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An Explanation of De Broglie Matter Waves in Terms of the Electron
Coupling to the Vacuum State

William C. Daywitt

National Institute for Standards and Technology (retired), Boulder, Colorado. E-mail: wcdaywitt@me.com

This paper examines the de Broglie wave theory derived by Synge who assumed
that Hamilton’s variational principle in three dimensions applies also to the four-
dimensional Minkowski spacetime. Based on the Planck vacuum (PV) view of the elec-
tron coupling to the vacuum state, calculations here suggest that the Synge de Broglie
waves exist and travel within the PV state.

1 Introduction

In the early part of the twentieth century when it was real-
ized that the massless photon had particle-like properties, de
Broglie figured therefor that the massive electron must have
wave-like properties — and the de Broglie matter wave was
born [1, p.55].

In circa 1954 Synge [2] published a study on the idea of
3-waves propagating in the 4-dimensional Minkowski space-
time. The study was based on the properties of a medium-
function which the present author interprets as a vacuum
medium. In the PV theory, the occurrence of 3-waves in
a 4-dimensional spacetime is symptomatic of an invisible
vacuum continuum interacting with a free-space particle.

What follows compares the Compton-(de Broglie) rela-
tions derived in the PV theory with the Synge ray-wave dia-
gram in spacetime, and concludes that his de Broglie waves
propagate within the vacuum state rather than free space.

2 Compton-(de Broglie) relations

In the PV theory the interaction of the electron with the vac-
uum state leads to the Compton-(de Broglie) relations [3]

rc · mc2 = rd · cp = rL · E = r∗ · m∗c2 = e2
∗ (= cℏ) (1)

where e∗ is the massless bare charge that is related to the
electronic charge via e = α1/2e∗, and α and m∗ are the fine
structure constant and the Planck particle mass. The radii
rc (= e2

∗/mc2) and r∗ (= e2
∗/m∗c

2) are the electron and Planck-
particle Compton radii respectively and m is the electron
mass. The magnitudes of r∗ and m∗ are equal to the Planck
length and mass respectively [4, p. 1234]. It is because r∗ , 0
that the PV state is a quasi-continuum.

The de Broglie radii, rL and rd, are derived from rc and
the Lorentz invariance of the vanishing electron/PV coupling
force (A1) at r = rc

i
(

e2
∗

r2
c
− mc2

rc

)
= 0 (2)

and result in

rL =
rc

γ
and rd =

rc

βγ
(3)

where β = v/c and γ = 1/
√

1 − β2. From (3) β = rL/rd yields
the relative velocity of the electron in the coupled electron/PV
system. The relations in (1) also lead to the relativistic elec-
tron energy E =

√
m2c4 + c2 p2.

The relativistic scaler wave equation is [5, p. 319](
ℏ

mc

)2 (
∇2 − ∂2

c2∂t2

)
ψ = r2

c

(
∇2 − ∂2

c2∂t2

)
ψ = ψ (4)

while its nonrelativistic counterpart reads(
∇2 − ∂2

v2∂t2

)
ψ = 0 (5)

where v ≪ c; so the electron radii in (1) and (4) are relativistic
parameters.

The planewave solution (ψ ∝ exp iϕ) to (4) in the z-di-
rection involves the phase

ϕ =
Et − pz
ℏ

=
Ect − cpz

cℏ
=

Ect − cpz
e2
∗

ϕ =
ct
rL
− z

rd
(6)

where the relativistic energies E (=mγc2) and cp (= cmγv)
from (1) are used in the final expression. The normalization
of ct and z by the de Broglie radii rL and rd is a characteris-
tic of the PV model of the vacuum state, and is related to the
Synge primitive (planewave) quantization of spacetime to be
discussed below.

3 De Broglie waves

The Ray/3-Wave diagram that represents the Synge de
Broglie wave propagation in spacetime [2, p. 106] is shown
in Fig. 1, where the electron propagates upward at a uniform
velocity v along the Ray. The vertical axis is ict and the hor-
izontal axes are represented by (x, y, z). The need for quan-
tizing the Synge vacuum waves (adding the parameters rc, rL,
and rd to Fig. 1) is explained in the following quote. “So far
the [variational-principle] theory has been confined to the do-
main of geometrical mechanics. The de Broglie waves have
no phase, no frequency, no wave-length. It is by quantization

William C. Daywitt. An Explanation of De Broglie Matter Waves in Terms of the Electron Coupling to the Vacuum State 3
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Fig. 1: Planewave quantization of de Broglie Waves in Spacetime.
The figure consists of a single Ray and a partial picture of the corre-
sponding 3-Waves propagating toward the upper left. The Ray and
their 3-Waves are orthogonal in the 4-dimensional spacetime sense.
The quantization consists of the normalization constants rc, rL, and
rd.

that these things are introduced, in much the same way as
they are introduced in the transition from geometrical optics
to physical optics” [2, p. 105].

The parameters in the figure correspond to rc = rc, rL =
rL, and rd = rd; the Compton and de Broglie radii from (1).
In the quantization, the Synge theory utilizes the wavelengths
2πrc, 2πrL and 2πrd. Thus there is a one-to-one correspon-
dence between the electron/PV coupling radii from (1) and
the Synge wave theory regarding Fig. 1. In the PV theory the
electron radii (rc, rL, rd) are parameters generated by the elec-
tron/PV interaction — thus it is reasonable to conclude that
the de Broglie waves travel within the vacuum state.

Appendix A: Coupling force

In its rest frame, the coupling force the electron core (−e∗,m)
exerts on the PV quasi-continuum is [3]

i
(

e2
∗

r2 −
mc2

r

)
(A1)

where the radius r begins at the electron core. The spacetime
coordinates are denoted by

xµ = (x0, x1, x2, x2) = (ict, x, y, z) (A2)

where µ = (0, 1, 2, 3) and r = (x2 + y2 + z2)1/2.
The force (A1) vanishes at the electron Compton radius

rc and leads to:
i
rc

(
e2
∗

rc
− mc2

)
= 0 (A3)

in the electron rest frame; and when (A3) is Lorentz trans-
formed it results in the two coupling forces

i
rL

(
e2
∗

rc
− mc2

)
= 0 (A4)

and
1
rd

(
e2
∗

rc
− mc2

)
= 0 (A5)

in the uniformly moving frame.
To complete the PV perspective, the space and time

derivatives in the scaler wave equation

r2
c

(
∇2 − ∂2

c2∂t2

)
ψ = ψ (A6)

and the Dirac electron equation [6, p. 74]

icℏ
(
αα · ∇ + ∂

c∂t

)
ψ = mc2βψ

or

irc

(
αα · ∇ + ∂

c∂t

)
ψ = βψ (A7)

are quantized (normalized, scaled) by the same constant rc,
where the 4×4 vector matrix αα accounts for electron spin.
[The β in (A7) is a 4×4 matrix, not a relative velocity.]

