis that power is the cause of motion. These
metaphysics also provide solutions to some foundational
problems of Classical Mechanics, such as the matter-in-
motion picture and the emergence and direction of time.
Finally, I briefly referred to the ramifications on the nature
of our physical reality when the cause of gravitation is
considered part of an unobservable substance. I argued that
the soundness of the virtual reality or computer simulation
hypothesis depends on how Universe is defined. The fact that
such hypothesis about the nature of our reality is provocative
should not be an excuse for rejecting a priori external causes
of motion and gravitation. Theoretical physicists ought to
seriously investigate new models incorporating such assum-
ptions about the nature of our physical reality and experi-
mental physicists should pursue their falsification.
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Starting from generic bilinear Hamiltonians, constructed by covariant vector, bivector
or tensor fields, it is possible to derive a general symplectic structure which leads to
holonomic and anholonomic formulations of Hamilton equations of motion directly
related to a hydrodynamic picture. This feature is gauge free and it seems a deep link
common to all interactions, electromagnetism and gravity included. This scheme could
lead toward a full canonical quantization.

1 Introduction

It is well known that a self-consistent quantum field theory
of space-time (quantum gravity) has not been achieved, up
to now, using standard quantization approaches. Specifically,
the request of general coordinate invariance (one of the main
features of General Relativity) gives rise to unescapable
troubles in understanding the dynamics of gravitational field.
In fact, for a physical (non-gravitational) field, one has to
assign initially the field amplitudes and their first time deriv-
atives, in order to determine the time development of such a
field considered as a dynamical entity. In General Relativity,
these quantities are not useful for dynamical determination
since the metric field gαβ can evolve at any time simply by
a general coordinate transformation. No change of physical
observables is the consequence of such an operation since it
is nothing else but a relabelling under which the theory is
invariant. This apparent “shortcoming” (from the quantum
field theory point of view) means that it is necessary a
separation of metric degrees of freedom into a part related to
the true dynamical information and a part related only to the
coordinate system. From this viewpoint, General Relativity
is similar to classical Electromagnetism: the coordinate in-
variance plays a role analogous to the electromagnetic gauge
invariance and in both cases (Lorentz and gauge invariance)
introduces redundant variables in order to insure the main-
tenance of transformation properties. However, difficulties
come out as soon as one try to disentangle dynamical from
gauge variables. This operation is extremely clear in Electro-
magnetism while it is not in General Relativity due to its
intrinsic non-linearity. A determination of independent dyn-
amical modes of gravitational field can be achieved when the
theory is cast into a canonical form involving the minimal

number of degrees of freedom which specify the state of the
system. The canonical formalism is essential in quantization
program since it leads directly to Poisson bracket relations
among conjugate variables. In order to realize it in any
fundamental theory, one needs first order field equations
in time derivatives (Hamilton-like equations) and a (3+1)-
form of dynamics where time has been unambiguously singl-
ed out. In General Relativity, the program has been pursued
using the first order Palatini approach [6], where metric gαβ
is taken into account independently of affinity connections
Γ
γ
αβ (this fact gives rise to first order field equations) and

the so called ADM formalism [7] where (3+1)-dimensional
notation has led to the definition of gravitational Hamiltonian
and time as a conjugate pair of variables. However, the
genuine fundament of General Relativity, the covariance
of all coordinates without the distinction among space and
time, is impaired and, despite of innumerable efforts, the full
quantization of gravity has not been achieved up to now.
The main problems are related to the lack of a well-definite
Hilbert space and a quantum concept of measure for gαβ .
An extreme consequence of this lack of full quantization for
gravity could be related to the dynamical variables: very
likely, the true variables could not be directly related to
metric but to something else as, for example, the connection
Γ
γ
αβ . Despite of this lack, a covariant symplectic structure

can be identified also in the framework of General Relativity
and then also this theory could be equipped with the same
features of other fundamental theories. This statement does
not still mean that the identification of a symplectic structure
immediately leads to a full quantization but it could be a
useful hint toward it.

The aim of this paper is to show that a prominent role
in the identification of a covariant symplectic structure is
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played by bilinear Hamiltonians which have to be conserved.
In fact, taking into account generic Hamiltonian invariants,
constructed by covariant vectors, bivectors or tensors, it is
possible to show that a symplectic structure can be achieved
in any case. By specifying the nature of such vector fields
(or, in general, tensor invariants), it gives rise to intrinsically
symplectic structure which is always related to Hamilton-like
equations (and a Hamilton-Jacobi-like approach is always
found). This works for curvature invariants, Maxwell theory
and so on. In any case, the only basic assumption is that
conservation laws (in Hamiltonian sense) have to be identi-
fied in the framework of the theory.

The layout of the paper is the following. In Sec.II, we
give the generalities on the symplectic structure and the
canonical description of mechanics. Sec.III is devoted to the
discussion of symplectic structures which are also generally
covariant. We show that a covariant analogue of Hamilton
equations can be derived from covariant vector (or tensor)
fields in holonomic and anholonomic coordinates. In Sec. IV,
the covariant symplectic structure is casted into the hydro-
dynamic picture leading to the recovery of the covariant
Hamilton equations. Sec.V is devoted to applications, dis-
cussion and conclusions.

2 Generalities on the Symplectic Structure and the Ca-
nonical description

In order to build every fundamental theory of physics, it is
worth selecting the symplectic structure of the manifold on
which such a theory is formulated. This goal is achieved if
suitable symplectic conjugate variables and even-dimensional
vector spaces are chosen. Furthermore, we need an anti-
symmetric, covariant tensor which is non-degenerate.

We are dealing with a symplectic structure if the couple

{E2n,w} , (1)

is defined, where E2n is a vector space and the tensor w on
E2n associates scalar functions to pairs of vectors, that is

[x,y] = w(x,y), (2)

which is the antiscalar product. Such an operation satisfies
the following properties

[x,y] = −[y,x] ∀x,y ∈ E2n (3)

[x,y + z] = [x,y] + [xz] ∀x,y, z ∈ E2n, (4)

a[x,y] = [ax,y] ∀a ∈ R, x,y ∈ E2n (5)

[x,y] = 0 ∀y ∈ E2n ⇒ x = 0 (6)

[x, [y, z]] + [y, [z,x]] + [z, [x,y]] = 0 . (7)

The last one is the Jacobi cyclic identity.

If {ei} is a vector basis in E2n, the antiscalar product is
completely singled out by the matrix elements

wij = [ei, ej ] , (8)

where w is an antisymmetric matrix with determinant differ-
ent from zero. Every antiscalar product between two vectors
can be expressed as

[x,y] = wij xiyj , (9)

where xi and yj are the vector components in the given
basis.

The form of the matrix w and the relation (9) become
considerably simpler if a canonical basis is taken into account
for w. Since w is an antisymmetric non-degenerate tensor,
it is always possible to represent it through the matrix

J =

(
0 I
−I 0

)

, (10)

where I is a (n × n) unit matrix. Every basis where w can
be represented through the form (10) is a symplectic basis.
In other words, the symplectic bases are the canonical bases
for any antisymmetric non-degenerate tensor w and can be
characterized by the following conditions:

[ei, ej ] = 0 , [en+i, en+j ] = 0 , [ei, en+j ] = δij , (11)

which have to be verified for every pair of values i and j
ranging from 1 to n.

Finally, the expression of the antiscalar product between
two vectors, in a symplectic basis, is

[x,y] =

n∑

i=1

(
xn+iyi − xiyn+i

)
, (12)

and a symplectic transformation in E2n leaves invariant the
antiscalar product

S[x,y] = [S(x),S(y)] = [x, y]. (13)

It is easy to see that standard Quantum Mechanics satis-
fies such properties and so it is endowed with a symplectic
structure.

On the other hand a standard canonical description can be
sketched as follows. For example, the relativistic Lagrangian
of a charged particle interacting with a vector field A(q; s) is

L(q, u; s) =
mu2

2
− eu ∙ A(q; s), (14)

where the scalar product is defined as

z ∙ w = zμw
μ = ημνz

μwν , (15)

and the signature of the Minkowski spacetime is the usual
one with

zμ = ημνz
ν , η̂ = diag(1,−1,−1,−1). (16)
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Furthermore, the contravariant vector uμ with compo-
nents u =

(
u0, u1, u2, u3

)
is the four-velocity

uμ =
dqμ

ds
. (17)

The canonical conjugate momentum πμ is defined as

πμ = ημν
∂L
∂uν

= muμ − eAμ , (18)

so that the relativistic Hamiltonian can be written in the form

H(q, π; s) = π ∙ u− L(q, u; s). (19)

Suppose now that we wish to use any other coordinate
system xα as Cartesian, curvilinear, accelerated or rotating
one. Then the coordinates qμ are functions of the xα, which
can be written explicitly as

qμ = qμ(xα). (20)

The four-vector of particle velocity uμ is transformed
according to the expression

uμ =
∂qμ

∂xα
dxα

ds
=
∂qμ

∂xα
vα, (21)

where
vμ =

dxμ

ds
. (22)

is the transformed four-velocity expressed in terms of the
new coordinates. The vector field Aμ is also transformed as
a vector

Aμ =
∂xμ

∂qα
Aα. (23)

In the new coordinate system xα the Lagrangian (14)
becomes

L(x, v; s) = gμν

[m
2
vμvν − evμAν(x; s)

]
, (24)

where
gαβ = ημν

∂qμ

∂xα
∂qν

∂xβ
. (25)

The Lagrange equations can be written in the usual form

d

ds

(
∂L
∂vλ

)

−
∂L
∂xλ

= 0 . (26)

In the case of a free particle (no interaction with an
external vector field), we have

d

ds
(gλμv

μ)−
1

2

∂gμν
∂xλ

vμvν = 0 . (27)

Specifying the covariant velocity vλ as

vλ = gλμv
μ, (28)

and using the well-known identity for connections Γαμν

∂gμν
∂xλ

= Γαλμgαν + Γ
α
λνgαμ , (29)

we obtain
Dvλ
Ds

=
dvλ
ds
− Γμλνv

νvμ = 0 . (30)

Here Dvλ/Ds denotes the covariant derivative of the
covariant velocity vλ along the curve xν(s). Using Eqs.
(28) and (29) and the fact that the affine connection Γλμν
is symmetric in the indices μ and ν, we obtain the equation
of motion for the contravariant vector vλ

Dvλ

Ds
=
dvλ

ds
+ Γλμνv

μvν = 0 . (31)

Before we pass over to the Hamiltonian description, let
us note that the generalized momentum pμ is defined as

pμ =
∂L
∂vμ

= mgμνv
ν , (32)

while, from Lagrange equations of motion, we obtain

dpμ
ds

=
∂L
∂xμ

. (33)

The transformation from (xμ, vμ; s) to (xμ, pμ; s) can be
accomplished by means of a Legendre transformation, and
instead of the Lagrangian (24), we consider the Hamilton
function

H(x, p; s) = pμv
μ − L(x, v; s). (34)

The differential of the Hamiltonian in terms of x, p and
s is given by

dH =
∂H
∂xμ

dxμ +
∂H
∂pμ

dpμ +
∂H
∂s
ds. (35)

On the other hand, from Eq.(34), we have

dH = vμdpμ+pμdv
μ−

∂L
∂vμ

dvμ−
∂L
∂xμ

dxμ−
∂L
∂s
ds. (36)

Taking into account the defining Eq.(32), the second and
the third term on the right-hand-side of Eq.(36) cancel out.
Eq.(33) can be further used to cast Eq.(36) into the form

dH = vμdpμ −
dpμ
ds
dxμ −

∂L
∂s
ds , (37)

Comparison between Eqs.(35) and (37) yields the Hami-
lton equations of motion

dxμ

ds
=
∂H
∂pμ

,
dpμ
ds

= −
∂H
∂xμ

, (38)

where the Hamiltonian is given by

H(x, p; s) =
gμν

2m
pμpν +

e

m
pμA

μ. (39)
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In the case of a free particle, the Hamilton equations can
be written explicitly as

dxμ

ds
=
gμν

m
pν ,

dpλ
ds

= −
1

2m

∂gμν

∂xλ
pμpν . (40)

To obtain the equations of motion we need the expression

∂gμν

∂xλ
= −Γμλαg

αν − Γνλαg
αμ, (41)

which can be derived from the obvious identity

∂

∂xλ
(gμαgαν) = 0 , (42)

and Eq.(29). From the second of Eqs. (40), we obtain

Dpλ
Ds

=
dpλ
ds
− Γμλνv

νpμ = 0 , (43)

similar to equation (30). Differentiating the first of the Hamil-
ton equations (40) with respect to s and taking into account
equations (41) and (43), we again arrive to the equation for
the geodesics (31).

