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Unification of Interactions in Discrete Spacetime

Franklin Potter

Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA, USA
Formerly at Department of Physics, University of California, Irvine

E-mail: drpotter@lycos.com

I assume that both spacetime and the internal symmetry space of the Standard Model
(SM) of leptons and quarks are discrete. If lepton and quark states represent specific
finite binary rotational subgroups of the SM gauge group, unification with gravitation
is accomplished by combining finite subgroups of the Lorentz group SO(3,1) with
the specific finite SM subgroups. The unique result is a particular finite subgroup
of SO(9,1) in discrete 10-D spacetime related to E8 × E8 of superstring theory. A
physical model of particles based upon the finite subgroups and the discrete geometry
is proposed. Evidence for discreteness might be the appearance of a b’ quark at about
80–100 GeV decaying via FCNC to a b quark plus a photon at the Large Hadron
Collider.

1 Introduction

I consider both spacetime and the internal symmetry space of
the Standard Model (SM) of leptons and quarks to be discrete
instead of continuous. Using specific finite subgroups of
the SM gauge group, a unique finite group in discrete 10-
D spacetime unifies the fundamental interactions, including
gravitation. This finite group is a special subgroup of the
continuous group E8 × E8 that in superstring theory (also
called M-theory) is considered to be the most likely group
for unifying gravitation with the SM gauge group.

This unique result follows directly from two fundamental
assumptions: (1) the internal symmetry space is discrete,
requiring specific finite binary rotational subgroups of the SM
gauge group to dictate the physical properties of the lepton
and quark states, and (2) spacetime is discrete, and therefore
its discrete symmetries correspond to finite subgroups of the
Lorentz group. Presumably, this discreteness must occur as
one approaches the Planck scale of about 10−35 meters.

I suggest a particular physical model of fundamental
fermions based upon these finite subgroups in the discrete
geometry. Further evidence for this discreteness might be
the appearance of a b’ quark at about 80–100 GeV decaying
via FCNC to a b quark plus a photon at the Large Hadron
Collider.

2 Motivation

The Standard Model (SM) of leptons and quarks successfully
describes their electromagnetic, weak and color interactions
in terms of symmetries dictated by the SU(2)L × U(1)Y ×
SU(3)C continuous gauge group. These fundamental fermi-
ons and their antiparticles are defined by their electroweak
isospin states in two distinct but gauge equivalent unitary
planes in an internal symmetry space “attached” at a space-

time point. Consequently, particle states and antiparticle
states have opposite-signed physical properties but their
masses are the same sign.

In an earlier 1994 paper [1] I discussed how the SM
continuous gauge group could be acting like a “cover group”
for its finite binary rotational subgroups, thereby hiding any
important underlying discrete rotational symmetries of these
fundamental particle states. From group theory, one knows
that the continuous SM gauge group contains thousands
of elements of finite order including, for example, all the
elements of the finite binary rotational subgroups in their
3-dimensional and 4-dimensional representations. I showed
that these subgroups were very important because they are
connected to the j-invariant of elliptic modular functions
from which one can predict the mass ratios for the lepton
and quark states.

The mathematical properties of these finite subgroups of
the SM dictate the same physical properties of the leptons
and quarks as achieved by the SM. However, electroweak
symmetry breaking to these specific finite binary rotational
subgroups occurs without a Higgs particle. More importantly,
some additional physical properties are dictated also, such as
their mass ratios, why more than one generation is present,
the important family relationships, and the dimensionalities
of the particle states because they are no longer point part-
icles.

The gravitational interaction is not included explicitly in
the SM gauge group. However, because the finite binary ro-
tational subgroup approach determined the lepton and quark
mass ratios, one suspects that the gravitational interaction
is included already in the discretized version of the gauge
group. Or, equivalently, since mass/energy is the source of the
gravitational interaction, the gravitational interaction arises
from the discrete symmetries associated with the finite rota-
tional subgroups.

F. Potter. Unification of Interactions in Discrete Spacetime 3



Volume 1 PROGRESS IN PHYSICS January, 2006

Therefore, I make some conjectures. If leptons and quarks
actually represent the specific discrete symmetries of the
finite subgroups of the SM gauge group as proposed, the
internal symmetry space may be discrete instead of being
continuous. Going one step further, then not only the internal
symmetry space might be discrete but also spacetime itself
may be discrete, since gravitation determines the spacetime
metric. Spacetime would appear to be continuous only at
the low resolution scales of experimental apparatus such as
the present particle colliders. Unification of the fundamental
interactions then requires combining these finite groups
mathematically.

3 4-D internal symmetry space?

I take the internal symmetry space of the SM to be discrete,
but we need to know how many dimensions there are. Do
we need two complex spatial dimensions for a unitary plane
as suggested by SU(2), or do we need three as suggested by
the SU(3) symmetry of the color interaction, or do we need
more?

The lepton and quark particle states are defined as elec-
troweak isospin states by the electroweak part of the SM
gauge group, with particles in the normal unitary plane C2

and antiparticles in the conjugate unitary plane C ′2. Photon,
W+, W−, and Z0 interactions of the electroweak SU(2)L×
U(1)Y gauge group rotate the two particle states (i. e., the
two complex basis spinors in the unitary plane) into one
another. For example, e− + W+→ νe. These electroweak
rotations can be considered to occur also in an equivalent
4-dimensional real euclidean space R4 and in an equivalent
quaternion space Q, both these spaces being useful for a
better geometrical understanding of the SM.

The quark states are defined also by the color symmetries
of SU(3)C , i. e., each quark comes in one of three possible
colors, red R, green G, or blue B, while the lepton states
have no color charge. Normally, one would consider SU(3)C
operating in a space of three complex dimensions, or its
equivalent six real dimensions. In fact, SU(3)C can operate
successfully in the smaller unitary plane C2, because each
SU(3) operation can be written as the product of three specific
SU(2) operations [2]. An alternative geometrical explanation
has the gluon operations of the color interaction rotate one
color state into another in a 4-dimensional real space, as
discussed in my 1994 article. Briefly, real 4-dimensional
space R4 has four orthogonal coordinates (w, x, y, z), and its
4-D rotations occur simultaneously in two orthogonal planes.
There being only three distinct pairs of orthogonal planes,
[wx, yz], [xy, zw], and [yw, xz], each color R, G, or B
is assigned to a specific pair, thereby making color an exact
geometrical symmetry. Consequently, the gluon operations
of SU(3)C occur in the 4-D real space R4 that is equivalent
to the unitary plane. Detailed matrix operations confirm that

hadrons with quark-antiquark pairs, three quarks, or three
antiquarks, are colorless combinations.

Therefore I take the internal symmetry space to be a
discrete 4-dimensional real space because this space is the
minimum dimensional space that allows the SM gauge group
to operate completely. One does not need a larger space, e. g.,
a 6-dimensional real space, for its internal symmetry space.

4 Dimensions of spacetime?

I take physical spacetime to be 4-dimensional with its one
time dimension. Spacetime is normally considered to be
continuous and 4-dimensional, with three spatial dimensions
and one time dimension. However, in the last two decades
several approaches toward unifying all fundamental interact-
ions have considered additional mathematical spatial dimens-
ions and/or more time dimensions. For example, superstring
theory [3] at the high energy regime, i. e., at the Planck
scale, proposes 10 or 11 spacetime dimensions in its present
mathematical formulation, including the one time dimension.
These extra spatial dimensions may correspond to six or
seven dimensions “curled up” into an internal symmetry
space for defining fundamental particle states at each space-
time point in order to accommodate the SM in the low energy
regime. The actual physical spacetime itself may still have
three spatial dimensions and one time dimension.

I take 4-D spacetime to be discrete. We do not know
whether spacetime is continuous or discrete. If the internal
symmetry space is indeed discrete, then perhaps spacetime
itself might be discrete also. Researchers in loop quantum
gravity [4] at the Planck scale divide spacetime into discrete
subunits, considering a discrete 4-D spacetime with its dis-
crete Lorentz transformations to be a viable approach.

The goal now is to combine the finite subgroups of the
gauge group of the SM and the finite group of discrete
Lorentz boosts and discrete spacetime rotations into one uni-
fied group. All four known fundamental interactions would
be unified. Although many unification schemes for the fun-
damental interactions have been attempted over the past three
decades utilizing continuous groups, I believe this attempt is
the first one that combines finite groups. Mathematically, the
result must be unique, otherwise different fundamental laws
could exist in different parts of the universe.

5 Discrete internal space

The most important finite symmetry groups in the 4-D dis-
crete internal symmetry space are the 3-D binary rotational
subgroups [3, 3, 2], [4, 3, 2], and [5, 3, 2] of the SM gauge
group because they are the symmetry groups I have assigned
to the three lepton families. They contain discrete rotations
and inversions and operate in the 3-D subspace R3 of R4

and C2.

4 F.Potter. Unification of Interactions in Discrete Spacetime
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Being subgroups of SU(2)L × U(1)Y , they have group
operations represented by 2×2 unitary matrices or, equiv-
alently, by unit quaternions. Quaternions provide the more
obvious geometrical connection [5], because quaternions per-
form the dual role of being a group operation and of being a
vector in R3 and in R4. One can think visually about the 3-D
group rotations and inversions for these three subgroups as
quaternions operating on the Platonic solids, with the same
quaternions also defining the vertices of regular geometrical
objects in R4.

The two mathematical entities, the unit quaternion q and
the SU(2) matrix, are related by

q = w + x i+ y j+ z k ⇐⇒

(
w + iz x+ iy
−x+ iy w − iz

)

(1)

where the i, j, and k are unit imaginaries, their coefficients
are real, andw2+x2+y2+z2 = 1. The conjugate quaternion
q′ = w− x i− y j− z k and its corresponding matrix would
represent the same group operation in the conjugate unitary
plane for the antiparticles. Recall that Clifford algebra and
Bott periodicity dictate that only R4, R8, and other real
spaces Rn with dimensions divisible by four have two equiv-
alent conjugate spaces, the specific mathematical property
that accommodates both particle states and antiparticle states.
The group U(1)Y for weak hypercharge Y then reduces the
symmetry to being gauge equivalent so that particles and
antiparticles have the same positive mass.

One might expect that we need to analyze each of the
three binary rotational subgroups separately when the dis-
crete internal symmetry space is combined with discrete
spacetime. Fortunately, the largest binary rotational group
[5, 3, 2] of icosahedral symmetries can accommodate the
two other groups, and a discussion of its 120 quaternion
operations is all inclusive mathematically. The elements of
this icosahedral group, rotations and inversions, can be re-
presented by the appropriate unit quaternions.

The direct connection between the 3-D and 4-D spaces is
realized when one equates the 120 group operations on the
regular icosahedron (3, 5) to the vectors for the 120 vertices
of the 600-cell hypericosahedron (3, 3, 5) in 4-D space in
a particular way. These operations of the binary icosahedral
group [5, 3, 2] and the vertices of the hypericosahedron are
defined by 120 special unit quaternions qi known as isosians
[6], which have the mathematical form

qi =
(
e1 + e2

√
5
)
+
(
e3 + e4

√
5
)
i

+
(
e5 + e6

√
5
)
j +

(
e7 + e8

√
5
)
k ,

(2)

where the eight ej are special rational numbers. Specifically,
the 120 icosians are obtained by permutations of

(±1, 0, 0, 0) , (±1/2,±1/2,±1/2,±1/2) ,

(0,±1/2,±g/2,±G/2) ,
(3)

where g = G−1 = G − 1 = (−1 +
√
5)/2. Notice that

in each pair, such as (e3 + e4
√
5), only one of the ej is

nonzero, reminding us that the hypericosahedron is really a
4-D object even though we can now define this object in
terms of icosians that are expressed in the much larger R8

euclidean real space.
So the quaternion’s dual role allows us to identify the 120

group operations of the icosahedron with the 120 vertices
of the hypericosahedron expressed both in R4 and in R8,
essentially telescoping from 3-D rotational operations all the
way to their representations in an 8-D space. These special
120 icosians are to be considered as special octonions, 8-
tuples of rational numbers which, with respect to a particular
norm, form part of a special lattice in R8.

Now consider the two other subgroups. The 24 quatern-
ions of the binary tetrahedral group [3, 3, 2] are contained
already in the above 120 icosians. So we are left with ac-
commodating the binary octahedral group [4, 3, 2] into the
same icosian format. We need 48 special quaternions for its
48 operations, the 24 quaternions defining the vertices of
the 4-D object known as the 24-cell contained already in
the hypericosahedron above and another 24 quaternions for
the reciprocal 24-cell. The 120 unit quaternions reciprocal to
the ones above will meet this requirement as well as define
an equivalent set for the reciprocal hypericosahedron, and
this second set of 120 octonions also forms part of a special
lattice in R8. Together, these two lattice parts of 120 icosians
in each combine to form the 240 octonions of the famous E8
lattice inR8, well known for being the densest lattice packing
of spheres in 8-D.

Recall that the three binary rotation groups above are
assigned to the lepton families because, as subgroups of the
SM gauge group, they predict the correct physical properties
of the lepton states, including the correct mass ratios. There-
fore, the lepton states as I have defined them span only
the 3-D real subspace R3 of the unitary plane. That is why
leptons are color neutral and do not participate in the color
interaction, a physical property that requires the ability to
undergo complete 4-D rotations.

So how do quark states fit into the icosian picture? I
have the quark states in the SM spanning the whole 4-D real
space, i. e., the whole unitary plane, because they are the
basis states of the 4-D finite binary rotational subgroups of
the SM gauge group. But free quarks in spacetime do not
exist because they are confined according to QCD, forming
the colorless quark-antiquark, three-quark, or three-antiquark
combinations called hadrons. Mathematically, these colorless
hadron states span the 3-D subspace only, so their resultant
discrete symmetry group must be isomorphic to one of the
three binary rotational subgroups we have just considered.
Consequently, the icosians enumerated above account for all
the lepton states and for all the quark states in their allowed
hadronic combinations.

F. Potter. Unification of Interactions in Discrete Spacetime 5
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6 Discrete spacetime

Linear transformations in discrete spacetime are the discrete
rotations and the discrete Lorentz boosts. Before considering
these discrete transformations, however, I discuss the contin-
uous transformations of the “heavenly sphere” as a useful
mathematical construct before reducing the symmetry to
discrete transformations in a discrete spacetime.

The continuous Lorentz group SO(3,1) contains all the
rotations and Lorentz boosts, both continuous and discrete,
for the 4-D continuous spacetime with the Minkowski metric.
Its operations are quaternions because there exists the iso-
morphism

SO(3, 1) = PSL (2,C) . (4)

The group PSL(2,C) consists of unit quaternions and is
the quotient group SL(2,C)/Z formed by its center Z, those
elements of SL(2,C) which commute with all the rest of the
group. Its 2×2 matrix representation has complex numbers
as entries.

The continuous Lorentz transformations (including the
spatial rotations) operate on the “heavenly sphere” [7], i. e.,
the famous Riemann sphere formed by augmenting the com-
plex plane C by the “point at infinity”. The Riemann sphere
is also the space of states of a spin-1/2 particle. For the
Lorentz transformations in spacetime, if you are located at
the center of this “heavenly sphere” so that the light rays
from stars overhead each pass through unique points on
a unit celestial sphere surrounding you, then the Lorentz
boost is a conformal transformation of the star locations.
The constellations will look distorted because the apparent
lengths of the lines connecting the stars will change but the
angles between these connecting lines will remain the same.

These conformal transformations are called fractional
linear transformations, or Möbius transformations, of the
Riemann sphere, expressed by the general form [8]

w 7→
αw + β

γw + δ
, (5)

with α, β, γ, and δ complex, and αδ − βγ 6= 0. The 2×2
matrix representation for transformation of a spinor v as the
map v 7→ Mv is

M =

(
α β
γ δ

)

. (6)

Thus, M is the spinor representation of the Lorentz trans-
formation. M acts on a vector A = vv† via A 7→ MAM†

[9]. All these relationships are tied together by the group
isomorphisms in continuous 4-D spacetime

SO(3, 1) = Möbius group = PSL (2,C) . (7)

Discrete spacetime has discrete Lorentz transformations,
not continuous ones. These discrete rotations and discrete
Lorentz boosts are contained already in SO(3,1), and they

tesselate the Riemann sphere. That is, they form regular
polygons on its surface that correspond to the discrete sym-
metries of the binary tetrahedral, binary octahedral, and bina-
ry icosahedral rotation groups [3, 3, 2], [4, 3, 2], and [5, 3, 2],
the same groups I used in the internal symmetry space for the
discrete symmetries. Therefore, the 240 quaternions defined
previously are required also for the discrete rotations and
discrete Lorentz boosts in the discrete 4-D spacetime. Again,
there are the same 240 icosian connections to octonions in
R8 to form a second E8 lattice.

Thus, the Lorentz group SO(3,1) with its linear trans-
formations in a continuous 4-D spacetime, when reduced to
its discrete transformations in a 4-D discrete spacetime, is
connected mathematically by icosians to the E8 lattice in
R8, telescoping the transformations from a smaller discrete
spacetime to a larger one. Hence all linear transformations
for the particles in a 4-D discrete spacetime have become
represented by 240 discrete transformations in the 8-D dis-
crete spacetime.

7 Resultant spacetime

The discrete transformations in the 4-D discrete internal
symmetry space and in the 4-D discrete spacetime are each
represented by an E8 lattice in the 8-D space R8. The finite
group of the discrete symmetries of the E8 lattice is the Weyl
group E8, not to be confused with the continuous exceptional
Lie group E8. Thus, the Weyl E8 is a finite subgroup of
SO(8), the continuous group of all rotations of the unit sphere
in R8 with determinant unity. In this section I combine the
two Weyl E8 groups to form a bigger group that operates in
a discrete spacetime, and then in the next section I suggest a
simple physical model for fundamental fermions that would
fit the geometry.

I have now two sets of 240 icosians each forming E8
lattices in R8, each obeying the symmetry operations of the
finite group Weyl E8. Each finite group of octonions acts as
rotations and as vectors in R8. I identify their direct product
as the elements of a discrete subgroup of the continuous
group PSL(2,O), where O represents all the unit octonions.
That is, if all the unit octonions in each were present, not
just the subset of unit octonions that form the E8 lattice, their
direct product group would be the continuous group of 2×2
matrices in which all matrix entries are unit octonions. So
the spinors in R8 are octonions.

The 8-D result is analogous to the 4-D result but different.
Recall that in the 4-D case, one has PSL(2,C), the group
of 2×2 matrices with complex numbers as entries, with
PSL(2,C) = SO(3,1), the Lorentz group in 4-D spacetime.
Here in 8-D one has a surprise, for the final combined
spacetime is bigger, being isomorphic to a 10-dimensional
spacetime instead of 8-dimensional spacetime because

PSL(2,O) = SO(9, 1) , (8)

6 F.Potter. Unification of Interactions in Discrete Spacetime
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the Lorentz group in 10-D spacetime.
Applied to the discrete case, the combined group is the

finite subgroup

finite PSL(2,O) = finite SO(9, 1) , (9)

that is, the finite Lorentz group in discrete 10-D spacetime.
The same results, expressed in terms of the direct product of
Weyl E8 groups, is

Weyl E8 ×Weyl E8 = “Weyl” SO(9, 1) , (10)

where “Weyl” SO(9,1) is defined by the direct product on
the left and is a finite subgroup of SO(9,1).

Working in reverse, the discrete 10-D spacetime divides
into two parts as a 4-D discrete spacetime plus a 4-D discrete
internal symmetry space. There is a surprise in this result:
combining a discrete 4-D internal symmetry space with a
discrete 4-D spacetime creates a discrete 10-D spacetime,
not a discrete 8-D spacetime. Therefore, a continuous 10-D
spacetime, when “discretized”, is not required to partition
into a 4-D spacetime plus a 6-D “curled up” space as pro-
posed in superstring theory.

8 A physical particle model

In the 1994 paper I proposed originally that leptons have
the symmetries of the 3-D regular polyhedral groups and
that quarks have the symmetries of the 4-D regular polytope
groups. Now that I have combined the discrete 4-D internal
symmetry space with a discrete 4-D spacetime to achieve
mathematically a discrete 10-D spacetime, the fundamental
question arises: Are the leptons and quarks really 3-D and
4-D objects physically, or are they something else, perhaps
8-D or 10-D objects?

In order to answer this question I need to formulate a
reasonable physical model of fundamental particles in this
discrete spacetime environment. The simplest mathematical
viewpoint is that discrete spacetime is composed of identical
entities, call them nodes, which have no measureable phys-
ical properties until they collectively distort spacetime to
form a fundamental particle such as the electron, for example.
The collection of nodes and its distortion of the surrounding
spacetime exhibit the discrete symmetry of the appropriate
finite binary rotation group for the specific particle. For
example, the electron family has the discrete symmetry of
the binary tetrahedral group and the electron is one of its
two possible orthogonal basis states. So the distortion for
the collection of nodes called the electron will exhibit the
discrete symmetries of its [3, 3, 2] group as all of its physical
properties emerge for this specific collection and did not exist
beforehand. The positron forms in the conjugate space.

One can begin with a regular lattice of nodes in both
the normal unitary plane and in its conjugate unitary plane,
or one can consider the equivalent R4 spaces, and then

imagine that a spacetime distortion appears in both to form
a particle-antiparticle pair. Mathematically, one begins with
an isotropic vector, also called a zero length vector, which is
orthogonal to itself, that gets divided into two unit spinors
corresponding to the creation of the particle-antiparticle pair.
No conservations laws are violated because their quantum
numbers are opposite and the sum of the total mass energy
plus their total potential energy is zero. The spacetime dis-
tortion that is the particle and its “field” mathematically
brings the nodes closer together locally with a corresponding
adjustment to the node spacing all the way out to infinite
distance, all the while keeping the appropriate discrete rota-
tional symmetry intact. The gravitational interaction associ-
ated with this discrete symmetry therefore extends to infinite
distance.

This model of particle geometry must treat leptons as
3-D objects and quarks as 4-D objects in a discrete 4-D
spacetime. We know that there are no isolated quarks, for
they immediately form 3-D objects called hadrons. These
lepton states and hadron states are described by quaternions
of the form w+x i+ y j+ z k, so these 3-D objects “live” in
the three imaginary dimensions, and the 4th dimension can be
called time. Therefore, leptons and hadrons each experience
the “passage of time”, while indiviual quarks do not have this
characteristic until they form hadrons in the 3-D subspace.

If this physical model is a reasonable approximation
to describing the world of fundamental particles, why are
superstring researchers working in 10-dimensions or more?
Because one desires a single symmetry group that includes
both the group of spacetime transformations of particles and
the group of internal symmetries for the particle interactions.
At the Planck scale, if one has a continuous group, then
the smallest dimensional continuous spacetime one can use
is 10-D in order to have a viable Lagrangian. Reducing
this 10-D spacetime to the low energy regime of the SM
in 4-D spacetime, the 10-D continuous spacetime has been
postulated to divide into 4-D spacetime plus an additional 6-
dimensional “curled up” space in which to accommodate the
SM. In M-theory, one may be considering an 11-D spacetime
dividing into a 4-D spacetime plus a 7-D “curled up” space.
But this approach using continuous groups to connect back
to the SM has proven difficult, although some significant
advances have been achieved.

The analysis presented above for combining the two finite
Weyl E8 groups shows that the combined group operates
in 10-D discrete spacetime with all the group operations
being discrete. The particles are 3-D objects “traveling” in
spacetime. No separate “curled up” space is required at
the low energy limit corresponding to a distance scale of
about 10−23 meters or larger. The discreteness at the Planck
scale and the “hidden” discreteness postulated for all larger
distance scales is the mathematical feature that permits the
direct unique connection through icosians from the high
energy world to the familiar lower energy world of the SM.

F. Potter. Unification of Interactions in Discrete Spacetime 7
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9 Mathematical connections

The mathematical connections of these binary polyhedral
groups to number theory, geometry, and algebra are too
numerous to list and discuss in this short article. In fact,
according to B. Kostant [10], if one were to choose groups
in mathematics upon which to construct the symmetries of
the universe, one couldn’t choose a better set, for “. . . in a
very profound way, the finite groups of symmetries in 3-space
‘see’ the simple Lie groups (and hence literally Lie theory)
in all dimensions.” Therefore, I provide a brief survey of
a few important connections here and will discuss them in
more detail in future articles.

Geometrical connections are important for these groups.
The continuous group PSL(2,C) defines a torus, as does
PSL(2,O). In the discrete environment, finite PSL(2,C) and
finite PSL(2,O) have special symmetry points on each torus
corresponding to the elements of the finite binary polyhedral
groups. An important mathematical property of the binary
polyhedral groups is their connection to elliptic modular
functions, the doubly periodic functions, and their famous j-
invariant function, which has integer coefficients in its series
expansion related to the largest of the finite simple groups
called the Monster.

The binary tetrahedral, octahedral and icosahedral rota-
tion groups are the finite groups of Mobius transformations
PSL(2,Z3), PSL(2,Z4), and PSL(2,Z5), respectively, where
Zndenotes integers mod (n). PSL (2,Zn) is often called the
modular group Γ(n). PSL(2,Zn) = SL(2,Zn) /{± I}, so
these three binary polyhedral groups (along with the cyclic
and dihedral groups) are the finite modular subgroups of
PSL(2,C) and are also discrete subgroups of PSL(2,R).
PSL(2,Zn) is simple in only three cases: n = 5, 7, 11. And
these three cases are the Platonic groups again: A5 and its
subgroup A4, S4, and A5, respectively [11].

An important mathematical property for physics is that
our binary polyhedral groups, the Γ(n), are generated by the
two transformations

X : τ 7→ −1/τ Y : τ 7→ τ + 1 , (11)

with τ being the lattice parameter for the plane associated
with forming the tesselations of the toroidal Riemann surface.
The j-invariant function j(τ ) of elliptic modular functions
exhibits this transformation behavior. Consequently, funct-
ions describing the physical properties of the fundamental
leptons and quarks will exhibit these same transformation
properties. So here is where the duality theorems of M-theory,
such as the S duality relating the theory at physical coupling
g to coupling at 1/g, arise naturally from mathematical
properties of the finite binary polyhedral groups.

One can show also that octonions and the triality conn-
ection for spinors and vectors in R8 are related to the fun-
damental interactions. In 8-D, the fundamental matrix rep-
resentations both for left- and right-handed spinors and for

vectors are the same dimension, 8×8 [12], leading to many
interesting mathematical properties. For example, an electron
represented by a left-handed octonionic spinor interacting
with a W+ boson represented by an octonionic vector be-
comes an electron neutrino, again an octonionic spinor. Geo-
metrically, this interaction looks like three E8 lattices com-
bining momentarily toform the famous 24-dimensional Leech
lattice!

By using a discrete spacetime, we have begun to suspect
that Nature has established a universe based upon funda-
mental mathematics that dictates unique fundamental physics
principles. Moreover, one might expect that all physical
constants will be shown to arise from fundamental math-
ematical relationships, dictating one universe with unique
constant values for a unique set of fundamental laws.

10 Experimental tests

There is no direct test yet devised for discrete spacetime.
However, my discrete internal symmetry space approach
dictates a fourth quark family with a b’ quark state at about
80 GeV and a t’ quark at about 2600 GeV. The production of
this b’ quark with the detection of its decay to a b quark and a
high energy photon seems at present to be the only attainable
empirical test for discreteness. Its appearance in collider
decays would be an enormously important event in particle
physics, strongly suggesting that the internal symmetry space
and its “surrounding” spacetime are discrete.

However, the b’ quark has remained hidden among the
collision debris at Fermilab because its flavor changing neu-
tral current (FCNC) decay channel has a very low probability
compared to all the other particle decays in this energy
regime. This b’ quark decay may even be confused with
the decay of the Higgs boson, should such a particle exist,
until all the quantum numbers are established. The t’ quark at
around 2600 GeV has too great a mass to have been produced
directly at Fermilab.