Submitted on September 28, 2016 / Accepted on October 8, 2016
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Beyond the Hubble’s Law

Nilton Penha Silva
Departmento de Fı́sica (Retired Professor), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

Email: nilton.penha@gmail.com

Based on the Universe’s scale factor introduced by Silva [1], we derive an expression
for the receding velocities of arbitrary astronomical objects, which increase linearly up
to the lookback distance of 2.1 × 103 Mpc and after that they increase in a positively
accelerated way. The linear part corresponds to the Hubble’law.

1 Introduction

In a 2014 paper, Silva [1] introduced an expression for Uni-
verse’s scale factor to describe the Universe’s expansion,

a(t) = exp
H0T0

β

( t
T0

)β
− 1

 , (1)

where

β = 1 + H0T0

(
−1

2
Ωm(T0) + ΩΛ(T0) − 1

)
, (2)

H0 is the Hubble constant, T0 is the Universe current age,
Ωm(T0) is the cosmic matter density parameter (baryonic +
non-baryonic matter), ΩΛ(T0) is the cosmic dark energy den-
sity parameter [2].

In reference [1] matter and dark energy are treated as per-
fect fluids and it is shown that it very difficult to distinguish
between closed (k = 1), flat (k = 0) and open (k = −1) uni-
verses. In this paper we intuitively adopt k = 1 and explore
the Universe as being closed.

The spacetime metric for k = 1 according to Friedmann-
Lemaitre-Robertson-Walker (FLRW) is [1, 3]

ds2=ℜ2(T0)a2(t)
(
dψ2+ sin2 ψ

(
dθ2+ sin2 θdϕ2

))
−c2dt2 (3)

where ψ, θ and ϕ are the the comoving space coordinates (0 ⩽
ψ ⩽ π, 0 ⩽ θ and 0 ⩽ ϕ ⩽ 2π);ℜ(T0) is the current Universe’s
radius of curvature. This proper time t is the cosmic time.

It is known that at t = 380, 000 yr ≃ 10−4 Gyr, after
the Big Bang, the Universe became transparent and the first
microwave photons started traveling freely through it. They
constitute what is called the Cosmic Microwave Background
(CMB).

The observer (Earth) is assumed to occupy position ψ = 0
for any time t in the comoving reference system. To reach
the observer at the Universe age T the CMB photons leave
a specific position ψT (t ≃ 10−4 Gyr). They follow a null
geodesic.

It’s time to make the following observation: since we will
be dealing with large times values (some giga years) we have
no loss if we treat t ≃ 10−4 Gyr as t ≃ 0 Gyr for practical
purposes.

For a null geodesic we have:

− c dt
ℜ(0)

= dψ, (4)

ψT =
c
ℜ(0)

∫ T

0

1
a(t)

dt. (5)

We have seen then that CMB photons emitted at ψT0 and
t = 0 should arrive at the observer, ψ = 0 and T0. Along their
trajectory, other emitted photons, at later times, by astronom-
ical objects that lie on the way, join the the photons troop and
eventually reach the observer. They form the picture of the
sky that the observer “sees”. Certainly CMB photons emitted
at ψ > ψT0 will reach the observer at times latter than T0.

2 The receding velocity

As the Universe expands, the streching distance between the
observer and any astronomical object at time t is given by

d(t) = ℜ(0) a(t)
(
ψT0 − ψt

)
+ ct

= ca(t)
(∫ T0

0

1
a(t′)

dt′ −
∫ t

0

1
a(t′)

dt′
)
+ ct

= ca(t)
∫ T0

t

1
a(t′)

dt + ct.

(6)

The receding velocity of any astronomical object with re-
spect to the observer is

vrec(t) = ȧ(t) c
∫ T0

t

1
a(t′)

dt′

= a(t)H(t) c
∫ T0

t

1
a(t′)

dt′,

(7)

where we have used the fact that

ȧ(t) = a(t)H(t). (8)

According to reference [1],

H(t) = H0

(
t

T0

)β−1

(9)
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By performing the integration in equation (8) we have

vrec(t) = c
(

H0T0

β

)1− 1
β
(

t
T0

)−1+β

exp
H0T0

β

(
t

T0

)β
×

Γ 1
β
,

H0T0

β

(
t

T0

)β − Γ (1
β
,

H0T0

β

)
(10)

where Γ(A, B) and Γ(A,C) are incomplete Gamma Func-
tions [4].

Taking into account that

Γ(A, B) − Γ(A,C) = Γ(A, B,C), (11)

where Γ(A, B,C) are generalized incomplete Gamma Func-
tions [4], we have

vrec(t) = c
(

H0T0

β

)1− 1
β
(

t
T0

)−1+β

exp
H0T0

β

(
t

T0

)β
×Γ

1
β
,

H0T0

β

(
t

T0

)β
,

H0T0

β

 .
(12)

3 Comparison to Hubble’s law

By replacing t by T0 − dlb/c, where dlb = ctlb is the so called
lookback distance, tlb being the lookback time:

vrec(dlb) = c
(

H0T0

β

)1− 1
β
(
1 − dlb

cT0

)−1+β

× exp
H0T0

β

(
1 − dlb

cT0

)β
×Γ

1
β
,

H0T0

β

(
1 − dlb

cT0

)β
,

H0T0

β

 .
(13)

Figure 1 shows that the receding velocities increase as the
lookback distance increases, initially in a linear way. Distant
astronomical objects are seen to recede at much faster veloc-
ities than the nearest ones.

By expanding expression (13) in power series of dlb, and
retaining the lowest order term we get

vrec(dlb) = H0vrec(dlb) + higher order terms. (14)

The Hubble’s law,

vrec(dlb) = H0vrec(dlb), (15)

is an approximation to our just obtained expression. Accord-
ing to the present work, Hubble’s law holds up to ∼ 7 Gly or,
equivalently ∼ 2.1 × 103 Megaparsecs.

For this work, we have used the following experimental
data [5]:

H0 = 69.32 kms−1Mpc−1 = 0.0709 Gyr−1,

T0 = 13.772 Gyr.
(16)

Fig. 1: Receding velocities as function of dlb, the lookback distances
from astronomical objects to the observer, on Earth.

As indicated by references [1, 6] the present scale factor
predicts that the Universe goes from a matter era to a dark
energy era at the age of T⋆ = 3.214 Gyr. Before that matter
dominated, and after that dark energy era dominates.

4 Conclusion

The Universe’s scale factor a(t) = exp
(

H0T0
β

((
t

T0

)β − 1
))

,

with β = 1 + H0T0

(
− 1

2Ωm(T0) + ΩΛ(T0) − 1
)

introduced by
Silva [1] has been used to find an expression for the receding
velocities of astronomical objects caused by the expansion of
the Universe. The expression found, equation (13), is a gen-
eralization of Hubble’s law. This later one should be valid up
to ∼ 2.1 × 103 Megaparsecs.

After such very good results we feel very stimulated with
the idea that expression (1) is a very good candidate for de-
scribing the geometrical evolution of our Universe.