Let us now show that on a generic curved (torsion-free)
manifolds the Poisson brackets are conserved. To achieve
this result, we need the following identities

gμν = gνμ = ηαβ
∂xμ

∂qα
∂xν

∂qβ
, (44)

∂2xλ

∂qα∂qβ
= −Γλμν

∂xμ

∂qα
∂xν

∂qβ
, (45)

� To prove (45), we differentiate the obvious identity

∂xλ

∂qρ
∂qρ

∂xν
= δλν . (46)

As a result, we find

Γλμν =
∂xλ

∂qρ
∂2qρ

∂xμ∂xν
= −

∂qρ

∂xν
∂qσ

∂xμ
∂2xλ

∂qρ∂qσ
.� (47)

The next step is to calculate the fundamental Poisson
brackets in terms of the variables (xμ, pν), initially defined
using the canonical variables (qμ, πν) according to the rela-
tion

[U, V ] =
∂U

∂qμ
∂V

∂πμ
−
∂V

∂qμ
∂U

∂πμ
, (48)

where U(qμ, πν) and V (qμ, πν) are arbitrary functions. Mak-
ing use of Eqs.(18) and (21), we know that the variables

qμ ⇔ πμ = muμ = mημνu
ν = mημν

∂qν

∂xα
vα, (49)

form a canonical conjugate pair. Using Eq.(32), we would
like to check whether the variables

xμ ⇔ pμ = mgμνv
ν = gμνη

αλπλ
∂xν

∂qα
, (50)

form a canonical conjugate pair. We have

[U, V ] =

[
∂U

∂xα
∂xα

∂qμ
+
∂U

∂pσ
ηβλπλ

∂

∂qμ

(

gσν
∂xν

∂qβ

)]

×

×
∂V

∂pα
gαχη

ρμ ∂x
χ

∂qρ
−

−

[
∂V

∂xα
∂xα

∂qμ
+
∂V

∂pσ
ηβλπλ

∂

∂qμ

(

gσν
∂xν

∂qβ

)]

×

×
∂U

∂pα
gαχη

ρμ ∂x
χ

∂qρ
. (51)

The first and the third term on the right-hand-side of
Eq.(51) can be similarly manipulated as follows

I-st term =
∂U

∂xα
∂V

∂pβ
gβχη

ρμ ∂x
χ

∂qρ
∂xα

∂qμ
=

= gβχg
χα ∂U

∂xα
∂V

∂pβ
=

∂U

∂xα
∂V

∂pα
, (52)

III-rd term = −
∂V

∂xα
∂U

∂pα
. (53)

Next, we manipulate the second term on the right-hand-
side of Eq.(51). We obtain

II-nd term =
∂U

∂pσ

∂V

∂pα
gαχη

ρμ ∂x
χ

∂qρ
ηβλπλ ×

×

[

gσν
∂2xν

∂qμ∂qβ
+
∂xν

∂qβ
∂gσν
∂xγ

∂xγ

∂qμ

]

=

=
∂U

∂pσ

∂V

∂pα
gαχη

ρμ ∂x
χ

∂qρ
ηβλπλ ×

×

[

−gσνΓ
ν
γδ

∂xγ

∂qμ
∂xδ

∂qβ
+
∂xδ

∂qβ
∂xγ

∂qμ
(
Γνγσgνδ+Γ

ν
γδgνσ

)
]

=

=
∂U

∂pσ

∂V

∂pα
gαχg

χγηβλπλ
∂xδ

∂qβ
gνδΓ

ν
γσ =

=
∂U

∂pσ

∂V

∂pβ
gμνη

αλπλ
∂xν

∂qα
Γ
μ
βσ = Γ

λ
μνpλ

∂U

∂pν

∂V

∂pμ
. (54)

The fourth term is similar to the second one but with U
and V interchanged

IV-th term = −Γλμνpλ
∂U

∂pμ

∂V

∂pν
. (55)

In the absence of torsion, the affine connection Γλμν is
symmetric with respect to the lower indices, so that the
second and the fourth term on the right-hand-side of Eq.(51)
cancel each other. Therefore,

[U, V ] =
∂U

∂xμ
∂V

∂pμ
−
∂V

∂xμ
∂U

∂pμ
, (56)

which means that the fundamental Poisson brackets are con-
served. On the other hand, this implies that the variables
{xμ, pν} are a canonical conjugate pair.

S. Capozziello, S. De Martino, S. Tzenov. Hydrodynamic Covariant Symplectic Structure from Bilinear Hamiltonian Functions 95



Volume 2 PROGRESS IN PHYSICS July, 2005

As a final remark, we have to say that considering a
generic metric gαβ and a connection Γαμν is related to the fact
that we are passing from a Minkowski-flat spacetime (local
inertial reference frame) to an accelerated reference frame
(curved spacetime). In what follows, we want to show that a
generic bilinear Hamiltonian invariant, which is conformally
conserved, gives always rise to a canonical symplectic struc-
ture. The specific theory is assigned by the vector (or tensor)
fields which define the Hamiltonian invariant.

3 A symplectic structure compatible with general co-
variance

The above considerations can be linked together leading to a
more general scheme where a covariant symplectic structure
is achieved. Summarizing, the main points which we need
are: (i) an even-dimensional vector space E2n equipped
with an antiscalar product satisfying the algebra (3)-(7);
(ii) generic vector fields defined on such a space which have
to satisfy the Poisson brackets; (iii) first-order equations
of motion which can be read as Hamilton-like equations;
(iv) general covariance which has to be preserved.

Such a program can be pursued by taking into account
covariant and contravariant vector fields. In fact, it is possible
to construct the Hamiltonian invariant

H = V αVα , (57)

which is a scalar quantity satisfying the relation

δH = δ(V αVα) = 0 , (58)

being δ a spurious variation due to the transport. It is worth
stressing that the vectors V α and Vα are not specified and
the following considerations are completely general. Eq.(57)
is a so called “already parameterized” invariant which can
constitute the “density” of a parameterized action principle
where the time coordinate is not distinguished a priori from
the other coordinates [8, 9].

Let us now take into account the intrinsic variation of
V α. On a generic curved manifold, we have

DV α = dV α − δV α = ∂βV
αdxβ − δV α, (59)

where D is the intrinsic variation, d the total variation and
δ the spurious variation due to the transport on the curved
manifold. The spurious variation has a very important mean-
ing since, in General Relativity, if such a variation for a
given quantity is equal to zero, this means that the quantity
is conserved. From the definition of covariant derivative,
applied to the contravariant vector, we have

DV α = ∂βV
αdxβ + ΓασβV

σdxβ , (60)

and
∇βV

α = ∂βV
α + ΓασβV

σ, (61)

and then
δV α = −ΓασβV

σdxβ . (62)

Analogously, for the covariant derivative applied to the
covariant vector,

DVα = dVα − δVα = ∂βVαdx
β − δVα , (63)

and then
DVα = ∂βVαdx

β − ΓσαβVσdx
β , (64)

and
∇βVα = ∂βVα − Γ

σ
αβVσ . (65)

The spurious variation is now

δVα = Γ
σ
αβVσdx

β . (66)

Developing the variation (58), we have

δH = VαδV
α + V αδVα , (67)

and
δH
dxβ

= Vα
δV α

dxβ
+ V α

δVα
dxβ

, (68)

which becomes

δH
dxβ

=
δV α

dxβ
∂H
∂V α

+
δVα
dxβ

∂H
∂Vα

, (69)

being
∂H
∂V α

= Vα,
∂H
∂Vα

= V α. (70)

From Eqs.(62) and (66), it is

δV α

dxβ
= −ΓασβV

σ = −Γασβ

(
∂H
∂Vσ

)

, (71)

δVα
dxβ

= ΓσαβVσ = Γ
σ
αβ

(
∂H
∂V σ

)

, (72)

and substituting into Eq.(69), we have

δH
dxβ

= −Γασβ

(
∂H
∂Vσ

)(
∂H
∂V α

)

+ Γσαβ

(
∂H
∂Vα

)(
∂H
∂V σ

)

, (73)

and then, since α and σ are mute indexes, the expression

δH
dxβ

=
(
Γασβ − Γ

α
σβ

)
(
∂H
∂Vσ

)(
∂H
∂V α

)

≡ 0 , (74)

is identically equal to zero. In other words, H is absolutely
conserved, and this is very important since the analogy with
a canonical Hamiltonian structure
is straightforward. In fact, if, as above,

H = H(p, q) (75)

is a classical generic Hamiltonian function, expressed in the
canonical phase-space variables {p, q}, the total variation (in
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a vector space E2n whose dimensions are generically given
by pi and qj with i, j = 1, ..., n) is

dH =
∂H
∂q

dq +
∂H
∂p

dp , (76)

and

dH
dt

=
∂H
∂q

q̇ +
∂H
∂p

ṗ =

=
∂H
∂q

∂H
∂p
−
∂H
∂p

∂H
∂q
≡ 0 , (77)

thanks to the Hamilton canonical equations

q̇ =
∂H
∂p

, ṗ = −
∂H
∂q

. (78)

Such a canonical approach holds also in our covariant
case if we operate the substitutions

V α ←→ p Vα ←→ q (79)

and the canonical equations are

δV α

dxβ
= −Γασβ

(
∂H
∂Vσ

)

←→
dp

dt
= −

∂H
∂q

, (80)

δVα
dxβ

= Γσαβ

(
∂H
∂V σ

)

←→
dq

dt
=
∂H
∂p

. (81)

In other words, starting from the (Hamiltonian) invariant
(57), we have recovered a covariant canonical symplectic
structure. The variation (67) may be seen as the generating
function G of canonical transformations where the generators
of q−, p− and t−changes are dealt under the same standard.

At this point, some important remarks have to be done.
The covariant and contravariant vector fields can be also of
different nature so that the above fundamental Hamiltonian
invariant can be generalized as

H =WαVα , (82)

or, considering scalar smooth and regular functions, as

H = f(WαVα), (83)

or, in general

H = f
(
WαVα, B

αβCαβ , B
αβVαV

′
β , . . .

)
, (84)

where the invariant can be constructed by covariant vectors,
bivectors and tensors. Clearly, as above, the identifications

Wα ←→ p Vα ←→ q (85)

hold and the canonical equations are

δWα

dxβ
= −Γασβ

(
∂H
∂Vσ

)

,
δVα
dxβ

= Γσαβ

(
∂H
∂W σ

)

. (86)

Finally, conservation laws are given by

δH
dxβ

=
(
Γασβ − Γ

α
σβ

)
(
∂H
∂Vσ

)(
∂H
∂Wα

)

≡ 0 . (87)

In our picture, this means that the canonical symplectic
structure is assigned in the way in which covariant and
contravariant vector fields are related. However, if the Ha-
miltonian invariant is constructed by bivectors and tensors,
equations (86) and (87) have to be generalized but the struc-
ture is the same. It is worth noticing that we never used the
metric field but only connections in our derivations.

These considerations can be made independent of the
reference frame if we define a suitable system of unitary vec-
tors by which we can pass from holonomic to anholonomic
description and viceversa. We can define the reference frame
on the event manifoldM as vector fields e(k) in event space
and dual forms e(k) such that vector fields e(k) define an
orthogonal frame at each point and

e(k)
(
e(l)
)
= δ

(k)
(l) . (88)

If these vectors are unitary, in a Riemannian 4-spacetime
are the standard vierbiens [5].