I expect the production of b’ quarks at the Large Hadron
Collider in a few years to be the acid test for discreteness
and to verify the close connection of fundamental physics to
the mathematical properties of the finite simple groups.
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Currently, Hubble’s law is often considered as the observational evidence of an
expanding universe. It is shown that Hubble’s Law need not be related to the notion
of Doppler redshifts of the light from receding Galaxies. In the derivation of the
receding velocity, an implicit assumption, which implies no expansion, must be used.
Moreover, the notion of receding velocity is incompatible with the local light speeds
used in deriving the light bending. The notion of an expanding universe is based on
an unverified assumption that a local distance in a physical space is similar to that
of a mathematical Riemannian space embedded in a higher dimensional flat space,
and thus the physical meaning of coordinates would necessarily depend on the metric.
However, this assumption has been proven as theoretically invalid. In fact, a physical
space necessarily has a frame of reference, which has a Euclidean-like structure that
is independent of the yet to be determined physical metric and thus cannot be such an
embedded space. In conclusion, the notion of an expanding universe could be just a
mathematical illusion.

1 Introduction

Currently, Hubble’s law is often considered as the observat-
ional evidence of the expanding universe. This is done by
considering Hubble’s law essentially as a manifestation of the
Doppler red shift of the light from the receding Galaxies [1].
Thus, the further a galaxies is from the Milky Way, the faster
it appears to receding. However, Hubble himself rejected
this interpretation and concluded in 1936 that the Galaxies
are actually stationary [2]. In view of the fact that this
interpretation of relating to the receding velocities is far from
perfect [3], perhaps, it would be useful to reexamine how
solid is such an interpretation in terms of general relativity
and physics.

It will be shown that Hubble’s Law need not be related
to the Doppler redshifts of the light from receding Galaxies
(section 2). It is pointed out, in the derivation of the receding
velocity, an implicit assumption, which implies no expansion,
must be used (section 3). Moreover, the receding velocity
is incompatible with the light speeds used in deriving the
light bending (section 4). In short, the notion of expanding
universe is a production due to confusing notion of the
coordinates and also due to inadequate understanding of a
physical space. Thus, such a universe is unlikely related to
the reality (section 5).

2 Hubble’s law

Hubble discovered from light emitted by near by galaxies
that the redshifts S are linearly proportion to the present
distance L from the Milky Way as follows:

S = HL (1)

where H is the Hubble constant although the redshifts of
distant galaxies will deviate from this linear law with a
slightly different constant. In terms of general relativity, it is
well known that this law can be derived with the following
metric [1, 3],

ds2 = −dτ 2 + a2(τ )(dx2 + dy2 + dz2) , (2)

since

S =
λ2 − λ1
λ1

=
ω1
ω2
− 1 =

a(τ2)

a(τ1)
− 1 , (3)

where ω1 is the frequency of a photon emitted at event P1 at
time τ1, and ω2 is the frequency of the photon observed at
P2 at time τ2 [1]. Furthermore, for nearby galaxies, one has

a(τ2) ' a(τ1) + (τ2 − τ1) ȧ . (4)
If

(τ2 − τ1) = L =

∫ 2

1

√
dx2 + dy2 + dz2 , (5)

then

S =
ȧ

a
L = HL, and H =

ȧ

a
. (6)

Formula (5) is compatible with the calculation in the be-
nding of light. Please note that Hubble’s Law need not be
related to the Doppler redshifts. Understandably, Hubble re-
jected such an interpretation himself [2]. In fact, there is act-
ually no receding velocity since L is fixed (i. e., dL/dτ =0).

3 Hubble’s law and the Doppler redshifts

On the other hand, if one chooses to define the distance
between two points as

R =

∫ 2

1

a(τ )
√
dx2 + dy2 + dz2 = a(τ )L , (7)
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then

v=
dR

dτ
=
da

dτ
L+

dL

dτ
a=

da

dτ

R

a
=HR, if

dL

dτ
=0. (8)

According to relation (7), v would be the receding veloc-
ity. Note also that according to (7), (5) would have to change
into (τ2 − τ1) = R , and (1) into S = HR. Thus,

v = S. (9)

This means that the redshifts could be superficially con-
sidered as a Doppler effect. Thus, whether Hubble’s Law
represents the effects of an expanding universe is a matter
of the interpretation of the local distance. From the above
analysis, the crucial point is what is a valid physical velocity
in a physical space.

It should be noted that dL/dt = 0 means that the space
coordinates are independent of the metric. In other words,
the physical space has a Euclidean-like structure [4], which
is independent of time. However, since L between any two
space-points is fixed, the notion of an expanding universe, if
it means anything, is just an illusion. Moreover, the validity
of (7) as the physical distance has no known experimental
supports since it is not really measurable (see section 5).
Moreover, a problem is that the notion of velocity in (8)
would be incompatible with the light speeds in the calculation
of light bending experiment.

4 The coordinates of an Einstein physical space

In mathematics, the Riemannian space is often embedded in
a higher dimensional flat space [5]. Then the coordinates dxμ

are determined by the metric through the metric,

ds2 = gμν dx
μdxν , or − g00dt

2 + gij dx
idxj (10)

such as the surface of a sphere in a three-dimensional Eu-
clidean space. For a physical space, however, there are in-
sufficient conditions to do so. Since the metric is a variable
function, it is impossible to determine the coordinates with
the metric. In view of this, the coordinates must be physically
independent of the metric. As shown in metric (2), a physical
space has a Euclidean-like structure as a frame of reference.(1)

Moreover, it has been proven from the theoretical framework
of general relativity [4] that a frame of reference with the
Euclidean-like structure must exist for a physical space.

For a spherical mass distribution with the center at the
origin, the metric with the isotropic gauge is,

ds2 = −[(1−Mk/2r)2/(1 +Mk/2r)2]c2dt2+

+(1 +Mk/2r)4 (dx2 + dy2 + dz2) ,
(11)

where k = G/c2 (G = 6.67×10−8erg×cm/gm2), M is the
total mass, and r =

√
x2 + y2 + z2. Then, if the equivalence

principle is satisfied, the light speeds are determined by
ds2 = 0 [6, 7], i. e.,

√
dx2 + dy2 + dz2

dt
= c

1−Mκ/2r

[1 +Mκ/2r]3
. (12)

However, such a definition of light speeds is incompatible
with the definition of velocity (8) although compatible with
(5). Since this light speed is supported by observations, (8)
is invalid in physics. Nevertheless, Liu [8] has defined light
speeds, which is more compatible with (8), as

√
gij dxidxj

dt
= c

1−Mκ/2r

1 +Mκ/2r
(13)

for metric (11). However, (13) implies only half of the
deflection implied by (12) [6, 7].

The above analysis also explains why many current theo-
rists insist on that the light speeds are not defined even though
Einstein defined them clearly in his 1916 paper as well as
in his book, The Meaning of Relativity. They might argued
that the light speeds are not well defined since diffeomorphic
metrics give different sets of light speeds for the same frame
of reference. However, they should note that Einstein defines
light speeds after the assumption that his equivalence princ-
iple is satisfied [6, 7]. Different metric for the same frame of
reference means only that at most only one of such metrics
is physically valid [4], and therefore the definition of light
speeds are, in principle, uniquely well-defined.

However, since the problem of a physical valid metric
has not been solved, whether a light speed is valid remains a
question. Nevertheless, it has been proven that the Maxwell-
Newton Approximation gives the valid first order approxi-
mation of the physical metric, the first order of the physically
valid light speeds are solved [4]. Since metric (11) is compa-
tible with the Maxwell-Newton approximation, the first order
of light speed (12) is valid in physics.

Thus, the groundless speculation that local light speeds
are not well defined is proven incorrect. In essence, the
velocity definition (8), which leads to the notion of the
Doppler redshifts, has been rejected by experiments. Never-
theless, some skeptics might prefer to accept formula (6)
after light speed (12) is confirmed by the experiment of local
light speeds [4].

5 Discussions and Conclusions

A major problem in Einstein’s theory, as pointed out by
Whitehead [9] and Fock [10], the physical meaning of co-
ordinates is ambiguous and confusing. In view of this, it is
understandable that the notion in an embedded Riemannian
space is used when the physical nature of the problem is
not yet clear.(2) A major difference between physics and
mathematics is that the coordinates in physics must have
physical meaning. Since Einstein is not a mathematician,
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his natural step would be to utilize the existing theory of
Riemannian space. However, as Whitehead [9] saw, this
created a seemingly irreconcilable problem between coordi-
nates of a curved space-time and physics.

Under such a circumstances, the notion of an expanding
universe is created while an implicit assumption that restricts
the universe as static is also used. This kind of inconsistency
is expectedly inevitable because of contradictory principles,
Einstein’s equivalence principle that requires space-time co-
ordinates have physical meaning and the “principle of covar-
iance” that necessarily means that coordinates are arbitrary,
are concurrently used in Einstein’s theory [11]. Recently, it is
proven [12] that Einstein’s “principle of covariance” has no
theoretical basis in physics or observational support beyond
what is allowed by the principle of general relativity.(3)

This analysis demonstrates that the Hubble’s Law is
not necessarily related to the Doppler redshifts. It is also
pointed out that the notion of an expanding universe is
related to contradictory assumptions and thus is unlikely a
physical possibility. Moreover, this kind notion of velocity is
incompatible with the light speeds used in the calculation of
light bending [6, 7].

In Einstein’s theory of measurement, a local distance in a
physical space is assumed to be similar to that of a mathem-
atical Riemannian space embedded in a higher dimension-
al flat space, and thus the physical meaning of coordinates
would necessarily depend on the metric. Recently, this un-
verified assumption is proven to be inconsistent with Ein-
stein’s notion of space contractions [13]. In other words,
this unverified assumption contradicts Einstein’s equivalence
principle that the local space of a particle at free falling must
be locally Minkowskian [7], from which he obtained the time
dilation and space contractions.

In conclusion, the notion of an expanding universe is
unlikely a physical reality, although metric (2) is only a
model among other possibilities. Currently, there are three
theoretical explanations for the cause to observed red shifts.
They are: (1) the expanding universe; (2) Doppler redshifts;
and (3) gravitational redshifts. In this paper, it has been
shown that the current receding velocity of an expanding
universe is only a theoretical illusion and is unrelated to
the Doppler redshifts. If the notion of expanding universe
cannot be explained satisfactorily, it is difficult to imagine
that Doppler effects are the cause of observed Hubble’s law.
Moreover, this law also cannot be explained in terms of
gravitational redshifts.

Then, one may ask if the observed gravitational redshifts
are not due to an expanding universe, what causes such
redshifts that are roughly proportional to the distances from
the observer. One possibility is that the scatterings of a light
ray along its path to the observer. In physics, it is known that
different scatterings are common causes for losing energy
of a particle, and for the case of photons it means redshifts.
Since such an effect is so small, it must be the scattering of

a weak field. In fact, the inelastic scattering of light by the
gravitational field has been speculated [14]. Unfortunately,
to test such a conjecture is not possible because no current
theory of gravity is capable of handling the inelastic scatter-
ings of lights.

At present, Einstein’s equation even does not have any
dynamic solution [15, 16]. Thus, to solve this puzzle rigor-
ously seems surely in the remote future. Nevertheless, the
assumption that observed redshifts could be due to inelastic
scatterings may help to explain some puzzles of observed
facts [17]. For instance, it is known that younger objects
such as star forming galaxies have higher intrinsic redshifts,
and objects with the same path length to the observer have
much different redshifts while all parts of the object have
about the same amount of redshifts.(4)

A noted advancement of the Euclidean-like structure [4]
is that notions used in a Euclidean space could be adapted
much easier in general relativity. Many things would be
calculated as if in a Euclidean space. On the other hand, the
speculations related to the notion of an expanding universe
[1] would crease to function, and physics should return
to normal. Nevertheless, when a transformation between
different frames of reference is considered, the physical space
is clearly Riemannian as Einstein discovered.
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Endnotes

(1) A common problem is overlooking that the metric of a
Riemannian space can actually be compatible with the space
coordinates with the Euclidean-like structure. For example,
the Schwarzschild solution in quasi-Minkowskian coord-
inates [18; p. 181] is,

ds2=−(1−2Mκ/r)c2dt2+(1−2Mκ/r)−1dr2+

+ r2(dθ2+ sin2 θdϕ2),
(1a)

where (r, θ, ϕ) transforms to (x, y, z) by,

x = r sin θ cosϕ, y = r sin θ sinϕ,

and z = r cos θ .
(1b)

Coordinate transformation (1b) tells that the space coord-
inates satisfy the Pythagorean theorem. The Euclidean-like
structure represents this fact, but avoids confusion with the
notion of a Euclidean subspace determined by the metric.
Metric (1a) and Euclidean-like structure (1b) are comple-
mentary to each other in the Einstein space. These space-time
coordinates form not just a mathematical coordinate system
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since a light speed (ds2 = 0) is defined in terms of dx/dt,
dy/dt, and dz/dt [19].

(2) In the initial development of Riemannian geometry, the met-
ric was identified formally with the notion of distance in
analogy as the case of the Euclidean space. Such geometry
is often illustrated with the surface of a sphere, a subspace
embedded in a flat space [5]. Then, the distance is determined
by the flat space and can be measured with a static method.
For a general case, however, the issue of measurement was
not addressed before Einstein’s theory. In general relativity,
according to Einstein’s equivalence principle, the local dis-
tance represents the space contraction [7, 19], which is act-
ually measured in a free fall local space [13]. Thus, this
is a dynamic measurement since the measuring instrument
is in a free fall state under the influence of gravity, while
the Euclidean-like structure determines the static distance
between two points in a frame of reference. Einstein’s error
is that he overlooked the free fall state, and thus has mistaken
this dynamic local measurement as a static measurement.

(3) If the “covariance principle” was valid, it has been shown
that the “event of horizon” for a black hole could be just any
arbitrary constant [20]. Zhou [21] is probably the earliest
who spoke out against the “principle of covariance” and
he pointed out, “The concept that coordinates don’t matter
in the interpretation of Einstein’s theory necessarily leads
to mathematical results which can hardly have a physical
interpretation and are therefore a mystification of the theory.”
More recently, Morrison [12] commented that Einstein’s
“covariance principle” discontinuously separates special re-
lativity from general relativity.

(4) These two types of puzzles would be very difficult to be ex-
plained in terms of an expanding universe alone. One might
object the scattering of gravitational field on the ground that
the photon flight path would be deviated and the images
blurred. However, although the scattering by random objects
would make blurred images, it is not clear this is the case for
a scattering by a weak field. Moreover, since the scattering
in the path of photons by the weak gravitational field is very
weak, the deviation from the path would not be noticeable,
and this is different from the gravitational lenses effects that
can be directly observed.
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Applying the R. A. Brightsen Nucleon Cluster Model of the atomic nucleus we discuss
how unmatter entities (the conjugations of matter and antimatter) may be formed as
clusters inside a nucleus. The model supports a hypothesis that antimatter nucleon
clusters are present as a parton (sensu Feynman) superposition within the spatial
confinement of the proton (1H1), the neutron, and the deuteron (1H2). If model
predictions can be confirmed both mathematically and experimentally, a new physics
is suggested. A proposed experiment is connected to othopositronium annihilation
anomalies, which, being related to one of known unmatter entity, orthopositronium
(built on electron and positron), opens a way to expand the Standard Model.

1 Introduction

According to Smarandache [1, 2, 3], following neutrosophy
theory in philosophy and set theory in mathematics, the union
of matter <A> and its antimatter opposite <AntiA> can form
a neutral entity <NeutA> that is neither <A> nor <AntiA>.
The <NeutA> entity was termed “unmatter” by Smarandache
[1] in order to highlight its intermediate physical constitution
between matter and antimatter. Unmatter is formed when
matter and antimatter baryons intermingle, regardless of the
amount of time before the conjugation undergoes decay.
Already Bohr long ago predicted the possibility of unmatter
with his principle of complementarity, which holds that nat-
ure can be understood in terms of concepts that come in
complementary pairs of opposites that are inextricably con-
nected by a Heisenberg-like uncertainty principle. However,
not all physical union of <A> with <AntiA> must form
unmatter. For instance, the charge quantum number for the
electron (e−) and its antimatter opposite positron (e+) make
impossible the formation of a charge neutral state — the
quantum situation must be either (e−) or (e+).

Although the terminology “unmatter” is unconventional,
unstable entities that contain a neutral union of matter and
antimatter are well known experimentally for many years
(e. g, pions, pentaquarks, positronium, etc.). Smarandache
[3] presents numerous additional examples of unmatter that
conform to formalism of quark quantum chromodynamics,
already known since the 1970’s. The basis that unmatter
does exists comes from the 1970’s experiments done at
Brookhaven and CERN [4–8], where unstable unmatter-like
entities were found. Recently “physicists suspect they have
created the first molecules from atoms that meld matter
with antimatter. Allen Mills of the University of California,
Riverside, and his colleagues say they have seen telltale
signs of positronium molecules, made from two positronium
atoms” [9, 10]. A bound and quasi-stable unmatter baryon-

ium has been verified experimentally as a weak resonance
between a proton and antiproton using a Skyrme-type model
potential. Further evidence that neutral entities derive from
union of opposites comes from the spin induced magnetic
moment of atoms, which can exist in a quantum state of both
spin up and spin down at the same time, a quantum con-
dition that follows the superposition principal of physics. In
quantum physics, virtual and physical states that are mutually
exclusive while simultaneously entangled, can form a unity
of opposites <NeutA> via the principle of superposition.

Our motivation for this communication is to the question:
would the superposition principal hold when mass sym-
metrical and asymmetrical matter and antimatter nucleon
wavefunctions become entangled, thus allowing for possible
formation of macroscopic “unmatter” nucleon entities, either
stable or unstable? Here we introduce how the novel Nucleon
Cluster Model of the late R. A. Brightsen [11–17] does pre-
dict formation of unmatter as the product of such a superpo-
sition between matter and antimatter nucleon clusters. The
model suggests a radical hypothesis that antimatter nucleon
clusters are present as a hidden parton type variable (sensu
Feynman) superposed within the spatial confinement of the
proton (1H1), the neutron, and the deuteron (1H2). Because
the mathematics involving interactions between matter and
antimatter nucleon clusters is not developed, theoretical work
will be needed to test model predictions. If model predictions
can be experimentally confirmed, a new physics is suggested.

2 The Brightsen Nucleon Cluster Model to unmatter
entities inside nuclei

Of fundamental importance to the study of nuclear physics is
the attempt to explain the macroscopic structural phenomena
of the atomic nucleus. Classically, nuclear structure mathem-
atically derives from two opposing views: (1) that the proton
[P] and neutron [N] are independent (unbound) interacting
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Matter
Clusters −→

Antimatter
Clusters

−
→

[NP]
Deuteron

i
Stable

[NPN]
Triton

j
Beta-unstable

[PNP]
Helium-3

k
Stable

[NN]
Di-Neutron

l

[PP]
Di-Proton

m

[NNN]
Tri-Neutron

n

[PPP]
Tri-Proton

o

[N P̂̂ ]
a

Stable

[N]
|NP| |N P̂̂ |

[P]
|NP| |N P̂̂ |

Pions
(q q̂ )

Pions
(q q̂ )

[N]
|NN| |N P̂̂ |

[P]
|N P̂̂ | |PP|

[N P̂̂ N ]̂
b

Beta-unstable

[N ]̂
|NP| |N P̂̂ |

Pions
(q q̂ )

[P̂ ]
|NN| |NˆN |̂

[N ]̂
|N P̂̂ | |PP|

Pions
(q q̂ )

Tetraquarks
(q q q̂ q̂ )

[P̂ N P̂̂ ]
c

Stable

[P̂ ]
|NP| |N P̂̂ |

Pions
(q q̂ )

[P̂ ]
|N P̂̂ | |NN|

[N ]̂
|PP| |P P̂̂ |

Tetraquarks
(q q q̂ q̂ )

Pions
(q q̂ )

[NˆN ]̂
d

Pions
(q q̂ )

[N]
|NN| |NˆN |̂

[P]
|NP| |NˆN |̂

Tetraquarks
(q q q̂ q̂ )

[N]
|NN| |NˆN |̂

[P]
|PP| |NˆN |̂

[P̂ P̂ ]
e

Pions
(q q̂ )

[N]
|NP| |P P̂̂ |

[P]
|NP| |P P̂̂ |

Tetraquarks
(q q q̂ q̂ )

[N]
|P̂ P̂ | |NN|

[P]
|PP| |P P̂̂ |

[NˆNˆN ]̂
f

[N ]̂
|NP| |NˆN |̂

Pions
(q q̂ )

Tetraquarks
(q q q̂ q̂ )

[N ]̂
|NN| |NˆN |̂

[N ]̂
|NˆN |̂ |PP|

Hexaquarks
(q q q q̂ q̂ q̂ )

[P̂ P̂ P̂ ]
g

[P̂ ]
|NP| |P P̂̂ |

Tetraquarks
(q q q̂ q̂ )

Pions
(q q̂ )

[P̂ ]
|P̂ P̂ | |NN|

[P̂ ]
|P̂ P̂ | |PP|

Hexaquarks
(q q q q̂ q̂ q̂ )

Table 1: Unmatter entities (stable, quasi-stable, unstable) created from union of matter and antimatter nucleon clusters as predicted by
the gravity-antigravity formalism of the Brightsen Nucleon Cluster Model. Shaded cells represent interactions that result in annihilation
of mirror opposite two- and three- body clusters. Top nucleons within cells show superposed state comprised of three valance quarks;
bottom structures show superposed state of hidden unmatter in the form of nucleon clusters. Unstable pions, tetraquarks, and hexaquark
unmatter are predicted from union of mass symmetrical clusters that are not mirror opposites. The symbol ˆ= antimatter, N = neutron, P
= proton, q = quark. (Communication with R. D. Davic).

fermions within nuclear shells, or (2) that nucleons interact
collectively in the form of a liquid-drop. Compromise models
attempt to cluster nucleons into interacting [NP] boson pairs
(e.g., Interacting Boson Model-IBM), or, as in the case of
the Interacting Boson-Fermion Model (IBFM), link boson
clusters [NP] with un-paired and independent nucleons [P]
and [N] acting as fermions.

However, an alternative view, at least since the 1937
Resonating Group Method of Wheeler, and the 1965 Close-
Packed Spheron Model of Pauling, holds that the macro-
scopic structure of atomic nuclei is best described as being
composed of a small number of interacting boson-fermion
nucleon “clusters” (e. g., helium-3 [PNP], triton [NPN], deu-
teron [NP]), as opposed to independent [N] and [P] nucleons
acting as fermions, either independently or collectively.
Mathematically, such clusters represent a spatially localized
mass-charge-spin subsystem composed of strongly correlated
nucleons, for which realistic two- and three body wave funct-
ions can be written. In this view, quark-gluon dynamics are

confined within the formalism of 6-quark bags [NP] and
9-quark bags ([PNP] and [NPN]), as opposed to valance
quarks forming free nucleons. The experimental evidence in
support of nucleons interacting as boson-fermion clusters is
now extensive and well reviewed.

One novel nucleon cluster model is that of R. A. Bright-
sen, which was derived from the identification of mass-
charge symmetry systems of isotopes along the Z-N Serge
plot. According to Brightsen, all beta-stable matter and anti-
matter isotopes are formed by potential combinations of
two- and three nucleon clusters; e.g., ([NP], [PNP], [NPN],
[NN], [PP], [NNN], [PPP], and/or their mirror antimatter
clusters [N P̂ ]̂, [PˆN P̂ ]̂, [N P̂ˆN ]̂, [NˆN ]̂, [P P̂ ]̂, [P P̂ P̂ ]̂,
[NˆNˆN ]̂, where the symbol ˆ here is used to denote anti-
matter. A unique prediction of the Brightsen model is that a
stable union must result between interaction of mass asym-
metrical matter (positive mass) and antimatter (negative
mass) nucleon clusters to form protons and neutrons, for
example the interaction between matter [PNP] + antimatter
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[N P̂ ]̂. Why union and not annihilation of mass asymmetrical
matter and antimatter entities? As explained by Brightsen,
independent (unbound) neutron and protons do not exist in
nuclear shells, and the nature of the mathematical series of
cluster interactions (3 [NP] clusters = 1[NPN] cluster + 1
[PNP] cluster), makes it impossible for matter and antimatter
clusters of identical mass to coexist in stable isotopes. Thus,
annihilation cannot take place between mass asymmetrical
two- and three matter and antimatter nucleon clusters, only
strong bonding (attraction).

Here is the Table that tells how unmatter may be formed
from nucleon clusters according to the Brightsen model.

3 A proposed experimental test

As known, Standard Model of Quantum Electrodynamics
explains all known phenomena with high precision, aside
for anomalies in orthopositronium annihilation, discovered
in 1987.

The Brightsen model, like many other models (see Ref-
erences), is outside the Standard Model. They all pretend to
expand the Standard Model in one or another way. Therefore
today, in order to judge the alternative models as true or false,
we should compare their predictions to orthopositronium
annihilation anomalies, the solely unexplained by the Stand-
ard Model. Of those models the Brightsen model has a chance
to be tested in such way, because it includes unmatter entities
(the conjugations of particles and anti-particles) inside an
atomic nucleus that could produce effect in the forming of
orthopositronium by β+-decay positrons and its annihilation.

In brief, the anomalies in orthopositronium annihilation
are as follows.

Positronium is an atom-like orbital system that includes
an electron and its anti-particle, positron, coupled by electro-
static forces. There are two kinds of that: parapositronium
SPs, in which the spins of electron and positron are oppositely
directed and the summary spin is zero, and orthopositronium
TPs, in which the spins are co-directed and the summary spin
is one. Because a particle-antiparticle (unmatter) system is
unstable, life span of positronium is rather small. In vacuum,
parapositronium decays in τ ' 1.25×10−10 s, while ortho-
positronium is τ ' 1.4×10−7 s after the birth. In a medium
the life span is even shorter because positronium tends to
annihilate with electrons of the media.

In laboratory environment positronium can be obtained
by placing a source of free positrons into a matter, for
instance, one-atom gas. The source of positrons is β+-decay,
self-triggered decays of protons in neutron-deficient atoms∗

p → n+ e+ + νe.

Some of free positrons released from β+-decay source

∗It is also known as positron β+-decay. During β−-decay in nucleus
neutron decays n → p+ e−+ ν̃e.

into gas quite soon annihilate with free electrons and elec-
trons in the container’s walls. Other positrons capture elec-
trons from gas atoms thus producing orthopositronium and
parapositronium (in 3:1 statistical ratio). Time spectrum of
positrons (number of positrons vs. life span) is the basic
characteristic of their annihilation in matter.

In inert gases the time spectrum of annihilation of free
positrons generally reminds of exponential curve with a
plateau in its central part, known as “shoulder” [29, 30]. In
1965 Osmon published [29] pictures of observed time spectra
of annihilation of positrons in inert gases (He, Ne, Ar, Kr,
Xe). In his experiments he used 22NaCl as a source of β+-
decay positrons. Analyzing the results of the experiments,
Levin noted that the spectrum in neon was peculiar compared
to those in other one-atom gases: in neon points in the
curve were so widely scattered, that presence of a “shoulder”
was unsure. Repeated measurements of temporal spectra of
annihilation of positrons in He, Ne, and Ar, later accomplish-
ed by Levin [31, 32], have proven existence of anomaly in
neon. Specific feature of the experiments done by Osmon,
Levin and some other researchers in the UK, Canada, and
Japan is that the source of positrons was 22Na, while the
moment of birth of positron was registered according to γn-
quantum of decay of excited 22∗Ne

22∗Ne → 22Ne+ γn ,

from one of products of β+-decay of 22∗Na.
In his experiments [33, 34] Levin discovered that the

peculiarity of annihilation spectrum in neon (abnormally
wide scattered points) is linked to presence in natural neon of
substantial quantity of its isotope 22Ne (around 9%). Levin
called this effect isotope anomaly. Temporal spectra were
measured in neon environments of two isotopic composit-
ions: (1) natural neon (90.88% of 20Ne, 0.26% of 21Ne,
and 8.86% of 22Ne); (2) neon with reduced content of 22Ne
(94.83% of 20Ne, 0.22% of 21Ne, and 4.91% of 22Ne).
Comparison of temporal spectra of positron decay revealed:
in natural neon (the 1st composition) the shoulder is fuzzy,
while in neon poor with 22Ne (the 2nd composition) the
shoulder is always clearly pronounced. In the part of spectr-
um, to which TPs-decay mostly contributes, the ratio between
intensity of decay in poor neon and that in natural neon (with
much isotope 22Ne) is 1.85±0.1 [34].

Another anomaly is substantially higher measured rate of
annihilation of orthopositronium (the value reciprocal to its
life span) compared to that predicted by QED.