Submitted on October 16, 2016 / Accepted on October 21, 2016
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Are Quazars White Holes?

Anatoly V. Belyakov

E-mail: belyakov.lih@gmail.com

Based on the mechanistic interpretation of J. Wheeler’s geometrodynamic concept,

which allows for transitions between distant regions of space, it was suggested that

a quasar is a cosmological object, i.e. a white hole, where gravitational forces are re-

placed with dynamic ones with together the balance of electric and magnetic forces.

Thus, a schematic model of a typical quasar was proposed. Its parameters (calculated

on the basis of this model) are consistent with the observational data on quasars.

1 Quazars according to Wheeler’s geometrodynamics

Quasars are still the most striking mystery of modern astro-

physics. According to the most common hypothesis, a quasar

is a distant active galaxy with a supermassive black hole in

the centre. An alternative hypothesis belongs to V. Ambart-

sumyan. According to the latter, quasar nuclei are the place

of matter transition from prestellar existence in the form of

super-dense bodies to existence in the form of stars and rar-

efied interstellar medium, which are more common for as-

tronomy. The transition can occur in the following sequence:

super-dense state — kinetic energy — synchrotronic radia-

tion. This process may be connected with formation of a

white hole. Possibility of existence of white holes is also ad-

mitted by some other researchers [1, 2].

This approach is the closest to J. Wheeler’s geometrody-

namic concept allowing for drain-source transitions between

distant regions of space (“wormholes”), thus ensuring circula-

tion of matter along the vortex tubes (power lines) along some

closed contour. The mechanistic interpretation of Wheeler’s

idea that only uses balances of main forces (electric, mag-

netic, gravitational and dynamic ones) makes it possible to

build schematic models of cosmological objects and success-

fully determine some of their important parameters [3, 4]. In

this case, there is no need to delve into the complex dynamics

of phenomena and their mechanisms, which are the research

subjects of specialised scientific disciplines. The same ap-

proach was used here to construct a schematic model of a

quasar, assuming that it is a white hole.

Indeed, the most dramatic transition in the general cir-

culation of matter is the transition, when the gravitational

forces are replaced with dynamic ones (centrifugal forces in

our case). In other words, it is the transition when interac-

tions change their polarity. Probably, such a phase transition

(inversion) occurs in quasars, where the super-dense state of

matter transforms into radiation and diffused matter followed

by its condensation. Under such a phase transition, the ini-

tially closed contour, which are based on the balance of grav-

itational and magnetic forces, break leaving unclosed vortex

tubes with contradirectional currents. These currents carry

charges of different polarity at the circuit break point. The

charges are gradually destructing each other (not necessarily

through annihilation). The reverse process occurs in black

holes, respectively.

At the same time, the characteristic value of Rc (deter-

mined by the balance of electric and magnetic forces [3])

is preserved, since the same result is obtained from the bal-

ance of gravitational and magnetic forces, when the evolu-

tionary parameter ε (characterises the difference of the mate-

rial medium from vacuum) becomes numerically equal to the

ratio of electric forces to gravitational ones. The Rc value is

the geometric mean of linear values. They are the distance

between the charges r and length l of the conductor (force

line, current line or contour):

Rc =
√

l r = 7.52 × 108 m. (1)

Assuming that the energy release in the quasar is due to

mutual destruction of the charges with opposite polarity, the

quasar may be schematically represented as a number of z

charge unit contours or vortex thread concentrated to the max-

imum extent in the region with the radius Rc typical of the

transition. Let us determine their number as follows:

z =

(

Rc

r

)3

. (2)

As the central mass, the quasar mass is determined by the

following virial:

M =
ν2 l

γ
, (3)

where ν is the velocity of matter circulation in the contour,

also known as peripheral speed and γ is the gravitational con-

stant.

As the total mass of all the contours, the same mass is

determined as follows:

M = zε0 l , (4)

where ε0 is linear density of the unit contour, which is equal

to me/re = 3.23 × 10−16 kg/m3.

It is clear that the evolutionary parameter of the general

contour is increased proportionally to the number of unit

counters, so ε = z.

Solving equations (1) to (4), we find the number of unit

contours, distance between the charges, length of the contour

Anatoly V. Belyakov. Are Quazars White Holes? 7
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and quasar mass:

z =
ν2

ε0 γ
, (5)

r =
Rc

z1/3
, (6)

l = z1/3Rc , (7)

M = z4/3ε0 Rc . (8)

Let us assume that the process of mutual destruction of

charges occurs at the velocity of matter motion in the con-

tour in all the individual contours simultaneously. Then the

quasar’s life time is:

τ =
l

ν
, (9)

the average energy released by the quasar “burnout” is:

N =
Mν2

τ
= zε0 ν

3, (10)

and minimum radiation wavelength, referring to [3], is:

λ =
λk c

ν
, (11)

where λk is the Compton electron wavelength equal to 2.426

×10−12 m.

Each contour has minimum reference length:

lmin =
l

z1/3
= Rc , (12)

then the minimum characteristic time interval for the quasar

“burnout” or radiation will be:

τmin =
Rc

ν
, (13)

thus, the characteristic or standard mass converted into radia-

tion during this time interval is:

Mst =
Mτmin

τ
=

M

z1/3
, (14)

and the number of standard masses in the mass of the quasar

is:

nst =
M

Mst

= z1/3. (15)

To some extent, the quasar inherits some super-dense state

(microcosm) features, so the visible size of the quasar — its

core l0 — is determined by analogy with the Bohr atom, as-

suming that the core is (an)2 times smaller than the contour

size. Therefore:

l0 =
l

(an)2
, (16)

where a is the reverse fine structure constant.

To determine the quasar’s parameters, we need to know

the velocity of matter circulation in the contour, i.e. the quan-

tum number n. The main quantum number for a standard

electronic contour [5] is:

ns =
c

1/3

0

a
= 4.884, (17)

and velocity is

ν =
cc

1/3

0

(ans)2
= 4.48 × 105 m/sec, (18)

with indication of c0 = c/[m/sec].

As shown by (4), (5), (17) and (18), the ratio of the quasar

core linear density M/l0 to the same of the electron me/re

for such a standard quasar becomes the maximum possible

and equal to the ratio of electric to the gravitational forces

f = c2/ε0γ = 4.17 × 1042, i.e. ε = f . Moreover, as we

see from the dependencies above, kinetic energy Mν2 for a

quasar contour is equal to electrostatic energy, provided that

the number of individual charges placed along the length of

the unit contour equals to l/re, and the distance between them

is equal to the size of a standard contour. For a unit contour,

this energy is equal to the following:

Ei =
ε

2/3

0
ν8/3Rc

γ1/3
= 1.03 × 1017 J. (19)

2 The balance of electric and magnetic forces requires

“stretching” charge contours of quasars to cosmic dis-

tances

Thus, the quasar model includes linear objects (force lines or

vortex tubes) with the length of hundreds of light-years. This

indicates the need for a mechanism of energy transfer from

the quasar core to remote distances. Apparently, such ex-

tended formations are double radio sources. They often have

a compact radio source between them, coinciding by its co-

ordinates with the optical object — a quasar or a galaxy [6].