If we do not limit this definition of reference frame by
orthogonality, we can introduce a coordinate reference frame
(∂α, ds

α) based on vector fields tangent to line xα = const.
Both reference frames are linked by the relations

e(k) = eα(k)∂α; e(k) = e(k)α dxα. (89)

From now on, Greek indices will indicate holonomic co-
ordinates while Latin indices between brackets, the anholo-
nomic coordinates (vierbien indices in 4-spacetimes). We
can prove the existence of a reference frame using the ortho-
gonalization procedure at every point of spacetime. From the
same procedure, we get that coordinates of frame smoothly
depend on the point. The statement about the existence of a
global reference frame follows from this. A smooth field on
time-like vectors of each frame defines congruence of lines
that are tangent to this field. We say that each line is a world
line of an observer or a local reference frame. Therefore
a reference frame is a set of local reference frames. The
Lorentz transformation can be defined as a transformation of
a reference frame

x′
α
= f

(
x0, x1, x2, x3, . . . , xn

)
, (90)

e′
α
(k) = AαβB

(l)
(k)e

β
(l) , (91)

where

Aαβ =
∂x′

α

∂x′β
, δ(i)(l)B

(i)
(j)B

(l)
(k) = δ(j)(k) . (92)

We call the transformation Aαβ the holonomic part and

transformation B(l)(k) the anholonomic part.
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A vector field V has two types of coordinates: holonomic
coordinates V α relative to a coordinate reference frame and
anholonomic coordinates V (k) relative to a reference frame.
For these two kinds of coordinates, the relation

V (k) = e(k)α V α , (93)

holds. We can study parallel transport of vector fields using
any form of coordinates. Because equations (90) and (91) are
linear transformations, we expect that parallel transport in
anholonomic coordinates has the same form as in holonomic
coordinates. Hence we write

DV α = dV α + ΓαβγV
βdxγ , (94)

DV (k) = dV (k) + Γ
(k)
(l)(p)V

(l)dx(p). (95)

Because DV α is also a tensor, we get

Γ
(k)
(l)(p) = eα(l)e

β
(p)e

(k)
γ Γ

γ
αβ + e

α
(l)e

β
(p)

∂e
(k)
α

∂xβ
. (96)

Eq.(96) shows the similarity between holonomic and
anholonomic coordinates. Let us introduce the symbol ∂(k)
for the derivative along the vector field e(k)

∂(k) = eα(k)∂α . (97)

Then Eq.(96) takes the form

Γ
(k)
(l)(p) = eα(l)e

β
(p)e

(k)
γ Γ

γ
αβ + e

α
(l)∂(p)e

(k)
α . (98)

Therefore, when we move from holonomic coordinates
to anholonomic ones, the connection also transforms the way
similarly to when we move from one coordinate system to an-
other. This leads us to the model of anholonomic coordinates.
The vector field e(k) generates lines defined by the differ-
ential equations

eα(l)
∂τ

∂xα
= δ

(k)
(l) , (99)

or the symbolic system

∂τ

∂x(l)
= δ

(k)
(l) . (100)

Keeping in mind the symbolic system (100), we denote
the functional τ as x(k) and call it the anholonomic coordi-
nate. We call the regular coordinate holonomic. Then we can
find derivatives and get

∂x(k)

∂xα
= δ(k)α . (101)

The necessary and sufficient conditions to complete the
integrability of system (101) are

ω
(i)
(k)(l) = eα(k)e

β
(l)

(
∂e

(i)
α

∂xβ
−
∂e

(i)
β

∂xα

)

= 0 , (102)

where we introduced the anholonomic object ω(i)(k)(l).
Therefore each reference frame has n vector fields

∂(k) =
∂

∂x(k)
= eα(k)∂α , (103)

which have the commutators

[
∂(i), ∂(j)

]
=
(
eα(i)∂αe

β
(j) − e

α
(j)∂αe

β
(i)

)
e
(m)
β ∂(m) =

= eα(i)e
β
(j)

(
−∂αe

(m)
β + ∂βe

(m)
β

)
∂(m) = ω

(m)
(i)(j)∂(m). (104)

For the same reason, we introduce the forms

dx(k) = e(k) = e
(k)
β dxβ , (105)

and a differential of this form is

d2x(k)=d
(
e(k)α dxα

)
=
(
∂βe

(k)
α −∂αe

(k)
β

)
dxα∧dxβ =

= −ω(m)(k)(l)dx
(k) ∧ dx(l). (106)

Therefore when ω(i)(k)(l) 6= 0, the differential dx(k) is not
an exact differential and the system (101), in general, cannot
be integrated. However, we can consider meaningful objects
which model the solution. We can study how the functions
x(i) changes along different lines. The functions x(i) is a
natural parameter along a flow line of vector fields e(i). It is
defined along any line.

All the above results can be immediately achieved in hol-
onomic and anholonomic formalism considering the equation

H =WαVα =W (k)V(k) , (107)

and the analogous ones. This means that the results are
independent of the reference frame and the symplectic covar-
iant structure always holds.

4 The hydrodynamic picture

In order to further check the validity of the above approach,
we can prove that it is always consistent with the hydro-
dynamic picture (see also [10] for details on hydrodynamic
covariant formalism).

Let us define a phase space density f(x, p; s) which
evolves according to the Liouville equation

∂f

∂s
+
1

m

∂

∂xμ
(gμνpνf)−

1

2m

∂

∂pλ

(
∂gμν

∂xλ
pμpνf

)

=0 . (108)

Next we define the density %(x; s), the covariant current
velocity vμ(x; s) and the covariant stress tensor Pμν(x; s)
according to the relations

%(x; s) = mn

∫
d4pf(x, p; s) , (109)

98 S. Capozziello, S. De Martino, S. Tzenov. Hydrodynamic Covariant Symplectic Structure from Bilinear Hamiltonian Functions



July, 2005 PROGRESS IN PHYSICS Volume 2

%(x; s)vμ(x; s) = n

∫
d4ppμf(x, p; s) , (110)

Pμν(x; s) =
n

m

∫
d4ppμpνf(x, p; s) . (111)

It can be verified, by direct substitution, that a solution
to the Liouville Eq.(108) of the form

f(x, p; s) =
1

mn
%(x; s)δ4[pμ −mvμ(x; s)] , (112)

leads to the equation of continuity

∂%

∂s
+

∂

∂xμ
(gμνvν%) = 0 , (113)

and to the equation for balance of momentum

∂

∂s
(%vμ) +

∂

∂xλ
(
gλαPαμ

)
+
1

2

∂gαβ

∂xμ
Pαβ = 0 . (114)

Taking into account the fact that for the particular solution
(112), the stress tensor, as defined by Eq.(111), is given by
the expression

Pμν(x; s) = %vμvν , (115)

we obtain the final form of the hydrodynamic equations

∂%

∂s
+

∂

∂xμ
(%vμ) = 0 , (116)

∂vμ
∂s

+ vλ
(
∂vμ
∂xλ

− Γνμλvν

)

=
∂vμ
∂s

+ vλ∇λvμ = 0 . (117)

It is straightforward to see that, through the substitution
vμ → Vμ, Eq.(72) is immediately recovered along a geodesic,
that is our covariant symplectic structure is consistent with

a hydrodynamic picture. It is worth noting that if ∂vμ
∂s

in
Eq.(117), the motion is not geodesic. The meaning of this
term different from zero is that an extra force is acting on
the system.

5 Applications, Discussion and Conclusions

Many applications of the previous results can be achieved
specifying the nature of vector (or tensor) fields which define
the Hamiltonian conserved invariant H. Considerations in
General Relativity and Electromagnetism are particularly
interesting at this point. Let us take into account the Riemann
tensorRρσμν . It comes out when a givenvector V ρ is transpor-
ted along a closed path on a generic curved manifold. It is

[∇μ,∇ν ]V
ρ = RρσμνV

σ, (118)

where ∇μ is the covariant derivative. We are assuming a
Riemannian Vn manifold as standard in General Relativity.
If connection is not symmetric, an additive torsion field
comes out from the parallel transport.

Clearly, the Riemann tensor results from the commutation
of covariant derivatives and it can be expressed as the sum
of two commutators

Rρσμν = ∂[μ,Γ
ρ
ν]σ + Γ

ρ
λ[μ,Γ

λ
ν]σ . (119)

Furthermore, (anti) commutation relations and cyclic
identities (in particular Bianchi’s identities) hold for the
Riemann tensor [5].

All these straightforward considerations suggest the pre-
sence of a symplectic structure whose elements are covariant
and contravariant vector fields, V α and Vα, satisfying the
properties (3)-(7). In this case, the dimensions of vector space
E2n are assigned by V α and Vα. It is important to notice that
such properties imply the connections (Christoffel symbols)
and not the metric tensor.

As we said, the invariant (57) is a generic conserved
quantity specified by the choice of V α and Vα. If

V α =
dxα

ds
, (120)

is a 4-velocity, with α=0, 1, 2, 3, immediately, from Eq.(80),
we obtain the equation of geodesics of General Relativity,

d2xα

ds2
+ Γαμν

dxμ

ds

dxν

ds
= 0 . (121)

On the other hand, being

δV α = RαβμνV
βdx

μ
1dx

ν
2 , (122)

the result of the transport along a closed path, it is easy to
recover the geodesic deviation considering the geodesic (121)
and the infinitesimal variation ξα with respect to it, i. e.

d2(xα+ξα)

ds2
+Γαμν(x+ξ)

d(xμ+ξμ)

ds

d(xν+ξν)

ds
=0, (123)

which gives, through Eq.(119),

d2ξα

ds2
= Rαμλν

dxμ

ds

dxν

ds
ξλ. (124)

Clearly the symplectic structure is due to the fact that
the Riemann tensor is derived from covariant derivatives
either as

[∇μ,∇ν ]V
ρ = RρσμνV

σ, (125)

or
[∇μ,∇ν ]Vρ = RσμνρVσ . (126)

In other words, fundamental equations of General Rela-
tivity are recovered from our covariant symplectic formalism.

Another interesting choice allows to recover the standard
Electromagnetism. If V α=Aα, where Aα is the vector po-
tential and the Hamiltonian invariant is

H = AαAα , (127)
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it is straightforward, following the above procedure, to ob-
tain, from the covariant Hamilton equations, the electro-
magnetic tensor field

Fαβ = ∇αAβ −∇βAα = ∇[αAβ] , (128)

and the Maxwell equations (in a generic empty curved space-
time)

∇αFαβ = 0 , ∇[αFλβ] = 0 . (129)

The standard Lorentz gauge is

∇αAα = 0 , (130)

and electromagnetic wave equation is easily recovered.
In summary, a covariant, symplectic structure can be

found for every Hamiltonian invariant which can be con-
structed by covariant vectors, bivectors and tensor fields.
In fact, any theory of physics has to be endowed with a
symplectic structure in order to be formulated at a fundam-
ental level.

We pointed out that curvature invariants of General Rel-
ativity can show such a feature and, furthermore, they can be
recovered from Hamiltonian invariants opportunely defined.
Another interesting remark deserves the fact that, starting
from such invariants, covariant and contravariant vector fields
can be read as the configurations qi and the momenta pi of
classical Hamiltonian dynamics so then the Hamilton-like
equations of motion are recovered from the application of
covariant derivative to both these vector fields. Besides, the
approach can be formulated in a holonomic and anholonomic
representations, once vector fields (or tensors in general) are
represented in vierbien or coordinate–frames. This feature is
essential to be sure that general covariance and symplectic
structure are conserved in any case.

Specifying the nature of vector fields, we select the partic-
ular theory. For example, if the vector field is the 4-velocity,
we obtain geodesic motion and geodesic deviation. If the
vector is the vector potential of Electromagnetism, Maxwell
equations and Lorentz gauge are recovered. The scheme is
independent of the nature of vector field and, in our opinion,
it is a strong hint toward a unifying view of basic interactions,
gravity included.
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This article shows, Synge-Weber’s classical problem statement about two particles
interacting by a signal can be reduced to the case where the same particle is located
in two different points A and B of the basic space-time in the same moment of time,
so the states A and B are entangled. This particle, being actual two particles in the
entangled states A and B, can interact with itself radiating a photon (signal) in the
point A and absorbing it in the point B. That is our goal, to introduce entangled states
into General Relativity. Under specific physical conditions the entangled particles in
General Relativity can reach a state where neither particle A nor particle B can be the
cause of future events. We call this specific state Quantum Causality Threshold.

1 Disentangled and entangled particles in General Rel-
ativity. Problem statement

In his article of 2000, dedicated to the 100th anniversary of
the discovery of quanta, Belavkin [1] generalizes definitions
assumed de facto in Quantum Mechanics for entangled and
disentangled particles. He writes:

“The only distinction of the classical theory from
quantum is that the prior mixed states cannot be
dynamically achieved from pure initial states without
a procedure of either statistical or chaotic mixing. In
quantum theory, however, the mixed, or decoherent
states can be dynamically induced on a subsystem
from the initial pure disentangled states of a composed
system simply by a unitary transformation.