Measurement of orthopositronium annihilation rate is
among the main tests aimed to experimental verification of
QED laws of conservation. In 1987 thanks to new precision
technology a group of researchers based in the University of
Michigan (Ann Arbor) made a breakthrough in this area. The
obtained results showed substantial gap between experiment
and theory. The anomaly that the Michigan group revealed
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was that measured rates of annihilation at λT(exp)= 7.0514±
±0.0014 μs−1 and λT(exp) = 7.0482 ± 0.0016 μs−1 (with
unseen-before precision of 0.02% and 0.023% using vacuum
and gas methods [35–38]) were much higher compared to
λT(theor) = 7.00383 ± 0.00005 μs−1 as predicted by QED
[39–42]. The effect was later called λT-anomaly [43].

Theorists foresaw possible annihilation rate anomaly not
long before the first experiments were accomplished in Mi-
chigan. In 1986 Holdom [44] suggested that “mixed type”
particles may exist, which being in the state of oscillation
stay for some time in our world and for some time in the
mirror Universe, possessing negative masses and energies. In
the same year Glashow [45] gave further development to the
idea and showed that in case of 3-photon annihilation TPs
will “mix up” with its mirror twin thus producing two effects:
(1) higher annihilation rate due to additional mode of decay
TPs → nothing, because products of decay passed into the
mirror Universe can not be detected; (2) the ratio between
orthopositronium and parapositronium numbers will decrease
from TPs : SPs = 3:1 to 1.5 : 1. But at that time (in 1986)
Glashow concluded that no interaction is possible between
our-world and mirror-world particles.

On the other hand, by the early 1990’s these theoretic
studies encouraged many researchers worldwide for experi-
mental search of various “exotic” (unexplained in QED) mo-
des of TPs-decay, which could lit some light on abnormally
high rate of decay. These were, to name just a few, search
for TPs→ nothing mode [46], check of possible contribution
from 2-photon mode [47–49] or from other exotic modes
[50–52]. As a result it has been shown that no exotic modes
can contribute to the anomaly, while contribution of TPs→
nothing mode is limited to 5.8×10−4 of the regular decay.

The absence of theoretical explanation of λT-anomaly
encouraged Adkins et al. [53] to suggest experiments made
in Japan [54] in 1995 as an alternative to the basic Michigan
experiments. No doubt, high statistical accuracy of the Japan-
ese measurements puts them on the same level with the
basic experiments [35–38]. But all Michigan measurements
possessed the property of a “full experiment”, which in this
particular case means no external influence could affect wave
function of positronium. Such influence is inevitable due to
electrodynamic nature of positronium and can be avoided
only using special technique. In Japanese measurements [54]
this was not taken into account and thus they do not possess
property of “full experiment”. Latest experiments of the
Michigans [55], so-called Resolution of Orthopositronium-
Lifetime Pussle, as well do not possess property of “full
experiment”, because the qualitative another statement in-
cluded external influence of electromagnetic field [56, 57].

As early as in 1993 Karshenboim [58] showed that QED
had actually run out of any of its theoretical capabilities to
explain orthopositronium anomaly.

Electric interactions and weak interactions were joined
into a common electroweak interaction in the 1960’s by com-

monly Salam, Glashow, Weinberg, etc. Today’s physicists
attempt to join electroweak interaction and strong interaction
(unfinished yet). They follow an intuitive idea that forces,
connecting electrons and a nucleus, and forces, connecting
nucleons inside a nucleus, are particular cases of a common
interaction. That is the basis of our claim. If that is true, our
claim is that orthopositronium atoms born in neon of different
isotope contents (22Ne, 21Ne, 20Ne) should be different from
each other. There should be an effect of “inner” structure
of neon nuclei if built by the Brightsen scheme, because
the different proton-neutron contents built by different com-
positions of nucleon pairs. As soon as a free positron drags
an electron from a neon atom, the potential of electro-weak
interactions have changed in the atom. Accordingly, there
in the nucleus itself should be re-distribution of strong inter-
actions, than could be once as the re-building of the Brightsen
pairs of nucleons there. So, lost electron of 22Ne should have
a different “inner” structure than that of 21Ne or 20Ne. Then
the life span of orthopositronium built on such electrons
should be as well different.

Of course, we can only qualitatively predict that dif-
ference, because we have no exact picture of what really
happens inside a “structurized” nucleus. Yet only principal
predictions are possible there. However even in such case
we vote for continuation of “isotope anomaly” experiments
with orthopositronium in neon of different isotope contents.
If further experiments will be positive, it could be considered
as one more auxiliary proof that the Brightsen model is true.
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A preon-based composite model of the fundamental fermions is discussed, in which the
fermions are bound states of smaller entities — primitive charges (preons). The preon is
regarded as a dislocation in a dual 3-dimensional manifold — a topological object with
no properties, save its unit mass and unit charge. It is shown that the dualism of this
manifold gives rise to a hierarchy of complex structures resembling by their properties
three families of the fundamental fermions. Although just a scheme for building a
model of elementary particles, this description yields a quantitative explanation of
many observable particle properties, including their masses. PACS numbers: 12.60.Rc,
12.15.Ff, 12.10.Dm

1 Introduction

The hierarchical pattern observed in the properties of the
fundamental fermions (quarks and leptons) points to their
composite nature [1], which goes beyond the scope of the
Standard Model of particle physics. The particles are group-
ed into three generations (families), each containing two
quarks and two leptons with their electric charges, spins and
other properties repeating from generation to generation: the
electron and its neutrino, e−, νe, the muon and its neutrino,
μ−, νμ, the tau and its neutrino, τ−, ντ , the up and down
quarks, u+2/3, d−1/3, charm and strange, c+2/3, s−1/3, top
and bottom, t+2/3, b−1/3 (here the charges of quarks are
indicated by superscripts). The composite models of quarks
and leptons [2] are based on fewer fundamental particles
than the Standard Model (usually two or three) and are
able to reproduce the above pattern as to the electric and
colour charges, spins and, in some cases, the variety of
species. However, the masses of the fundamental fermions
are distributed in a rather odd way [3]. They cannot be pre-
dicted from any application of first principles of the Standard
Model; nor has any analysis of the observed data [4] or
development of new mathematical ideas [5] yielded an ex-
planation as to why they should have strictly the observed
values instead of any others. Even there exist claims of ran-
domness of this pattern [6]. However, the history of science
shows that, whenever a regular pattern was observed in the
properties of matter (e. g., the periodical table of elements
or eight-fold pattern of mesons and baryons), this pattern
could be explained by invoking some underlying structures.
In this paper we shall follow this lead by assuming that
quarks and leptons are bound states of smaller particles,
which are usually called “pre-quarks” or “preons” [7]. Firstly,
we shall guess at the basic symmetries of space, suggesting
that space, as any other physical entity, is dual. We propose
that it is this property that is responsible for the emergence

of different types of interactions from a unique fundamental
interaction. To be absolutely clear, we have to emphasise that
our approach will be based on classical (deterministic) fields,
which is opposed to the commonly-held view that quarks and
leptons are quantum objects. But we shall see that by using
classical fields on small scales we can avoid the problems
related to the short-range energy divergences and anomalies,
which is the main problem of all quantum field theories.

2 The universe

Let us begin from a few conjectures (postulates) about the
basic properties of space:

P1 Matter is structured, and the number of its structural
levels is finite;

P2 The simplest (and, at the same time, the most complex)
structure in the universe is the universe itself;

P3 The universe is self-contained (by definition);

P4 All objects in the universe spin (including the universe
itself).

The postulate P1 is based on the above mentioned historical
experience with the patterns and structures behind them.
These patterns are known to be simpler on lower structural
levels, which suggests that matter could be structured down
to the simplest possible entity with almost no properties.
We shall relate this entity to the structure of the entire
universe (postulate P2). This is not, of course, a novelty,
since considering the universe as a simple uniform object
lies in the heart of modern cosmology. The shape (topology)
of this object is not derivable from Einstein’s equations, but
for simplicity it is usually considered as a hyper-sphere (S3)
of positive, negative or zero curvature. However, taking into
account the definition of the universe as a self-contained
object (postulate P3), the spherical shape becomes inap-
propriate, because any sphere has at least two unrelated
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hyper-surfaces, which is incompatible with the definition of
the uniqueness and self-containedness of the universe. More
convenient would be a manifold with a unique hyper-surface,
such as the Klein-bottle, K3 [8]. Similarly to S3, it can be of
positive, negative or zero curvature. An important feature of
K3 is the unification of its inner and outer surfaces (Fig. 1). In
the case of the universe, the unification might well occur on
the sub-quark level, giving rise to the structures of elementary
particles and, supposedly, resulting in the identification of the
global cosmological scale with the local microscopic scale
of elementary particles. In Fig. 1b the unification region is
marked as Π (primitive particle).
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Fig. 1: (a) Klein-bottle and (b) its one-dimensional representation;
the “inner” (I) and “outer” (II) hyper-surfaces are unified through
the region Π (primitive particle); R and ρ are, respectively, the
global and local radii of curvature.

3 The primitive particle

Let as assume that space is smooth and continuous, i.e.,
that its local curvature cannot exceed some finite value ε:
| ρ |−1< ε. Then, within the region Π (Fig. 1b) space will
be locally curved “inside-out”. In these terms, the primitive
particle can be seen as a dislocation (topological defect)
of the medium and, thus, cannot exist independently of
this medium. Then, the postulate P4 about the spinning
universe gives us an insight into the possible origin of the
particle mass. This postulate is not obvious, although the
idea of spinning universe was proposed many years ago
by A. Zelmanov [9] and K. Gödel [10]. It comes from the
common fact that so far non-rotating objects have never been
observed.

The universe spinning with its angular velocity ω (of
course, if considered from the embedding space) would result
in the linear velocity ±ωR of the medium in the vicinity
of the primitive particle, where R is the global radius of
curvature of the universe; and the sign depends on the choice
of the referent direction (either inflow or outflow from the
inversion region).

Due to the local curvature, ρ−1, in the vicinity of the
primitive particle, the spinning universe must give rise to
a local acceleration, ag, of the medium moving through
the region Π, which is equivalent to the acceleration of
the particle itself. According to Newton’s second law, this
acceleration can be described in terms of a force, Fg=

=mgag, proportional to this acceleration. The coefficient
of proportionality between the acceleration and the force
corresponds to the inertial mass of the particle. However,
for an observer in the coordinate frame of the primitive
particle this mass will be perceived as gravitational (mg)
because the primitive particle is at rest in this coordinate
frame. Thus, the spinning universe implies the accelerated
motion of the primitive particle along its world line (time-
axis). If now the particle is forced to move along the spatial
coordinates with an additional acceleration ai, it will resist
this acceleration in exactly the same way as it does when
accelerating along the time-axis. A force Fi=miai, which
is required in order to accelerate the particle, is proportional
to ai with the coefficient of proportionalitymi (inertial mass).
But, actually, we can see that within our framework the
inertial, mi, and gravitational, mg, masses are generated by
the same mechanism of acceleration. That is, mass in this
framework is a purely inertial phenomenon (mi ≡ mg).

It is seen that changing the sign of ωR does not change

the sign of the second derivative ag =
∂2(ict)

∂t2
, i. e., of the

“gravitational” force Fg = mgag. This is obvious, because
the local curvature, ρ−1, is the property of the manifold and
does not depend on the direction of motion. By contrast,
the first derivative ∂(ict)

∂t
can be either positive or negative,

depending on the choice of the referent direction. It would
be natural here to identify the corresponding force as electro-
static. For simplicity, in this paper we shall use unit values
for the mass and electric charge of the primitive particle,
denoting them as m◦ and q◦.

In fact, the above mass acquisition scheme has to be mod-
ified because, besides the local curvature, one must account
for torsionof the manifold (corresponding to theWeyl tensor).
In the three-dimensional case, torsion has three degrees of
freedom, and the corresponding field can be resolved into
three components (six — when both manifestations of space,
I and II , are taken into account). It is reasonable to relate
these three components to three polarities (colours) of the
strong interaction.

Given two manifestations of space, we can resolve the
field of the particle into two components, φs and φe. To
avoid singularities we shall assume that infinite energies are
not accessible in nature. Then, since it is an experimental fact
that energy usually increases as distance decreases, we can
hypothesise that the energy of both φe and φs, after reaching
a maximum, decays to zero at the origin. The simplest form
for the split field that incorporates the requirements above is
the following:

F = φs + φe ,

φs = s exp(−ρ−1) , φe = −φ
′
s(ρ) .

(1)

Here the signature s=±1 indicates the sense of the
interaction (attraction or repulsion); the derivative of φs is
taken with respect to the radial coordinate ρ. Far from the
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source, the second component of the split field F mimics
the Coulomb gauge, whereas the first component extends to
infinity being almost constant (similarly to the strong field).

In order to formalise the use of tripolar fields we have to
introduce a set of auxiliary 3 × 3 singular matrices Πi with
the following elements:

±πijk = ±δ
i
j (−1)

δkj , (2)

where δij is the Kronecker delta-function; the (±)-signs cor-
respond to the sign of the charge; and the index i stands for
the colour (i = 1, 2, 3 or red, green and blue). The diverging
components of the field can be represented by reciprocal
elements: π̃jk = π−1jk . Then we can define the (unit) charges
and masses of the primitive particles by summation of these
matrix elements:

qΠ = u
ᵀΠu, q̃Π = u

ᵀΠ̃u

mΠ =| u
ᵀΠu |, m̃Π =| u

ᵀΠ̃u |
(3)

(u is the diagonal of a unit matrix; q̃Π and m̃Π diverge). As-
suming that the strong and electric interactions are manifest-
ations of the same entity and taking into account the known
pattern [11] of the colour-interaction (two like-charged but
unlike-coloured particles are attracted, otherwise they repel),
we can write the signature sij of the chromoelectric inter-
action between two primitive particles, say of the colours i
and j, as:

sij = −u
ᵀΠiΠju . (4)

4 Colour dipoles

Obviously, the simplest structures allowed by the tripolar
field are the monopoles, dipoles and tripoles, unlike the
conventional bipolar (electric) field, which allows only the
monopoles and dipoles. Let us first consider the colour-dipole
configuration. It follows from (4) that two like-charged part-
icles with unlike-colours will combine and form a charged
colour-dipole, g±. Similarly, a neutral colour-dipole, g0, can
also be formed — when the constituents of the dipole have
unlike-charges.

The dipoles g± and g0 are classical oscillators with
the double-well potential V (ρ), Fig. 2, derived from the
split field (1). The oscillations take place within the region
ρ ∈ (0, ρmax), with the maximal distance between the com-
ponents ρmax≈ 1.894ρ◦ (assuming the initial condition E0=
=V (0) and setting this energy to zero).

Let us assume that the field F (ρ) does not act instant-
aneously at a distance. Then, we can define the mass of a
system with, say, N primitive particles as proportional to
the number of these particles, wherever the field flow rate
is not cancelled. For this purpose we shall regard the total
field flow rate, vN , of such a system as a superposition of
the individual volume flow rates of its N constituents. Then
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Fig. 2: Equilibrium potential based on the split field (1)

the net mass of the system can be calculated (to a first-order
of approximation) as the number of particles, N , times the
normalised to unity (Lorentz-additive) field flow rate vN :

mN =| N | vN . (5)

Here vN is calculated recursively from

vi =
qi + vi−1

1+ | q |i vi−1
, (6)

with i= 2, . . . , N and putting v1= q1. Then, when two
unlike-charged particles combine (say red and antigreen),
the magnitudes of their oppositely directed flow rates cancel
each other (resulting in a neutral system). The corresponding,
acceleration also vanishes, which is implicit in (5), formal-
ising the fact that the mass of a neutral system is nullified.
This formula implies the complete cancellation of masses in
the systems with vanishing electric fields, but this is only an
approximation because in our case the primitive particles are
separated by the average distance ρ◦, whereas the complete
cancellation of flows is possible only when the flow source
centres coincide.

In the matrix notation, the positively charged dipole, g+12,
is represented as a sum of two matrices, Π1 and Π2:

g+12 = Π
1 +Π2 =

(
−1 +1 +1
+1 −1 +1
0 0 0

)

, (7)

with the charge qg+12 =+2 and mass mg+12
≈ 2 and m̃g+12

=∞,
according to (3). If two components of the dipole are oppo-
sitely charged, say, g012=Π

1+Π2 (of whatever colour com-
bination), then their electric fields and masses are nullified:
qg0 = 0, mg0 ≈ 0 (but still m̃g0 =∞ due to the null-elements
in the matrix g0). The infinities in the expressions for the
reciprocal masses of the dipoles imply that neither g± nor
g0 can exist in free states (because of their infinite energies).
However, in a large ensemble of neutral colour-dipoles g0,
not only electric but all the chromatic components of the field
can be cancelled (statistically). Then, the mass of the neutral
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dipole g0ik with an extra charged particle Πl belonging this
ensemble but coupled to the dipole, will be derived from the
unit mass of Πl:

m(Πi,Π
k
,Πl) = 1 ,

but still m̃(Πi,Π
k
,Πl) =∞ .

(8)

The charge of this system will also be derived from the
charge of the extra charged particle Πl.

5 Colour tripoles

Three primitive particles with complementary colour-charges
will tend to cohere and form a Y-shaped structure (tripole).
For instance, by completing the set of colour-charges in the
charged dipole [adding the blue-charged component to the
system (7)] one would obtain a colour-neutral but electrically
charged tripole:

Y = Π1 +Π2 +Π3 =

(
−1 +1 +1
+1 −1 +1
+1 +1 −1

)

,

which is colour-neutral at infinity but colour-polarised nearby
(because the centres of its constituents do not coincide). Both
m and m̃ of the tripole are finite, mY = m̃Y = 3 [m◦], since
all the diverging components of its chromofield are mutually
cancelled (converted into the binding energy of the tripole).

6 Doublets of tripoles

a b

Fig. 3: The tripoles (Y-particles) can combine pairwisely, rotated
by 180◦ (a) or 120◦ (b) with respect to each other.

One can show [12] that two like-charged Y-tripoles can
combine pole-to-pole with each other and form a charged
doublet δ+= ............

....................Y ....... ...................
......
Y

(Fig. 3a). Here the rotated symbol

Y

is
used to indicate the rotation of the tripoles through 180◦ with
respect to each other, which corresponds to their equilibrium
position angle. The marked arm of the symbol ............

....................Y indicates
one of the colours, say, red, in order to visualise mutual
orientations of colour-charges in the neighbouring tripoles.
The charge of the doublet, qδ = +6 [q◦], is derived from the
charges of its two constituent tripoles; the same is applied
to its mass: mδ = m̃δ = 6 [m◦]. Similarly, if two unlike-
charged Y-particles are combined, they will form a neutral
doublet, γ = ............

....................Y ....... ...................
......
Y

(Fig. 3b) with qγ = 0 and mγ = m̃γ = 0.
The shape of the potential well in the vicinity of the doublet
allows a certain degree of freedom for its components to
rotate oscillating within ±120◦ with respect to their equilibr-
ium position angle (see [12] for details). We shall use the
symbols � and 	 to denote the clockwise and anticlockwise
rotations.

7 Triplets of tripoles

The 2
3π-symmetry of the tripole allows up to three of them

to combine if they are like-charged. Necessarily, they will
combine into a loop, denoted hereafter with the symbol e. It
is seen that this loop can be found in one of two possible
configurations corresponding to two possible directions of
rotation of the neighbouring tripoles: clockwise, e+�=

............
....................Y ..........

.....................Y .......................Y,
and anticlockwise, e+	 =

............
....................Y .......................Y ..........

.....................Y. The vertices of the tripoles
can be directed towards the centre of the structure (Fig. 4a) or
outwards (Fig. 4b), but it is seen that these two orientations

c

Fig. 4: Three like-charged tripoles joined with their vertices directed
towards (a) and outwards (b) of the centre of the structure; (c):
trajectories of colour charges in this structure.

correspond to different phases of the same structure, with its
colour charges spinning around its ring-closed axis. These
spinning charges will generate a toroidal (ring-closed) mag-
netic field which will force them to move along the torus.
Their circular motion will generate a secondary (poloidal)
magnetic field, contributing to their spin around the ring-axis,
and so forth. The corresponding trajectories of colour-charges
(currents) are shown in Fig. 4c. This mechanism, known
as dynamo, is responsible for generating a self-consistent
magnetic field of the triplet e.

To a first order of approximation, we shall derive the mass
of the triplet from its nine constituents, suggesting that this
mass is proportional to the density of the currents, neglecting
the contribution to the mass of the binding and oscillatory
energies of the tripoles. That is, we put me= 9 [m◦] (bearing
in mind that the diverging components, m̃◦, are almost null-
ified). The charge of the triplet is also derived from the
number of its constituents: qe=±9 [q◦].

8 Hexaplets

Unlike-charged tripoles, combined pairwisely, can form
chains with the following patterns:

νe� =
............

....................Y ..........
.....................Y+ ..........................

.....
Y.......................Y

+ .......................Y ............
....................Y+ ....... ...................

......
Y

..........................

.....
Y

+ ..........
.....................Y .......................Y+

.......................Y....... ...................
......
Y

+ . . .

νe	 =
............

....................Y .......................Y+

.......................Y..........................
.....

Y

+ ..........
.....................Y ............

....................Y+ ....... ...................
......
Y.......................Y

+ .......................Y ..........
.....................Y+ ..........................

.....
Y

....... ...................

......
Y

+ . . .
(9)

corresponding to two possible directions of rotation of the
neighbouring tripoles with respect to each other. The cycle
of rotations repeats after each six consecutive links, making
the orientation of the sixth link compatible with (attractive
to) the first link by the configuration of their colour-charges.
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This allows the closure of the chain in a loop (which we
shall call hexaplet and denote as νe). The pattern (9) is
visualised in Fig. 5a where the antipreons are coded with
lighter colours. The corresponding trajectories of charges
(currents) are shown in Fig. 5b. They are clockwise or
anticlockwise helices, similar to those of the triplet e−. The
hexaplet consists of nνe = 36 preons (twelve tripoles); it is
electrically neutral and, therefore, almost massless, according
to Eq. (3).

Some properties of the simple preon-based structures are
summarised in Table 1.

a b

Fig. 5: (a) Structure of the hexaplet νe = 6YY and (b) the corres-
ponding helical trajectories (currents) formed by the motions of the
hexaplet’s colour-charges.

9 Combinations of triplets and hexaplets

The looped structures e = 3Y and νe = 6YY can combine
with each other, as well as with the simple tripole Y, because
of their 2

3π-symmetry and residual chromaticism. That is,
separated from other particles, the structure νe will behave
like a neutral particle. But, if two such particles approach one
another, they will be either attracted or repulsed from each
other because of van der Waals forces caused by their residual
chromaticism and polarisation. The sign of this interaction
depends on the twisting directions of the particles’ currents.
One can show [12] that the configuration of colour charges
in the hexaplet νe matches (is attractive to) that of the triplet
e if both particles have like-helicities (topological charges).
On the contrary, the force between the particles of the same
kind is attractive for the opposite helicities (2e+	� or e+	e

−
�)

and repulsive for like-helicities (2e+		 or e+	e
−
	). So, the

combined effective potential of the system 2e with unlike-
helicities, will have an attractive inner and repulsive outer
region, allowing an equilibrium configuration of the two
particles. In the case of like-helicities, both inner and outer
regions of the potential are repulsive and the particles e with
like-helicities will never combine. This coheres with (and
probably explains) the Pauli exclusion principle, suggesting
that the helicity (topological charge) of a particle can straight-
forwardly be related to the quantum notion of spin. This
conjecture is also supported by the fact that quantum spin
is measured in units of angular momentum (~), and so too
— the topological charge in question, which is derived from
the rotational motion of the tripoles Y around the ring-closed
axis of the triplet e or hexaplet νe.

Relying upon the geometrical resemblance between the
tripoles Y, triplets e, and hexaplets νe and following the pat-
tern replicated on different complexity levels we can deduce
how these structures will combine with each other. Obvious-
ly, the hexaplet νe, formed of twelve tripoles, is geometrically
larger than a single tripole. Thus, these two structures can
combine only when the former enfolds the latter. The combin-
ed structure, which we shall denote as Y1 = νe+Y, will have
a mass derived from its 39 constituents: mY1 =nνe +mY =
= 36+ 3= 39 [m◦]. Its charge will be derived from the
charge of its central tripole: qY1 =±3 [q◦]. By their prop-
erties, the tripole, Y, and the “helical tripole”, Y1, are alike,
except for the helicity property of the latter derived from the
helicity of its constituent hexaplet.

When considering the combination of the hexaplet, νe,
with the triplet, e, we can observe that the hexaplet must be
stiffer than the triplet because of stronger bonds between the
unlike-charged components of the former, while the repulsion
between the like-charged components of the latter makes
the bonds between them weaker. Then, the amplitude of the
fluctuations of the triplet’s radius will be larger than that
of the hexaplet. Thus, in the combined structure, which we
shall denote as W = 6YY3Y (or νee), it is the triplet that
would enfold the hexaplet. The charge of this structure will
correspond to the charge of its charged component, e: qW =
=±9 [q◦]; its mass can also be derived from the masses of
its constituents if oscillations are dampened:

mW = me + nνe = 9+ 36 = 45 [m◦].

Like the simple Y-tripoles, the “helical” ones, Y1, can
form bound states with each other (doublets, strings, loops,
etc.). Two hexaplets, if both enfold like-charged tripoles,
will always have like-topological charges (helicities), which
means that the force between them due to their topological
charges will be repulsive (in addition to the usual repulsive
force between like-charges). Thus, two like-charged helical
tripoles Y1 will never combine, unless there exists an inter-
mediate hexaplet (νe) between them, with the topological
charge opposite to that of the components of the pair. This
would neutralise the repulsive force between these com-
ponents and allow the formation of the following positively
charged bound state (“helical” doublet):

u+ = Y1�νe	Y1� or Y1 G Y1 . (10)

For brevity we have denoted the intermediate hexaplet
with the symbol G, implying that it creates a bond force
between the otherwise repulsive components on its sides.
By its properties, the helical doublet can be identified with
the u-quark. Its net charge, qu = +6 [q◦], is derived from
the charges of its two charged components (Y1-tripoles).
Its mass is also derived from the number of particles that
constitute these charged components: mu= 2×39= 78 [m◦].
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Table 1: Simple preon-based structures

Structure
Constituents of
the structure

Number of colour
charges in the structure

Charge (q◦ units) Mass (m◦-units)

The primitive particle (preon Π)

Π 1Π 1 +1 1

First-order structures (combinations of preons)

% 2Π 2 +2 2
g0 1Π+ 1Π 2 −1+ 1 = 0 ∼ 0
Y 3Π 3 +3 3

Second-order structures (combinations of tripoles Y)

δ 2Y 6 +6 6
γ 1Y+ 1Y 6 −3+ 3 = 0 ∼ 0
e− 3Y 9 −9 9

Third-order structures

2e− 3Y+ 3Y 9+ 9 = 18 −18 18
e−e+ 3Y+ 3Y 9+ 9 = 18 −9+ 9 = 0 ∼ 16†

νe 6YY 6×(3+ 3) = 36 6×(−3+ 3) = 0 7.9×10−8 †

Y1 νe + Y 36+ 3 = 39 0− 3 = −3 36+ 3 = 39
W− νe + e− 36+ 9 = 45 0− 9 = −9 36+ 9 = 45
u Y1 G Y1 39+ 36+ 39 = 114 +3+ 0+ 3 = +6 39+ 39 = 78

νμ Y1
... Y1 39+ 36+ 39 = 114 −3+ 0+ 3 = 0 1.4×10−7 †

d u + W− 114+ 45 = 159 +6− 9 = −3 78+ 45 = 123

μ νμ + W− 114+ 45 = 159 0− 9 = −9 48+ 39
‡

and so on. . .

†quantities estimated in [13]
‡system with two oscillating components (see further)

The positively charged u-quark can combine with the neg-
atively charged structure W−= νee

− (of 45-units mass),
forming the d-quark:

d− = u+ + νee
− (11)

of a 123-units mass (md = mu + mW = 78 + 45). The
charge of this structure will correspond to the charge of
a single triplet: qd = qu+ qe = +6−9 = −3 [q◦] (see Fig. 6
that below).