Notably, the outer edges of these structures are the brightest

parts of the radio components. It is clear that in our model

they are associated with the ends of quasar vortex tubes. The

latter may be considered as super-charges, which are gradu-

ally destroying each other. Radiation comes from the periph-

eral part of the contours as charged particles move in the areas

of the magnetic field’s force lines with the greatest curvature,

which are sources of synchrotron radiation.

Let us estimate the nature of the radiation emitted by such

a contour. Continuing the analogy with the Bohr atom, we

shall consider this contour as a super-atom. For a proton-

electron contour, the wave range is within the range from

3.7 × 10−6 to 0.95 × 10−7 m under transitions within quan-

tum numbers from ns to 1. We suppose that, for the super-

atom quasar, the wavelength increases in proportion to the ra-

tio r/(n2
sRB). Then their range changes up to the range 1.05 m

to 0.027 m (290 MHz to 11,000 MHz), which exactly covers

most of the radio emission spectrum of typical galaxies and

quasars.

8 Anatoly V. Belyakov. Are Quazars White Holes?
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Parameters Values

Number of individual contours, z 9.33 × 1036

Quasar mass M, kg 4.76 × 1042

Total energy of the quasar E, J 9.61 × 1053

Average radiation power N, W 2.72 × 1038

Contour length or the maximum size of the quasar l, m 1.58 × 1021 (1.67 × 105 light years)

Observed size of the quasar core l0, m 3.53 × 1015 . . . 1.26 × 1011

Distance between charges r, m 3.57 × 10−4

Minimum radiation wavelength λ, m 1.62 × 10−9

Core pulsation period (minimum) τ0, sec 70,400 (19.6 hours)

Periphery pulsation period (maximum) τ0m
, sec 1.98 × 109 (62.6 years)

Generalised pulse duration of the vortex tube τi, sec 117. . . 5,440

Minimum light period τmin, sec 1,675

Quasar life time τ, years 1.12 × 108

Standard “burnable” mass Mst, kg 2.26 × 1030

Number of standard masses in the quasar nst 2.10 × 1012

Table 1.

Dual radio sources are relatively rare (it is possible due

to that reason that we observe not the true size of a radio-

source but its projection into the celestial sphere [8]) This

implies that most of the long contours of the quasar are com-

pletely or partially spirally twisted forming a vortex structure

or a tube immersed in the Y area (an extra dimension or a

degree of freedom in relation to our world [8]). We can say

that this vortex tube “is beaded” with future standard stellar

masses convertible into radiation in respective portions (a sort

of quanta).

Thus, the quasar as a phenomenon — on the much greater

scale though — resembles the process of neutronisation [3],

but occurs reversely, when the nominal one-dimensional vor-

tex tube of the quasar is eventually transformed into a nom-

inal two-dimensional disk spiral structure and further into a

galaxy.

Some parameters of the quasar can be estimated using the

most general equations obtained for stellar objects in the pa-

per [3]. Thus, the core diameter is:

l0 = M jRs , (20)

where j = 1 . . . 1
3
, the factor considering packing (the shape)

of the object with the greatest value at j = 1 (a sphere) co-

inciding with the result of formula (16), and the lowest value

at j = 1
3

(a vortex tube) being close to the size of the Earth’s

orbit.

It is logical to assume that the quasar pulses relative to the

symmetry axis, as do stellar objects, which is manifested in

changing luminosity of the quasar. Thus, duration of the gen-

eralized momentum τi of a pulsar with the mass of a quasar

as a vortex tube is:

τi = 2.51 M1/2...1/4 sec, (21)

and pulsation periods of the core τ0 and periphery τ0m
of a

stellar object with the mass of a quasar as a two-dimensional

spiral object are:

τ0 = 2.51
f

ε

(

M

Mm

)2/3

sec, (22)

τ0m
= 2.51

(

f

ε

)3 (

M

Mm

)4/3

sec, (23)

where Mm = 1.013 × 1036 kg is the characteristic mass, de-

termined by the formula (3) with r = Rc and ν = c. We may

take ε = f for the initial period of the quasar’s life (the super-

dense state). Then the periods determined by (22) and (23)

are only dependent on the mass of the object.

Since the quasar pulsation periods vary depending on its

form, the quasar emits at different frequencies. In addition,

variability of radiation within different frequency ranges is

asynchronous [9]. In particular, Seyfert galaxies — with a

quasar presumably located in the centre of each — have a

rapid high-amplitude radiation component (which are weeks

and months) along with the slow low-amplitude radiation

component (years), and the variability of radiation within dif-

ferent ranges is shifted in time. Thus, radio bursts can lag

behind optical flares by years.
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The state of a quasar in the form of a vortex tube may be

observed as a blazar, which is believed to be an extremely

compact quasar. It is characterised by rapid and considerable

changes in luminance in all the spectrum ranges over a period

of several days or even several hours [10].

It is understood that the quasar’s parameters and its exter-

nal appearance seen by the viewer will depend on the quan-

tum number, density of packing of the charge pairs in the

quasar volume, as well as on the quasar’s age, pulsation

phase, possible shape and orientation relative to the viewer.

In general, the model estimates are consistent with the avail-

able data on quasars.

Calculated parameters of a standard quasar with ns =

4.884 are shown in Table 1.

Indeed, the quasar mass estimated by the mass-luminance

ratio should be about 1012 or more masses of the Sun; cumu-

lative luminance throughout the spectrum may reach 1039 W

to 1040 W; and energy contained in radio components alone

may reach 1052 J. As for the quasar’s life time, the analysis of

the radio source observation data shows that energy emitted

by the core as a result of a continuous (non-explosive) process

may be emitted for 107 to 109 years [11–13].

The quasar’s radiation is variable in all the wavelength

ranges up to the X-ray and gamma radiation. The variabil-

ity periods characteristic of quasars — months or even days

— indicate that the generating area of the quasar radiation

is not large, i.e. the linear dimensions of the emitting area

(the quasar’s core or active part) are fairly small — from one

light year to the Solar System size [2,10]. The shortest varia-

tion observed had a period of about one hour, which is within

the range of the generalized pulse duration. This is consistent

with the “burnout” time of the standard mass that corresponds

to a typical stellar mass.

At the same time, the areas emitting within the radio range

(double radio sources) are dozens and hundreds or more light-

years away from the central optical object — a quasar or a

galaxy [6, 7] — which is consistent with the length of the

open contour. Their variability (months or years) may depend

on the period of the quasar’s outer cycle time (the periphery).

As the quasar evolves, its evolutionary parameter ε decreases,

but pulsation periods increase. We may assume that the ini-

tial configuration of the quasar is inherited in future, as matter

condensates and stars form, and somehow “freezing” with a

sharp decrease in the periphery spin velocity, it manifests it-

self in various forms of galaxies (elliptical or spiral).