Motivated by Eintein-Podolsky-Rosen paper, in
1935 Schrödinger published a three part essay∗ on The
Present Situation in Quantum Mechanics. He turns
to EPR paradox and analyses completeness of the
description by the wave function for the entangled
parts of the system. (The word entangled was intro-
duced by Schrödinger for the description of nonse-
parable states.) He notes that if one has pure states
ψ(σ) and χ(υ) for each of two completely separat-
ed bodies, one has maximal knowledge, ψ1(σ, υ)=
=ψ(σ)χ(υ), for two taken together. But the con-
verse is not true for the entangled bodies, described by
a non-separable wave function ψ1(σ, υ) 6=ψ(σ)χ(υ):
Maximal knowledge of a total system does not necess-
ary imply maximal knowledge of all its parts, not
even when these are completely separated one from
another, and at the time can not influence one another
at all.”

In other word, because Quantum Mechanics considers
particles as stochastic clouds, there can be entangled particles

∗Schrödinger E. Naturwissenschaften, 1935, Band 23, 807–812, 823–
828, 844–849.

— particles whose states are entangled, they build a whole
system so that if the state of one particle changes the state
of the other particles changes immediately as they are far
located one from the other.

In particular, because of the permission for entangled
states, Quantum Mechanics permits quantum teleportation —
the experimentally discovered phenomenon. The term
“quantum teleportation” had been introduced into theory
in 1993 [2]. First experiment teleporting massless particles
(quantum teleportation of photons) was done five years later,
in 1998 [3]. Experiments teleporting mass-bearing particles
(atoms as a whole) were done in 2004 by two independ-
ent groups of scientists: quantum teleportation of the ion of
Calcium atom [4] and of the ion of Beryllium atom [5].

There are many followers who continue experiments with
quantum teleportation, see [6–16] for instance.

It should be noted, the experimental statement on quan-
tum teleportation has two channels in which information (the
quantum state) transfers between two entangled particles:
“teleportation channel” where information is transferred in-
stantly, and “synchronization channel” — classical channel
where information is transferred in regular way at the light
speed or lower of it (the classical channel is targeted to inform
the receiving particle about the initial state of the first one).
After teleportation the state of the first particle destroys, so
there is data transfer (not data copying).

General Relativity draws another picture of data transfer:
the particles are considered as point-masses or waves, not
stochastic clouds. This statement is true for both mass-bearing
particles and massless ones (photons). Data transfer between
any two particles is realized as well by point-mass particles,
so in General Relativity this process is not of stochastic
origin.

In the classical problem statement accepted in General
Relativity [17, 18, 19], two mass-bearing particles are con-
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sidered which are moved along neighbour world-lines, a
signal is transferred between them by a photon. One of the
particles radiates the photon at the other, where the photon
is absorbed realizing data transfer between the particles. Of
course, the signal can as well be carried by a mass-bearing
particle.

If there are two free mass-bering particles, they fall freely
along neighbour geodesic lines in a gravitational field. This
classical problem has been developed in Synge’s book [20]
where he has deduced the geodesic lines deviation equation
(Synge’s equation, 1950’s). If these are two particles con-
nected by a non-gravitational force (for instance, by a spring),
they are moved along neighbour non-geodesic world-lines.
This classical statement has been developed a few years later
by Weber [21], who has obtained the world-lines deviation
equation (Synge-Weber’s equation).

Anyway in this classical problem of General Relativity
two interacting particles moved along both neighbour geo-
desic and non-geodesic world-lines are disentangled. This
happens, because of two reasons:

1. In this problem statement a signal moves between two
interacting particles at the velocity no faster than light,
so their states are absolutely separated — these are
disentangled states;

2. Any particle, being considered in General Relativity’s
space-time, has its own four-dimensional trajectory
(world-line) which is the set of the particle’s states
from its birth to decay. Two different particles can not
occupy the same world-line, so they are in absolutely
separated states — they are disentangled particles.

The second reason is much stronger than the first one. In
particular, the second reason leads to the fact that, in General
Relativity, entangled are only neighbour states of the same
particle along its own world-line — its own states separated
in time, not in the three-dimensional space. No two different
particles could be entangled. Any two different particles, both
mass-bearing and massless ones, are disentangled in General
Relativity.

On the other hand, experiments on teleportation evident
that entanglement is really an existing state that happens with
particles if they reach specific physical conditions. This is the
fact, that should be taken into account by General Relativity.

Therefore our task in this research is to introduce en-
tangled states into General Relativity. Of course, because
of the above reasons, two particles can not be in entangled
state if they are located in the basic space-time of General
Relativity — the four-dimensional pseudo-Riemannian space
with sign-alternating label (+−−−) or (−+++). Its metric is
strictly non-degenerated as of any space of Riemannian space
family, namely — there the determinant g= det ‖gαβ‖ of the
fundamental metric tensor gαβ is strictly negative g < 0. We
expand the Synge-Weber problem statement, considering it
in a generalized space-time whose metric can become dege-

U α

αη

A  B

world-line A world-line B

αU

αη

A B

Fig. 1: Synge-Weber’s statement. Fig. 2: The advanced statement.

nerated g=0 under specific physical conditions. This space
is one of Smarandache geometry spaces [22–28], because its
geometry is partially Riemannian, partially not.

As it was shown in [29, 30] (Borissova and Rabounski,
2001), when General Relativity’s basic space-time degene-
rates physical conditions can imply observable teleportation
of both a mass-bearing and massless particle — its instant
displacement from one point of the space to another, although
it moves no faster than light in the degenerated space-time
area, outside the basic space-time. In the generalized space-
time the Synge-Weber problem statement about two particles
interacting by a signal (see Fig. 1) can be reduced to the case
where the same particle is located in two different points
A and B of the basic space-time in the same moment of
time, so the states A and B are entangled (see Fig. 2). This
particle, being actual two particles in the entangled states A
and B, can interact with itself radiating a photon (signal) in
the point A and absorbing it in the point B. That is our goal,
to introduce entangled states into General Relativity.

Moreover, as we will see, under specific physical con-
ditions the entangled particles in General Relativity can reach
a state where neither particle A nor particle B can be the
cause of future events. We call this specific state Quantum
Causality Threshold.

2 Introducing entangled states into General Relativity

In the classical problem statement, Synge [20] considered
two free-particles (Fig. 1) moving along neighbour geodesic
world-lines Γ(v) and Γ(v+ dv), where v is a parameter
along the direction orthogonal to the geodesics (it is taken in
the plane normal to the geodesics). There is v= const along
each the geodesic line.

Motion of the particles is determined by the well-known
geodesic equation

dUα

ds
+ Γαμν U

μ dx
ν

ds
= 0 , (1)
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which is the actual fact that the absolute differential DUα=
= dUα+ΓαμνU

μdxν of a tangential vector Uα (the velocity

world-vector Uα= dxα

ds
, in this case), transferred along that

geodesic line to where it is tangential, is zero. Here s is
an invariant parameter along the geodesic (we assume it the
space-time interval), and Γαμν are Christoffel’s symbols of
the 2nd kind. Greek α = 0, 1, 2, 3 sign for four-dimensional
(space-time) indices.

The parameter v is different for the neighbour geodesics,
the difference is dv. Therefore, in order to study relative dis-
placements of two geodesics Γ(v) and Γ(v+ dv), we shall
study the vector of their infinitesimal relative displacement

ηα =
∂xα

∂v
dv , (2)

As Synge had deduced, a deviation of the geodesic line
Γ(v+ dv) from the geodesic line Γ(v) can be found as the
solution of his obtained equation

D2ηα

ds2
+Rα ∙ ∙ ∙∙βγδU

βUδηγ = 0 , (3)

that describes relative accelerations of two neighbour free-
particles (Rα ∙ ∙ ∙∙βγδ is Riemann-Chrostoffel’s curvature tensor).
This formula is known as the geodesic lines deviation equa-
tion or the Synge equation.

In Weber’s statement [21] the difference is that he con-
siders two particles connected by a non-gravitational force
Φα, a spring for instance. So their world-trajectories are non-
geodesic, they are determined by the equation

dUα

ds
+ Γαμν U

μ dx
ν

ds
=

Φα

m0c2
, (4)

which is different from the geodesic equation in that the right
part in not zero here. His deduced improved equation of the
world lines deviation

D2ηα

ds2
+Rα ∙ ∙ ∙∙βγδU

βUδηγ =
1

m0c2
DΦα

dv
dv , (5)

describes relative accelerations of two particles (of the same
rest-mass m0), connected by a spring. His deviation equation
is that of Synge, except of that non-gravitational force Φα

in the right part. This formula is known as the Synge-Weber
equation. In this case the angle between the vectors Uα and
ηα does not remain unchanged along the trajectories

∂

∂s
(Uαη

α) =
1

m0c2
Φαη

α. (6)

Now, proceeding from this problem statement, we are
going to introduce entangled states into General Relativity.
At first we determine such states in the space-time of General
Relativity, then we find specific physical conditions under
which two particles reach a state to be entangled.

Definition Two particles A and B, located in the same
spatial section∗ at the distance dxi 6=0 from each other,
are filled in non-separable states if the observable time
interval dτ between linked events in the particles† is
zero dτ =0. If only dτ =0, the states become non-
separated one from the other, so the particles A and B
become entangled.

So we will refer to dτ =0 as the entanglement condition in
General Relativity.

Let us consider the entanglement condition dτ =0 in
connection with the world-lines deviation equations.

In General Relativity, the interval of physical observable
time dτ between two events distant at dxi one from the other
is determined through components of the fundamental metric
tensor as

dτ =
√
g00 dt+

g0i
c
√
g00

dxi, (7)

see §84 in the well-known The Classical Theory of Fields
by Landau and Lifshitz [19]. The mathematical apparatus of
physical observable quantities (Zelmanov’s theory of chro-
nometric invariants [31, 32], see also the brief account in
[30, 29]) transforms this formula to

dτ =
(
1−

w

c2

)
dt−

1

c2
vidx

i, (8)

where w= c2(1−
√
g00) is the gravitational potential of an

acting gravitational field, and vi=−c
g0i√
g00

is the linear

velocity of the space rotation.
So, following the theory of physical observable quanti-

ties, in real observations where the observer accompanies his
references the space-time interval ds2= gαβ dxαdxβ is

ds2 = c2dτ 2 − dσ2, (9)

where dσ2=
(
−gik+

g0ig0k
g00

)
dxidxk is a three-dimensional

(spatial) invariant, built on the metric three-dimensional ob-
servable tensor hik=−gik+

g0ig0k
g00 . This metric observable

tensor, in real observations where the observer accompanies
his references, is the same that the analogous built general
covariant tensor hαβ . So, dσ2=hik dxidxk is the spatial
observable interval for any observer who accompanies his
references.

As it is easy to see from (9), there are two possible cases
where the entanglement condition dτ =0 occurs:

(1) ds=0 and dσ=0,

(2) ds2=−dσ2 6=0, so dσ becomes imaginary,

∗A three-dimensional section of the four-dimensional space-time,
placed in a given point in the time line. In the space-time there are infinitely
many spatial sections, one of which is our three-dimensional space.

†Such linked events in the particles A and B can be radiation of a signal
in one and its absorbtion in the other, for instance.
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we will refer to them as the 1st kind and 2nd kind entangle-
ment auxiliary conditions.

Let us get back to the Synge equation and the Synge-
Weber equation.

According to Zelmanov’s theory of physical observable
quantities [31, 32], if an observer accompanies his references
the projection of a general covariant quantity on the observ-
er’s spatial section is its spatial observable projection.

Following this way, Borissova has deduced (see eqs.
7.16–7.28 in [33]) that the spatial observable projection of
the Synge equation is∗

d2ηi

dτ 2
+ 2
(
Di
k + A

∙i
k∙

)dηk

dτ
= 0 , (10)

she called it the Synge equation in chronometrically invariant
form. The Weber equation is different in its right part con-
taining the non-gravitational force that connects the particles
(of course, the force should be filled in the spatially projected
form). For this reason, conclusions obtained for the Synge
equation will be the same that for the Weber one.

In order to make the results of General Relativity ap-
plicable to practice, we should consider tensor quantities
and equations designed in chronometrically invariant form,
because in such way they contain only chronometrically
invariant quantities — physical quantities and geometrical
properties of space, measurable in real experiment [31, 32].

Let us look at our problem under consideration from this
viewpoint.

As it easy to see, the Synge equation in its chronometric-
ally invariant form (10) under the entanglement condition
dτ =0 becomes nonsense. The Weber equation becomes
nonsense as well. So, the classical problem statement be-
comes senseless as soon as particles reach entangled states.