Charge:

Net charge −3
︷ ︸︸ ︷
−9 +3 +3

Number
of charges: 36 9︸︷︷︸

νe e−

336 (36) 36 3︸ ︷︷ ︸
u+
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Fig. 6: Scheme of the d-quark. The symbol ♦ is used for the triplet
(e), the symbols 〈| and |〉 denote the tripoles (Y-particles), and the
symbols ∩

∪p p denote the hexaplets (νe).

10 The second and third generations of the fundamental
fermions

When two unlike-charged helical tripoles combine, their po-
larisation modes and helicity signs will always be opposite
(simply because their central tripoles have opposite charges).
This would cause an attractive force between these two part-
icles, in addition to the usual attractive force corresponding
to the opposite electric charges of Y1 and Y1. Since all the
forces here are attractive, the components of this system
will coalesce and then disintegrate into neutral doublets γ.
However, this coalescence can be prevented by an additional
hexaplet νe with oscillating polarisation, which would create
a repulsive stabilising force (barrier) between the combining
particles:

νμ = Y1�νe�	Y1	. (12)

It is natural to identify this structure with the muon-
neutrino — a neutral lepton belonging to the second family of
the fundamental fermions. The intermediate hexaplet oscil-
lates between the tripoles Y1� and Y1	, changing synchron-
ously its polarisation state: νe� ! νe	 . For brevity, we
shall use vertical dots separating the components of νμ to
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denote this barrier-hexaplet:

νμ = Y1
... Y1 . (13)

By analogy, we can derive the tau-neutrino structure:

ντ = Y1
... Y1

... Y1
... Y1 , (14)

as well as the structures of the muon (Fig. 7):

μ− = νμνee
− (15)

and tau-lepton (Fig. 8):

τ− = ντνμμ
−. (16)

Drawing also an analogy with molecular equilibrium
configurations, where the rigidness of a system depends
on the number of local minima of its combined effective
potential [14], we can consider the second and third gener-
ation fermions as non-rigid structures with oscillating com-
ponents (clusters) rather than stiff entities with dampened
oscillations. In Fig. 7 and Fig. 8 we mark the supposedly
clustered components of the μ- and τ -leptons with braces.
Obtaining the ground-state energies (masses) of these com-
plex structures is not a straightforward task because they may
have a great variety of oscillatory modes contributing to the
mass. However, in principle, these masses are computable,
as can be shown by using the following empirical formula:

mclust = m1 +m2 + ∙ ∙ ∙+mN = mm̃, (17)

where N is the number of oscillating clusters, each with the
mass mi (i = 1, . . . , N ); m is the sum of these masses:

m = m1 +m2 + ∙ ∙ ∙+mN ,

and m̃ is the reduced mass based on the components (3):

m̃−1 = m̃−1
1 + m̃−1

2 + ∙ ∙ ∙+ m̃−1
N .

For simplicity, we assume that unit conversion coeffi-
cients in this formula are set to unity. Each substructure
here contains a well-defined number of constituents (preons)
corresponding to the configuration with the lowest energy.
Therefore, the number of these constituents is fixed by the
basic symmetry of the potential, implying that the input
quantities in (17) are not free parameters. The fermion masses
computed with the use of this formula are summarised in
Table 2.

As an example, let us compute the muon’s mass. The
masses of the muon’s substructures, according to Fig. 7, are:
m1= m̃1= 48, m2= m̃2= 39 (in units of m◦). And the

muon’s mass will be: mμ=48+39= 48+39
1/48+1/39

=1872[m◦].

For the τ -lepton, the constituent masses arem1 = m̃1= 201,
m2= m̃2= 156 (Fig. 8), and its mass is mτ = 201+156=
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Fig. 7: Scheme of the muon.
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Fig. 8: Scheme of the tau-lepton.

= 31356 [m◦]. For the proton, the positively charged fermion
consisting of two up (Nu= 2), one down (Nd= 1) quarks
and submerged into a cloud of gluons g0, the masses of its
components are mu= m̃u= 78, md= m̃d= 123. The total
number of primitive charges comprising the proton’s struc-
ture is Np= 2mu +md= 2×78 + 123= 279, which would
correspond to the number of gluons (Ng) interacting with
each of these charges (Ng =Np= 279). The masses of these
gluons, according to (8), are mg0 = 1, m̃g0 =∞, and the
resulting proton mass is

mp = Numu +Ndmd +Ngmg = 16523 [m◦] , (18)

which also reproduces the well-known but not yet explained
proton-to-electron mass ratio, since mp

me
= 16523

9 ≈ 1836.

With the value (18) one can convert me, mμ, mτ , and
the masses of all other particles from units m◦ into proton
mass units, mp, thus enabling these masses to be compared
with the experimental data. The computed fermion masses
are listed in Table 2 where the symbols Y1, Y2 and Y3
denote complex “helical” tripoles that replicate the properties
of the simple tripole Y on higher levels of the hierarchy.
These helical tripoles can be regarded as the combinations
of “heavy neutrinos” with simple triplets. Like νe, the heavy
neutrino consists of six pairs of helical triplets: νh = 6Y1Y1.
They can further combine and form “ultra-heavy” neutrinos
νuh = 3(Y1νhu)e− and so on. The components Y2 and Y3
of the c and t quarks have the following structures: Y2=
=uνeuνee

−, consisting of 165 primitive particles, and Y3=
= νuhY, consisting of 1767 primitive particles.
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Table 2: Computed masses of quarks and leptons. The values in the 4th column taken in units of m◦ are converted into proton mass units
(5th column) mp=16523, Eq.(18). The overlined ones are shorthands for Eq. (17). The masses of νe, νμ and ντ are estimated in [13].

Particle and its
structure (components)

Number of charges in the non-
cancelled mass components

Computed masses
in units of [mp]

Masses converted
into mp

Experimental masses [3]
in units of [mp]

First family

νe 6YY ≈ 0 7.864×10−8 4.759×10−12 < 3×10−9

e− 3Y 9 9 0.0005447 0.0005446170232
u Y1 G Y1 78 78 0.004720 0.0021 to 0.0058
d u + νee

− 123 123 0.007443 0.0058 to 0.0115

Second family

νμ Y1
... Y1 ≈ 0 1.4×10−7 8.5×10−12 < 2×10−4

μ− νμ + νee
− 48+ 39 1872 0.1133 0.1126095173

c Y2 G Y2 165+ 165 27225 1.6477 1.57 to 1.95
s c + e− 165+ 165+ 9 2751 0.1665 0.11 to 0.19

Third family

ντ Y1
... Y1

...Y1
... Y1 ≈ 0 1.5896×10−7 9.6192×10−12 < 2×10−2

τ− ντ + νμμ
− 156+ 201 31356 1.8977 1.8939± 0.0003

t Y3 G Y3 1767+ 1767 3122289 188.94 189.7± 4.5
b t + μ− 1767+ 1767+ 48+ 39 76061.5 4.603 4.3 to 4.7

11 Conclusions

The results presented in Table 2 show that our model agree
with experiment to an accuracy better then 0.5%. The dis-
crepancies should be attributed to the simplifications we have
assumed here (e. g., neglecting the binding and oscillatory
energies, as well as the neutrino residual masses, which
contribute to the masses of many structures in our model).

By matching the pattern of properties of the fundamental
particles our results confirm that our conjecture about the
dualism of space and the symmetry of the basic field cor-
responds, by a grand degree of confidence, to the actual
situation. Thus, our model seems to unravel a new layer of
physical reality, which bears the causal mechanisms underly-
ing quantum phenomena. This sets a foundation from which
one can explain many otherwise inexplicable observational
facts that plague modern physics.
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The new dynamical “quantum foam” theory of 3-space is described at the classical
level by a velocity field. This has been repeatedly detected and for which the dynamical
equations are now established. These equations predict 3-space “gravitational wave”
effects, and these have been observed, and the 1991 DeWitte data is analysed to reveal
the fractal structure of these “gravitational waves”. This velocity field describes the
differential motion of 3-space, and the various equations of physics must be generalised
to incorporate this 3-space dynamics. Here a new generalised Schrödinger equation
is given and analysed. It is shown that from this equation the equivalence principle
may be derived as a quantum effect, and that as well this generalised Schrödinger
equation determines the effects of vorticity of the 3-space flow, or “frame-dragging”,
on matter, and which is being studied by the Gravity Probe B (GP-B) satellite gyroscope
experiment.

1 Introduction

Extensive experimental evidence [1, 2, 3] has shown that a
complex dynamical 3-space underlies reality. The evidence
involves the repeated detection of the motion of the Earth
relative to that 3-space using Michelson interferometers op-
erating in gas mode [3], particularly the experiment by Miller
[4] in 1925/26 at Mt.Wilson, and the coaxial cable RF travel
time measurements by Torr and Kolen in Utah, and the
DeWitte experiment in 1991 in Brussels [3]. All such 7 ex-
periments are consistent with respect to speed and direction.
It has been shown that effects caused by motion relative to
this 3-space can mimic the formalism of spacetime, but that
it is the 3-space that is “real”, simply because it is directly
observable [1].

The 3-space is in differential motion, that is one part
has a velocity relative to other parts, and so involves a
velocity field v (r, t) description. To be specific this velocity
field must be described relative to a frame of observers,
but the formalism is such that the dynamical equations for
this velocity field must transform covariantly under a change
of observer. As shown herein the experimental data from the
DeWitte experiment shows that v (r, t) has a fractal structure.
This arises because, in the absence of matter, the dynamical
equations for v (r, t) have no scale. This implies that the
differential motion of 3-space manifests at all scales. This
fractal differential motion of 3-space is missing from all the
fundamental equations of physics, and so these equations
require a generalisation. Here we report on the necessary
generalisation of the Schrödinger equation, and which results
in some remarkable results: (i) the equivalence principle
emerges, as well as (ii) the effects of vorticity of this velocity

field. These two effects are thus seen to be quantum-theoretic
effects, i. e. consequences of the wave nature of matter. The
equivalence principle, as originally formulated by Galileo
and then Newton, asserts that the gravitational acceleration
of an object is independent of its composition and speed.
However we shall see that via the vorticity effect, the velocity
of the object does affect the acceleration by causing rotations.

It has been shown [1, 5] that the phenomenon of gravity is
a consequence of the time-dependence and inhomogeneities
of v (r, t). So the dynamical equations for v (r, t) give rise to
a new theory of gravity, when combined with the generalised
Schrödinger equation, and the generalised Maxwell and
Dirac equations. The equations for v (r, t) involve the New-
tonian gravitational constant G and a dimensionless constant
that determines the strength of a new spatial self-interaction
effect, which is missing from both Newtonian Gravity and
General Relativity. Experimental data has revealed [1, 5] the
remarkable discovery that this constant is the fine structure
constant α ≈ 1/137. This dynamics then explains numerous
gravitational anomalies, such as the bore hole g anomaly, the
so-called “dark matter” anomaly in the rotation speeds of
spiral galaxies, and that the effective mass of the necessary
black holes at the centre of spherical matter systems, such as
globular clusters and spherical galaxies, is α/2 times the total
mass of these systems. This prediction has been confirmed
by astronomical observations [6].

The occurrence of α suggests that space is itself a quan-
tum system undergoing on-going classicalisation. Just such
a proposal has arisen in Process Physics [1] which is an
information-theoretic modelling of reality. There quantum
space and matter arise in terms of the Quantum Homotopic
Field Theory (QHFT) which, in turn, may be related to the
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standard model of matter. In the QHFT space at this quantum
level is best described as a “quantum foam”. So we interpret
the observed fractal 3-space as a classical approximation to
this “quantum foam”.

While here we investigate the properties of the general-
ised Schrödinger equation, analogous generalisations of the
Maxwell and Dirac equations, and in turn the corresponding
generalisations to the quantum field theories for such sys-
tems, may also be made. In the case of the Maxwell equations
we obtain the light bending effects, including in particular
gravitational lensing, caused by the 3-space differential and
time-dependent flow.

2 The physics of 3-space

Because of the dominance of the spacetime ontology, which
has been the foundation of physics over the last century, the
existence of a 3-space as an observable phenomenon has been
overlooked, despite extensive experimental detection over
that period, and earlier. This spacetime ontology is distinct
from the role of spacetime as a mathematical formalism
implicitly incorporating some real dynamical effects, though
this distinction is rarely made. Consequently the existence
of 3-space has been denied, and so there has never been a
dynamical theory for 3-space. In recent years this situation
has dramatically changed. We briefly summarise the key
aspects to the dynamics of 3-space.

Relative to some observer 3-space is described by a ve-
locity field v (r, t). It is important to note that the coordinate
r is not itself 3-space, rather it is merely a label for an
element of 3-space that has velocity v, relative to some
observer. This will become more evident when we consider
the necessary generalisation of the Schrödinger equation.
Also it is important to appreciate that this “moving” 3-space
is not itself embedded in a “space”; the 3-space is all there
is, although as noted above its deeper structure is that of a
“quantum foam”.

In the case of zero vorticity ∇×v=0 the 3-space dyn-
amics is given by, in the non-relativistic limit,

∇∙

(
∂v

∂t
+ (v∙∇)v

)

+
α

8

(
(trD)2 − tr(D2)

)
=

= −4πGρ ,
(1)

where ρ is the matter density, and where

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

. (2)

The acceleration of an element of space is given by the
Euler form

g (r, t) ≡ lim
Δt→0

v
(
r+ v (r, t)Δt, t+Δt

)
− v (r, t)

Δt
=

=
∂v

∂t
+ (v∙∇)v .

(3)

These forms are mandated by Galilean covariance under
change of observer∗. This non-relativistic modelling of the
dynamics for the velocity field gives a direct account of
the various phenomena noted above. A generalisation to
include vorticity and relativistic effects of the motion of
matter through this 3-space is given in [1]. From (1) and
(2) we obtain that

∇∙g = −4πGρ− 4πGρDM , (4)

where

ρDM (r) =
α

32πG

(
(trD)2 − tr(D2)

)
. (5)

In this form we see that if α → 0, then the acceleration
of the 3-space elements is given by Newton’s Law of Gravi-
tation, in differential form. But for a non-zero α we see that
the 3-space acceleration has an additional effect, the ρDM
term, which is an effective “matter density” that mimics the
new self-interaction dynamics. This has been shown to be the
origin of the so-called “dark matter” effect in spiral galaxies.
It is important to note that (4) does not determine g directly;
rather the velocity dynamics in (1) must be solved, and then
with g subsequently determined from (3). Eqn. (4) merely
indicates that the resultant non-Newtonian aspects to g could
be mistaken as being the result of a new form of matter,
whose density is given by ρDM . Of course the saga of “dark
matter” shows that this actually happened, and that there has
been a misguided and fruitless search for such “matter”.

The numerous experimental confirmations of (1) imply
that Newtonian gravity is not universal at all. Rather a key
aspect to gravity was missed by Newton because it so
happens that the 3-space self-interaction dynamics does not
necessarily explicitly manifest outside of spherical matter
systems, such as the Sun. To see this it is only necessary to
see that the velocity field

v (r) = −

√
2GM ′

r
r̂ , (6)

is a solution to (1) external to a spherical mass M , where
M ′ = (1+ α

2 )M+. . . Then (6) gives, using (3), the resultant
external “inverse square law” acceleration

g (r) = −
GM ′

r2
r̂ . (7)

Hence in this special case the 3-space dynamics predicts
an inverse square law form for g, as confirmed in the non-
relativistic regime by Kepler’s laws for planetary motion,
with only a modified value for the effective mass M ′. So
for this reason we see how easy it was for Newton to have
overlooked a velocity formalism for gravity, and so missed
the self-interaction dynamics in (1). Inside a spherical matter

∗However this does not exclude so-called relativistic effects, such as the
length contraction of moving rods or the time dilations of moving clocks.
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system Newtonian gravity and the new gravity theory differ,
and it was this difference that explained the bore hole g
anomaly data [5], namely that g does not decrease down a
bore hole as rapidly as Newtonian gravity predicts. It was
this anomaly that lead to the discovery that α was in fact
the fine structure constant, up to experimental errors. As
well the 3-space dynamics in (1) has “gravitational wave”
solutions [7]. Then there are regions where the velocity
differs slightly from the enveloping region. In the absence of
matter these waves will be in general fractal because there
is no dimensioned constant, and so no natural scale. These
waves were seen by Miller, Torr and Kolen, and by DeWitte
[1, 7] as shown in Fig. 2.

However an assumption made in previous analyses was
that the acceleration of the 3-space itself, in (3), was also
the acceleration of matter located in that 3-space. The key
result herein is to derive this result by using the generalised
Schrödinger equation. In doing so we discover the additional
effect that vorticity in the velocity field causes quantum states
to be rotated, as discussed in sect. 7.

3 Newtonian gravity and the Schrödinger equation

Let us consider what might be regarded as the conventional
“Newtonian” approach to including gravity in the Schrödin-
ger equation [8]. There gravity is described by the Newtonian
potential energy field Φ(r, t), such that g = −∇Φ, and we
have for a “free-falling” quantum system, with mass m,

i~
∂ψ(r, t)

∂t
= −

~2

2m
∇2ψ(r, t) +mΦ(r, t)ψ(r, t) ≡

≡ H(t)ψ ,

(8)

where the hamiltonian is in general now time dependent,
because the masses producing the gravitational acceleration
may be moving. Then the classical-limit trajectory is obtained
via the usual Ehrenfest method [9]: we first compute the time
rate of change of the so-called position “expectation value”

d<r>

dt
≡

d

dt
(ψ, rψ) =

i

~
(Hψ, rψ)−

i

~
(ψ, rHψ) =

=
i

~
(ψ, [H, r]ψ) ,

(9)

which is valid for a normalised state ψ. The norm is time
invariant when H is hermitian (H† = H) even if H itself is
time dependent,

d

dt
(ψ,ψ) =

i

~
(Hψ,ψ)−

i

~
(ψ,Hψ) =

=
i

~
(ψ,H†ψ)−

i

~
(ψ,Hψ) = 0 .

(10)

Next we compute the matter “acceleration” from (9)

d2<r>

dt2
=
i

~
d

dt
(ψ, [H, r]ψ) =

=
( i
~

)2(
ψ,
[
H, [H, r]

]
ψ
)
+
i

~

(

ψ,

[
∂H(t)

∂t
, r

]

ψ

)

=

= −(ψ,∇Φψ) =
(
ψ,g (r, t)ψ

)
=<g (r, t)>,

(11)

where for the commutator
[
∂H(t)

∂t
, r

]

=

[

m
∂Φ(r, t)

∂t
, r

]

= 0 . (12)

In the classical limit ψ has the form of a wavepacket
where the spatial extent of ψ is much smaller than the spatial
region over which g (r, t) varies appreciably. Then we have
the approximation <g (r, t)> ≈g (<r>, t), and finally we
arrive at the Newtonian 2nd-law equation of motion for the
wavepacket,

d2<r>

dt2
≈ g (<r>, t) . (13)

In this classical limit we obtain the equivalence principle,
namely that the acceleration is independent of the mass m
and of the velocity of that mass. But of course that followed
by construction, as the equivalence principle is built into (8)
by having m as the coefficient of Φ. In Newtonian gravity
there is no explanation for the origin of Φ or g. In the new
theory gravity is explained in terms of a velocity field, which
in turn has a deeper explanation within Process Physics.

4 Dynamical 3-space and the generalised Schrödinger
equation

The key insight is that conventional physics has neglected the
interaction of various systems with the dynamical 3-space.
Here we generalise the Schrödinger equation to take account
of this new physics. Now gravity is a dynamical effect arising
from the time-dependence and spatial inhomogeneities of
the 3-space velocity field v (r, t), and for a “free-falling”
quantum system with mass m the Schrödinger equation now
has the generalised form

i~

(
∂

∂t
+ v∙∇+

1

2
∇∙v

)

ψ (r, t) = −
~2

2m
∇2ψ(r, t) , (14)

which we write as

i~
∂ψ(r, t)

∂t
= H(t)ψ(r, t) , (15)

where now

H(t) = −i~

(

v∙∇+
1

2
∇∙v

)

−
~2

2m
∇2 . (16)

This form for H specifies how the quantum system must
couple to the velocity field, and it uniquely follows from two
considerations: (i) the generalised Schrödinger equation must
remain form invariant under a change of observer, i. e. with
t→ t, and r→ r+v t, where v is the relative velocity of the

two observers. Then we compute that ∂
∂t
+ v∙∇+ 1

2
∇∙v→
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→ ∂
∂t
+ v∙∇+1

2
∇∙v, i. e. that it is an invariant operator, and

(ii) requiring thatH(t) be hermitian, so that the wavefunction
norm is an invariant of the time evolution. This implies
that the 1

2 ∇∙v term must be included, as v∙∇ by itself
is not hermitian for an inhomogeneous v (r, t). Then the
consequences for the motion of wavepackets is uniquely
determined; they are fixed by these two quantum-theoretic
requirements.

Then again the classical-limit trajectory is obtained via
the position “expectation value”, first with

vO ≡
d<r>

dt
=

d

dt
(ψ, rψ) =

i

~
(ψ, [H, r]ψ) =

=

(

ψ,

(

v (r, t)−
i~
m
∇

)

ψ

)

=<v (r, t)>−
i~
m
<∇>,

(17)

on evaluating the commutator using H(t) in (16), and which
is again valid for a normalised state ψ.

Then for the “acceleration” we obtain from (17) that∗

d2<r>

dt2
=

d

dt

(
ψ,

(
v −

i~
m
∇

)
ψ

)
=

=

(
ψ,

(
∂v (r, t)

∂t
+
i

~

[
H,

(
v −

i~
m
∇

)])
ψ

)
=

=

(
ψ,
∂v (r, t)

∂t
ψ

)
+

+

(
ψ,

(
v∙∇+

1

2
∇∙v −

i~
2m

∇2

)(
v −

i~
m
∇

)
ψ

)
−

−

(
ψ,

(
v−

i~
m
∇

)(
v∙∇+

1

2
∇∙v−

i~
2m

∇2

))
ψ

)
=

=

(
ψ,

(
∂v(r, t)

∂t
+
(
(v∙∇)v

)
−
i~
m
(∇×v)×∇

)
ψ

)
+

+

(
ψ,

i~
2m

(
∇×(∇×v)

)
ψ

)
≈

≈
∂v

∂t
+ (v∙∇)v + (∇×v)×

(
d<r>

dt
− v
)
+

+
i~
2m

(
∇×(∇×v)

)
=

=
∂v

∂t
+ (v∙∇)v + (∇×v)×

(
d<r>

dt
− v
)
=

=
∂v

∂t
+ (v∙∇)v + (∇×v)×vR ,

(18)

where in arriving at the 3rd last line we have invoked the
small-wavepacket approximation, and used (17) to identify

vR ≡ −
i~
m
<∇>= vO − v, (19)

where vO is the velocity of the wavepacket or object “O”
relative to the observer, so then vR is the velocity of the

∗Care is needed to indicate the range of the various ∇’s. Extra
parentheses (. . . ) are used to limit the range when required.

wavepacket relative to the local 3-space. Then all velocity
field terms are now evaluated at the location of the wave-
packet. Note that the operator

−
i~
m
(∇× v)×∇+

i~
2m

(
∇× (∇× v)

)
(20)

is hermitian, but that separately neither of these two operators
is hermitian. Then in general the scalar product in (18) is
real. But then in arriving at the last line in (18) by means
of the small-wavepacket approximation, we must then self-
consistently use that ∇× (∇×v)= 0, otherwise the accel-
eration acquires a spurious imaginary part. This is consistent
with (27) outside of any matter which contributes to the
generation of the velocity field, for there ρ=0. These observ-
ations point to a deep connection between quantum theory
and the velocity field dynamics, as already argued in [1].

We see that the test “particle” acquires the acceleration
of the velocity field, as in (3), and as well an additional vorti-
city induced acceleration which is the analogue of the Helm-
holtz acceleration in fluid mechanics. Hence we find that
the equivalence principle arises from the unique generalised
Schrödinger equation and with the additional vorticity effect.
This vorticity effect depends on the absolute velocity vR
of the object relative to the local space, and so requires a
change in the Galilean or Newtonian form of the equivalence
principle.

The vorticity acceleration effect is the origin of the Lense-
Thirring so-called “frame-dragging” effect† [10] discussed in
sect. 7. While the generation of the vorticity is a relativistic
effect, as in (27), the response of the test particle to that
vorticity is a non-relativistic effect, and follows from the
generalised Schrödinger equation, and which is not present
in the standard Schrödinger equation with coupling to the
Newtonian gravitational potential, as in (8). Hence the gen-
eralised Schrödinger equation with the new coupling to the
velocity field is more fundamental. The Helmholtz term in
(18) is being explored by the Gravity Probe B gyroscope
precession experiment, however the vorticity caused by the
motion of the Earth is extremely small, as discussed in sect. 7.

An important insight emerges from the form of (15)
and (16): here the generalised Schrödinger equation involves
two fields v (r, t) and ψ (r, t), where the coordinate r is
merely a label to relate the two fields, and is not itself
the 3-space. In particular while r may have the form of a
Euclidean 3-geometry, the space itself has time-dependence
and inhomogeneities, and as well in the more general case
will exhibit vorticity ω = ∇×v. Only in the unphysical case
does the description of the 3-space become identified with
the coordinate system r, and that is when the velocity field
v (r, t) becomes uniform and time independent. Then by a
suitable choice of observer we may put v (r, t)= 0, and the
generalised Schrödinger equation reduces to the usual “free”

†In the spacetime formalism it is mistakenly argued that it is
“spacetime” that is “dragged”.
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Schrödinger equation. As we discuss later the experimental
evidence is that v (r, t) is fractal and so cannot be removed
by a change to a preferred observer. Hence the generalised
Schrödinger equation in (15)–(16) is a major development for
fundamental physics. Of course in general other non-3-space
potential energy terms may be added to the RHS of (16). A
prediction of this new quantum theory, which also extends to
a generalised Dirac equation, is that the fractal structure to
space implies that even at the scale of atoms etc there will be
time-dependencies and inhomogeneities, and that these will
affect transition rates of quantum systems. These effects are
probably those known as the Shnoll effects [11].

5 Free-fall minimum proper-time trajectories

The acceleration in (18) also arises from the following ar-
gument, which is the analogue of the Fermat least-time
formalism. Consider the elapsed time for a comoving clock
travelling with the test particle. Then taking account of the
Lamour time-dilation effect that time is given by

τ [r0] =

∫
dt

(

1−
v2R
c2

)1/2
(21)

with vR given by (19) in terms of vO and v. Then this
time effect relates to the speed of the clock relative to the
local 3-space, and that c is the speed of light relative to
that local 3-space. We are using a relativistic treatment in
(21) to demonstrate the generality of the results∗. Under a
deformation of the trajectory

r0(t)→ r0(t) + δr0(t), v0(t)→ v0(t) +
dδr0(t)

dt
, (22)

and then

v
(
r0(t) + δr0(t), t

)
=

= v
(
r0(t), t

)
+
(
δr0(t)∙∇

)
v
(
r0(t), t

)
+ . . .

(23)

Evaluating the change in proper travel time to lowest
order

δτ = τ [r0 + δr0]− τ [r0] =

= −

∫
dt
1

c2
vR∙δvR

(
1−
v2R
c2

)−1/2
+ ∙ ∙ ∙ =

=

∫
dt
1

c2

vR∙(δr0∙∇)v − vR∙
d(δr0)

dt√

1−
v2R
c2

=

=

∫
dt
1

c2






vR∙(δr0∙∇)v√

1−
v2R
c2

+ δr0∙
d

dt

vR√

1−
v2R
c2





 =

∗A non-relativistic analysis may be alternatively pursued by first
expanding (21) in powers of 1/c2.

=

∫
dt
1

c2
δr0∙






(vR∙∇)v+vR×(∇×v)√

1−
v2R
c2

+
d

dt

vR√

1−
v2R
c2





 .