3 Conclusion

It has been established by now that there were a lot more

quasars at the earlier stages of the Universe evolution than

there are now. Obviously, the quasar is the ancestor of other

subsequent cosmological objects. In particular, this may ex-

plain the oddity of closeness of their energies of various ori-

gins, noted by astrophysics. Thus, we can conclude that qua-

sars, their varieties and different types of galaxies (with qua-

sars or black holes in the centre) are cosmological objects,

gradually and naturally evolving from the white hole singu-

larity to the black hole singularity.
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Limited, ultramicroscopic action radii of weak (∼ 10−16 cm) and baryon (∼ 10−13 cm)

charges (interactions) against unlimited action radii of electrical and gravitational ones

are the basis of phenomenology explaining the anomalies of positron annihilation in the

“positron beta-decay Na-22 — neon (∼9% Ne-22)” system established experimentally

(1956–2003). A priori, it was impossible to imagine that the study of positron beta-

decay positron annihilation (Na-22, Cu-64, and Ga-68) in noble gases would rise the

issue of overcoming stagnation of fundamental physics (from mid-1970’s) on the way

to the expansion of the Standard Model and unification of physical interactions.

In noble (and any monoatomic) gases, slowing of positrons

(e+) under the positronium formation threshold (Ps; Ee+ <

E0 = I – 6.8 eV, where I is the atom ionization potential and

6.8 eV is the binding energy of Ps) is only possible through

elastic collisions with atoms and may be observed, since:

first, it is relatively long process (small parameter ζ = 2me/M,

where me is the positron mass and M is the atomic mass); and

secondly, when the positron slows down to certain energy E1

(determined by the inequalities E0 ≫ E1 ≫ k T � 0.025 eV)

the positron annihilation rate rises more or less sharply, de-

pending on the atomic number Z, as the positron polarize

outermost electron shell of the atom. The combined effect

of these two factors creates a non-exponential feature, the

so-called shoulder in the time spectra of positron annihila-

tion in inert gases (delayed γn − γa-coincidences; where γn

is the nuclear gamma-quantum of the daughter nucleus after

the β+-decay of 22Na
e+
β
+ν

−−−→ 22∗Ne
Eγn�1.28MeV

−−−−−−−−−−→ 22Ne)/“start”,

γa is one of the annihilation gamma-quanta/“stop”). The sim-

plified theory of elastic slowing down says that the product

of the shoulder length ts and gas density (pressure, p) is the

constant ts × p for inert gas. In approximation of ideas gas,

the constant is dependent on its parameters according to the

following formula

(ts × p)Z �

√
2me

2.7 × 1019 σe ζ

(
1
√

E1

− 1
√

E0

)
,

where σe is the averaged cross section of elastic scattering of

positrons [1].

When comparing lifetime charts of positrons of β+-decay
22Na for the entire range of noble gases, we cannot but notice

the absence (or blurring) of the shoulder in neon [2]. Anni-

hilation of quasi-free positrons after the shoulder with rate Λ

depends on the number of electrons in the outermost shell of

atom (ZV ). Value of Λ are shown in Table 1 [2]:

Table 1:

Noble gas Λ, µsec−1 × atm−1 ZV

Xenon (Xe) 26.3 8

Kripton (Kr) 5.78 8

Argon (Ar) 2.78 8

Neon (Ne) 0.661 8

Helium (He) 0.453 2

The chart Λ/ZV (Z) shown that neon falls out of the gen-

eral monotonic dependence (Fig.1).

Fig. 1: Dependence of λe+/ZV [3] and Λ/ZV [2] on Z (the atomic

number of inert gas), where ZV is the number of electrons in the

outermost atomic shell.
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Blurring of the shoulder in neon has been confirmed in

other laboratories [3–7]. All these experiments showed differ-

ent degrees of blurring. It should be noted in this regard that

the shape of the shoulder is influenced by the orthopositron-

ium (o−Ps, TPs) component of the lifetime spectrum (I2), fol-

lowing the component of annihilation of quasi-free positrons

(e+
β
) on the time axis. Special features of neon individuating

it in terms of measurements in the range of inert gases also

include the following:

1. There is a big difference (twofold) in the data on the

portion of positrons forming Ps in neon, obtained by

the lifetime method with 22Na as the source of positrons

( f = (28 ± 3)% [3] and f = 26% [8]) and by another

method, i.e. according the energy spectrum of annihi-

lation γa-quanta with 64Cu as the source of positrons

( f = (55 ± 6)% [9]). This discrepancy between the

results of independent experiments was noted in [7].

However, it was not discussed because of the lack of

any basis for its explanation.

In note [10], we have drawn attention to the fact that

the start in the lifetime method is marked by the detec-

tion of the nuclear γn-quantum from transition of the

excited daughter nucleus of 22∗Ne to the ground state

of 22Ne (Eγn
� 1.28 MeV). This method usually pro-

vides high-precision measurements of the time spec-

tra, since the lifetime of the excited state 22∗Ne(E2)

τ∗ � 4 × 10−12 s is considerably less than the resolv-

ing time of a spectrometer τ ∼ 10−9 s.

Hence, the question suggested itself in respect of the

measurements in neon – whether the destiny of marker

γn-quantum accompanying β+-decay of 22Na could be

affected to some extent by high concentration of atoms

with non-excited identical nuclei (∼ 9% 22Ne)? In ar-

gon, where such a question is impossible, these dif-

ferent measurement methods provide consistent ( f =

(30 ± 3)% [3] and f = (36 ± 6)% [9]).

2. In contrast to helium and argon [7], there is large dif-

ference between experimental values of the constant

characterizing the shoulder in neon ts × p = 500 ÷ 900

ns×atm [3] (see also [4,7]), ts× p = 2200±6% ns×atm

[5] and ts×p = 1700±200 ns×atm [6]. The discrepancy

between shoulder lengths may be an indication of the

difference between neon samples in impurities of poly-

atomic gases. Nevertheless, authors characterized neon

as high purity gas in all measurements. On the other

hand, almost double the difference in shoulder length

in measurements with the same sample of neon [3] (see

also [4, 7]) also shows another uncontrollable cause of

such a big difference in ts× p neon in all measurements

with 22Na as the source of positrons [2–6].

3. There is also a strong discrepancy between the data on

the cross section of elastic scattering of positrons under

the threshold of formation of Ps obtained with beams of

slow positrons using the lifetime method (with 22Na as

the positron source). Even the greatest of the values

of the constant ts × p in neon, obtained in work [5], is

almost three times less than the estimated one, if we

use the cross section of elastic scattering of positrons

in neon are in full compliance with the theory and with

results of beam experiments [11, 12].

All the experimental results of special manifestations of

annihilation in the “β+-decay 22Na – neon (∼ 9% 22Ne)” sys-

tem were presented at the 7th Conference of Positron Anni-

hilation (ICPA-7) [13].