At the same time, in the recent theoretical research [29]
two authors of the paper (Borissova and Rabounski, 2005)
have found two groups of physical conditions under which
particles can be teleported in non-quantum way. They have
been called the teleportation conditions:

(1) dτ =0 {ds=0 , dσ=0}, the conditions of photon te-
leportation;

(2) dτ =0 {ds2=−dσ2 6=0}, the conditions of substant-
ial (mass-bearing) particles teleportation.

There also were theoretically deduced physical conditions†,

∗In this formula, according to Zelmanov’s mathematical apparatus of

physical observable quantities [31, 32],Dik=
1
2

∗∂hik
∂t

= 1
2
√
g00

∂hik
∂t

is

the three-dimensional symmetric tensor of the space deformation observable

rate while Aik=
1
2

(
∂vk
∂xi

− ∂vi
∂xk

)
+ 1
2c2

(
Fivk−Fkvi

)
is the three-

dimensional antisymmetric tensor of the space rotation observable angular
velocities, which indices can be lifted/lowered by the metric observable
tensor so that Di

k=h
imDkm and A∙ik∙=h

imAkm. See brief account of
the Zelmanov mathematical apparatus in also [30, 33, 34, 35].

†A specific correlation between the gravitational potential w, the space
rotation linear velocity vi and the teleported particle’s velocity ui.

which should be reached in a laboratory in order to teleport
particles in the non-quantum way [29].

As it is easy to see the non-quantum teleportation con-
dition is identical to introduce here the entanglement main
condition dτ =0 in couple with the 1st kind and 2nd kind
auxiliary entanglement conditions!

Taking this one into account, we transform the classical
Synge and Weber problem statement into another. In our
statement the world-line of a particle, being entangled to
itself by definition, splits into two different world-lines under
teleportation conditions. In other word, as soon as the tele-
portation conditions occur in a research laboratory, the world-
line of a teleported particle breaks in one world-point A
and immediately starts in the other world-point B (Fig. 2).
Both particles A and B, being actually two different states
of the same teleported particle at a remote distance one from
the other, are in entangled states. So, in this statement, the
particles A and B themselves are entangled.

Of course, this entanglement exists in only the moment
of the teleportation when the particle exists in two different
states simultaneously. As soon as the teleportation process
has been finished, only one particle of them remains so the
entanglement disappears.

It should be noted, it follows from the entanglement
conditions, that only substantial particles can reach entangled
states in the basic space-time of General Relativity — the
four-dimensional pseudo-Riemannian space. Not photons.
Here is why.

As it is known, the interval ds2= gαβ dxαdxβ can not
be fully degenerated in a Riemannian space‡: the condition
is that the determinant of the metric fundamental tensor gαβ
must be strictly negative g= det ‖gαβ‖< 0 by definition of
Riemannian spaces. In other word, in the basic space-time
of General Relativity the fundamental metric tensor must be
strictly non-degenerated as g < 0.

The observable three-dimensional (spatial) interval dσ2=
=hik dx

idxk is positive determined [31, 32], proceeding
from physical sense. It fully degenerates dσ2=0 if only
the space compresses into point (the senseless case) or the
determinant of the metric observable tensor becomes zero
h= det ‖hik‖=0.

As it was shown by Zelmanov [31, 32], in real observ-
ations where an observer accompanies his references, the
determinant of the metric observable tensor is connected with
the determinant of the fundamental one by the relationship
h=− g

g00 . From here we see, if the three-dimensional ob-
servable metric fully degenerates h=0, the four-dimensional
metric degenerates as well g=0.

We have obtained that states of two substantial particles
can be entangled, if dτ =0 {ds2=−dσ2 6=0} in the space
neighbourhood. So h> 0 and g < 0 in the neighbourhood,

‡It can only be partially degenerated. For instance, a four-dimensional
Riemannian space can be degenerated into a three-dimensional one.
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hence the four-dimensional pseudo-Riemannian space is not
degenerated.

Conclusion Substantial particles can reach entangled states
in the basic space-time of General Relativity (the four-
dimensional pseudo-Riemannian space) under specific
conditions in the neighbourhood.

Although ds2=−dσ2 in the neighbourhood (dσ should
be imaginary), the substantial particles remain in regular sub-
light area, they do not become super-light tachyons. It is easy
to see, from the definition of physical observable time (8),
the entanglement condition dτ =0 occurs only if the specific
relationship holds

w+ viu
i= c2 (11)

between the gravitational potential w, the space rotation
linear velocity vi and the particles’ true velocity ui= dxi/dt
in the observer’s laboratory. For this reason, in the neighbour-
hood the space-time metric is

ds2 = −dσ2 = −
(
1−

w

c2

)2
c2dt2 + gik dx

idxk, (12)

so the substantial particles can become entangled if the space
initial signature (+−−−) becomes inverted (−+++) in the
neighbourhood, while the particles’ velocities ui remain no
faster than light.

Another case — massless particles (photons). States of
two phonos can be entangled, only if there is in the space
neighbourhood dτ =0 {ds=0 , dσ=0}. In this case the
determinant of the metric observable tensor becomes h=0,
so the space-time metric as well degenerates g=−g00h=0.
This is not the four-dimensional pseudo-Riemannian space.

Where is that area? In the previous works (Borissova
and Rabounski, 2001 [30, 29]) a generalization to the basic
space-time of General Relativity was introduced — the four-
dimensional space which, having General Relativity’s sign-
alternating label (+−−−), permits the space-time metric to be
fully degenerated so that there is g6 0.

As it was shown in those works, as soon as the specific
condition w+ viui= c2 occurs, the space-time metric be-
comes fully degenerated: there are ds=0, dσ=0, dτ =0
(it can be easy derived from the above definition for the
quantities) and, hence h=0 and g=0. Therefore, in a space-
time where the degeneration condition w+ viui= c2 is per-
mitted the determinant of the fundamental metric tensor is
g6 0. This case includes both Riemannian geometry case
g < 0 and non-Riemannian, fully degenerated one g=0. For
this reason a such space is one of Smarandache geometry
spaces [22–28], because its geometry is partially Riemannian,
partially not∗. In the such generalized space-time the 1st kind

∗In foundations of geometry it is known the S-denying of an axiom
[22–25], i. e. in the same space an “axiom is false in at least two dif-
ferent ways, or is false and also true. Such axiom is said to be Smaran-
dachely denied, or S-denied for short” [26]. As a result, it is possible to

entanglement conditions dτ =0 {ds=0 , dσ=0} (the en-
tanglement conditions for photons) are permitted in that area
where the space metric fully degenerates (there h=0 and,
hence g=0).

Conclusion Massless particles (photons) can reach entan-
gled states, only if the basic space-time fully dege-
nerates g= det ‖gαβ‖=0 in the neighbourhood. It is
permitted in the generalized four-dimensional space-
time which metric can be fully degenerated g6 0 in
that area where the degeneration conditions occur. The
generalized space-time is attributed to Smarandache
geometry spaces, because its geometry is partially Rie-
mannian, partially not.

So, entangled states have been introduced into General Rel-
ativity for both substantial particles and photons.

3 Quantum Causality Threshold in General Relativity

This term was introduced by one of the authors two years
ago (Smarandache, 2003) in our common correspondence
[36] on the theme:

Definition Considering two particles A and B located in
the same spatial section, Quantum Causality Threshold
was introduced as a special state in which neither A
nor B can be the cause of events located “over” the
spatial section on the Minkowski diagram.

The term Quantum has been added to the Causality
Threshold, because in this problem statement an interaction
is considered between two infinitely far away particles (in
infinitesimal vicinities of each particle) so this statement is
applicable to only quantum scale interactions that occur in
the scale of elementary particles.

Now, we are going to find physical conditions under
which particles can reach the threshold in the space-time of
General Relativity.

Because in this problem statement we look at causal
relations in General Relativity’s space-time from “outside”,
it is required to use an “outer viewpoint” — a point of view
located outside the space-time.

We introduce a such point of outlook in an Euclidean
flat space, which is tangential to our’s in that world-point,
where the observer is located. In this problem statement we
have a possibility to compare the absolute cause relations in
that tangential flat space with those in ours. As a matter, a
tangential Euclidean flat space can be introduced at any point
of the pseudo-Riemannian space.

introduce geometries, which have common points bearing mixed properties
of Euclidean, Lobachevsky-Bolyai-Gauss, and Riemann geometry in the
same time. Such geometries has been called paradoxist geometries or
Smarandache geometries. For instance, Iseri in his book Smarandache
Manifolds [26] and articles [27, 28] introduced manifolds that support
particular cases of such geometries.
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At the same time, according to Zelmanov [31, 32], within
infinitesimal vicinities of any point located in the pseudo-
Riemannian space a locally geodesic reference frame can be
introduced. In a such reference frame, within infinitesimal
vicinities of the point, components of the metric fundamental
tensor (marked by tilde)

g̃αβ = gαβ+
1

2

(
∂2g̃αβ
∂x̃μ∂x̃ν

)

(x̃μ−xμ)(x̃ν−xν)+ . . . (13)

are different from those gαβ at the point of reflection to within
only the higher order terms, which can be neglected. So, in
a locally geodesic reference frame the fundamental metric
tensor can be accepted constant, while its first derivatives
(Christoffel’s symbols) are zeroes. The fundamental metric
tensor of an Euclidean space is as well a constant, so values
of g̃μν , taken in the vicinities of a point of the pseudo-
Riemannian space, converge to values of gμν in the flat
space tangential at this point. Actually, we have a system
of the flat space’s basic vectors ~e(α) tangential to curved
coordinate lines of the pseudo-Riemannian space. Coordinate
lines in Riemannian spaces are curved, inhomogeneous, and
are not orthogonal to each other (the latest is true if the space
rotates). Therefore the lengths of the basic vectors may be
very different from the unit.

Writing the world-vector of an infinitesimal displacement
as d~r =(dx0, dx1, dx2, dx3), we obtain d~r=~e(α)dxα, where
the components of the basic vectors ~e(α) tangential to the co-
ordinate lines are ~e(0)={e

0
(0), 0, 0, 0}, ~e(1)={0, e

1
(1), 0, 0},

~e(2)= {0, 0, e
2
(2), 0}, ~e(3)= {0, 0, 0, e

2
(3)}. Scalar product of

d~r with itself is d~rd~r= ds2 or, in another ds2= gαβ dxαdxβ ,
so gαβ =~e(α)~e(β)= e(α)e(β)cos (x

α;xβ). We obtain

g00 = e2(0) , g0i = e(0)e(i) cos (x
0;xi) , (14)

gik = e(i)e(k) cos (x
i;xk) , i, k = 1, 2, 3 . (15)

Then, substituting g00 and g0i from formulas that det-
ermine the gravitational potential w= c2(1−

√
g00) and the

space rotation linear velocity vi=−c
g0i√
g00

, we obtain

vi = −c e(i) cos (x
0;xi) , (16)

hik=e(i)e(k)

[
cos(x0;xi)cos(x0;xk)−cos(xi;xk)

]
. (17)

From here we see: if the pseudo-Riemannian space is free
of rotation, cos (x0;xi)= 0 so the observer’s spatial section
is strictly orthogonal to time lines. As soon as the space starts
to do rotation, the cosine becomes different from zero so the
spatial section becomes non-orthogonal to time lines (Fig. 3).
Having this process, the light hypercone inclines with the
time line to the spatial section. In this inclination the light
hypercone does not remain unchanged, it “compresses” be-

time line
x = consti t

A spatial section x = const0

     ix

light hypercone, the asymptote

of coordinate transformations

e0

ei

Fig. 3: The spatial section
becomes non-orthogonal
to time lines, as soon as
the space starts rotation.

cause of hyperbolic transformations in pseudo-Riemannian
space. The more the light hypercone inclines, the more it
symmetrically “compresses” because the space-time’s geo-
metrical structure changes according to the inclination.

In the ultimate case, where the cosine reach the ultimate
value cos (x0;xi)= 1, time lines coincide the spatial section:
time “has fallen” into the three-dimensional space. Of course,
in this case the light hypercone overflows time lines and the
spatial section: the light hypercone “has as well fallen” into
the three-dimensional space.

As it is easy to see from formula (16), this ultimate case
occurs as soon as the space rotation velocity vi reaches the
light velocity. If particles A and B are located in the space
filled into this ultimate state, neither A nor B can be the cause
of events located “over” the spatial section in the Minkowski
diagrams we use in the pictures. So, in this ultimate case
the space-time is filled into a special state called Quantum
Causality Threshold.