Hence a trajectory r0(t) determined by δτ = 0 to
O
(
δr0(t)

2
)

satisfies

d

dt

vR√

1−
v2R
c2

= −
(vR∇)v + vR×(∇×v)√

1−
v2R
c2

. (24)

Substituting vR(t) = v0(t)− v
(
r0(t), t

)
and using

dv
(
r0(t), t

)

dt
=
∂v

∂t
+ (v0∙∇)v , (25)

we obtain

dv0
dt

=
∂v

∂t
+ (v∙∇)v + (∇× v)× vR−

−
vR

1−
v2R
c2

1

2

d

dt

(
v2R
c2

)

.
(26)

Then in the low speed limit vR� c we may neglect
the last term, and we obtain (18). Hence we see a close
relationship between the geodesic equation, known first from
General Relativity, and the 3-space generalisation of the
Schrödinger equation, at least in the non-relativistic limit. So
in the classical limit, i.e when the wavepacket approximation
is valid, the wavepacket trajectory is specified by the least
propertime geodesic.

The relativistic term in (26) is responsible for the preces-
sion of elliptical orbits and also for the event horizon effect.
Hence the trajectory in (18) is a non-relativistic minimum
travel-time trajectory, which is Fermat’s Principle. The re-
lativistic term in (26) will arise from a generalised Dirac
equation which would then include the dynamics of 3-space.

6 Fractal 3-space and the DeWitte experimental data

In 1991 Roland DeWitte working within Belgacom, the Bel-
gium telecommunications company, accidently made yet an-
other detection of absolute motion, and one which was 1st-
order in v/c. 5 MHz radio frequency (RF) signals were sent
in both directions through two buried coaxial cables linking
the two clusters of cesium atomic clocks.

Changes in propagation times were observed and event-
ually observations over 178 days were recorded. A sample
of the data, plotted against sidereal time for just three days,
is shown in Fig. 1. The DeWitte data was clear evidence
of absolute motion with the Right Ascension for minimum/
maximum propagation time agreeing almost exactly with
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Fig. 1: Variations in twice the one-way travel time, in ns, for an
RF signal to travel 1.5 km through a buried coaxial cable between
Rue du Marais and Rue de la Paille, Brussels. An offset has been
used such that the average is zero. The cable has a North-South
orientation, and the data is ± difference of the travel times for
NS and SN propagation. The sidereal time for maximum effect
of ∼5hr (or ∼17hr) (indicated by vertical lines) agrees with the
direction found by Miller[4]. Plot shows data over 3 sidereal days
and is plotted against sidereal time. The main effect is caused by the
rotation of the Earth. The superimposed fluctuations are evidence
of turbulence i.e gravitational waves. Removing the Earth induced
rotation effect we obtain the first experimental data of the fractal
structure of space, and is shown in Fig. 2. DeWitte performed this
experiment over 178 days, and demonstrated that the effect tracked
sidereal time and not solar time[1].

Miller’s direction∗ (α = 5.2hr, δ = −67◦)†, and with speed
420 ± 30 km/s. This local absolute motion is different from
the CMB motion, in the direction (α = 11.20hr, δ = −7.22◦)
with speed of 369 km/s, for that would have given the data
a totally different sidereal time signature, namely the times
for maximum/ minimum would have been shifted by 6hrs.
The CMB velocity is motion relative to the distant early
universe, whereas the velocity measured in the DeWitte and
related experiments is the velocity relative to the local space.
The declination of the velocity observed in this DeWitte
experiment cannot be determined from the data as only three
days of data are available. However assuming exactly the
same declination as Miller the speed observed by DeWitte
appears to be also in excellent agreement with the Miller
speed. The dominant effect in Fig. 1 is caused by the rotation
of the Earth, namely that the orientation of the coaxial cable

∗This velocity arises after removing the effects of the Earth’s orbital
speed about the Sun, 30 km/s, and the gravitational in-flow past the Earth
towards the Sun, 42 km/s, as in (6).

†The opposite direction is not easily excluded due to errors within
the data, and so should also be considered as possible. A new experiment
will be capable of more accurately determining the speed and direction, as
well as the fractal structure of 3-space. The author is constructung a more
compact version of the Torr-Kolen - DeWitte coaxial cable RF travel-time
experiment. New experimental techniques have been developed to increase
atomic-clock based timing accuracy and stability, so that shorter cables can
be used, which will permit 3-arm devices.

Fig. 2: Shows the velocity fluctuations, essentially “gravitational
waves” observed by DeWitte in 1991 from the measurement of
variations in the RF coaxial-cable travel times. This data is obtained
from that in Fig. 1 after removal of the dominant effect caused by
the rotation of the Earth. Ideally the velocity fluctuations are three-
dimensional, but the DeWitte experiment had only one arm. This
plot is suggestive of a fractal structure to the velocity field. This is
confirmed by the power law analysis shown in Fig. 3.

with respect to the direction of the flow past the Earth
changes as the Earth rotates. This effect may be approx-
imately unfolded from the data, leaving the gravitational
waves shown in Fig. 2. This is the first evidence that the
velocity field describing 3-space has a complex structure,
and is indeed fractal.

The fractal structure, i. e. that there is an intrinsic lack of
scale, to these speed fluctuations is demonstrated by binning
the absolute speeds |v| and counting the number of speeds
p(|v|) within each bin. A least squares fit of the log–log
plot to a straightline was then made. Plotting log[p(|v|)] vs
log |v|, as shown in Fig. 3 we see that the fit gives p(v) ∝
|v|−2.6. With the new experiment considerably more data
will become available.

7 Observing 3-space vorticity

The vorticity effect in (18) can be studied experimentally in
the Gravity Probe B (GP-B) gyroscope satellite experiment
in which the precession of four on-board gyroscopes has
been measured to unprecedented accuracy [12, 13]. In a
generalisation of (1) [1] the vorticity ∇×v is generated by
matter in motion through the 3-space, where here vR is the
absolute velocity of the matter relative to the local 3-space.

∇×(∇×v) =
8πGρ

c2
vR . (27)

We then obtain from (27) the vorticity (ignoring homo-
geneous vortex solutions)

~ω(r, t) =
2G

c2

∫
d3 r′

ρ(r′, t)

|r− r′|3
vR(r

′, t)× (r− r′) . (28)
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Fig. 3: Shows that the velocity fluctuations in Fig. 2 are scale free,
as the probability distribution from binning the speeds has the form
p(v) ∝ |v|−2.6. This plot shows log[p(v)] vs log |v|. This shows
that the velocity field has a fractal structure, and so requiring the
generalisation of the Schrödinger equation, as discussed herein, and
also the Maxwell and Dirac equations (to be discussed elsewhere).

For the smaller Earth-rotation induced vorticity effect
vR(r) = w × r in (28), where w is the angular velocity of
the Earth, giving

~ω (r)rot = 4
G

c2
3(r ∙ L) r− r2L

2r5
, (29)

where L is the angular momentum of the Earth, and r is the
distance from the centre.

In general the vorticity term in (18) leads to a apparent
“torque”, according to a distant observer, acting on the ang-
ular momentum S of the gyroscope,

~τ =

∫
d3rρ(r) r×

(
~ω (r)×vR(r)

)
, (30)

where ρ is its density, and where now vR is used here to
describe the motion of the matter forming the gyroscope
relative to the local 3-space. Then dS = ~τdt is the change in
S over the time interval dt. For a gyroscope vR(r) = s× r,
where s is the angular velocity of the gyroscope. This gives

~τ =
1

2
~ω × S (31)

and so ~ω/2 is the instantaneous angular velocity of precession
of the gyroscope. The component of the vorticity in (29) has

been determined from the laser-ranged satellites LAGEOS
(NASA) and LAGEOS 2 (NASA-ASI) [14], and the data
implies the indicated coefficient on the RHS of (27) to ±10%.
For GP-B the direction of S has been chosen so that this
precession is cumulative and, on averaging over an orbit,
corresponds to some 7.7×10−6 arcsec per orbit, or 0.042
arcsec per year. GP-B has been superbly engineered so that
measurements to a precision of 0.0005 arcsec are possible.

However for the Earth-translation induced precession if
we use vR = 430 km/s (in the direction RA = 5.2hr, Dec =
= −67◦), (28) gives

~ω(r)trans =
2GM

c2
vR×r
r3

, (32)

and then the total vorticity is ~ω = ~ωrot+ ~ωtrans. The maxi-
mum magnitude of the speed of this precession component is
ωtrans/2 = gvC/c

2 = 8×10−6 arcsec/s, where here g is the
usual gravitational acceleration at the altitude of the satellite.
This precession has a different signature: it is not cumulative,
and is detectable by its variation over each single orbit, as
its orbital average is zero, to first approximation.

Essentially then these spin precessions are caused by the
rotation of the “wavepackets” describing the matter forming
the gyroscopes, and caused in turn by the vorticity of 3-space.
The above analysis shows that the rotation is exactly the same
as the rotation of the 3-space itself, just as the acceleration of
“matter” was exactly the same as the acceleration of the 3-
space. We this obtain a much clearer insight into the nature
of motion, and which was not possible in the spacetime
formalism.

8 Conclusions

We have seen herein that the new theory of 3-space has
resulted in a number of fundamental developments, namely
that a complex “quantum foam” dynamical 3-space exists and
has a fractal “flow” structure, as revealed most clearly by the
extraordinary DeWitte coaxial-cable experiment. This fractal
structure requires that the fundamental equations of physics
be generalised to take account of, for the first time, the
physics of this 3-space and, in particular, here the inclusion
of that dynamics within the dynamics of quantum systems.
We saw that the generalisation of the Schrödinger equation
is unique, and that from an Ehrenfest wavepacket analysis
we obtained the equivalence principle, with the acceleration
of “matter” being shown to be identical to the acceleration
of the 3-space; which while not unexpected, is derived here
for the first time. This result shows that the equivalence
principle is really a quantum-theoretic effect. As well we
obtained by that same analysis that any vorticity in the 3-
space velocity field will result in a corresponding rotation
of wavepackets, and just such an effect is being studied in
the GP-B gyroscope experiment. So for the first time we see
that the original Schrödinger equation actually lacked a key
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dynamical ingredient. We saw that self-consistency within
the small-wavepacket approximation imposed restrictions on
the dynamical equations that determine the vorticity, giving
yet another indication of the close connection between quan-
tum theory and the phenomena of 3-space and gravity. As
well because the 3-space is fractal the generalised Schrödin-
ger equation now contains a genuine element of stochasticity.

This research is supported by an Australian Research
Council Discovery Grant.
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Zelmanov’s Anthropic Principle, although introduced in the 1940’s, has been published
only recently: “The Universe has the interior we observe because we observe the
Universe in this way. It is impossible to divorce the Universe from the observer. If
the observer is changed, then the observed world will present in some other way, so
the Universe observed will also be changed. If no observers exist then the observable
Universe as well does not exist.” Zelmanov’s mathematical apparatus of physical
observable quantities employs the Principle to the General Theory of Relativity. Using
this apparatus he developed the Infinite Relativity Principle: “In homogeneous iso-
tropic cosmological models spatial infinity of the Universe and infinity of its evolution
span depend on our choice of the observer’s reference frame.”

Abraham Zelmanov (1913–1987), a prominent cosmologist,
introduced his Anthropic Principle in the 1940’s, but it has
been published only recently. It is probable that he reached
his ideas not only from his pure mathematical studies on
the General Theory of Relativity and relativistic cosmology
— besides these he had an excellent knowledge of religious
considerations on world-genesis and the origin of humanity.
We can now only guess at the way in which he came to his
idea of the Anthropic Principle. The fact is that for more
than 60 years his Anthropic Principle remained known only
a close circle of several of his pupils. His book containing
his main fundamental studies on the General Theory of
Relativity and relativistic cosmology was written in 1944 and
had survived only in manuscript until it has been published
in 2004 [1].

Zelmanov stated his Anthropic Principle in two versions.
The first version sets forth the law of human evolution
dependent upon fundamental physical constants:

Humanity exists at the present day and we observe
world constants completely because the constants bear
their specific numerical values at this time. When the
world constants bore other values humanity did not
exist. When the constants change to other values hu-
manity will disappear. That is, humanity can exist
only with the specific scale of the numerical values
of the cosmological constants. Humanity is only an
episode in the life of the Universe. At the present
time cosmological conditions are such that humanity
develops.

In the second form he argues that any observer depends on
the Universe he observes in the same way that the Universe
depends on him:

The Universe has the interior we observe, because we
observe the Universe in this way. It is impossible to
divorce the Universe from the observer. The observ-
able Universe depends on the observer and the ob-
server depends on the Universe. If the contemporary

physical conditions in the Universe change then the
observer is changed. And vice versa, if the observer
is changed then he will observe the world in another
way. So the Universe he observes will be also chang-
ed. If no observers is exist then the observable Uni-
verse as well does not exist.

It is probable that by proceeding from his Anthropic
Principle, in 1941–1944 Zelmanov solved the well-known
problem of physical observable quantities in the General
Theory of Relativity [1, 2]. It should be noted, many re-
searchers were working on the theory of observable quan-
tities in the 1940’s. For example, Landau and Lifshitz in
their famous The Classical Theory of Fields [3] introduced
observable time and the observable three-dimensional in-
terval similar to those introduced by Zelmanov. But they
limited themselves only to this particular case and did not
arrive at general mathematical methods to define physical
observable quantities in pseudo-Riemannian spaces. It was
only Cattaneo, an Italian mathematician, who developed his
own approach to the problem, not far removed from Zel-
manov’s solution. Cattaneo published his results on the theme
in 1958 and later [4, 5].

In 1944 Zelmanov completed a complete mathematical
apparatus [1, 2] to calculate physical observable quantities in
four-dimensional pseudo-Riemannian space, that is the strict
solution of that problem. He called the apparatus the theory
of chronometric invariants. The essence of his theory is
that if an observer accompanies his physical reference body,
his observable quantities are projections of four-dimensional
quantities on his time line and the spatial section — chrono-
metrically invariant quantities, made by projecting operators

bα= dxα

ds
and hαβ =−gαβ + bαbβ which fully define his

real reference space (here bα is his velocity with respect
to his real references). Thus, the chr.inv.-projections of a

world-vector Qα are bαQα=
Q0√
g00

and hiαQ
α=Qi, while

chr.inv.-projections of a world-tensor of the 2nd rank Qαβ
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are bαbβQαβ =
Q00
g00 , hiαbβQαβ =

Qi0√
g00

, hiαh
k
βQ

αβ =Qik.

Physically observable properties of the space are derived

from the fact that chr.inv.-differential operators
∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi

= ∂
∂xi

+ 1
c2
vi

∗∂
∂t

are non-commutative
∗∂2

∂xi∂t
−

−
∗∂2

∂t ∂xi
= 1
c2
Fi

∗∂
∂t

and
∗∂2

∂xi∂xk
−

∗∂2

∂xk∂xi
= 2
c2
Aik

∗∂
∂t

, and

also from the fact that the chr.inv.-metric tensor hik may not
be stationary. The observable characteristics are the chr.inv.-
vector of gravitational inertial force Fi, the chr.inv.-tensor of
angular velocities of the space rotation Aik, and the chr.inv.-
tensor of rates of the space deformations Dik, namely

Fi=
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

,
√
g00=1−

w

c2

Aik=
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk−Fkvi) ,

Dik=
1

2

∗∂hik
∂t

, Dik=−
1

2

∗∂hik

∂t
, Dk

k=
∗∂ ln

√
h

∂t
,

where w is gravitational potential, vi=−c
g0i√
g00

is the linear

velocity of the space rotation, hik=−gik+ 1
c2
vivk is the

chr.inv.-metric tensor, and also h=det ‖hik‖, hg00=−g,
g=det ‖gαβ‖. Observable inhomogeneity of the space is
set up by the chr.inv.-Christoffel symbols Δijk=h

imΔjk,m,
which are built just like Christoffel’s usual symbols Γαμν =
= gασΓμν,σ using hik instead of gαβ .

A four-dimensional generalization of the main chr.inv.-
quantities Fi, Aik, and Dik (by Zelmanov, the 1960’s [10])
is: Fα=−2c2bβaβα, Aαβ = ch

μ
αhνβaμν , Dαβ = ch

μ
αhνβdμν ,

where aαβ = 1
2 (∇α bβ −∇β bα), dαβ =

1
2 (∇α bβ +∇β bα).

In this way, for any equations obtained using general
covariant methods, we can calculate their physically observ-
able projections on the time line and the spatial section of
any particular reference body and formulate the projections
in terms of their real physically observable properties, from
which we obtain equations containing only quantities mea-
surable in practice.

Zelmanov deduced chr.inv.-formulae for the space curva-
ture [1]. He followed that procedure by which the Riemann-
Christoffel tensor was built: proceeding from the non-
commutativity of the second derivatives of an arbitrary vector
∗∇i∗∇kQl−∗∇k∗∇iQl=

2Aik
c2

∗∂Ql
∂t

+H
...j
lki∙Qj , he obtain-

ed the chr.inv.-tensor H ...j
lki∙ =

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+ΔmilΔ

j
km−

−ΔmklΔ
j
im, which is similar to Schouten’s tensor from the

theory of non-holonomic manifolds. The tensor H ...j
lki differs

algebraically from the Riemann-Christoffel tensor because
of the presence of the space rotation Aik in the formula.

Nevertheless its generalization gives the chr.inv.-tensor

Clkij =
1

4
(Hlkij −Hjkil +Hklji −Hiljk) ,

which possesses all the algebraic properties of the Riemann-
Christoffel tensor in this three-dimensional space and, at the
same time, the property of chronometric invariance. There-
fore Zelmanov called Ciklj the chr.inv.-curvature tensor as
the tensor of the observable curvature of the observer’s
spatial section. Its contraction step-by-step

Ckj = C ∙∙∙i
kij∙ = himCkimj , C = C

j
j = hljClj

gives the chr.inv.-scalar C, which is the observable three-
dimensional curvature of this space.

Chr.inv.-projections of the Riemann-Christoffel tensor

are [1]: Xik=−c2R
∙i∙k
0∙0∙
g00 , Y ijk=−cR

∙ijk
0 ∙∙∙√
g00

, Zijkl=c2Rijkl.

Solving Einstein’s equations with this mathematical ap-
paratus, Zelmanov obtained the total system of all cosmo-
logical models (senarios of the Universe’s evolution) which
could be possible as derived from the equations [1, 6]. In
particular, he had arrived at the possibility that infinitude may
be relative. Later, in the 1950’s, he enunciated the Infinite
Relativity Principle:

In homogeneous isotropic cosmological models spa-
tial infinity of the Universe depends on our choice
of that reference frame from which we observe the
Universe (the observer’s reference frame). If the three-
dimensional space of the Universe, being observed in
one reference frame, is infinite, it may be finite in
another reference frame. The same is just as well true
for the time during which the Universe evolves.

In other words, using purely mathematical methods of
the General Theory of Relativity, Zelmanov showed that
any observer forms his world-picture from a comparison
between his observation results and some standards he has
in his laboratory — the standards of different objects and
their physical properties. So the “world” we see as a result
of our observations depends directly on that set of physical
standards we have, so the “visible world” depends directly
on our considerations about some objects and phenomena.

The mathematical apparatus of physical observable quan-
tities and those results it gave in relativistic cosmology were
the first results of Zelmanov’s application of his Anthropic
Principle to the General Theory of Relativity. To obtain
the results with general covariant methods (standard in the
General Theory of Relativity), where observation results do
not depend on the observer’s reference properties, would be
impossible.

Now, according to the wishes of those who knew Zel-
manov closely, I would like to say a few good words in
memory of him.

Abraham Leonidovich Zelmanov was born in May 15,
1913 in Poltava Gubernya of the Russian Empire. His father
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was a Judaic religious scientist, a specialist in comments
on Torah and Kabbalah. In 1937 Zelmanov completed his
education at the Mechanical Mathematical Department of
Moscow University. After 1937 he was a research-student at
the Sternberg Astronomical Institute in Moscow, where he
presented his dissertation in 1944. In 1953 he was arrested for
“cosmopolitism” within the framework of Stalin’s campaign
against Jews, however as soon as Stalin had died Zelmanov
was set free after some months of in gaol. For several decades
Zelmanov and his paralyzed parents lived in a room in a
shared flat with neighbours. He took everyday care of his
parents, so they lived into old age. Only in the 1970’s did he
obtain a personal municipal flat. He was married three times.
Zelmanov worked on the academic staff of the Sternberg
Astronomical Institute all life, until his death on the winter’s
day, the 2nd of February, 1987.

Abraham Zelmanov, 1940’s

He was very thin in physique,
like an Indian yogi, rather shorter
than average, and a very delicate
man. From his appearance it was
possible to think that his life and
thoughts were rather ordinary or
uninteresting. However, in acquain-
tance with him and his scientific
discussions in friendly company one
formed another opinion about him.
Those were discussions with a great
scientist and humanist who reasoned
in a very unorthodox way. Some-

times we thought that we were not speaking with a con-
temporary scientist of the 20th century, but some famous
philosopher from Classical Greece or the Middle Ages. So
the themes of those discussions are eternal — the interior of
the Universe, what is the place of a human in the Universe,
what are space and time.

Zelmanov liked to remark that he preferred to make math-
ematical “instruments” more than to use them in practice.
Perhaps thereby his main goal in science was the mathemati-
cal apparatus of physical observable quantities in the General
Theory of Relativity known as the theory of chronometric
invariants [1, 2]. In developing the apparatus he also created
other mathematical methods, namely — kinemetric invari-
ants [9] and monad formalism [10]. Being very demanding
of himself, Zelmanov published less than a dozen scientific
articles during his life (see References), so every publication
is a concentrate of his fundamental scientific ideas.

Most of his time was spent in scientific work, but he
sometimes gave lectures on the General Theory of Relativity
and relativistic cosmology as a science for the geometrical
structure of the Universe. Stephen Hawking, a young scientist
in the 1960’s, attended Zelmanov’s seminars on cosmology at
the Sternberg Astronomical Institute in Moscow. Zelmanov
presented him as a “promising young cosmologist”. Hawking
read a brief report at one of those seminars.

Because Zelmanov made scientific creation the main goal
of his life writing articles was a waste of time to him.
However he never regreted time spent on long discussions
in friendly company, where he set forth his philosophic
concepts on the geometrical structure of the Universe and the
ways of human evolution. In those discussions he formulated
his famous Anthropic Principle and the Infinite Relativity
Principle.

Now everyone may read it. I hope that Zelmanov’s clas-
sical works on the General Theory of Relativity and cos-
mology, in particular his Anthropic Principle and the Infinite
Relativity Principle known to a very close circle of his pupils,
will become more widely known and appreciated.
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A new nonlinear Schrödinger equation is obtained explicitly from the (fractal)
Brownian motion of a massive particle with a complex-valued diffusion constant.
Real-valued energy plane-wave solutions and solitons exist in the free particle case.
One remarkable feature of this nonlinear Schrödinger equation based on a (fractal)
Brownian motion model, over all the other nonlinear QM models, is that the quantum-
mechanical energy functional coincides precisely with the field theory one. We finalize
by showing why a complex momentum is essential to fully understand the physical
implications of Weyl’s geometry in QM, along with the interplay between Bohm’s
Quantum potential and Fisher Information which has been overlooked by several
authors in the past.

1 Introduction

Over the years there has been a considerable debate as
to whether linear QM can fully describe Quantum Chaos.
Despite that the quantum counterparts of classical chaotic
systems have been studied via the techniques of linear QM,
it is our opinion that Quantum Chaos is truly a new paradigm
in physics which is associated with non-unitary and nonlinear
QM processes based on non-Hermitian operators (imple-
menting time symmetry breaking). This Quantum Chaotic
behavior should be linked more directly to the Nonlinear
Schrödinger equation without any reference to the nonlinear
behavior of the classical limit. For this reason, we will
analyze in detail the fractal geometrical features underlying
our Nonlinear Schrödinger equation obtained in [6].

Nonlinear QM has a practical importance in different
fields, like condensed matter, quantum optics and atomic
and molecular physics; even quantum gravity may involve
nonlinear QM. Another important example is in the modern
field of quantum computing. If quantum states exhibit small
nonlinearities during their temporal evolution, then quantum
computers can be used to solve NP-complete (non poly-
nomial) and #P problems in polynomial time. Abrams and
Lloyd [19] proposed logical gates based on non linear Schrö-
dinger equations and suggested that a further step in quantum
computing consists in finding physical systems whose evol-
ution is amenable to be described by a NLSE.

On other hand, we consider that Nottale and Ord’s form-
ulation of quantum mechanics [1], [2] from first principles
based on the combination of scale relativity and fractal space-
time is a very promising field of future research. In this work
we extend Nottale and Ord’s ideas to derive the nonlinear
Schrödinger equation. This could shed some light on the
physical systems which could be appropriately described by

the nonlinear Schrödinger equation derived in what follows.
The contents of this work are the following: In section 2

we derive the nonlinear Schrödinger equation by extending
Nottale-Ord’s approach to the case of a fractal Brownian
motion with a complex diffusion constant. We present a
thorough analysis of such nonlinear Schrödinger equation
and show why it cannot linearized by a naive complex scaling
of the wavefunction ψ → ψλ.

Afterwards we will describe the explicit interplay be-
tween Fisher Information, Weyl geometry and the Bohm’s
potential by introducing an action based on a complex mo-
mentum. The connection between Fisher Information and
Bohm’s potential has been studied by several authors [24],
however the importance of introducing a complex moment-
um Pk= pk+ iAk (where Ak is the Weyl gauge field of
dilatations) in order to fully understand the physical impli-
cations of Weyl’s geometry in QM, along with the interplay
between Bohm’s quantum potential and Fisher Information,
has been overlooked by several authors in the past [24], [25].
For this reason we shall review in section 3 the relationship
between Bohm’s Quantum Potential and the Weyl curvature
scalar of the Statistical ensemble of particle-paths (an Abel-
ian fluid) associated to a single particle that was initially
developed by [22]. A Weyl geometric formulation of the
Dirac equation and the nonlinear Klein-Gordon wave equat-
ion was provided by one of us [23]. In the final section 4,
we summarize our conclusions and include some additional
comments.

2 Nonlinear QM as a fractal Brownian motion with
a complex diffusion constant

We will be following very closely Nottale’s derivation of
the ordinary Scrödinger equation [1]. Recently Nottale and
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Celerier [1] following similar methods were able to derive
the Dirac equation using bi-quaternions and after breaking
the parity symmetry dxμ↔−dxμ, see references for details.
Also see the Ord’s paper [2] and the Adlers’s book on
quaternionic QM [16]. For simplicity the one-particle case
is investigated, but the derivation can be extended to many-
particle systems. In this approach particles do not follow
smooth trajectories but fractal ones, that can be described
by a continuous but non-differentiable fractal function ~r (t).
The time variable is divided into infinitesimal intervals dt
which can be taken as a given scale of the resolution.

Then, following the definitions given by Nelson in his
stochastic QM approach (Lemos in [12] p. 615; see also [13,
14]), Nottale define mean backward an forward derivatives

d±~r (t)

dt
= lim

Δt→±0

〈
~r (t+Δt)− ~r (t)

Δt

〉

, (1)

from which the forward and backward mean velocities are
obtained,

d±~r (t)

dt
= ~b± . (2)

For his deduction of Schrödinger equation from this
fractal space-time classical mechanics, Nottale starts by de-
fining the complex-time derivative operator

δ

dt
=
1

2

(
d+
dt
+
d−
dt

)

− i
1

2

(
d+
dt
−
d−
dt

)

, (3)

which after some straightforward definitions and transform-
ations takes the following form,

δ

dt
=

∂

∂t
+ ~V ∙ ~∇− iD∇2, (4)

D is a real-valued diffusion constant to be related to the
Planck constant.

The D comes from considering that the scale dependent
part of the velocity is a Gaussian stochastic variable with
zero mean, (see de la Peña at [12] p. 428)

〈dξ±i dξ±j〉 = ±2Dδijdt . (5)

In other words, the fractal part of the velocity ~ξ, proport-
ional to the ~ζ , amount to a Wiener process when the fractal
dimension is 2.