A critical experiment (falsification by Karl Popper) was

performed a decade after the publication of a proposal for

experimental verification of the paradoxical idea of nuclear

gamma-resonance in gaseous neon of natural isotopic com-

positions [10]. The successful experiment [14], which con-

firmed the paradoxical implementation of the Mössbauer Ef-

fect in gas in final state of β+-decay 22Na(3+)
e+
β
+ν

−−−→ 22∗Ne(2+)

opened the prospect of building a phenomenology of exten-

sion of the Standard Model [15] in the suggestion that the lim-

ited four-dimensional space-time of the final state of β+-decay

of this type (∆Jπ = 1π) is topologically non-equivalent to the

initial state (the topological quantum transition). With this in

mind, let us denote the orthopositronium formed in the gas by

the β+-decay positron as β+-orthopositronium: 3(e+
β
e−)1.

Since there is an isolated virtual photon γ̃ in o−Ps dynam-

ics, there is a possibility that the β+-orthopositronium may

overcome the light barrier due to quantum-mechanical oscil-

lations. Hence we have sensing of four-dimensional space-

time “on the outside” of the light cone and, consequently, an

additional (single quantum) mode of annihilation involving a

double-valued (±) space-like structure. The existence of the

Planck mass ±MPl = ±(~c/G)1/2 opens a unique opportunity

to represent a macroscopic space-like structure.

The phenomenology of physical nature of “resonance co-

nditions” in the “β+-decay 22Na — neon (∼ 9% 22Ne)” system

formulated in [15]∗ leads to the conclusion that the uncontrol-

lable factor in all neon measurements is the gas temperature

(laboratory temperature). This means that deciding experi-

ment aiming to confirm double resonance I2 within the range

±30◦C (see below) is out of the question in Standard Model.

Theorists have been independently (for their own reasons)

probing the possibility of going beyond the Standard Model:

∗The Michigan group have renounced their results in the β+-o-Ps self-

annihilation rate by (0.19 ± 0.02 ÷ 0.14 ± 0.023) percent over the theoretical

value (QED) [16]. The findings of this work are most likely to be erroneous,

since they were obtained by introducing an auxiliary electric field into the

space of the measuring chamber. The field might “obscure” the effect. Fairly

speaking, the work-2003 by the Michigan group has also played a construc-

tive role. It destructive conclusions made it possible to detect and substan-

tiate the fundamental link between gravity and electricity [17] — the cause

of the erroneous nature of the conclusion made by the Michigan group, who

did not have all the experimental data available by the time [14]. A decisive

experiment is needed.
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1. Lev Landau at the International Conference on High En-

ergy Physics (Kiev, 1959) spoke about the limited per-

spective of the Hamiltonian method for strong interac-

tions (the text of the presentation was included in the

collection of articles in memory of Wolfgang Pauli,

1962) [18].

Although quantum chromodynamics (QCD) was for-

mulated in the framework of the Hamiltonian method

in the 1960s–1970s, it did not solve the problem of

strong interactions (the absence of fundamental justi-

fication of confinement), and the problem of the funda-

mental interactions unification (Theory of Everything)

was complicated by mysterious nature of dark matter

and dark energy (∼ 95% of the Universe);

2. R. F. Feynman [19]: “At the suggestion of Gell-Mann I

looked at the theory Yang-Mills with zero mass [. . .]

it should been noticed by meson physicists who had

been fooling around the Yang-Mills theory. They had

not noticed it because they’re practical, and the Yang-

Mills theory with zero mass obviously does not exist,

because a zero mass field would be obvious; it would

come out of nuclei right away. So they didn’t take the

case of zero mass and no investigate it carefully”;

3. F. Hoyle and J. V. Narlikar considered discrete scalar C-

field with negative mass density [20]. This allowed pre-

senting the final state of the topological quantum tran-

sition in β+-decay of 22Na (and the like) as a vacuum

structure U±, in which the space-like negative mass is

balanced by the vacuum-like state of matter (an atom of

long-range action with a nucleus). That is β+-decay of

22Na(3+)
e+
β
+ν

−−−→ 22Ne(2+) under expansion of the Stan-

dard Model will be 22Na(3+)
e+
β
+ν+U±

−−−−−−−→ 22∗Ne(2+);

4. E. B. Gliner [21]: “The physical interpretation of some

algebraic structures of the energy-momentum tensor al-

lows us to suppose that there is a possible form of mat-

ter, called the µ-vacuum, which macroscopically pos-

sesses the properties of vacuum. [. . .] Because of the

multiplicity of the comoving reference systems we can-

not introduce the concept of localization of an element

of µ-vacuum matter, and consequently cannot introdu-

ce the concepts of particle and of the number of par-

ticles of the µ-vacuum in a given volume, if we un-

derstand by a particle an object singled out in a classi-

cal sense relative to the remaining “part” of the matter.

Similarly, one cannot introduce the classical concept of

a photon”.

Views on β+-decay of the type ∆Jπ = 1π, 22Na(3+) →
22Ne(2+), 64Cu(1+) → 64Ni(0+), 64Ga(1+) → 68Zn(0+)

in the Standard Model’s expansion 22Na(3+)
e+
β
+ν+U±

−−−−−−−→
22∗Ne(2+) (see item 3 above) was based on Gliner’s

cosmological ideas;

5. V. I. Ogievetskii and I. V. Polubarinov discussed the no-

toph in [22]: “. . . a massless particle with zero helicity,

additional on the properties to photon. In interactions

notoph, as well as photon, transfers spin 1”.

This makes possible to postulate an additional mode of

annihilation of β+-o-Ps by one notoph (γ◦) β+ − TPs→
γ◦U± (see items 3 and 4 above). Annihilation of o-Ps

by one photon is prohibited in QED by the law of con-

servation of momentum;

6. G. J. Iverson and G. Mack [23] on the possibility of the

space-like nature of some types of neutrinos;

7. V. L. Lyuboshits and M. I. Podgoretskii about the iden-

tity of elementary particles; the mirror world outside

context of the P and CP violation [24].

This opened the possibility of consideration of β+-o-Ps

oscillations in the mirror world, as Ps initially is object

of quantum electrodynamics (electromagnetic interac-

tions) preserving the P and CP symmetries, while the

mirror was considered in the context of their violation

under weak interactions;

8. Yu. A. Golfand and E. P. Likhtman discovered the ma-

thematical structure of supersymmetry [25].

Since the mid-1970s no common physical realization

of supersymmetry has been found;

9. S. W. Hawking and C. F. R. Ellis [26]: “. . . the simultan-

eous creation of quanta of positive energy fields and

of the negative energy C-field”.