Conclusion Particles, located in General Relativity’s space-
time, reach Quantum Causality Threshold as soon as
the space rotation reaches the light velocity. Quantum
Causality Threshold is impossible if the space does not
rotate (holonomic space), or if it rotates at a sub-light
speed.

So, Quantum Causality Threshold has been introduced into
General Relativity.
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We further deconstruct Heraclitean Quantum Systems giving a model for a universe
using pregeometric notions in which the end-game problem is overcome by means
of self-referential noise. The model displays self-organisation with the emergence of
3-space and time. The time phenomenon is richer than the present geometric modelling.

1 Heraclitean Quantum Systems

From the beginning of theoretical physics in the 6th and 5th
centuries BC there has been competition between two classes
of modelling of reality: one class has reality explained in
terms of things, and the other has reality explained purely in
terms of relationships (information).∗ While in conventional
physics a mix of these which strongly favours the “things”
approach is currently and very efficaciously used, here we
address the problem of the “ultimate” modelling of reality.
This we term the end-game problem: at higher levels in
the phenomenology of reality one chooses economical and
effective models — which usually have to be accompanied by
meta-rules for interpretation, but at the lower levels we are
confronted by the problem of the source of “things” and their
rules or “laws”. At one extreme we could have an infinite
regress of ever different “things”, another is the notion of
a Platonic world where mathematical things and their rules
reside [1]. In both instances we still have the fundamental
problem of why the universe “ticks” — that is, why it is more
than a mathematical construct; why is it experienced?

This “end-game” problem is often thought of as the unifi-
cation of our most successful and deepest, but incompatible,
phenomenologies: General Relativity and Quantum Theory.
We believe that the failure to find a common underpinning
of these models is that it is apparently often thought it would
be some amalgamation of the two, and not something vastly
different. Another difficulty is that the lesson from these
models is often confused; for instance from the success of the
geometrical modelling of space and time it is often argued
that the universe “is a 4-dimensional manifold”. However
the geometrical modelling of time is actually deficient: it

∗This is the original 1997 version of the paper which introduced
the notion that reality has an information-theoretic intrinsic randomness.
Since this pioneering paper the model of reality known as Process
Physics has advanced enormously, and has been confirmed in
numerous experiments. The book Cahill, R. T. Process Physics: From
Information Theory to Quantum Space and Matter, Nova Science
Pub. NY 2005, reviews subsequent developments. Numerous papers
are available at http://www.mountainman.com.au/process_physics/ and
http://www.scieng.flinders.edu.au/cpes/people/cahill_r/processphysics.html

lacks much of the experienced nature of time — for it fails
to model both the directionality of time and the phenomenon
of the (local) “present moment”. Indeed the geometrical
model might better be thought of as a “historical model” of
time, because in histories the notion of direction and present
moment are absent — they must be provided by external
meta-rules. General relativity then is about possible histories
of the universe, and in this it is both useful and successful.
Similarly quantum field theories have fields built upon a
possible (historical) spacetime, and subjected to quantisation.
But such quantum theories have difficulties with classicali-
sation and the individuality of events — as in the “measure-
ment problem”. At best the theory invokes ensemble mea-
surement postulates as external meta-rules. So our present-
day quantum theories are also historical models.

The problem of unifying general relativity and quantum
theories then comes down to going beyond historical mod-
elling, which in simple terms means finding a better model
of time. The historical or being model of reality has been
with us since Parmenides and Zeno, and is known as the
Eleatic model. The becoming or processing model of reality
dates back further to Heraclitus of Ephesus (540– 480 BC)
who argued that common sense is mistaken in thinking
that the world consists of stable things; rather the world
is in a state of flux. The appearances of “things” depend
upon this flux for their continuity and identity. What needs
to be explained, Heraclitus argued, is not change, but the
appearance of stability.

Although “process” modelling can be traced through to
the present time it has always been a speculative notion
because it has never been implemented in a mathematical
form and subjected to comparison with reality. Various pro-
posals of a pregeometric nature have been considered [2, 3,
4]. Here we propose a mathematical pregeometric process
model of reality — which in [5] was called a Heraclitean
Quantum System (HQS). There we arrived at a HQS by deco-
nstruction of the functional integral formulation of quantum
field theories retaining only those structures which we felt
would not be emergent. In this we still started with “things”,
namely a Grassmann algebra, and ended with the need to de-
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compose the mathematical structures into possible histories
— each corresponding to a different possible decoherent
classical sequencing. However at that level of the HQS
we cannot expect anything other than the usual historical
modelling of time along with its deficiencies. The problem
there was that the deconstruction began with ensembled
quantum field theory, and we can never recover individuality
and actuality from ensembles — that has been the problem
with quantum theory since its inception.

Here we carry the deconstruction one step further by
exploiting the fact that functional integrals can be thought
of as arising as ensemble averages of Wiener processes.
These are normally associated with Brownian-type motions
in which random processes are used in modelling many-body
dynamical systems. We argue that random processes are a
fundamental and necessary aspect of reality — that they arise
in the resolution presented here to the end-game problem
of modelling reality. In sect. 2 we argue that this “noise”
arises as a necessary feature of the self-referential nature of
the universe. In sect. 3 we discuss the nature of the self-
organised space and time phenomena that arise, and argue
that the time modelling is richer and more “realistic” than
the geometrical model. In sect. 4 we show how the ensemble
averaging of possible universe behaviour is expressible as a
functional integral.

2 Self-Referential Noise

Our proposed solution to the end-game problem is to avoid
the notion of things and their rules; rather to use a boot-
strapped self-referential system. Put simply, this models the
universe as a self-organising and self-referential information
system — “information” denoting relationships as distinct
from “things”. In such a system there is no bottom level and
we must consider the system as having an iterative character
and attempt to pick up the structure by some mathematical
modelling.

Chaitin [6] developed some insights into the nature of
complex self-referential information systems: combining
Shannon’s information theory and Turing’s computability
theory resulted in the development of Algorithmic Informa-
tion Theory (AIT). This shows that number systems contain
randomness and unpredictability, and extends Gödel’s dis-
covery, which resulted from self-referenc-ing problems, of
the incompleteness of such systems (see [7] for various
discussions of the physics of information; here we are con-
sidering information as physics).

Hence if we are to model the universe as a closed system,
and thus self-referential, then the mathematical model must
necessarily contain randomness. Here we consider one very
simple such model and proceed to show that it produces a
dynamical 3-space and a theory for time that is richer than
the historical/geometrical model.

We model the self-referencing by means of an iter-

ative map

Bij → Bij − (B +B−1)ij η + wij ,

i, j = 1, 2, . . . ,M →∞.
(1)

We think of Bij as relational information shared by two
monads i and j. The monads concept was introduced by
Leibniz, who espoused the relational mode of thinking in
response to and in contrast to Newton’s absolute space and
time. Leibniz’s ideas were very much in the process mould
of thinking: in this the monad’s view of available information
and the commonality of this information is intended to lead to
the emergence of space. The monad i acquires its meaning
entirely by means of the information Bi1, Bi2, . . ., where
Bij =−Bji to avoid self-information, and real number
valued. The map in (1) has the form of a Wiener process,
and the wij =−wji are independent random variables for
each ij and for each iteration, and with variance 2η for later
convenience. The wij model the self-referential noise. The
beginning of a universe is modelled by starting the iterative
map with Bij ≈ 0, representing the absence of information
or order. Clearly due to the B−1 term iterations will rapidly
move the Bij away from such starting conditions.

The non-noise part of the map involves B and B−1.
Without the non-linear inverse term the map would produce
independent and trivial random walks for each Bij — the
inverse introduces a linking of all information. We have
chosen B−1 because of its indirect connection with quantum
field theory (see sec. 4) and because of its self-organising
property. It is the conjunction of the noise and non-noise
terms which leads to the emergence of self-organisation:
without the noise the map converges (and this determines the
signs in formula 1), in a deterministic manner to a degenerate
condensate type structure, discussed in [5], corresponding to
a pairing of linear combinations of monads. Hence the map
models a non-local and noisy information system from which
we extract spatial and time-like behaviour, but we expect
residual non-local and random processes characteristic of
quantum phenomena including EPR/Aspect type effects.
While the map already models some time-like behaviour, it is
in the nature of a bootstrap system that we start with process.
In this system the noise corresponds to the Heraclitean flux
which he also called the “cosmic fire”, and from which
the emergence of stable structures should be understood. To
Heraclitus the flame represented one of the earliest examples
of the interplay of order and disorder. The contingency and
self-ordering of the process clearly suggested a model for
reality.

3 Emergent Space and Time

Here we show that the HQS iterative map naturally results
in dynamical 3-dimensional spatial structures. Under the
mapping the noise term will produce rare large value Bij .
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Because the order term is generally much smaller, for small
η, than the disorder term these values will persist under
the mapping through more iterations than smaller valued
Bij . Hence the larger Bij correspond to some temporary
background structure which we now identify.

Consider this relational information from the point of
view of one monad, call it monad i. Monad i is connected via
these large Bij to a number of other monads, and the whole
set forms a tree-graph relationship. This is because the large
links are very improbable, and a tree-graph relationship is
much more probable than a similar graph with additional
links. The simplest distance measure for any two nodes
within a graph is the smallest number of links connecting
them. Let D1, D2, . . . , DL be the number of nodes of dis-
tance 1, 2, . . . , L from node i (define D0=1 for conve-
nience), where L is the largest distance from i in a particular
tree-graph, and let N be the total number of nodes in the
tree. Then

∑L
k=0Dk = N . See Fig.1 for an example.

i D0 ≡ 1

D1 = 2

D2 = 4

D3 = 1

Fig. 1: An N = 8, L = 3 tree, with indicated distance distributions
from monad i.

Now consider the number of different N -node trees,
with the same distance distribution {Dk}, to which i can
belong. By counting the different linkage patterns, together
with permutations of the monads we obtain

N (D,N) =
(M − 1)!DD2

1 DD3
2 . . . DDL

L−1

(M −N − 2)!D1!D2! . . . DL!
, (2)

here DDk+1

k is the number of different possible linkage pat-
terns between levels k and k+1, and (M−1)!/(M−N−2)! is
the number of different possible choices for the monads, with
i fixed. The denominator accounts for those permutations
which have already been accounted for by theDDk+1

k factors.
Nagels [8] analysed N (D,N), and the results imply that the
most likely tree-graph structure to which a monad can belong
has the distance distribution

Dk ≈
L2 lnL

2π2
sin2

(
πk

L

)

k = 1, 2, . . . , L. (3)

for a given arbitrary L value. The remarkable property of this
most probable distribution is that the sin2 indicates that the
tree-graph is embeddable in a 3-dimensional hypersphere,
S3. Most importantly, monad i “sees” its surroundings as
being 3-dimensional, since Dk∼ k2 for small πk/L. We call
these 3-spaces gebits (geometrical bits). We note that the
lnL factor indicates that larger gebits have a larger number
density of points.

Now the monads for which the Bij are large thus form
disconnected gebits. These gebits however are in turn linked
by smaller and more transient Bkl, and so on, until at some
low level the remaining Bmn are noise only; that is they
will not survive an iteration. Under iterations of the map this
spatial network undergoes growth and decay at all levels, but
with the higher levels (larger {Bij} gebits) showing most
persistence. By a similarity transformation we can arrange
the gebits into block diagonal matrices b1, b2, . . ., within B,
and embedded amongst the smaller and more common noise
entries. Now each gebit matrix has det (b) = 0, since a tree-
graph connectivity matrix is degenerate. Hence under the
mapping the B−1 order term has an interesting dynamical
effect upon the gebits since, in the absence of the noise, B−1

would be singular. The outcome from the iterations is that
the gebits are seen to compete and to undergo mutations,
for example by adding extra monads to the gebit. Numerical
studies reveal gebits competing and “consuming” noise, in a
Darwinian process.

Hence in combination the order and disorder terms syn-
thesise an evolving dynamical 3-space with hierarchical stru-
ctures, possibly even being fractal. This emergent 3-space
is entirely relational; it does not arise within any a priori
geometrical background structure. By construction it is the
most robust structure, — however other softer emergent
modes of behaviour will be seen as attached to or embedded
in this flickering 3-space. The possible fractal character could
be exploited by taking a higher level view: identifying each
gebit→ I as a higher level monad, with appropriate inform-
ational connections BIJ , we could obtain a higher level itera-
tive map of the form (1), with new order/disorder terms. This
would serve to emphasise the notion that in self-referential
systems there are no “things”, but rather a complex network
of iterative relations.