Afterwards, Nottale defines a set of complex quantities
which are generalization of well known classical quantities
(Lagrange action, velocity, momentum, etc), in order to be
coherent with the introduction of the complex-time derivative
operator. The complex time dependent wave function ψ is
expressed in terms of a Lagrange action S by ψ = eiS/(2mD).
S is a complex-valued action but D is real-valued. The
velocity is related to the momentum, which can be expressed
as the gradient of S, ~p = ~∇S. Then the following known
relation is found,

~V = −2iD~∇ lnψ . (6)

The Schrödinger equation is obtained from the Newton’s
equation (force = mass times acceleration) by using the
expression of ~V in terms of the wave function ψ,

−~∇U = m
δ

dt
~V = −2imD

δ

dt
~∇ lnψ . (7)

Replacing the complex-time derivation (4) in the New-
ton’s equation gives us

−~∇U = −2im

(

D
∂

∂t
~∇ lnψ

)

− 2D~∇

(

D
∇2ψ
ψ

)

. (8)

Simple identities involving the ~∇ operator were used by
Nottale. Integrating this equation with respect to the position
variables finally yields

D2∇2ψ + iD
∂ψ

∂t
−

U

2m
ψ = 0 , (9)

up to an arbitrary phase factor which may set to zero. Now
replacing D by ~/(2m), we get the Schrödinger equation,

i~
∂ψ

∂t
+
~2

2m
∇2ψ = Uψ . (10)

The Hamiltonian operator is Hermitian, this equation is
linear and clearly is homogeneous of degree one under the
substitution ψ → λψ.

Having reviewed Nottale’s work [1] we can generalize
it by relaxing the assumption that the diffusion constant is
real; we will be working with a complex-valued diffusion
constant; i. e. with a complex-valued ~. This is our new con-
tribution. The reader may be immediately biased against such
approach because the Hamiltonian ceases to be Hermitian
and the energy becomes complex-valued. However this is
not always the case. We will explicitly find plane wave solu-
tions and soliton solutions to the nonlinear and non-Hermit-
ian wave equations with real energies and momenta. For a
detailed discussion on complex-valued spectral representat-
ions in the formulation of quantum chaos and time-symmetry
breaking see [10]. Nottale’s derivation of the Schrödinger
equation in the previous section required a complex-valued
action S stemming from the complex-valued velocities due
to the breakdown of symmetry between the forwards and
backwards velocities in the fractal zigzagging. If the action
S was complex then it is not farfetched to have a complex
diffusion constant and consequently a complex-valued ~
(with same units as the complex-valued action).

Complex energy is not alien in ordinary linear QM. They
appear in optical potentials (complex) usually invoked to
model the absorption in scattering processes [8] and decay
of unstable particles. Complex potentials have also been
used to describe decoherence. The accepted way to describe
resonant states in atomic and molecular physics is based on
the complex scaling approach, which in a natural way deals
with complex energies [17]. Before, Nottale wrote,

〈dζ± dζ±〉 = ±2Ddt , (11)
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with D and 2mD = ~ real. Now we set

〈dζ± dζ±〉 = ±(D +D
∗)dt , (12)

withD and 2mD = ~ = α+iβ complex. The complex-time
derivative operator becomes now

δ

dt
=

∂

∂t
+ ~V ∙ ~∇−

i

2
(D +D∗)∇2. (13)

In the real case D = D∗. It reduces to the complex-time-
derivative operator described previously by Nottale. Writing
again the ψ in terms of the complex action S,

ψ = eiS/(2mD) = eiS/~, (14)

where S, D and ~ are complex-valued, the complex velocity
is obtained from the complex momentum ~p = ~∇S as

~V = −2iD~∇ lnψ . (15)

The NLSE (non-linear Schröedinger equation) is obtain-
ed after we use the generalized Newton’s equation (force =
mass times acceleration) in terms of the ψ variable,

−~∇U = m
δ

dt
~V = −2imD

δ

dt
~∇ lnψ . (16)

Replacing the complex-time derivation (13) in the gen-
eralized Newton’s equation gives us

~∇U = 2im

[

D
∂

∂t
~∇ lnψ − 2iD2(~∇ lnψ ∙ ~∇)×

× (~∇ lnψ)−
i

2
(D +D∗)D∇2 (~∇ lnψ)

]

.

(17)

Now, using the next three identities: (i) ~∇∇2=∇2~∇;
(ii) 2 (~∇ lnψ ∙ ~∇)(~∇ lnψ)= ~∇(~∇ lnψ)2; and (iii) ∇2 lnψ=
=∇2ψ/ψ− (~∇ lnψ)2 allows us to integrate such equation
above yielding, after some straightforward algebra, the NLSE

i~
∂ψ

∂t
= −

~2

2m

α

~
∇2ψ + Uψ − i

~2

2m

β

~

(
~∇ lnψ

)2
ψ . (18)

Note the crucial minus sign in front of the kinematic
pressure term and that ~=α+ iβ=2mD is complex. When
β=0 we recover the linear Schrödinger equation.

The nonlinear potential is now complex-valued in gener-
al. Defining

W =W (ψ) = −
~2

2m

β

~

(
~∇ lnψ

)2
, (19)

and U the ordinary potential, we rewrite the NLSE as

i~
∂ψ

∂t
=

(

−
~2

2m

α

~
∇2 + U + iW

)

ψ . (20)

This is the fundamental nonlinear wave equation of this
work. It has the form of the ordinary Schrödinger equation

with the complex potential U+ iW and the complex ~.
The Hamiltonian is no longer Hermitian and the potential
V =U+ iW (ψ) itself depends on ψ. Nevertheless one could
have meaningful physical solutions with real valued energies
and momenta, like the plane-wave and soliton solutions stud-
ied in the next section. Here are some important remarks.
• Notice that the NLSE above cannot be obtained by a

naive scaling of the wavefunction

ψ = eiS/~0 → ψ′ = eiS/~ = e (iS/~0)(~0/~) =

= ψλ = ψ~0/~, ~ = real
(21)

related to a scaling of the diffusion constant ~0 = 2mD0 →
→ ~ = 2mD. Upon performing such scaling, the ordinary
linear Schrödinger equation in the variable ψ will appear to
be nonlinear in the new scaled wavefunction ψ′

i~
∂ψ′

∂t
= −

~2

2m

~0
~
∇2ψ′ + Uψ′−

−
~2

2m

(
1−
~0
~

)(
~∇ lnψ′

)2
ψ′,

(22)

but this apparent nonlinearity is only an artifact of the change
of variables (the scaling of ψ).

Notice that the latter (apparent) nonlinear equation, de-
spite having the same form as the NLSE, obtained from a
complex-diffusion constant, differs crucially in the actual
values of the coefficients multiplying each of the terms.
The NLSE has the complex coefficients α/~ (in the kinetic
terms), and −iβ/~ (in the nonlinear logarithmic terms) with
~=α+ iβ= complex. However, the nonlinear equation ob-
tained from a naive scaling involves real and different num-
erical coefficients than those present in the NLSE. Therefore,
the genuine NLSE cannot be obtained by a naive scaling
(redefinition) of the ψ and the diffusion constant.

Notice also that even if one scaled ψ by a complex
exponent ψ → ψλ with λ = ~0/~ and ~ = complex, the
actual numerical values in the apparent nonlinear equation,
in general, would have still been different than those present
in the NLSE. However, there is an actual equivalence, if, and
only if, the scaling exponent λ = ~0/~ obeyed the condition:

α = ~0 ⇒ 1−
~0
~
= 1−

α

~
= 1−

~− iβ
~

= i
β

~
(23)

in this very special case, the NLSE would be obtained from
a linear Schrödinger equation after scaling the wavefunction
ψ → ψλ with a complex exponent λ = ~0/~ = α/~. In
this very special and restricted case, the NLSE could be
linearized by a scaling of the wavefunction with complex
exponent.

From this analysis one infers, immediately, that if one
defines the norm of the complex ~: ‖~‖ =

√
α2+β2 = ~0

to coincide precisely with the observed value ~0 of Planck’s
constant, then α 6= ~0, iβ 6= ~− ~0 and, consequently, the
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NLSE cannot be obtained from the ordinary (linear) Schrö-
dinger equations after a naive scaling, with a complex expo-
nent, ψ → ψλ=ψ~0/~. Therefore, a complex diffusion con-
stant 2mD = ~ = α+ iβ, with the condition 2m‖D‖=
= ‖~‖=

√
α2+β2= ~0 (observed value of Planck’s con-

stant) ensures that the NLSE is not a mere artifact of the
scaling of the wavefunction ψ → ψλ=ψ~0/~ in the ordinary
linear Schrödinger equation.

It is important to emphasize that the diffusion constant
is always chosen to be related to Planck constant as follows:
2m‖D‖=‖~‖= ~0 which is just the transition length from a
fractal to a scale-independence non-fractal regime discussed
by Nottale in numerous occasions. In the relativistic scale it
is the Compton wavelength of the particle (say an electron):
λc= ~0/(mc). In the nonrelativistic case it is the de Broglie
wavelength of the electron.

Therefore, the NLSE based on a fractal Brownian motion
with a complex valued diffusion constant 2mD= ~=α+ iβ
represents truly a new physical phenomenon and a hallmark
of nonlinearity in QM. For other generalizations of QM see
experimental tests of quaternionic QM (in the book by Adler
[16]). Equation (18) is the fundamental NLSE of this work.
• A Fractal Scale Calculus description of our NLSE

was developed later on by Cresson [20] who obtained, on a
rigorous mathematical footing, the same functional form of
our NLSE equation above ( although with different complex
numerical coefficients) by using Nottale’s fractal scale-
calculus that obeyed a quantum bialgebra. A review of our
NLSE was also given later on by [25]. Our nonlinear wave
equation originated from a complex-valued diffusion con-
stant that is related to a complex-valued extension of Planck’s
constant. Hence, a fractal spacetime is deeply ingrained with
nonlinear wave equations as we have shown and it was later
corroborated by Cresson [20].
• Complex-valued viscosity solutions to the Navier-

Stokes equations were also analyzed by Nottale leading to
the Fokker-Planck equation. Clifford-valued extensions of
QM were studied in [21] C-spaces (Clifford-spaces whose
enlarged coordinates are polyvectors, i. e. antisymmetric
tensors) that involved a Clifford-valued number extension
of Planck’s constant; i. e. the Planck constant was a hyper-
complex number. Modified dispersion relations were derived
from the underlying QM in Clifford-spaces that lead to faster
than light propagation in ordinary spacetime but without
violating causality in the more fundamental Clifford spaces.
Therefore, one should not exclude the possibility of having
complex-extensions of the Planck constant leading to non-
linear wave equations associated with the Brownian motion
of a particle in fractal spacetimes.
• Notice that the NLSE (34) obeys the homogeneity

condition ψ → λψ for any constant λ. All the terms in the
NLSE are scaled respectively by a factor λ. Moreover, our
two parameters α, β are intrinsically connected to a complex
Planck constant ~ = α+ iβ such that ‖~‖=

√
α2+β2= ~0

(observed Planck’s constant) rather that being ah-hoc con-
stants to be determined experimentally. Thus, the nonlinear
QM equation derived from the fractal Brownian motion with
complex-valued diffusion coefficient is intrinsically tied up
with a non-Hermitian Hamiltonian and with complex-valued
energy spectra [10].
• Despite having a non-Hermitian Hamiltonian we still

could have eigenfunctions with real valued energies and
momenta. Non-Hermitian Hamiltonians (pseudo-Hermitian)
have captured a lot of interest lately in the so-called PT
symmetric complex extensions of QM and QFT [27]. There-
fore these ideas cannot be ruled out and they are the subject
of active investigation nowadays.

3 Complex momenta, Weyl geometry, Bohm’s potential
and Fisher information

Despite that the interplay between Fisher Information and
Bohm’s potential has been studied by several authors [24] the
importance of introducing a complex momentum Pk= pk+
+ iAk in order to fully understand the physical implications
of Weyl’s geometry in QM has been overlooked by several
authors [24], [25]. We shall begin by reviewing the relation-
ship between the Bohm’s Quantum Potential and the Weyl
curvature scalar of the Statistical ensemble of particle-paths
(a fluid) associated to a single particle and that was developed
by [22]. A Weyl geometric formulation of the Dirac equation
and the nonlinear Klein-Gordon wave equation was provided
by one of us [23]. Afterwards we will describe the interplay
between Fisher Information and the Bohm’s potential by
introducing an action based on a complex momentum Pk=
= pk+ iAk.

In the description of [22] one deals with a geometric
derivation of the nonrelativistic Schrödinger Equation by
relating the Bohm’s quantum potential Q to the Ricci-Weyl
scalar curvature of an ensemble of particle-paths associated
to one particle. A quantum mechanical description of many
particles is far more complex. This ensemble of particle
paths resemble an Abelian fluid that permeates spacetime
and whose ensemble density ρ affects the Weyl curvature
of spacetime, which in turn, determines the geodesics of
spacetime in guiding the particle trajectories. See [22], [23]
for details.

Again a relation between the relativistic version of
Bohm’s potential Q and the Weyl-Ricci curvature exists but
without the ordinary nonrelativistic probabilistic connections.
In relativistic QM one does not speak of probability density
to find a particle in a given spacetime point but instead
one refers to the particle number current Jμ= ρdxμ/dτ . In
[22], [23] one begins with an ordinary Lagrangian associated
with a point particle and whose statistical ensemble average
over all particle-paths is performed only over the random
initial data (configurations). Once the initial data is specified
the trajectories (or rays) are completely determined by the
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Hamilton-Jacobi equations. The statistical average over the
random initial Cauchy data is performed by means of the
ensemble density ρ. It is then shown that the Schrödinger
equation can be derived after using the Hamilton-Jacobi
equation in conjunction with the continuity equation and
where the “quantum force” arising from Bohm’s quantum
potential Q can be related to (or described by) the Weyl
geometric properties of space. To achieve this one defines
the Lagrangian

L(q, q̇, t) = LC(q, q̇, t) + γ (~
2/m)R(q, t) , (24)

where γ = (1/6)(d − 2)/(d − 1) is a dimension-dependent
numerical coefficient and R is the Weyl scalar curvature of
the corresponding d-dimensional Weyl spacetime M where
the particle lives.

Covariant derivatives are defined for contravariant vec-
tors V k: V k,ß = ∂iV

k−ΓkimV
m where the Weyl connection

coefficients are composed of the ordinary Christoffel con-
nection plus terms involving the Weyl gauge field of dilatat-
ions Ai. The curvature tensor Rimkn obeys the same sym-
metry relations as the curvature tensor of Riemann geometry
as well as the Bianchi identity. The Ricci symmetric tensor
Rik and the scalar curvature R are defined by the same
formulas also, viz. Rik = Rnink and R = gikRik

RWeyl = R Riemann+

+(d− 1)

[

(d− 2)AiA
i −

2
√
g
∂i(
√
gAi)

]

,
(25)

where R Riemann is the ordinary Riemannian curvature defined
in terms of the Christoffel symbols without the Weyl-gauge
field contribution.

In the special case that the space is flat from the Rie-
mannian point of view, after some algebra one can show that
the Weyl scalar curvature contains only the Weyl gauge field
of dilatations

RWeyl = (d− 1)(d− 2)(AkA
k)− 2(d− 1)(∂kA

k) . (26)

Now the Weyl geometrical properties are to be derived
from physical principles so the Ai cannot be arbitrary but
must be related to the distribution of matter encoded by the
ensemble density of particle-paths ρ and can be obtained by
the same (averaged) least action principle giving the motion
of the particle. The minimum is to be evaluated now with
respect to the class of all Weyl geometries having arbitrarily
Weyl-gauge fields but with fixed metric tensor.

A variational procedure [22] yields a minimum for

Ai(q, t)=−
1

d−2
∂k(log ρ)⇒ Fij=∂iAj−∂jAi=0 , (27)

which means that the ensemble density ρ is Weyl-covariantly
constant

Di ρ = 0 = ∂i ρ+ ω(ρ) ρAi = 0 ⇒

⇒ Ai (q, t) = −
1

d− 2
∂i(log ρ) ,

(28)

where ω (ρ) is the Weyl weight of the density ρ. Since Ai
is a total derivative the length of a vector transported from
A to B along different paths changes by the same amount.
Therefore, a vector after being transported along a closed
path does not change its overall length. This is of funda-
mental importance to be able to solve in a satisfactory manner
Einstein’s objections to Weyl’s geometry. If the lengths were
to change in a path-dependent manner as one transports
vectors from point A to point B, two atomic clocks which
followed different paths from A to B will tick at different
rates upon arrival at point B.

The continuity equation is

∂ρ

∂t
+

1
√
g
∂i (
√
gρ vi) = 0 . (29)

In this spirit one goes next to a geometrical derivation of
the Schrödinger equation. By inserting

Ak = −
1

d− 2
∂ log ρ

∂xk
(30)

into

RWeyl = (d− 1)(d− 2)(AkA
k)− 2(d− 1) ∂kA

k (31)

one gets for the Weyl scalar curvature, in the special case
that the space is flat from the Riemannian point of view, the
following expression

RWeyl =
1

2γ
√
ρ
(∂i ∂

i√ρ) , (32)

which is precisely equal to the Bohm’s Quantum potential
up to numerical factors.

The Hamilton-Jacobi equation can be written as

∂S

∂t
+HC(q, S, t)− γ

(
~2

2m

)

R = 0 , (33)

where the effective Hamiltonian is

HC − γ

(
~2

m

)

R =
1

2m
gjkpjpk + V − γ

~2

m
R =

=
1

2m
gjk

∂S

∂xj
∂S

∂xk
+ V − γ

~2

m
R .

(34)

When the above expression for the Weyl scalar curvature
(Bohm’s quantum potential given in terms of the ensemble
density) is inserted into the Hamilton-Jacobi equation, in
conjunction with the continuity equation, for a momentum
given by pk= ∂kS, one has then a set of two nonlinear
coupled partial differential equations. After some straight-
forward algebra, one can verify that these two coupled dif-
ferential equations equations will lead to the Schrödinger
equation after the substitution Ψ =

√
ρ eiS/~ is made.

For example, when d=3, γ=1/12 and consequently,
Bohm’s quantum potential Q=−(~2/12m)R (when R Riemann

is zero) becomes

R=
1

2γ
√
ρ
∂i g

ik∂k
√
ρ∼

1

2γ

Δ
√
ρ

√
ρ
⇒Q=−

~2

2m

Δ
√
ρ

√
ρ

(35)
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as is should be and from the two coupled differential equat-
ions, the Hamilton-Jacobi and the continuity equation, they
both reduce to the standard Schrödinger equation in flat space

i~
∂Ψ(~x, t)

∂t
= −

~2

2m
ΔΨ(~x.t) + VΨ(~x, t) (36)

after, and only after, one defines Ψ=
√
ρ eiS/~.

If one had a curved spacetime with a nontrivial metric one
would obtain the Schrödinger equation in a curved spacetime
manifold by replacing the Laplace operator by the Laplace-
Beltrami operator. This requires, of course, to write the
continuity and Hamilton Jacobi equations in a explicit covar-
iant manner by using the covariant form of the divergence
and Laplace operator [22], [23]. In this way, the geometric
properties of space are indeed affected by the presence of
the particle and in turn the alteration of geometry acts on the
particle through the quantum force fi = γ (~2/m)∂iR which
depends on the Weyl gauge potential Ai and its derivatives.
It is this peculiar feedback between the Weyl geometry of
space and the motion of the particle which recapture the
effects of Bohm’s quantum potential.

The formulation above from [22] was also developed
for a derivation of the Klein-Gordon (KG) equation. The
Dirac equation and Nonlinear Relativistic QM equations
were found by [23] via an average action principle. The
relativistic version of the Bohm potential (for signature
−,+,+,+) can be written

Q ∼
1

m2

(∂μ∂
μ√ρ)
√
ρ

(37)

in terms of the D’Alambertian operator.
To finalize this section we will explain why the Bohm-

potential/Weyl scalar curvature relationship in a flat space-
time

Q=−
~2

2m

1
√
ρ
gik∂i∂k

√
ρ=

~2gik

8m

(
2∂i∂kρ

ρ
−
∂iρ∂kρ

ρ2

)

(38)

encodes already the explicit connection between Fisher In-
formation and the Weyl-Ricci scalar curvature RWeyl (for
Riemann flat spaces) after one realizes the importance of
the complex momentum Pk= pk+ iAk. This is typical of
Electromagnetism after a minimal coupling of a charged
particle (of charge e) to the U(1) gauge fieldAk is introduced
as follows Πk= pk+ ieAk. Weyl’s initial goal was to unify
Electromagnetism with Gravity. It was later realized that the
gauge field of Weyl’s dilatations A was not the same as the
U(1) gauge field of Electromagnetism A.

Since we have reviewed the relationship between the
Weyl scalar curvature and Bohm’s Quantum potential, it is
not surprising to find automatically a connection between
Fisher information and Weyl Geometry after a complex mo-
mentum Pk = pk+iAk is introduced. A complex momentum
has already been discussed in previous sections within the
context of fractal trajectories moving forwards and back-
wards in time by Nottale and Ord.

If ρ is defined over an d-dimensional manifold with
metric gik one obtains a natural definition of the Fisher
information associated with the ensemble density ρ

I = gikIik =
gik

2

∫
1

ρ

∂ρ

∂yi
∂ρ

∂yk
dny. (39)

In the Hamilton-Jacobi formulation of classical mechan-
ics the equation of motion takes the form

∂S

∂t
+

1

2m
gjk

∂S

∂xj
∂S

∂xk
+ V = 0 . (40)

The momentum field pj is given by pj = gjk(∂S/∂xk).
The ensemble probability density of particle-paths ρ (t, xμ)
obeys the normalization condition

∫
dnxρ=1. The conti-

nuity equation is

∂ρ

∂t
+
1

m

1
√
g

∂

∂xj

(
√
g ρgjk

∂S

∂xk

)

= 0 . (41)

These equations completely describe the motion and can
be derived from the action

S =

∫
ρ

(
∂S

∂t
+

1

2m
gjk

∂S

∂xj
∂S

∂xk
+ V

)

dtdnx (42)

using fixed endpoint variation in S and ρ.
The Quantization via the Weyl geometry procedure is

obtained by defining the complex momentum in terms of
the Weyl gauge field of dilatations Ak as Pk= pk+ ieAk
and constructing the modified Hamiltonian in terms of the
norm-squared of the complex momentum P kP ∗k as follows

HWeyl =
gjk

2m

[
(pj + ieAj)(pk − ieAk)

]
+ V. (43)

The modified action is now:

SWeyl=

∫
dtdnx

[
∂S

∂t
+
gjk

2m
(pj+ieAj)(pk−ieAk)+V

]

. (44)

The relationship between the Weyl gauge potential and
the ensemble density ρ was

Ak ∼
∂ log(ρ)

∂xk
(45)

the proportionality factors can be re-absorbed into the coupl-
ing constant e as follows Pk= pk+ ieAk= pk+ i ∂k(log ρ).
Hence, when the spacetime metric is flat (diagonal) gjk=δjk,
SWeyl becomes

SWeyl =

∫
dtdnx

∂S

∂t
+
gjk

2m

[(
∂S

∂xj
+ i

∂ log(ρ)

∂xj

)

×

×

(
∂S

∂xk
− i

∂ log(ρ)

∂xk

)]

+ V =

∫
dtdnx

[
∂S

∂t
+ V+

+
gjk

2m

(
∂S

∂xj

)(
∂S

∂xk

)]

+
1

2m

∫
dtdnx

[
1

ρ

∂ρ

∂xk

]2
.

(46)
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The expectation value of SWeyl is

<SWeyl> = <SC> +S Fisher =

∫
dtdnxρ

[
∂S

∂t
+

+
gjk

2m

(
∂S

∂xj

)(
∂S

∂xk

)

+V

]

+
1

2m

∫
dtdnxρ

[
1

ρ

∂ρ

∂xk

]2
.

(47)

This is how we have reproduced the Fisher Information
expression directly from the last term of <SWeyl>:

S Fisher ≡
1

2m

∫
dtdnxρ

[
1

ρ

∂ρ

∂xk

]2
. (48)

An Euler variation of the expectation value of the action
<SWeyl> with respect to the ρ yields:

∂S

∂t
+
δ <SWeyl>

δρ
− ∂j

(
δ <SWeyl>

δ(∂j ρ)

)

= 0 ⇒ (49)

∂S

∂t
+ V +

1

2m
gjk
[
∂S

∂xj
∂S

∂xk
+

+

(
1

ρ2
∂ρ

∂xj
∂ρ

∂xk
−
2

ρ

∂2ρ

∂xj∂xk

)]

= 0 .

(50)

Notice that the last term of the Euler variation

1

2m
gjk
[(

1

ρ2
∂ρ

∂xj
∂ρ

∂xk
−
2

ρ

∂2ρ

∂xj∂xk

)]

(51)

is precisely the same as the Bohm’s quantum potential ,
which in turn, is proportional to the Weyl scalar curvature. If
the continuity equation is implemented at this point one can
verify once again that the last equation is equivalent to the
Schrödinger equation after the replacement Ψ =

√
ρ eiS/~ is

made.
Notice that in the Euler variation variation of <SWeyl >

w. r. t the ρ one must include those terms involving the
derivatives of ρ as follows

−∂j

(
δ
[
ρ(∂kρ/ρ)

2
]

δ(∂jρ)

)

=−
1

ρ
∂j

(
δ(∂kρ)

2

δ(∂jρ)

)

=−
2

ρ
∂j∂

jρ. (52)

This explains the origins of all the terms in the Euler
variation that yield Bohm’s quantum potential.

Hence, to conclude, we have shown how the last term
of the Euler variation of the averaged action <SWeyl >, that
automatically incorporates the Fisher Information expression
after a complex momentum Pk= pk+ i∂k(log ρ) is intro-
duced via the Weyl gauge field of dilations Ak∼−∂k log ρ,
generates once again Bohm’s potential:

Q ∼

(
1

ρ2
∂ρ

∂xj
∂ρ

∂xk
−
2

ρ

∂2ρ

∂xj∂xk

)

. (53)

To conclude, the Quantization of a particle whose Stati-
stical ensemble of particle-paths permeate a spacetime back-
ground endowed with a Weyl geometry allows to construct a

complex momentum Pk= ∂kS+ i∂k(log ρ) that yields auto-
matically the Fisher Information S Fisher term. The latter Fisher
Information term is crucial in generating Bohm’s quantum
potential Q after an Euler variation of the expectation value
of the <SWeyl> with respect to the ρ is performed. Once
the Bohm’s quantum potential is obtained one recovers the
Schrödinger equation after implementing the continuity eq-
uation and performing the replacement Ψ=

√
ρ eiS/~. This

completes the relationship among Bohm’s potential, the Weyl
scalar curvature and Fisher Information after introducing a
complex momentum.

4 Concluding remarks

Based on Nottale and Ord’s formulation of QM from first
principles; i. e. from the fractal Brownian motion of a massive
particle we have derived explicitly a nonlinear Schrödinger
equation. Despite the fact that the Hamiltonian is not Her-
mitian, real-valued energy solutions exist like the plane wave
and soliton solutions found in the free particle case. The
remarkable feature of the fractal approach versus all the
Nonlinear QM equation considered so far is that the Quantum
Mechanical energy functional coincides precisely with the
field theory one.

It has been known for some time, see Puskarz [8], that the
expression for the energy functional in nonlinear QM does
not coincide with the QM energy functional, nor it is unique.
The classic Gross-Pitaveskii NLSE (of the 1960’s), based
on a quartic interaction potential energy, relevant to Bose-
Einstein condensation, contains the nonlinear cubic terms
in the Schrödinger equation, after differentiation, (ψ∗ψ)ψ.
This equation does not satisfy the Weinberg homogeneity
condition [9] and also the energy functional differs from the
EQM by factors of two.

However, in the fractal-based NLSE there is no dis-
crepancy between the quantum-mechanical energy functional
and the field theory energy functional. Both are given by

H NLSE
fractal = −

~2

2m

α

~
ψ∗∇2ψ + Uψ∗ψ−

− i
~2

2m

β

~
ψ∗(~∇ lnψ)2ψ .

(54)

This is why we push forward the NLSE derived from the
fractal Brownian motion with a complex-valued diffusion
coefficient. Such equation does admit plane-wave solutions
with the dispersion relation E = ~p 2/(2m). It is not hard
to see that after inserting the plane wave solution into the
fractal-based NLSE we get (after setting U = 0),

E =
~2

2m

α

~
~p 2

~2
+ i

β

~
~p 2

2m
=
~p 2

2m

α+ iβ

~
=
~p 2

2m
, (55)

since ~ = α+ iβ. Hence, the plane-wave is a solution to our
fractal-based NLSE (when U = 0) with a real-valued energy
and has the correct energy-momentum dispersion relation.
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Soliton solutions, with real-valued energy (momentum)
are of the form

ψ ∼
[
F (x− vt) + iG(x− vt)

]
eipx/~−iEt/~ , (56)

with F , G two functions of the argument x − vt obeying a
coupled set of two nonlinear differential equations.