This justifies the postulation of U± on an experimental

basis [2–6, 9, 14, 15] (see item 3 above);

10. J. L. Synge [27]: “Anti-Compton scattering” — the idea

that was not seen by the author as a physical concept —

was developed in [28] to justify additional realization

of supersymmetry (superantipodal symmetry) manif-

ested in lifetime anomalies of β+(22Na)-o-Ps in neon;

11. A. F. Andreev: “Gravitational Interaction of Zero-Mass

Particles”, “Macroscopic Bodies with Zero Rest Mass”

[29]; complete relativity, i.e. equivalence of “. . . all

speeds (but speed of light)” [30].

This was the first quantum-field justification of space-

like fundamental structures previously postulated on

the basis of general theory of relativity (the µ-vacuum

concept, see item 4 above);

12. P. Fayet and M. Mezard [31]: Calculation of the proba-

bility of o-Ps annihilation by a single γa-quantum and

a neutral supersymmetric gauge boson U with spin 1:

B(TPs)→ γaU = 3.5× 10−8(1− x4), where x = mU/me

→ 0, me standing for the electron (positron) mass;

13. P. Di Vecchia and V. Schuchhardt [32]: complete dege-

neration of N = 2 para- and orthosuperpositronium.

This has set a precedent of complete degeneration of

para- and orthopositronium while maintaining super-

antipodal symmetry in the final state of β+-decay 22Na
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and others. We know that conservation of full spin Ps

is unequivocal law, not related to approximation. It fol-

lows from the CP-invariance of electromagnetic inter-

actions, while the annihilation modes (the even num-

ber of γa-quanta for parapositronium SPs and the odd

number for TPs) are determined by conservation of the

charge parity (C) and the total angular momentum (the

spin, as the ground states of Ps have no orbital an-

gular momentum). Hence, the possibility in princi-

ple to justify the complete degeneration of the ground

spin states of a superpositronium, taking into account

the oscillations in the mirror world, may be associated

with the relativistic transformation of the angular mo-

mentum. Indeed, if we postulate random mirror-world

wandering in the three-dimensional space with velocity

|V | ∼ c relative to the ground laboratory (observer) and

if the relation between the walk step ∆ (and the time

∆/c) and the TPs|TPs′ (stroke indicates belonging to the

mirror world) lifetime is favorable, the averaged (over

this time interval) value of spin seen by the observer is

〈(S = 0)〉 = (S = 1)′(|V |2/c2)1/2 [33];

14. S. L. Glashow due to the presence of the isolated vir-

tual photon γ̃ in the dynamics of the orthopositron-

ium, postulated (outside the context of the violation

of P- and CP-symmetries) the possibility of o-Ps os-

cillations in the mirror world. The difference in under-

standing the nature of the mirror world discussed herein

as past a new (additional) G~/ck-physics and the mir-

ror Universe by Glashow (the “mirror world”), rejected

by himself in comparing the alleged consequences with

the experimental data available at the time [34], is that

the energy and action in the G~/ck-mirror world of a

new (additional) G~/ck-physics have negative sings. In

addition, the mirror world of G~/ck-physics (with the

negative sign) is realized locally (in the atom of long-

range action) through the double-valued (±) Planck

mass Mµ = MU± = ±MPl = ±(~c/G)1/2 (development

of Gliner’s ideas);

15. A. D. Linde [35] earlier proposed an independent con-

cept of antipodal symmetry of energy and action in the

mirror world relative to the observable Universe. The

G~/ck-physics is substantiated by this concept. Expan-

sion of the Standard Model includes the double-valued

nature of the Planck’s constant ±~;
16. L. B. Okun considered the possibility of “. . . the existen-

ce of many-particle states with anomalous permutation

symmetry [. . .] in the relativistic case, it leads to non-

positive energy or non-locality” (ferbons/parastatistic)

[36];

17. G. A. Kotelnikov [37]: “It was shown that equations of

electrodynamics are invariant with respect to the oper-

ation of changing the value the speed of light”.

The double-valued nature of the speed of light ±c was

realized in G~/ck-physics. Two of the three supercon-

stants of physics are double-valued G,±~,±c.

We have noted the fact that ±~ and ±c are included in

the structure of all quantum-relativistic physical const-

ants with odd exponents, i.e. in the form of the positive-

definite product of (±~)2k+1 ⊗ (±c)2κ+1 (where k and κ

are equal to 0 or an integer) as a phenomenon of the

antipodal cosmological invariance (ACI phenomenon)

of the fundamental physical constants: dimensionless

constants of physical interaction — α = e2/~c (elec-

tromagnetic), αg = Gm2/~c (gravitat.), αW = GFm2/~c

(weak), Planck values — mass MPl = (~c/G)1/2, length

lPl = (~G/c3)1/2, time tPl = (~G/c5)1/2 and all the rest.

This means that mirror-world physics (“on the outside

of the light cone”) may be regarded as an extension of

the Standard Model;

18. A. Yu. Andreev and D. A. Kirzhnits [38]: “Not quite

simple and rather obscure relations between the con-

cept of ‘instability’ and ‘tachyons’ are discussed”.

This work has defined the physical status of the double-

valued ± four-dimensional space-time “on the outside”

of the light cone. At the time of publication, the au-

thors could not give up the phenomenology and the

term tachyon. The key word is instability. The only

realization is the β+-orthopositronium oscillating in the

mirror world. In the final state of the topological quan-

tum transition under the β+-decay of 22Na, β+-o-Ps

breaks the light barrier due to presence of the isolated

virtual photon γ̃ in its dynamics. An atom of long-

range action with a nucleus takes over from the coun-

terproductive phenomenology “tachyon”.

The β+-decay of p → n + e+
β
+ ν (in the atomic nu-

cleus) in the earth laboratory (g = 981 cm/s2) involves

physical interactions of all types: strong — p → n,

electromagnetic — p, e+
β
, weak — ν (electroweak) and

gravitational one. That is why “instability” in the con-

text of the β+-decay (of the ∆Jπ = 1π type) must be ac-

companied by a unified field reaction (generalized dis-

placement current) ad modum the displacement current

in electrodynamics.

The space-like structure of the unified field displace-

ment current (an atom of long-range action with a nu-

cleus) was postulated instead of the counterproductive

phenomenology “tachyon”;

19. L. B. Borissova and D. D. Rabounski [39]: Using the

method of chronometric invariants (physical observ-

able values, A.L. Zelmanov, 1956), “. . . the possibil-

ity of co-existence of short-range and long-range action

has be studied” as an extension of GR.

Mathematical prediction of the existence of the third

form of matter in the zero-space (zero particles) has

given rise to construction of the phenomenology of the

additional one notoph mode of β+-o-Ps annihilation
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(see items 5,7,10 above);

20. J. M. Fröhlich (“Planck’s Hypercube” [40]): following

the logic and intuition of Max Planck (1900/1906), re-

attributes Boltzmann’s constant k to the status of the

fundamental constants c,G, ~, which determined the

cube of physical theories (G. Gamov, D. Ivanenko,

L. Landau, M. P. Bronstein/1928, and A. Zelmanov/

1967–1969), thus opening the opportunity of the four-

dimensional generalization of the cube.