In the model the iterations of the map have the appearance
of a cosmic time. However the analysis to reveal the internal
experiential time phenomenon is non-trivial, and one would
certainly hope to recover the local nature of experiential time
as confirmed by special and general relativity experiments.
However it is important to notice that the modelling of
the time phenomenon here is much richer than that of the
historical/geometric model. First the map is clearly uni-
directional (there is an “arrow of time”) as there is no way
to even define an inverse mapping because of the role of
the noise term, and this is very unlike the conventional
differential equations of traditional physics. In the analysis
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of the gebits we noted that they show strong persistence, and
in that sense the mapping shows a natural partial-memory
phenomenon, but the far “future” detailed structure of even
this spatial network is completely unknowable without per-
forming the iterations. Furthermore the sequencing of the
spatial and other structures is individualistic in that a re-
run of the model will always produce a different outcome.
Most important of all is that we also obtain a modelling of
the “present moment” effect, for the outcome of the next
iteration is contingent on the noise. So the system shows
overall a sense of a recordable past, an unknowable future
and a contingent present moment.

The HQS process model is expected to be capable of a
better modelling of our experienced reality, and the key to
this is the noisy processing the model requires. As well we
need the “internal view”, rather than the “external view” of
conventional modelling in physics. Nevertheless we would
expect that the internally recordable history could be indexed
by the usual real-number/geometrical time coordinate.

This new self-referential process modelling requires a
new mode of analysis since one cannot use externally im-
posed meta-rules or interpretations, rather, the internal ex-
periential phenomena and the characterisation of the simpler
ones by emergent “laws” of physics must be carefully det-
ermined. There has indeed been an ongoing study of how
(unspecified) closed self-referential noisy information sys-
tems acquire self-knowledge and how the emergent hierarch-
ical structures can “recognise” the same “individuals” [9].
These Combinatoric Hierarchy (CH) studies use the fact that
only recursive constructions are possible in Heraclitean/Leib-
nizian systems. We believe that our HQS process model may
provide an explicit representation for the CH studies.

4 Possible-Histories Ensemble

While the actual history of the noisy map can only be found
in a particular “run”, we can nevertheless show that averages
over an ensemble of possible histories can be determined, and
these have the form of functional integrals. The notion of an
ensemble average for any function f of the B, at iteration
c = 1, 2, 3, . . ., is expressed by

< f [B]>c=

∫
DBf [B] Φc[B] , (4)

where Φc[B] is the ensemble distribution. By the usual con-
struction for Wiener processes we obtain the Fokker-Planck
equation

Φc+1[B] = Φc[B]−

−
∑

ij

η

{
∂

∂Bij

[
(B+B−1)ijΦc[B]

]
−

∂2

∂B2ij
Φc[B]

}

.
(5)

For simplicity, in the quasi-stationary regime, we find

Φ[B] ∼ exp (−S[B]) , (6)

where the action is

S[B] =
∑

i>j

B2ij − TrLn(B) . (7)

Then the ensemble average is

1

Z

∫
DBf [B] exp (−S[B]) , (8)

where Z ensures the correct normalisation for the averages.
The connection between (1) and (7) is given by

(B−1)ij =
∂

∂Bji
TrLn(B) =

∂

∂Bji
ln
∏

α

λα[B] . (9)

which probes the sensitivity of the invariant ensemble in-
formation to changes in Bji, where the information is in
the eigenvalues λα[B] of B. A further transformation is
possible [5]:

< f [B]>=
1

Z

∫
DmDmDBf [B]×

× exp

[

−
∑

i>j

B2ij +
∑

i,j

Bij(mimj −mjmi)

]

=

=
1

Z
f

[
∂

∂J

]∫
DmDm exp

[

−
∑

i>j

mimjmjmi+

+
∑

ij Jij(mimj −mjmi

]

.

(10)

This expresses the ensemble average in terms of an anti-
commuting Grassmannian algebraic computation [5]. This
suggests how the noisy information map may lead to fermi-
onic modes. While functional integrals of the above forms
are common in quantum field theory, it is significant that in
forming the ensemble average we have lost the contingency
or present-moment effect. This always happens — ensemble
averages do not tell us about individuals — and then the
meta-rules and “interpretations” must be supplied in order to
generate some notion of what an individual might have been
doing.

The Wiener iterative map can be thought of as a resolut-
ion of the functional integrals into different possible histories.
However this does not imply the notion that in some sense all
these histories must be realised, rather only one is required.
Indeed the basic idea of the process modelling is that of
individuality. Not unexpectedly we note that the modelling
in (1) must be done from within that one closed system.

In conventional quantum theory it has been discovered
that the individuality of the measurement process — the
“click” of the detector — can be modelled by adding a noise
term to the Schrödinger equation [10]. Then by performing an
ensemble average over many individual runs of this modified
Schrödinger equation one can derive the ensemble mea-
surement postulate — namely <A>=(ψ,Aψ) for the “ex-
pectation value of the operator A”. This individualising of
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the ensemble average has been shown to also relate to the
decoherence functional formalism [11]. There are a number
of other proposals considering noise in spacetime model-
ling [12, 13].

5 Conclusion

We have addressed here the unique end-game problem which
arises when we attempt to model and comprehend the uni-
verse as a closed system. The outcome is the suggestion
that the peculiarities of this end-game problem are directly
relevant to our everyday experience of time and space; part-
icularly the phenomena of the contingent present moment
and the three-dimensionality of space. This analysis is based
upon the basic insight that a closed self-referential system is
necessarily noisy. This follows from Algorithmic Information
Theory. To explore the implications we have considered a
simple pregeometric non-linear noisy iterative map. In this
way we construct a process bootstrap system with minimal
structure. The analysis shows that the first self-organised
structure to arise is a dynamical 3-space formed from com-
peting pieces of 3-geometry — the gebits. The analysis of
experiential time is more difficult, but it will clearly be a
contingent and process phenomenon which is more complex
than the current geometric/historic modelling of time. To
extract emergent properties of self-referential systems re-
quires that an internal view be considered, and this itself
must be a recursive process. We suggest that the non-local
self-referential noise has been a major missing component
of our modelling of reality. Two particular applications are
an understanding of why quantum detectors “click” and of
the physics of consciousness [1], since both clearly have
an essential involvement with the modelling of the present-
moment effect, and cannot be understood using the geo-
metric/historic modelling of time.

We thank Susan Gunner and Khristos Nizamis for useful
comments. Research supported by an ARC Small Grant from
Flinders University.
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As shown, experiments registered unmatter: a new kind of matter whose atoms include
both nucleons and anti-nucleons, while their life span was very short, no more than
10−20sec. Stable states of unmatter can be built on quarks and anti-quarks: applying
the unmatter principle here it is obtained a quantum chromodynamics formula that
gives many combinations of unmatter built on quarks and anti-quarks.

In the last time, before the apparition of my articles defining
“matter, antimatter, and unmatter” [1, 2], and Dr. S. Chubb’s
pertinent comment [3] on unmatter, new development has
been made to the unmatter topic.

1 Definition of Unmatter

In short, unmatter is formed by matter and antimatter that
bind together [1, 2]. The building blocks (most elementary
particles known today) are 6 quarks and 6 leptons; their 12
antiparticles also exist. Then unmatter will be formed by
at least a building block and at least an antibuilding block
which can bind together.

2 Exotic atom

If in an atom we substitute one or more particles by other
particles of the same charge (constituents) we obtain an
exotic atom whose particles are held together due to the
electric charge. For example, we can substitute in an ordinary
atom one or more electrons by other negative particles (say
π−, anti-ρ-meson, D−, D−s - muon, τ , Ω−,Δ−, etc., generally
clusters of quarks and antiquarks whose total charge is neg-
ative), or the positively charged nucleus replaced by other
positive particle (say clusters of quarks and antiquarks whose
total charge is positive, etc).

3 Unmatter atom

It is possible to define the unmatter in a more general way,
using the exotic atom. The classical unmatter atoms were
formed by particles like:

(a) electrons, protons, and antineutrons, or

(b) antielectrons, antiprotons, and neutrons.

In a more general definition, an unmatter atom is a system
of particles as above, or such that one or more particles
are replaces by other particles of the same charge. Other
categories would be:

(c) a matter atom with where one or more (but not all) of
the electrons and/or protons are replaced by antimatter
particles of the same corresponding charges, and

(d) an antimatter atom such that one or more (but not all)
of the antielectrons and/or antiprotons are replaced by
matter particles of the same corresponding charges.

In a more composed system we can substitute a particle
by an unmatter particle and form an unmatter atom.

Of course, not all of these combinations are stable, semi-
stable, or quasi-stable, especially when their time to bind
together might be longer than their lifespan.

4 Examples of unmatter

During 1970-1975 numerous pure experimental verifications
were obtained proving that “atom-like” systems built on
nucleons (protons and neutrons) and anti-nucleons (anti-
protons and anti-neutrons) are real. Such “atoms”, where
nucleon and anti-nucleon are moving at the opposite sides of
the same orbit around the common centre of mass, are very
unstable, their life span is no more than 10−20 sec. Then
nucleon and anti-nucleon annihilate into gamma-quanta and
more light particles (pions) which can not be connected with
one another, see [6, 7, 8]. The experiments were done in
mainly Brookhaven National Laboratory (USA) and, partial-
ly, CERN (Switzerland), where “proton — anti-proton” and
“anti-proton — neutron” atoms were observed, called them
p̄p and p̄n respectively, see Fig. 1 and Fig. 2.

After the experiments were done, the life span of such
“atoms” was calculated in theoretical way in Chapiro’s works
[9, 10, 11]. His main idea was that nuclear forces, acting
between nucleon and anti-nucleon, can keep them far way
from each other, hindering their annihilation. For instance,
a proton and anti-proton are located at the opposite sides
in the same orbit and they are moved around the orbit
centre. If the diameter of their orbit is much more than
the diameter of “annihilation area”, they can be kept out of
annihilation (see Fig. 3). But because the orbit, according to
Quantum Mechanics, is an actual cloud spreading far around
the average radius, at any radius between the proton and
the anti-proton there is a probability that they can meet one
another at the annihilation distance. Therefore “nucleon —
anti-nucleon” system annihilates in any case, this system
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Fig. 1: Spectra of proton impulses in the reaction p̄+d→ (p̄n)+p.
The upper arc — annihilation of p̄n into even number of pions, the
lower arc — its annihilation into odd number of pions. The observed
maximum points out that there is a connected systemp̄n. Abscissa
axis represents the proton impulse in GeV/sec (and the connection
energy of the system p̄n). Ordinate axis — the number of events.
Cited from [6].

is unstable by definition having life span no more than
10−20 sec.

Unfortunately, the researchers limited the research to the
consideration of p̄p and p̄n “atoms” only. The reason was
that they, in the absence of a theory, considered p̄p and p̄n
“atoms” as only a rare exception, which gives no classes of
matter.

Despite Benn Tannenbaum’s and Randall J. Scalise’s re-
jections of unmatter and Scalise’s personal attack on me in
a true Ancient Inquisitionist style under MadSci moderator
John Link’s tolerance (MadSci web site, June-July 2005),
the unmatter does exists, for example some messons and
antimessons, through for a trifling of a second lifetime, so
the pions are unmatter∗, the kaon K+ (uŝ ), K− (u ŝ), Phi
(sŝ ), D+ (cd )̂, D0 (cu )̂, D+s (cŝ ), J/Psi (cĉ ), B− (bu )̂, B0

(db )̂, B0s (sb )̂, Upsilon (bb )̂, etc. are unmatter too†.
Also, the pentaquark theta-plusΘ+, of charge +1, uuddŝ

(i. e. two quarks up, two quarks down, and one anti-strange
quark), at a mass of 1.54 GeV and a narrow width of 22
MeV, is unmatter, observed in 2003 at the Jefferson Lab in
Newport News, Virginia, in the experiments that involved
multi-GeV photons impacting a deuterium target. Similar
pentaquark evidence was obtained by Takashi Nakano of
Osaka University in 2002, by researchers at the ELSA accel-
erator in Bonn in 1997-1998, and by researchers at ITEP in
Moscow in 1986. Besides theta-plus, evidence has been

∗Which have the composition u d̂ and ud ,̂ where by uˆ we mean
anti-up quark, d = down quark, and analogously u = up quark and dˆ =
anti-down quark, while by ˆwe mean “anti”.