It is warranted to study solutions when one turns-on an
external potential U 6= 0 and to generalize this construction
to the Quaternionic Schrödinger equation [16] based on the
Hydrodynamical Nonabelian-fluid Madelung’s formulation
of QM proposed by [26]. And, in particular, to explore
further the consequences of the Non-Hermitian Hamiltonian
(pseudo-Hermitian) associated with our NLSE (34) within
the context of the so-called PT symmetric complex exten-
sions of QM and QFT [27]. Arguments why a quantum theory
of gravity should be nonlinear have been presented by [28]
where a different non-linear Schrödinger equation, but with
a similar logarithmic dependence, was found. This equation
[28] is also similar to the one proposed by Doebner and
Goldin [29] from considerations of unitary representations
of the diffeomorphism group.
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It is pointed out that Special Relativity together with the principle of causality
implies that the gravity of an electromagnetic wave is an accompanying gravitational
wave propagating with the same speed. Since a gravitational wave carries energy-
momentum, this accompanying wave would make the energy-stress tensor of the light
to be different from the electromagnetic energy-stress tensor, and thus can produce
a geodesic equation for the photons. Moreover, it is found that the appropriate
Einstein equation must additionally have the photonic energy-stress tensor with the
antigravity coupling in the source term. This would correct that, in disagreement
with the calculations for the bending of light, existing solutions of gravity for an
electromagnetic wave, is unbounded. This rectification is confirmed by calculating the
gravity of electromagnetic plane-waves. The gravity of an electromagnetic wave is
indeed an accompanying gravitational wave. Moreover, these calculations show the
first time that Special Relativity and General Relativity are compatible because the
physical meaning of coordinates has been clarified. The success of this rectification
makes General Relativity standing out further among theories of gravity.

1 Introduction

The physical basis of Special Relativity is constancy of the
light speed, which is also the velocity of an electromagnetic
wave [1]. On the other hand, the physical basis of quantum
mechanics is that light can be considered as consisting of
the photons [2]. Currently, it seems, there is no theoretical
connection between constancy of light speed and photons,
except that both are proposed by Einstein. However, since
constancy of the light speed and the notion of photon are
two aspects of the same physical phenomenon, from the
viewpoint of physics, a theoretical connection of these not-
ions must exist. Moreover, such a connection would be a key
to understand the relationship between these two theories.

To this end, General Relativity seems to hold a special
position because of the bending of light. The fact that a
photon follows the geodesic of a massless particle [3, 4]
manifests that there is a connection between the light speed
and the photon. This suggests that General Relativity may
provide some insight on the existence of the photons. In other
words, the existence of the photons, though an observed fact,
may be theoretically necessary because the light speed is the
maximum.

On the other hand, since electromagnetism is a source
for gravity [5], an electromagnetic wave would generate
gravity. Thus, it is natural to ask whether its gravity is related
to the existence of the photon. In other words, would the
existence of the photon be an integral part of the theory of
General Relativity? It will be shown here that the answer
is affirmative. In fact, this is also a consequence of Special

Relativity provided that the theoretical framework of General
Relativity is valid.

2 Special Relativity and the accompanying gravity of
an electromagnetic wave

In a light ray, the massless light energy is propagating in
vacuum with the maximum speed c. Thus, the gravity due
to the light energy should be distinct from that generated by
massive matter [6–7]. Since a field emitted from an energy
density unit means a non-zero velocity relative to that unit,
it is instructive to study the velocity addition. According to
Special Relativity, the addition of velocities is as follows [1]:

ux =

√
1− v2/c2

1 + u′zv/c
2
u′x , uy =

√
1− v2/c2

1 + u′zv/c
2
u′y ,

and uz =
u′z + v

1 + u′zv/c
2
,

(1)

where velocity ~v is in the z-direction, (u′x, u
′
y , u

′
z) is a ve-

locity in a system moving with velocity v, c is the light speed,
ux= dx/dt, uy = dy/dt, and uz = dz/dt. When v= c,
independent of (u′x, u

′
y , u

′
z) one has

ux = 0 , uy = 0 , and uz = c . (2)

Thus, neither the direction nor the magnitude of the velocity
~v (=~c) have been changed.

This implies that nothing can be emitted from a light ray,
and therefore no field can be generated outside the light ray.
To be more specific, from a light ray, no gravitational field
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can be generated outside the ray although, accompanying the
light ray, a gravitational field gab ( 6= ηab the flat metric) is
allowed within the ray.

According to the principle of causality [7], this accom-
panying gravity gab should be a gravitational wave since an
electromagnetic wave is the physical cause. This would put
General Relativity into a severe test for theoretical consist-
ency. However, this examination would also have the benefit
of knowing that electrodynamics is completely compatible
with General Relativity.

3 The accompanying gravitational wave and the pho-
tonic energy-stress tensor

Observations confirm that photons follow a geodesic. One
may expect that the light energy-stress tensor T (L)ab would
generate the photonic geodesic since the massive tensor
T (m)ab generates the geodesic through ∇c T (m)cb =0 [5].
This means that T (L)ab is different from the electromagnetic
energy-stress tensor T (E)ab since ∇c T (E)cb is the Lorentz
force [7, 8].

Nevertheless, this can be resolved since a gravitational
wave carries an additional energy-stress tensor T (g)ab, i. e.,
one should have

T (L)ab = T (E)ab + T (g)ab (3)

since there is no other type of energy. Then, one may expect
that Eq. (3) allows ∇c T (L)cb=0 to generate the necessary
geodesic equation for photons.

If the light is emitted and absorbed in terms of photons,
physically the photons contain all the energy of the light,
i. e., the photonic energy-stress tensor,

T (P )ab = T (L)ab . (4)

One might object on the ground that, in quantum theory,
T (E)ab is considered as identical to the photonic energy-
stress tensor T (P )ab. However, one should note also that
gravity is ignored in quantum electrodynamics.

4 The Einstein equation for an electromagnetic wave

Einstein [9] suggested the field equation for the gravity of an
electromagnetic wave was

Gab = −KT (E)ab , (5)

where Gab is the Einstein tensor, and K is the coupling
constant. However, to generate the photonic geodesic, the
source term must include the photonic energy-stress T (P )ab.
The need of a modified equation is supported by the fact that
all existing solutions, in disagreement with light bending
calculation, are unbounded [7].

Moreover, if the gravity of an electromagnetic wave is
a gravitational wave, validity of Eq. (5) is questionable. It

has been known from the binary pulsar experiments, that
when radiation is included, the anti-gravity coupling must be
included in the Einstein equation [10],

Gab = −K
[
T (m)ab − t(g)ab

]
, (6)

where T (m)ab and t(g)ab are respectively the energy-stress
tensors for massive matter and gravity. The need of t(g)ab
was first conjectured by Hogarth [12]. The possibility of
such an coupling was suggested by Pauli [13]. Moreover,
if a space-time singularity is not a reality, the existence of
an antigravity coupling is implicitly given by the singularity
theorems which assume the coupling constants are of the
same sign [14].

There are theories such as the Brans-Dicke’s [15] and the
Yilmaz’s [16] that provide an extra source term in vacuum.
However, it is not clear that they can provide the right
formula for the gravity of an electromagnetic wave since their
connection with the notion of photon was never mentioned.
Besides, it is more appropriate to consider a fundamental
problem from the basics.

The above analysis suggests that, to obtain an appropriate
Einstein equation, one may start from considering the gravita-
tional radiation with Einstein’s radiation formula as follows:

(a) For the gravitational wave generated by massive
matter, the gravitational energy-stress t(g)ab of Einstein’s
radiation formula is approximately [11].

t(g)ab =
G
(2)
ab

K
, where G

(2)
ab = Gab −G

(1)
ab , (7)

where G(1)ab consists of all first order terms of Gab. Moreover,
if the gravitational energy is the same as the gravitational
wave energy, one has

t(g)ab = T (g)ab . (8)

(b) Since gab is a wave propagating with the electromag-
netic wave, one may have the linear terms, G(1)ab =0 on a
time average. This suggestsGab=KT (g)ab . Thus, it follows
from Eqs. (3) and (4) that

Gab = KT (g)ab = −K
[
T (E)ab − T (P )ab

]
(9)

would be the appropriate Einstein equation. Comparing with
Eq. (5), there is an additional term T (P )ab.

(c) Since the Lorentz force∇c T (E)cb=0 and∇cGcb=0,
as expected, one has the necessary formula

∇c T (P )cb = 0 (10)

generate the photonic geodesic equation. However, to verify
Eq. (9), one must first show that Eq. (5) cannot be valid for
at least one example and then find the photonic energy-stress
tensor T (P )ab for Eq. (9).

Alternatively, Eq. (9) can be derived from the principle
of causality [7, 8] since the electromagnetic plane-wave as a
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spatial local idealization has been justified in electrodynam-
ics. In general, without an idealization, to solve the gravity
of an electromagnetic wave is very difficult [4].

5 The reduced Einstein equation for plane-waves

Due to the speed of light is the maximum, the influence
of an electromagnetic wave to its accompanying gravity is
spatially local. Thus, an electromagnetic plane-wave is also
a valid modeling for the problem of gravity.

Now, let us consider the electromagnetic potential
Ak (t − z) which represents the photons moving in the z-
direction. Then, Eq. (5) is reduced to a differential equation
of u (= t− z) [6] as follows:

G′′ − g′xxg
′
yy + (g

′
xy)

2 −G′
g′

2g
= 2GRtt =

= 2K
(
F 2xt gyy + F

2
yt gxx − 2FxtFyt gxy

)
,

(11)

where
G = gxxgyy − g

2
xy , g = | gab |

is the determinant of the metric, Fab= ∂aAb− ∂bAa is the
electromagnetic field tensor, and Rab is the Ricci tensor. The
metric elements are connected as follows:

g = Gg2t , where gt ≡ gtt + gtz. (12)

Moreover, the massless of photons implies that

gtt + 2gtz + gzz=0, and gtt − 2gtz + gzz=0 .

Note that Eq. (35.31) and Eq. (35.44) in reference [4] and
Eq. (2.8) in reference [17] are special cases of Eq. (5). They
believed that bounded wave solutions can be obtained [7].

It has been shown that At, gxt, gyt, and gzt are allowed to
be zero. Although there are four remaining metric elements
(gxx, gxy , gyy , and gtt) to be determined, based on Einstein’s
notion of weak gravity and Eq. (5), it will be shown that
there is no physical solution [6]. In other words, in contrast
to Einstein’s belief [9], the difficulty of his equation is not
limited to mathematics.

6 Verification of the rectified Einstein equation

Now, consider an electromagnetic plane-waves of circular
polarization, propagating to the z-direction

Ax =
1
√
2
A0 cosωu , and Ay =

1
√
2
A0 sinωu , (13)

The rotational invariants with respect to the z-axis are
constants. These invariants are: Gtt, Rtt, T (E)tt, G,
(gxx+ gyy), gtz , gtt, g, and etc. It follows that [6, 7]

gxx = −1− C +Bα cos(ω1u+ α) ,

gyy = −1− C −Bα cos(ω1u+ α) ,

gxy = ±Bα sin(ω1u+ α) ,

(14)

where C and Bα are small constants, and ω1=2ω. Thus,
metric (14) is a circularly polarized wave with the same
direction of polarization as the electromagnetic wave (13).
On the other hand, one also has G = (1 + C)2 −B2α > 0,

Gtt =
2ω2B2α
G

> 0 , (15)

T (E)tt =
gyy
G

ω2A20 (1 + C −Bα cosα) > 0 .

Thus, it is not possible to satisfy Einstein equation (5)
because T (E)tt and Gtt have the same sign [6]. Thus, it is
necessary to have a photonic energy-stress tensor.

Given that a geodesic equation must be produced, for a
monochromatic wave, the form of a photonic energy tensor
should be similar to that of massive matter. Observationally,
there is very little interaction, if any, among photons of the
same ray. Theoretically, since photons travel in the velocity
of light, there should not be any interaction among them.

Therefore, the photonic energy tensor should be dust-like
with the momentum of the photon Pa as follows:

Tab(P ) = ρPaPb , (16)

where ρ is a scalar and is a function of u. In the units
c = ~ = 1, Pt = ω. It has been obtained [6] that

ρ(u) = −Am g
mnAn > 0 . (17)

Here, ρ(u) is related to gravity through gmn. Since light
intensity is proportional to the square of the wave amplitude,
ρ which is Lorentz gauge invariant, can be considered as the
density function of photons. Then

Tab = −T (g)ab = T (E)ab − T (P )ab =

= T (E)ab + Am g
mnAnPaPb .

(18)

Thus, Tab(P ) has been derived completely from the
electromagnetic wave Ak and gab.

Physically, such a tensor should be unique. It remains
to see whether all the severe physical requirements can be
satisfied. In particular, validity of the light bending calcul-
ation requires compatibility with the notion of weak gravity
[3]. Also, the photonic energy tensor of Misner et al. [4], is
an approximation of the time average of Tab(P ).

As expected, this tensor Tab(P ) enables a gravity solution
for wave (13). According to Eq. (8),

Ttt = −
1

G
ω2A20Bα cosα 6 0 , (19)

since Bα= K
2 A

2
0 cosα. the energy density of the photonic

energy tensor is indeed larger than that of the electromagnetic
wave. T (g)tt is of order K. Note that, pure electromagnetic
waves can exist since cosα=0 is also possible. To confirm
the general validity of (16), consider a wave linearly polari-
zed in the x-direction,
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Ax = A0 cosω(t− z) . (20)

Then, one has

Ttt =
gyy
G

ω2A20 cos 2ω(t− z) , (21)

since the gravitational component is not an independent
wave, T (g)tt is allowed to be negative. Eq. (21) implies
that its polarization has to be different.

It turns out that the solution is a linearly polarized gravi-
tational wave and that the time-average of T (g)tt is positive
of order K [7]. From the viewpoint of physics, for an x-
directional polarization, gravitational components related to
the y-direction, remains the same. In other words,

gxy = 0, and gyy = −1 . (22)

It follows that the general solution of wave (20) is:

−gxx = 1 + C1 −
K

2
A20 cos 2ω(t− z) ,

and gtt = −gzz =
√

g

gxx
,

(23)

where C1 is a constant. Note that he frequency ratio is the
same as that of a circular polarization, but there is no phase
difference to control the amplitude of the gravitational wave.

For a polarization in the diagonal direction of the x − y
plane, the solution is:

gxx = gyy = −1−
C1
2
+
K

4
A20 cos 2ω(t− z) , (24)

gxy = −
C1
2
+
K

4
A20 cos 2ω(t− z) , (25)

gtt = −gzz =

√
−g

1− 2gxy
. (26)

Note that for a perpendicular polarization, the metric
element gxy changes sign. The time averages of their Ttt
are also negative as required. If g=−1, relativistic causality
requires C1 > KA20/2.

7 Compatibility between Special Relativity and General
Relativity

We implicitly use the same coordinate system whether the
calculation is done in terms of Special Relativity or General
Relativity. However, according to Einstein’s “covariance
principle” [1], coordinates have no physical meaning whereas
the coordinates in Special Relativity have very clear meaning
[18]. Thus, all the above calculations could have no meaning.
Recently, it has been proven that a physical coordinate system
for General Relativity necessarily has a frame of reference(1)

with the Euclidean-like structure [19–21]. Moreover, the time

coordinate will be the same as in Special Relativity if the
metric is asymptotically flat.

Many theorists, including Einstein, overlooked that the
metric of a Riemannian space actually is compatible with
the space coordinates with the Euclidean-like structure. Let
us illustrate this with the Schwarzschild solution in quasi-
Minkowskian coordinates [11],

−ds2=−

(

1−
2Mκ

r

)

c2dt2+

(

1−
2Mκ

r

)−1
dr2+

+ r2(dθ2+ sin2 θdϕ2),

(27)

where (r, θ, ϕ) transforms to (x, y, z) by,

x = r sin θ cosϕ , y = r sin θ sinϕ ,

and z = r cos θ .
(28)

Coordinate transformation (28) tells that the space coord-
inates satisfy the Pythagorean theorem. The Euclidean-like
structure represents this fact, but avoids confusion with the
notion of a Euclidean subspace, determined by the metric.
Metric (27) and the Euclidean-like structure (28) are com-
plementary to each other in the Riemannian space. Then, a
light speed (ds2=0) is defined in terms of dx/dt, dy/dt,
and dz/dt [1]. This is necessary though insufficient for a
physical space [19–21].

Einstein’s oversight made his theory inconsistent, and
thus rejected by Whitehead [22] for being not a theory in
physics. For instance, his theory of measurement is incorrect
because it is modeled after(2) measurements for a Riemann-
ian space embedded in a higher dimensional space [19–21].
In General Relativity, the local distance (

√
−ds2, where

dt=0) represents the space contraction, which is measured
in a free fall local space [1, 3]. Thus, this is a dynamic
measurement since the measuring instrument is in a free fall
state.

Einstein’s error is that he overlooked the free fall state,
and thus has mistaken this dynamic local measurement as
a static measurement. Moreover, having different states at
different points, this makes such a measurement for an ex-
tended object not executable.

The Euclidean-like structure determines the distance be-
tween two points in a frame of reference, and the observed
light bending supports this physical meaning. This is why the
interpretation of Hubble’s law as a consequence of receding
velocity(3) is invalid [23]. Because the measurement theory
of Einstein is invalid, the miles long arms of the laser inter-
ferometer in LIGO would not change their length under the
influence of gravitational waves [24]. In other words, LIGO
would inadvertently further confirm that Einstein’s theory of
measurement is invalid.

It has been solved that the coordinate system of General
Relativity and that of Special Relativity are actually the same
for this problem. We must show also that the plane waves
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would satisfy the Maxwell equation in General Relativity,
see [11; p. 125],

∂

∂xa
√
g F ab = −

√
g Jb, (29)

∂

∂xa
F bc +

∂

∂xb
F ca +

∂

∂xc
F ab = 0 . (30)

Since equation (30) is the same as in Special Relativity,
it remains to show that (29) is satisfied for Ja = 0. To show
this, we can use the facts that gab and F ab are function of u,
and that gtt + gzz = 0. It follows that

∂

∂xa
√
g F ab =

∂
√
g

∂t
(F tb − F zb) =

=
∂
√
g

∂t
gtt (∂tAc + ∂zAc) g

cb = 0 .

(31)

We thus complete the compatibility proof.

8 Conclusions and Discussions

A crucial argument for this case is that both Special Relativity
and General Relativity use the same coordinate system. This
is impossible, according to Einstein’s theory of measurement.
A major problem of Einstein’s theory is that the physical
meaning of coordinates is not only ambiguous, but also
confusing(4) since the physical meaning of the coordinates
depends on the metric. Moreover, Einstein’s equivalence
principle actually contradicts the so-called “covariance prin-
ciple”. P. Morrison of MIT [21, 25] remarked that the “covar-
iance principle” is physically invalid because it disrupts
the necessary physical continuity from Special Relativity to
General Relativity.

Now, a photonic energy-stress tensor has been obtained
as physics requires. The energy and momentum of a photon
is proportional to its frequency although, as expected from
a classical theory, their relationship with the Planck constant
~ is not yet clear; and the photonic energy-stress tensor
is a source term in the Einstein equation. As predicted by
Special Relativity, the gravity of an electromagnetic wave
is an accompanying gravitational wave propagating with the
same speed. Moreover, the gravity of light is proven to be
compatible with the notion of weak gravity.

In the literature [4, 26–29], however, solutions of Eq. (5)
are unbounded.(5) Thus, they are incompatible with the ap-
proximate validity of electrodynamics and violate physical
principles including the equivalence principle and the prin-
ciple of causality [7, 30]. (The existence of local Minkowski
spaces is only a necessary condition(6) for Einstein’s equiv-
alence principle [31].) Naturally, one may question whether
the gravity due to the light is negligible. Now, the claim that
the bending of light experiment confirms General Relativity,
is no longer inflated.

In addition, the calculation answers a long-standing quest-
ion on the propagation of gravity in General Relativity. Since
an electromagnetic wave has an accompanying gravitational
wave, gravity should propagate in the same speed as electro-
magnetism. It is interesting to note that Rabounski [32]
reached the same conclusion on the propagation of gravity
with a completely different method, which is independent of
the Einstein equation.

One might argue that since E=mc2 and the gravitational
effect of the wave energy density should be outside a light
ray. However, this is a misinterpretation [33, 34]. One should
not, as Tolman [35] did, ignore Special Relativity and the
fact that the light energy density is propagating with the
maximum velocity possible. There are intrinsically different
characteristics in such an energy form according to Special
Relativity. This calculation confirms a comment of Einstein
[23] that E=mc2 must be understood in the contact of
energy conservation.

To illustrate this, consider the case of a linear polarizat-
ion, for which Eq. (5) still has a solution [6]

−gxx = 1−
K

4
A20
[
2ω2(t− z)2+ cos 2ω(t− z)

]
. (32)

However, solution (32) is invalid since (t − z)2 grows
very large as time goes by. This would “represent” the effects
that the wave energy were equivalent to mass. This illustrates
also that Einstein’s notion of weak gravity may not be com-
patible with an inadequate source.

The theoretical consistency between Special Relativity
and General Relativity is further established. This is a very
strong confirming evidence for General Relativity beyond
the requirements of the equivalence principle. Moreover, this
rectification makes General Relativity standing out among all
theories of gravity. Moreover, since light has a gravitational
wave component, it would be questionable to quantize grav-
ity independently as in the current approach.
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Endnotes

(1) In a Riemannian geometry, a frame of reference may not
exist since the coordinates can be arbitrary. However, for a
physical space, a frame of reference with the Euclidean-like
structure must exist because of physical requirements [19–
21]. Note that the Euclidean-like structure is independent of
the metric.
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(2) In the initial development of Riemannian geometry, the met-
ric was identified formally with the notion of distance in
analogy as the case of the Euclidean space. Such geometry
is often illustrated with the surface of a sphere, a subspace
embedded in a flat space [4, 36]. Then, the distance is
determined by the flat space and can be measured with
a static method. For a general case, however, the issue of
measurement was not addressed before Einstein’s theory.

(3) Einstein’s theory of measurements is not supported by ob-
servation, which requires [21, 37] that the light speed must
be defined in terms of the Euclidean-like structure as in
Einstein’s own papers [1, 3].

(4) If the “covariance principle” was valid, it has been shown
that the “event of horizon” for a black hole could be just any
arbitrary constant [38].

(5) In fact, all existing solutions involving waves are unbounded
because the term to accommodate gravitational wave energy-
stress is missing. It is interesting that Einstein and Rosen are
the first to discover the non-existence of wave solutions [39].
However, their arguments that led to their correct conclusion
was incorrect. Robertson as a referee of Physical Review
pointed out that the singularities mentioned are actually
removable [39]. However, there are other reasons for a wave
solution to be invalid. It has been found that a wave solution
necessarily violates Einstein’s equivalence principle and the
principle of causality [10, 19].

(6) Many theorists do not understand Einstein’s equivalence
principle because they failed in understanding the Einstein-
Minkowski condition that the local space of a particle under
gravity must be locally Minkowskian [1, 3]. This condition is
crucial to obtain the time dilation and space contractions [21].
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Physical Space is identified as the universal Aether Space. An Aether Equation is
deduced, predicting the Temperature of the Cosmic Background Radiation TCMBR, and
indicating that G and c are universal dependent variables. The strong nuclear force
is found to be a strong gravitational force at extreme energy densities of the neutron,
indicating a Grand Unified Theory, when gravity is a process of enduring exchange of
radiant energy between all astrophysical objects. The big bang hypothesis is refuted
by interpretation of the Hubble redshift as evidence of gravitational work. Conditions
for application of STR and GTR in the scientific cosmological research are deduced.

Gravity must be caused by an agent acting constantly
according to certain laws; but whether this agent be
material or immaterial, I have left to the consideration
of my readers.

Newton. Letter to Bentley, 1693.

We assume to find in every point of space a flow in all
directions of radiant energy from all astrophysical objects,
meaning that space everywhere has a specific energy U [erg]
and an energy density u = U/V [erg/cm3], which of course
is a local variable depending on the position in space.

The radiant energy will we name the “Aether”, and since
it is present throughout the Universe, we will call space the
“Aether-Space”. Presuming the aether the medium sustaining
all physical fields and forces, the aether-space is the universal
physical space.

A set of equations can be found for this situation [1] from
which may be derived the aether equation with the minimum
energy U at the temperature TAether, which has been confirmed
by the COBE observations of TCMBR = 2.735±0.06 Kelvin (1)

κUV = Ghc2,

U = 3.973637×10−13 erg at TAether = 2.692064 Kelvin ,

K = Gc/κL2 = UL/hc = 2.000343×103.

Defining κ ≡ 1 erg/(sec×g2) and V = 1 cm3, it is seen
that if U is a variable, then the Newtonian G and the velocity
of light c are dependent variables if Planck’s h is a universal
constant.

At higher energy densities of the aether, such as in the
galaxies, G and c would have other and higher values than
G=6.672426×10−8 cm3/(g×sec2) and c=2.99792458×1010

cm/sec of the aether equation and will need some coefficient
ρ to G, while the maximum value of c is supposed from a
possible coefficient function to be cmax =

√
2 c.

To have an idea of the extreme energy densities and their
corresponding ρ-values, we will have a look at the Schwarz-
schild solution for the electron, from which to derive G:(2)

Gme/rec
2 = 1/ρe = Gm2

e/e
2,

ρeGe
2 = c4r2e ,

me = 9.109535×10−28 g ,

e = 4.803242×10−10 esu ,

re = 2.817937×10−13 cm ,

ρe = 4.166705×1042.

Considering the composite neutron, the proton+, and
the neutron-meson− we find that the meson must be the
mass difference between the neutron and the proton, and that
the meson must be a special heavy neutron-electron, since
the free neutron in relatively short time disintegrates into a
proton, an electron, and some neutrino energy depending on
the velocities and directions of the parting massive particles.
We therefore have with α, the fine structure constant:

mn = 1.674954×10−24 g ,

mp = 1.672648×10−24 g ,

mm = 2.305589×10−27 g ,

mpmm/m
2
e = αK2/2π = K3e2/UL =

= ρe/ρp,m = 4.64723×103,

α = 7.297349×10−3,

ρp,m = 8.965996×1038.

As an analogon to the Schwarzschild electron solution
we find:

ρp,mGmn/rnc
2 = ρp,mGmpmm/e

2 = 1 ,

rn= 1.11492×10−13 cm would then be the radius of the
neutron, and if the proton is calculated with the same co-
efficient ρp,m,

ρp,mGmp/rpc
2 = 1 ,

rp = 1.113386×10−13 cm .
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If the neutron-meson should in fact be a heavy electron,
and mm/me∼ 2.53, it would make sense if the mass-
difference mm−me was the virtual gravitational mass of
the neutron’s intrinsic proton-electron pair, whence we find
from a first calculation mvir:

ρp,mGmpme/rnc
2 = 9.096998×10−28 g ,

ρp,mGmpme/rpc
2 = 9.109531×10−28 g .

We have hereby accounted for a neutron-meson of twice
the electron’s mass, while we need an explanation for the
extra mass of 12 electron-mass in the neutron-meson. We will
abstain from further calculations here and for the moment
consider it sufficient to have shown a double electron-mass
in the meson, pointing to the self-gravitation also of the
virtual mass as a probable solution to the deficiency of
∼ 4.83×10−28 g meson-mass.

Regarding the self-gravitation of the neutron, it may be
shown from a normalization of the neutron’s gravitational
potential P , that the potential with respect of the central
proton, when the self-gravitation means an increment of the
meson-mass from ∼2me to mm, would result in a slight-
ly greater value of ρ by a factor of rn/rp=mn/mp=
=1.001378 (3) from ρp,m to ρn, so that ρn=1.001378ρp,m=
= 8.978353×1038. We then find from considering the gravi-
tational potential of the neutron, as if produced by the central
proton alone in the distance rn, that it leads to the resulting
potential

P = ρnGmp/rn = ρp,mGmn/rn = c2,

ρnGmpmm/rn = Em .