†Here c = charm quark, s = strange quark, b = bottom quark.

Fig. 2: Probability σ of interaction between p̄, p and deutrons d
(cited from [7]). The presence of maximum stands out the existence
of the resonance state of “nucleon — anti-nucleon”.

found in one experiment [4] for other pentaquarks, Ξ−s
(ddssu )̂ and Ξ+s (uussd )̂.

In order for the paper to be self-contained let’s recall
that the pionium is formed by a π+ and π− mesons, the
positronium is formed by an antielectron (positron) and an
electron in a semi-stable arrangement, the protonium is
formed by a proton and an antiproton also semi-stable, the
antiprotonic helium is formed by an antiproton and electron
together with the helium nucleus (semi-stable), and muonium
is formed by a positive muon and an electron. Also, the
mesonic atom is an ordinary atom with one or more of its
electrons replaced by negative mesons. The strange matter
is a ultra-dense matter formed by a big number of strange
quarks bounded together with an electron atmosphere (this
strange matter is hypothetical).

From the exotic atom, the pionium, positronium, pro-
tonium, antiprotonic helium, and muonium are unmatter. The
mesonic atom is unmatter if the electron(s) are replaced by
negatively-charged antimessons. Also we can define a me-
sonic antiatom as an ordinary antiatomic nucleous with one
or more of its antielectrons replaced by positively-charged
mesons. Hence, this mesonic antiatom is unmatter if the
antielectron(s) are replaced by positively-charged messons.
The strange matter can be unmatter if these exists at least
an antiquark together with so many quarks in the nucleous.
Also, we can define the strange antimatter as formed by
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Fig. 3: Annihilation area and the probability arc in “nucleon —
anti-nucleon” system (cited from [11]).

a large number of antiquarks bound together with an anti-
electron around them. Similarly, the strange antimatter can
be unmatter if there exists at least one quark together with
so many antiquarks in its nucleous.

The bosons and antibosons help in the decay of unmatter.
There are 13 + 1 (Higgs boson) known bosons and 14 anti-
bosons in present.

5 Quantum Chromodynamics formula

In order to save the colorless combinations prevailed in the
Theory of Quantum Chromodynamics (QCD) of quarks and
antiquarks in their combinations when binding, we devise
the following formula:

Q− A ∈ ±M3 , (1)

whereM3means multiple of three, i. e. ±M3={3k| k∈Z}=
={. . . ,−12,−9,−6,−3, 0, 3, 6, 9, 12, . . .}, and Q=number
of quarks, A = number of antiquarks. But (1) is equivalent to

Q ≡ A (mod 3) (2)

(Q is congruent to A modulo 3).
To justify this formula we mention that 3 quarks form

a colorless combination, and any multiple of three (M3)
combination of quarks too, i. e. 6, 9, 12, etc. quarks. In
a similar way, 3 antiquarks form a colorless combination,
and any multiple of three (M3) combination of antiquarks
too, i. e. 6, 9, 12, etc. antiquarks. Hence, when we have
hybrid combinations of quarks and antiquarks, a quark and
an antiquark will annihilate their colors and, therefore, what’s
left should be a multiple of three number of quarks (in the
case when the number of quarks is bigger, and the difference
in the formula is positive), or a multiple of three number
of antiquarks (in the case when the number of antiquarks is
bigger, and the difference in the formula is negative).

6 Quark-antiquark combinations

Let’s note by q= quark ∈ {Up,Down,Top,Bottom, Strange,
Charm}, and by a=antiquark∈{Up̂ ,Down̂ ,Top̂ ,Bottom ,̂

Strangê ,Charm }̂. Hence, for combinations of n quarks and
antiquarks, n> 2, prevailing the colorless, we have the fol-
lowing possibilities:

• if n=2, we have: qa (biquark — for example the me-
sons and antimessons);

• if n=3, we have qqq, aaa (triquark — for example the
baryons and antibaryons);

• if n=4, we have qqaa (tetraquark);

• if n=5, we have qqqqa, aaaaq (pentaquark);

• if n=6, we have qqqaaa, qqqqqq, aaaaaa
(hexaquark);

• if n=7, we have qqqqqaa, qqaaaaa (septiquark);

• if n=8, we have qqqqaaaa, qqqqqqaa, qqaaaaaa
(octoquark);

• if n=9, we have qqqqqqqqq, qqqqqqaaa,
qqqaaaaaa, aaaaaaaaa (nonaquark);

• if n=10, we have qqqqqaaaaa, qqqqqqqqaa,
qqaaaaaaaa (decaquark); etc.

7 Unmatter combinations

From the above general case we extract the unmatter combi-
nations:

• For combinations of 2 we have: qa (unmatter biquark),
mesons and antimesons; the number of all possible
unmatter combinations will be 6×6 = 36, but not all
of them will bind together.

It is possible to combine an entity with its mirror opposite
and still bound them, such as: uu ,̂ dd ,̂ sŝ , cĉ , bbˆwhich
form mesons. It is possible to combine, unmatter + unmatter
= unmatter, as in udˆ+ uŝ = uud ŝ̂ (of course if they bind
together).

• For combinations of 3 (unmatter triquark) we can not
form unmatter since the colorless can not hold.

• For combinations of 4 we have: qqaa (unmatter tetra-
quark); the number of all possible unmatter combina-
tions will be 62×62 = 1,296, but not all of them will
bind together.

• For combinations of 5 we have: qqqqa, or aaaaq
(unmatter pentaquarks); the number of all possible
unmatter combinations will be 64×6+64×6 = 15,552,
but not all of them will bind together.

• For combinations of 6 we have: qqqaaa (unmatter
hexaquarks); the number of all possible unmatter com-
binations will be 63×63 = 46,656, but not all of them
will bind together.

• For combinations of 7 we have: qqqqqaa, qqaaaaa
(unmatter septiquarks); the number of all possible un-
matter combinations will be 65×62+62×65 = 559,872,
but not all of them will bind together.

F. Smarandache. More Types of Unmatter and a Quantum Chromodynamics Formula 115



Volume 2 PROGRESS IN PHYSICS July, 2005

• For combinations of 8 we have: qqqqaaaa, qqqqqqqa,
qaaaaaaa (unmatter octoquarks); the number of all the
unmatter combinations will be 64×64+67×61+61×67=
= 5,038,848, but not all of them will bind together.

• For combinations of 9 we have types: qqqqqqaaa,
qqqaaaaaa (unmatter nonaquarks); the number of all
the unmatter combinations will be 66×63+63×66=2×69

= 20,155,392, but not all of them will bind together.

• For combinations of 10 we have types: qqqqqqqqaa,
qqqqqaaaaa, qqaaaaaaaa (unmatter decaquarks);
the number of all the unmatter combinations will be
3×610= 181,398,528, but not all of them will bind to-
gether. Etc.

I wonder if it is possible to make infinitely many co-
mbinations of quarks/antiquarks and leptons/antileptons. . .
Unmatter can combine with matter and/or antimatter and the
result may be any of these three. Some unmatter could be in
the strong force, hence part of hadrons.

8 Unmatter charge

The charge of unmatter may be positive as in the pentaquark
theta-plus, 0 (as in positronium), or negative as in anti-ρ-
meson (u d̂) (M. Jordan).

9 Containment

I think for the containment of antimatter and unmatter it
would be possible to use electromagnetic fields (a container
whose walls are electromagnetic fields). But its duration is
unknown.

10 Further research

Let’s start from neutrosophy [13], which is a generalization
of dialectics, i. e. not only the opposites are combined but also
the neutralities. Why? Because when an idea is launched, a
category of people will accept it, others will reject it, and
a third one will ignore it (don’t care). But the dynamics
between these three categories changes, so somebody ac-
cepting it might later reject or ignore it, or an ignorant will
accept it or reject it, and so on. Similarly the dynamicity
of <A>, <antiA>, <neutA>, where <neutA> means neither
<A> nor <antiA>, but in between (neutral). Neutrosophy
considers a kind not of di-alectics but tri-alectics (based on
three components: <A>, <antiA>, <neutA>). Hence unmatter
is a kind of neutrality (not referring to the charge) between
matter and antimatter, i. e. neither one, nor the other.

Upon the model of unmatter we may look at ungravity,
unforce, unenergy, etc.

Ungravity would be a mixture between gravity and anti-
gravity (for example attracting and rejecting simultaneously
or alternatively; or a magnet which changes the + and −
poles frequently).

Unforce. We may consider positive force (in the direction

we want), and negative force (repulsive, opposed to the pre-
vious). There could be a combination of both positive and
negative forces in the same time, or alternating positive and
negative, etc.

Unenergy would similarly be a combination between
positive and negative energies (as the alternating current,
a. c., which periodically reverses its direction in a circuit and
whose frequency, f , is independent of the circuit’s constants).
Would it be possible to construct an alternating-energy gen-
erator?

To conclusion: According to the Universal Dialectic the
unity is manifested in duality and the duality in unity. “Thus,
Unmatter (unity) is experienced as duality (matter vs anti-
matter). Ungravity (unity) as duality (gravity vs antigravity).
Unenergy (unity) as duality (positive energy vs negative en-
ergy) and thus also . . . between duality of being (existence)
vs nothingness (antiexistence) must be ‘unexistence’ (or pure
unity)” (R. Davic).

References

1. Smarandache F. A new form of matter — unmatter, composed
of particles and anti-particles. Progr. in Phys., 2005, v. 1, 9–11.

2. Smarandache F. Matter, antimatter, and unmatter. Infinite
Energy, v. 11, No. 62, 50–51, (July/August 2005).

3. Chubb S. Breaking through editorial. Infinite Energy, v. 11,
No. 62, 6–7 (July/August 2005).

4. Alt C. et al., (NA49 Collaboration). Phys. Rev. Lett., 2004,
v. 92, 042003.

5. Carman D. S., Experimental evidence for the pentaquark. Eur.
Phys. A, 2005, v. 24, 15–20.

6. Gray L., Hagerty P., Kalogeropoulos T. E. Evidence for the
existence of a narrow p-barn bound state. Phys. Rev. Lett.,
1971, v. 26, 1491–1494.

7. Carrol A. S. et al. Observation of structure in p̄p and p̄d total
cross sections below 1.1 GeV/s. Phys. Rev. Lett., 1974, v.32,
247–250.

8. Kalogeropoulos T. E., Vayaki A., Grammatikakis G., Tsilimi-
gras T., Simopoulou E. Observation of excessive and direct
gamma production in p̄d annihilations at rest. Phys. Rev. Lett.,
1974, v.33, 1635–1637.

9. Chapiro I. S. Physics-Uspekhi, 1973, v.109, 431.

10. Bogdanova L. N., Dalkarov O. D., Chapiro I. S. Quasinuclear
systems of nucleons and antinucleons. Annals of Physics, 1974,
v.84, 261–284.

11. Chapiro I. S. New “nuclei” built on nucleons and anti-nucleons.
Nature (Russian), 1975, No. 12, 68–73.

12. Davic R., John K., Jordan M., Rabounski D., Borissova L.,
Levin B., Panchelyuga V., Shnoll S., Private communications
with author, June-July, 2005.

13. Smarandache F. A unifying field in logics, neutrosophic logic /
neutrosophy, neutrosophic set, neutrosophic probability. Amer.
Research Press, 1998.

116 F. Smarandache. More Types of Unmatter and a Quantum Chromodynamics Formula



Progress in Physics is a quarterly issue scientific journal, registered with
the Library of Congress (DC).

This is a journal for scientific publications on advanced studies in
theoretical and experimental physics, including related themes from
mathematics.

Electronic version of this journal:
http://www.geocities.com/ptep_online

Editor in Chief

Dmitri Rabounski rabounski@yahoo.com

Associate Editors

Prof. Florentin Smarandache
Dr. Larissa Borissova
Stephen J. Crothers

smarand@unm.edu

lborissova@yahoo.com

thenarmis@yahoo.com

Progress in Physics is peer reviewed and included in the abstracting
and indexing coverage of: Mathematical Reviews and MathSciNet of
AMS (USA), DOAJ of Lund University (Sweden), Referativnyi Zhurnal
VINITI (Russia), etc.

Department of Mathematics, University of New Mexico,
200 College Road, Gallup, NM 87301, USA

Printed in the United States of America

Issue 2005, Volume 2
US $ 20.00