Em=mmc
2 is the total energy of the heavily augmented

neutron-electron to the full mass of the neutron-meson,
mm=mn−mp. That the virtual gravitational mass of the
free neutron equals one electron-mass may be seen from
the following equation, which interestingly shows the ratio
between radii rp and re. It appears then that all the relational
conditions of the free neutron are completely deduced:

mvir = ρp,mGmpme/rpc
2 = mmrp/re = e2/rec

2 = me ,

mm = e2/rpc
2.

Having demonstrated that the Newtonian G must be a
variable of very great values at extreme energy densities,
such as in the composite neutron (ρp,mG∼ 6×1031), it seems
reasonable to believe that the strong nuclear force is caused
by such extreme values of the Newtonian gravitational factor.

We therefore assume that the neutron-meson would be
able to bind two protons in the atomic nucleus by orbiting in
such a way that it shifts constantly between the two protons,
of which the one may be considered a neutron, when the other
is a proton and vice versa in constant shifts of constitution
in the neutron-proton pair of a nucleus.

The binding orbit may hence be thought of in a most
simple theoretical illustration as the meson following an Oval
of Cassini around the two heavy electrically positive charged
particles, forcing them to the constant shifts of neutron-
proton phase. And as will be known, the Lemniscate is the
extreme curve of the Cassini Oval, with the parameters a = b,
where the strong particle-binding would break in a proton and
a free neutron that may possibly leave the nucleus.(4)

Of course, the real conditions of an “orbiting neutron-
meson” cannot be made really lucid, since we know that the
interaction is rather a question of probability of distribution
of charges and masses, when we observe the weak magnetic
moment of the electrically neutral neutron.

However, it seems that the strong nuclear force may be
accounted for as a very strong gravitational force at extreme
energy densities, to which it is remarked that in the galaxies,
with their very intense radiation from stars and gasses, we
may also expect special dynamics due to the variablility of
the factor G, which would therefore account for the observed
galactic differential velocities and probably would explain
also the so-called “problem of missing mass in the Universe”.

As in fact gravitational action according to the aether
physics is an electromagnetic phenomenon of energy ex-
change in Planck quanta leaving an enduring train of im-
pulses unto the gravitating masses, it seems that a unification
of the four fundamental forces in nature may be expected
from consideration of the physics of the aether.

From the aether equation we have found the constant
K. Considering the composite neutron, mp+mm=mn, we
have the mass relation and the energy-charge relation:

(mpmm)/m
2
e = K3(e2/UL) = K2(e2/hc),

Eere = Emrp = Eprm = e2.

It further follows that KΦ/c = Gmxmy/L
2 for any pair

of gravitating masses in mutual distance L = 1 cm, when the
radiant flux Φ [erg/sec] is Φx,y =κmxmy .

We will therefore show that a radiant aether flux Φ is
the common cause of the Coulomb force and the extremely
strong force of gravity in the neutron, manifest as the strong
nuclear force

e2/r2n = ρp,m [(KΦp,m)/c]× [L
2/r2n] =

= ρp,mGmpmm/r
2
n dynes ,

e2c/r2n= ρp,mKΦp,mL
2/r2n= ρp,mGmpmmc/r

2
n erg/sec ,

e2/mpmm = ρp,mKκL
2/c = ρp,mκUV/hc

2 = ρp,mG ,

e2/G = ρp,mmpmm =M2
JS .

For any pair of fundamental particles of unit charge ± esu
there seems to exist a dimensionless factor of proportionality
ρ1,2, which, if made a coefficient of G, will balance the
electrostatic Coulomb force and the Newtonian force of
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gravity at any distance between the charged particles. For any
charged pair of mass1 and mass2 the factor of proportionality
will be ρ with the Johnstone-Stoney mass squared e2/G as a
constant: ρ1,2=M

2
JS/(m1m2).

Demonstrating the validity of the foregoing derivations,
it may be shown that, with the magnitude found for the co-
efficient ρp,m, the dimensions rn, rp, and rm of the neutron
massesmn,mp, andmm are most easily given by the follow-
ing simple relations:

ρKκmL2/c3 = ρGm/c2 = r ;

as is with ρe and me the Schwarzschild radius of the elect-
ron re.

Generally, provided a local value of ρ can be found or
estimated, the local gravitational potential P at any distance
R from the center of a gravitating mass M will be:

P = ρGM/R (cm/sec)2.

When, however, all ponderable matter is constituted as a
sum of charged particles, and the force of gravity as shown is
an electromagnetic phenomenon by energy exchange in the
aether space between any pair of masses via a radiant flux
Φ [erg/sec], which is proportional to the product of the two
masses, we generally have with some local value of ρ the
Newtonian force between M1 and M2:

F = ρGM1M2/R
2 = ρκM1M2UV/hc

2R2 =

= ρK [Φ/c]× [L2/R2] dynes .

The radiant flux KΦ may be thought of as aether energy
at the velocity of light, which is bound in the line of distance
R between the gravitating masses, representing the gravitat-
ional energy KΦL2/Rc and the equivalent virtual gravitat-
ional mass KΦL2/Rc3 that belongs to the binary system. It
should therefore be added to the sum of gravitating masses
for calculations of total potential and force including the
self-gravitation of the aether energy in Φ.

In the composite neutron, however, only two elementary
charges are acting, the proton’s + e esu and the meson-
electron’s−e esu. The latter is an ordinary electron, when the
neutron disintegrates, and we have no idea whatsoever of a
variation in the elementary charge e = 4.803242×10−10 esu.
We conclude from the neutron equation, as from Schwarz-
schild’s electron solution:

e2/r2n = ρp,mGmpmm/r
2
n ,

e2/mpmm = ρp,mG ,

that gravity is an electromagnetic phenomenon, and that it
is the relation shown herein between charges and masses
which governs the gravitational force between the neutron’s
proton and electron at the extreme energy density of the free
neutron.

Presumably, it is the gravitational interaction between
the free neutron and all other masses in the aether space,
by enduring energy exchange with the radiant energy of the
aether, that makes the neutron unstable by emitting more
energy to the aether field than is absorbed in the same interval
of time. This loss of energy is by radiation at the cost of the
meson-mass, which diminishes, meaning a loss of mass and
of the neutron’s energy density, thereby a reduction of the
coefficient ρ, of G. That means an increase in rn, the radius
of the free neutron, to a considerably greater dimension as
a so-called “cold neutron” until the proton and the neutron-
electron part with a random measure of the electron-meson’s
binding energy as a massless supply of neutrino-energy to
the aether.

The aether energy represented in the radiant flux Φ is,
according to the theory, present in the aether space of infinite
energy as random radiation at all wavelengths and in all
directions to and from the gravitating systems. Therefore the
action of gravity is immediate, say if one of the gravitating
masses is suddenly increased, while any change in the grav-
itating system will result in a signal which propagates in the
aether space as a gravitational wave with the velocity of light.
Such a signal may therefore be thought of as a modulation of
the present radiant aether energy. The flux Φ is not a flow of
energy from mass 1 to mass 2 and back again. It is a result
of the energy exchange in all directions between the aether
and the complete system and its single gravitating masses.
According to the aether theory we have:

α(Kme)
2 = 2πmpmm g2,

m

[e2/hν]× [Gm2
e/λ

2] = [LΦp,m/U ]× [h/λ] erg .

Aether energy which is absorbed by a mass is immedia-
tely re-emitted randomly to the aether, and in all directions.
The action of gravity means work by impulses hν/c = h/λ
both at absorption and radiation of energy, while reflection
means a double-pulse [2]. The gravitational work done by
the aether causes an increasing loss of aether energy, shown
in the Hubble-effect of increasing redshift with distance of
all light from distant sources. The universal redshift thus
is evidence of gravitational work, and not of any universal
expansion interpreted as a Doppler-effect. The redshift is in
complete accordance with the gravitational effect described
by Einstein’s theory of relativity, where we have to discrimi-
nate between two types of gravitational effects: (1) the local
redshift of a single mass also deflecting passing rays of light;
(2) the redshift of distance called the Hubble redshift.

The speculative big-bang hypothesis therefore seems
absurd and way beyond rational science, since General Rela-
tivity has meaning only in application to a finite physical
space of known and observable contents of masses and
energy, while the Universe is for all reasons of an infinite
mightiness beyond some apparent limit of observation, and
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when the idea of the Newtonian gravitational factor G as
an universal constant cannot be upheld. The multitude of
individual “galactic worlds” of very different types and ages
in some general ongoing process of creation and decay by age
should, on the other hand, be an obvious goal for scientific
cosmological research.

The loss of energy to gravitational work is replenished by
the stars and all the energy producing astrophysical objects
by irradiation of new energy into the aether space at the
cost of their masses. It seems clear that there ought to exist
a feedback effect working to keep the aether at a constant
energy level, which, however, may be left to future research.

The replenishment of free radiant energy to the aether-
space by irradiation of Planck quanta at the velocity of light
is, as seen from the aether equation, regardless of any local
coefficient ρ:

hν/c = κUV/(Gc2λ) = (U/Kc)× L/λ ;

Khν = U × L/λ .

By the foregoing presentation of the theory and physics of
the aether we have shown that gravitation is an electromag-
netic phenomenon, and that the force of gravity is the result
of an enduring exchange of radiant energy between mass
and aether, by which the energy of the fundamental particles
fluctuates consistently with the QED-findings regarding the
fundamental charge/mass proportion of the electron.

The theory of the aether thereby seems to confirm also
Einstein’s finding 1928 [3] that “The separation of the grav-
itational and the electromagnetic field appears artificial”, —
when, of course, the aether-space is the seat of all physical
fields and forces.

In modern 5-dimensional Kaluza-Klein Theory the spe-
cific space energy of the aether, or some identical local
aether-parameter, such as for instance TAether Kelvin, would
apparently represent the 5th dimension.

Provided the speculative unphysical STR is defined with
a local energy density u of the aether space, and with the
condition that u shall be constant all over the actual physical
space, ensuring a constant light-velocity c, the Special
Theory of Relativity is a valid physical theory confirmed
by observations.

Provided in any application of GTR the λ-term is defined
with the parameters of a black body radiation of energy
density u at the temperature TAether in the actual finite physical
aether space, and provided the local coefficient ρ to the
Einsteinian gravitational factor χ is estimated correct, the
General Theory of Relativity may be applied to a first ap-
proximation.

STR and GTR thereby should be useful sub-theories
in the Theory and Physics of the Aether which, as here
described, appears as a natural continuation and extension of
Drude’s famous Physik des Aethers [4]. In thermodynamics
it should be noted that gravitational energy exchange by

radiation is a reversible process in open systems, therefore
in no matter of the 2nd law.
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Endnotes

(1) Since the aether is a perfect boson-gas, we have with a=
=8πV/c3 and b= kT/h, when ζ(x) is the Riemann ζ-
function, L=1 cm, V =1 cm3, m=1 g the following sol-
utions:

pV/kT = a2b3ζ(4) , U = ah6b4ζ(4) ;

p = u/3 , pV = U/3 ;

R/N = RG/NA = k = 1.380662×10−16 erg/Kelvin;

RT = ah2b4ζ(3) = kTN ;

RAether = 5.464489×10−14 erg/Kelvin ;

NAether = a2b3ζ(3) = 3.957876×102;

S = 4U/3T = Rζ(4)/ζ(3) = 4Ghc2/3kV T ;

SAether = 1.968074×10−13 erg/Kelvin ;

κ = Φ/m2 = χhc4/8πUV = 4Ghc2/3SV T ;

χ = Einstein’s gravitational factor ;

Φ/L2 = (Gm2/L2)× (4hc2/3SV T ) = κm2/L2.

(2) When for every mass m it holds that E=mc2, and the
de Broglie wavelength λB=h/mv, we have for v= c that
EmλB = C =hc. When further the fine structure constant is
α=2πe2/hc, a precise theoretical value of the Newtonian
G may be derived from iterations on the shown Schwarz-
schild solution for the electron and the very well known
value of α.

This theoretical value of G, which of all physical mag-
nitudes is the most difficult to measure experimentally,
is the universal Newtonian constant G= 6.672426×10−8

cm3/(g×sec2) at the minimum specific energy of the aether
at the defined universal mimimum temperature TAether=
= 2.692064 Kelvin=TCMBR according to the theory of the
aether. At any higher aether temperature TAether >TCMBR, thus
at a proportionally greater local energy density u erg/cm3,
uAether >uCMBR, the Newtonian constant becomes a variable:
ρG>GCMBR by a dimensionless coefficient of proportion-
ality.

According to the aether equation we furthermore find
KEmλC=UL, confirming the derived magnitudes of U
and G with utmost precision; thereby also the predicted
temperature TAether comparable with the experimental value
from measurements of TCMBR.
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The relation K =UL/EmλC=UL/hc may be of in-
terest in particle physics as in wave mechanics, since ac-
cording to Planck the fundamental particles may be regarded
as oscillating electromagnetic energy in standing waves, with
the oscillator parameters L [cm] andC [Farad], in which case
we have for the elementary charged particles of energy Em,
and besides for the electron of energy Ee=mec

2 especially:
Em = hν = mc2 = hc/λB = C = mLCω2; Ee = Em(e) =
= e2/re .

(3) One finds from the small factor 1.001378=rn/rp=mn/mp,

rnmp/rpmn = reme/rpmm = 1 ,

reme = e2me/mec
2 = e2/c2 = rpmm ,

rnmp/reme = rn/r
′
p = rn/(rn − rp) ,

rn − rp = r′p = e2/mpc
2 ,

rememn/mmmprn = 1 ,

[e2/mmmp]×mn/rnc
2 = 1 ,

e2/(mmmp) = ρp,mG ,

e2/G = ρp,mmmmp =M2
JS ,

ρp,mGmn/rn = c2,

that both ρp,mG and the Johnstone-Stoney mass M2
JS can

be derived with extreme precision alone from the found
dimensions rx and masses mx, when at the same time
showing correctly that the meson-mass mm and the proton-
mass mp are both charged with e esu, whereas no electric
charge occurs at the neutron mn. It is such an overwhelming
demonstration of the valid derivation of all the found dim-
ensions, that no doubt seems possible.

The small extension r′p= 1.534×10−16 cm of space the
proton-radius up to the neutron-radius, which in fact would
be the radius r′p of the proton, if calculated strictly like
the radius of the electron according to the Schwarzschild
solution, is the thickness of an outer spherical shell surround-
ing the central proton of the free neutron, is why we may say
that the volume of this spherical shell of extremely narrow
depth r′p is the location of the bound heavy neutron-meson.

Calculation of r′n= 1.532×10−16 cm= e2/mnc
2 retains

the ratio 1.001378= r′p/r
′
n and the exceedingly small dif-

ference r′p− r
′
n= 2.113×10−19 cm< 0.002 pro mille of the

neutron radius rn. If of any relevance at all, it will have to
await the results and precision of future research.

(4) From two protons in a torus of radii rp and re may be
generated the family of Cassini Ovals in planes parallel with
the torus axis. The Lemniscate may be seen in a section cut
in a plane parallel to the axis through a point on the inside
of the torus, i. e. in the distance (re− rp) from the axis.

The mutual distance of the protons in the Lemniscate is
2
√
(re)2− (re− rp)2= 4.488×10−13 cm, or 4.031×rp cm

apart (according to Pythagorean calculation).

In case of a change of radii, re→ rp, or contrary rp→ re,
the torus will degenerate into a non-Riemannian surface with
one singularity in the axis.
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Open Letter by the Editor-in-Chief

Declaration of Academic Freedom
(Scientific Human Rights)

Article 1: Preamble

The beginning of the 21st century reflects more than at any
other time in the history of Mankind, the depth and signifi-
cance of the role of science and technology in human affairs.

The powerfully pervasive nature of modern science and
technology has given rise to a commonplace perception that
further key discoveries can be made principally or solely by
large government or corporation funded research groups with
access to enormously expensive instrumentation and hordes
of support personnel.

The common perception is however, mythical, and belies
the true nature of how scientific discoveries are really made.
Large and expensive technological projects, howsoever com-
plex, are but the result of the application of the profound
scientific insights of small groups of dedicated researchers
or lone scientists, often working in isolation. A scientist
working alone is now and in the future, just as in the past,
able to make a discovery that can substantially influence the
fate of humanity and change the face of the whole planet
upon which we so insignificantly dwell.

Groundbreaking discoveries are generally made by indi-
viduals working in subordinate positions within government
agencies, research and teaching institutions, or commercial
enterprises. Consequently, the researcher is all too often
constrained or suppressed by institution and corporation di-
rectors who, working to a different agenda, seek to control
and apply scientific discovery and research for personal or
organizational profit, or self-aggrandisement.

The historical record of scientific discovery is replete
with instances of suppression and ridicule by establishment,
yet in later years revealed and vindicated by the inexorable
march of practical necessity and intellectual enlightenment.
So too is the record blighted and besmirched by plagiarism
and deliberate misrepresentation, perpetrated by the unscru-
pulous, motivated by envy and cupidity. And so it is today.

The aim of this Declaration is to uphold and further the
fundamental doctrine that scientific research must be free of
the latent and overt repressive influence of bureaucratic, po-
litical, religious and pecuniary directives, and that scientific
creation is a human right no less than other such rights and
forlorn hopes as propounded in international covenants and
international law.

All supporting scientists shall abide by this Declaration,
as an indication of solidarity with the concerned international
scientific community, and to vouchsafe the rights of the
citizenry of the world to unfettered scientific creation ac-

cording to their individual skills and disposition, for the
advancement of science and, to their utmost ability as decent
citizens in an indecent world, the benefit of Mankind. Science
and technology have been far too long the handmaidens of
oppression.

Article 2: Who is a scientist

A scientist is any person who does science. Any person who
collaborates with a scientist in developing and propounding
ideas and data in research or application is also a scientist.
The holding of a formal qualification is not a prerequisite for
a person to be a scientist.

Article 3: Where is science produced

Scientific research can be carried out anywhere at all, for
example, at a place of work, during a formal course of edu-
cation, during a sponsored academic programme, in groups,
or as an individual at home conducting independent inquiry.

Article 4: Freedom of choice of research theme

Many scientists working for higher research degrees or in
other research programmes at academic institutions such as
universities and colleges of advanced study, are prevented
from working upon a research theme of their own choice
by senior academic and/or administrative officials, not for
lack of support facilities but instead because the academic
hierarchy and/or other officials simply do not approve of the
line of inquiry owing to its potential to upset mainstream
dogma, favoured theories, or the funding of other projects
that might be discredited by the proposed research. The
authority of the orthodox majority is quite often evoked to
scuttle a research project so that authority and budgets are not
upset. This commonplace practice is a deliberate obstruction
to free scientific thought, is unscientific in the extreme, and
is criminal. It cannot be tolerated.

A scientist working for any academic institution, author-
ity or agency, is to be completely free as to choice of a
research theme, limited only by the material support and
intellectual skills able to be offered by the educational insti-
tution, agency or authority. If a scientist carries out research
as a member of a collaborative group, the research directors
and team leaders shall be limited to advisory and consulting
roles in relation to choice of a relevant research theme by a
scientist in the group.
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Article 5: Freedom of choice of research methods

It is frequently the case that pressure is brought to bear upon
a scientist by administrative personnel or senior academics
in relation to a research programme conducted within an
academic environment, to force a scientist to adopt research
methods other than those the scientist has chosen, for no
reason other than personal preference, bias, institutional pol-
icy, editorial dictates, or collective authority. This practice,
which is quite widespread, is a deliberate denial of freedom
of thought and cannot be permitted.

A non-commercial or academic scientist has the right to
develop a research theme in any reasonable way and by any
reasonable means he considers to be most effective. The final
decision on how the research will be conducted is to be made
by the scientist alone.

If a non-commercial or academic scientist works as a
member of a collaborative non-commercial or academic team
of scientists the project leaders and research directors shall
have only advisory and consulting rights and shall not other-
wise influence, mitigate or constrain the research methods or
research theme of a scientist within the group.

Article 6: Freedom of participation and collaboration in
research

There is a significant element of institutional rivalry in the
practice of modern science, concomitant with elements of
personal envy and the preservation of reputation at all costs,
irrespective of the scientific realities. This has often led to
scientists being prevented from enlisting the assistance of
competent colleagues located at rival institutions or others
without any academic affiliation. This practice is too a de-
liberate obstruction to scientific progress.

If a non-commercial scientist requires the assistance of
another person and that other person is so agreed, the scientist
is at liberty to invite that person to lend any and all assistance,
provided the assistance is within an associated research
budget. If the assistance is independent of budget consider-
ations the scientist is at liberty to engage the assisting person
at his sole discretion, free of any interference whatsoever by
any other person whomsoever.

Article 7: Freedom of disagreement in scientific discus-
sion

Owing to furtive jealousy and vested interest, modern science
abhors open discussion and wilfully banishes those scientists
who question the orthodox views. Very often, scientists of
outstanding ability, who point out deficiencies in current
theory or interpretation of data, are labelled as crackpots,
so that their views can be conveniently ignored. They are
derided publicly and privately and are systematically barred
from scientific conventions, seminars and colloquia so that
their ideas cannot find an audience. Deliberate falsification

of data and misrepresentation of theory are now frequent
tools of the unscrupulous in the suppression of facts, both
technical and historical. International committees of scientific
miscreants have been formed and these committees host and
direct international conventions at which only their acolytes
are permitted to present papers, irrespective of the quality of
the content. These committees extract large sums of money
from the public purse to fund their sponsored projects, by
resort to deception and lie. Any objection to their proposals
on scientific grounds is silenced by any means at their dis-
posal, so that money can continue to flow into their project
accounts, and guarantee them well-paid jobs. Opposing sci-
entists have been sacked at their behest; others have been
prevented from securing academic appointments by a net-
work of corrupt accomplices. In other situations some have
been expelled from candidature in higher degree programmes
such as the PhD, for expressing ideas that undermine a fash-
ionable theory, however longstanding that orthodox theory
might be. The fundamental fact that no scientific theory is
definite and inviolable, and is therefore open to discussion
and re-examination, they thoroughly ignore. So too do they
ignore the fact that a phenomenon may have a number of
plausible explanations, and maliciously discredit any explan-
ation that does not accord with orthodox opinion, resorting
without demur to the use of unscientific arguments to justify
their biased opinions.

All scientists shall be free to discuss their research and the
research of others without fear of public or private materially
groundless ridicule, or be accused, disparaged, impugned
or otherwise discredited by unsubstantiated allegations. No
scientist shall be put in a position by which livelihood or
reputation will be at risk owing to expression of a scientific
opinion. Freedom of scientific expression shall be paramount.
The use of authority in rebuttal of a scientific argument is not
scientific and shall not be used to gag, suppress, intimidate,
ostracise, or otherwise coerce or bar a scientist. Deliberate
suppression of scientific facts or arguments either by act or
omission, and the deliberate doctoring of data to support an
argument or to discredit an opposing view is scientific fraud,
amounting to a scientific crime. Principles of evidence shall
guide all scientific discussion, be that evidence physical or
theoretical or a combination thereof.

Article 8: Freedom to publish scientific results

A deplorable censorship of scientific papers has now become
the standard practice of the editorial boards of major journals
and electronic archives, and their bands of alleged expert
referees. The referees are for the most part protected by
anonymity so that an author cannot verify their alleged ex-
pertise. Papers are now routinely rejected if the author dis-
agrees with or contradicts preferred theory and the main-
stream orthodoxy. Many papers are now rejected automat-
ically by virtue of the appearance in the author list of a
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particular scientist who has not found favour with the editors,
the referees, or other expert censors, without any regard
whatsoever for the contents of the paper. There is a black-
listing of dissenting scientists and this list is communicated
between participating editorial boards. This all amounts to
gross bias and a culpable suppression of free thinking, and are
to be condemned by the international scientific community.

All scientists shall have the right to present their scientific
research results, in whole or in part, at relevant scientific
conferences, and to publish the same in printed scientific
journals, electronic archives, and any other media. No scien-
tist shall have their papers or reports rejected when submitted
for publication in scientific journals, electronic archives, or
other media, simply because their work questions current
majority opinion, conflicts with the views of an editorial
board, undermines the bases of other current or planned
research projects by other scientists, is in conflict with any
political dogma or religious creed, or the personal opinion
of another, and no scientist shall be blacklisted or otherwise
censured and prevented from publication by any other person
whomsoever. No scientist shall block, modify, or otherwise
interfere with the publication of a scientist’s work in the
promise of any presents or other bribes whatsoever.

Article 9: Co-authoring of scientific papers

It is a poorly kept secret in scientific circles that many co-
authors of research papers actually have little or nothing
to do with the research reported therein. Many supervisors
of graduate students, for instance, are not averse to putting
their names to papers written by those persons who are
but nominally working under their supervision. In many
such cases, the person who actually writes the paper has
an intellect superior to the nominal supervisor. In other situ-
ations, again for the purposes of notoriety, reputation, money,
prestige, and the like, non-participating persons are included
in a paper as co-author. The actual authors of such papers
can only object at risk of being subsequently penalised in
some way, or even being expelled from candidature for their
higher research degree or from the research team, as the
case may be. Many have actually been expelled under such
circumstances. This appalling practice cannot be tolerated.
Only those persons responsible for the research should be
accredited authorship.

No scientist shall invite another person to be included
and no scientist shall allow their name to be included as a
co-author of a scientific paper if they did not significantly
contribute to the research reported in the paper. No scientist
shall allow himself or herself to be coerced by any repre-
sentative of an academic institution, corporation, government
agency, or any other person, to include their name as a co-
author concerning research they did not significantly contri-
bute to, and no scientist shall allow their name to be used
as co-author in exchange for any presents or other bribes.

No person shall induce or attempt to induce a scientist in
howsoever a way to allow that scientist’s name to be included
as a co-author of a scientific paper concerning matters to
which they did not significantly contribute.

Article 10: Independence of affiliation

Many scientists are now employed under short-term con-
tracts. With the termination of the employment contract,
so too is the academic affiliation. It is often the policy
of editorial boards that persons without an academic or
commercial affiliation will not be published. In the absence
of affiliation many resources are not available to the scientist,
and opportunities to present talks and papers at conferences
are reduced. This is a vicious practice that must be stopped.
Science does not recognise affiliation.

No scientist shall be prevented from presenting papers
at conferences, colloquia or seminars, from publication in
any media, from access to academic libraries or scientific
publications, from attending scientific meetings, or from
giving lectures, for want of an affiliation with an academic
institution, scientific institute, government or commercial
laboratory, or any other organisation.

Article 11: Open access to scientific information

Most specialised books on scientific matters and many sci-
entific journals render little or no profit so that commercial
publishers are unwilling to publish them without a contri-
bution of money from academic institutions, government
agencies, philanthropic foundations, and the like. Under such
circumstances commercial publishers should allow free
access to electronic versions of the publications, and strive
to keep the cost of the printed materials to a minimum.

All scientists shall strive to ensure that their research
papers are available to the international scientific community
free of charge, or in the alternative, if it cannot be avoided, at
minimum cost. All scientists should take active measures to
make their technical books available at the lowest possible
cost so that scientific information can be available to the
wider international scientific community.

Article 12: Ethical responsibility of scientists

History testifies that scientific discoveries are used for ends
both good and evil, for the benefit of some and the destruction
of others. Since the progress of science and technology
cannot stop, some means for the containment of malevolent
application should be established. Only a democratically
elected government, free of religious, racial and other bias,
can safeguard civilisation. Only democratically elected gov-
ernment, tribunals and committees can safeguard the right of
free scientific creation. Today, various undemocratic states
and totalitarian regimes conduct active research into nuclear
physics, chemistry, virology, genetic engineering, etc in order
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to produce nuclear, chemical and biological weapons. No
scientist should willingly collaborate with undemocratic
states or totalitarian regimes. Any scientist coerced into work
on the development of weapons for such states should find
ways and means to slow the progress of research programmes
and to reduce scientific output so that civilisation and demo-
cracy can ultimately prevail.

All scientists bear a moral responsibility for their scien-
tific creations and discoveries. No scientist shall willingly
engage in the design or construction of weapons of any sort
whatsoever for undemocratic states or totalitarian regimes
or allow his or her scientific skills and knowledge to be
applied to the development of anything whatsoever injurious
to Mankind. A scientist shall live by the dictum that all
undemocratic government and the violation of human rights
is crime.

November 22, 2005 Dmitri Rabounski
Editor-in-Chief,

Progress in Physics
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