The formulation of the double resonance concept (Ap-

pendix in [15]) predicts dependence of intensity of β+-

o-Ps (I2) on temperature in the “β+-decay 22Na — neon

(∼ 9% 22Ne)” system to be studied in the range —

30◦C < T < +30◦C.

This remind on lecture [40]. If there was destructive

criticism of the Planck’s Hypercube concept in [41],

lecture [40] would hardly be noticed, as it was pub-

lished in a non-peer-reviewed journal (it is absent in

the Science Citation Index);

21. A. D. Sukhanov and O. N. Golubeva [42]: “We show

that the quantum statistical mechanics (QSM) describ-

ing quantum and thermal properties of objects has only

the sense of particular semiclassical approximation.

We propose a more general (than QSM) microdescrip-

tion of objects in a heat bath taking into account a vacu-

um as an object environment; we call it ~-k-dynamics”;

22. L. V. Prokhorov [43]: “On Planck Distances Physics.

Universe as a Net”, “On Physics at the Planck Distance.

Strings and Symmetries”.

These ideas and results obtained by theoreticians (items

1 to 22) were included in the wording of the Standard Model

extension phenomenology, as the isotope effect in neon (the

increased β+-orthopositronium component I2 in the sample

depleted by an isotope of 22Ne [14]; 1.85 ± 0.1 factor) is on

6-7 order of magnitude greater than estimated in the Standard

Model (by isotopic shift of atomic energy levels).

The main motives for extending the Standard Model to

explain the anomalies in the “β+-decay 22Na – neon (∼ 9%
22Ne)” system [2–6, 9, 14, 15] are determined by three con-

cepts — vacuum-like state of matter (see item 4 [19] above),

complete relativity (see item 11 [29, 30] above) and develop-

ment of the idea of β+-o-Ps oscillations in the mirror world

[15] ( [34]).

It is surprising that, in the XIX century, the genius of

Sir W. R. Hamilton (1806-1865) linked the Standard Model

of physics of XX century (the Hamiltonian method) and its

alleged expansion in XXI century, since quantitative harmo-

nization of lifetime anomaly β+-o-Ps in the “β+-decay 22Na

— neon (∼ 9% 22Ne)” system is based on the phenomenology

of the atom of long-range action with nucleus. This space-

like structure in the final state of β+-decay is represented by

bound Hamiltonian chains/cycles (paths contain each node of

the graph once).

Fig. 2: “Microstructure” of the vacuum-like state of matter

(VSM/mirror world); hG is vertical displacement of double-valued

sublattices U± in the gravitational field of the Earth.

The Planck mass Mµ = MU± = ±MPl = ±(~c/G)1/2 g

is regarded as a space-like structure (the number of nodes in

atom of long-range action and radii is N(3)
� 1.302 × 1019,

Rµ � 5.57 × 104 cm, in the nucleus n̄ � 5.2780 × 104, rn̄ �

1.3 cm). It is assumed that each node contains elementary

charges of all physical interactions ( p̄+, p̄−, ē−/ē+, ν̄/ ¯̃ν with

their double-valued ± masses). In these assumptions, the

Planck mass is calculated with high accuracy using the fine

structure constant α [15].

Unlike the gravitational (G) and electromagnetic (α) in-

teractions with infinitive ranges (rG, rα = ∞), the ranges of

the weak (rW = 10−16 cm) and baryon (rstr = rp̄ ∼ 10−13 cm)

interactions are ultramicroscopically small. Since +MPl and

−MPl move in the gravitational field vertically and in oppo-

site directions and diverge to a distance of hG = 2gτ2
0−Ps
/2 =

2 × 10−11 cm over the lifetime of β+-o-Ps (up to 142 ns),

the weak and baryon charges are decompensated (opened)

in the nodes of vacuum-like state of matter/VSM (+MPl) as

hG ≫ rW , rp̄ (Fig. 2).
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The rate of self-annihilation of β+-o-Ps (in non-resonant

conditions) is exceeded by (0.19 ± 0.02 ÷ 0.14 ± 0.023) %

(see footnote in Page 12) due to the amplification factor as

result of β+-o-Ps oscillations on n̄ � 5.2780 × 104 nodes of

the space-time structure of the nucleus of atom of long-range

action [15] (parallel acts of annihilation)

B
(
β+ − TPs

)
n̄→ γ◦U+ = 3.5 × 10−8 × 5.2780 × 104

� 1.9 × 10−3(0.19)%

(see item 12 above).

In the fourth dimension of space-time outside the light

cone, the +MPl lattice has the properties of an absolutely rigid

body. Electrical charges in the nodes of p̄+/ p̄−, ē−/ē+ lattices

are balanced as a result of the infinite range (the Coulomb bar-

rier is absent in the VSM nodes). Exchange of quasiprotons

in the nodes of the VSM lattice with protons of the atomic nu-

clei of the gas surrounding the source of positrons becomes

possible. In the case of neon, nuclear gamma-resonance (the

Mössbauer Effect) is realized in the “β+-decay 22Na — neon

(∼ 9% 22Ne)” system.

Appearance of protons (quasi-particles p̄) in each node of

the +MPl lattice and bonding of atoms with 22Ne nuclei in the

“β+-decay 22Na — neon (∼ 9% 22Ne)” system is the response

to β+-decay 22Na. This is similar to the displacement current,

but having the space-like structure.

The difference between the masses of the neutron and pro-

ton ∆mnpc2 = mnc2–mpc2 = 1.2933317 ± 0.0000005 MeV is

exceeding energy of the marker γn-quantum (“start”: 22∗Ne
Eγn=1.274577 MeV
−−−−−−−−−−−−−−→ 22Ne; ∆mnpc2–Eγn

= 18.7547 keV).

There was an idea to link the difference ∆mnpc2–Eγn
=

18.7547 keV with response energy resonance in the topolog-

ical quantum transition under β+-decay 22Na, because the ki-

netic energy of neon atoms from gaseous phase “freeze” on

the +MPl lattice during the β+-o-Ps lifetime, and the final-

state neutrino also participates in “vertical” (l) oscillations

and gains the additional (topological) mass (meff
Ve

)

22Na(3+)→ 22∗Ne(2+) + e+β + νe + U±.

Then ∆mnpc2 exceeding Eγn
may be presented as follows

∆mnpc2–Eγn
=

3

2
k T n̄ + meff

νe
= 18.7547 keV,

where 3
2
kT n̄ = 0.038 × 5.2780 × 104

� 2 keV, meff
νe
� 16.75

keV.

The effective mass of the neutrino meff
νe

is equal to the

mass heavy 17-keV neutrino as a possible result of mixing

“horizontal” generation of neutrinos (a brief review of the 17-

keV neutrino problem is described in monograph [44]). The

dramatic history of experimental studies of 17-keV neutri-

nos is similar to the history of the β+-orthopositronium prob-

lem [44, 45].

All the anomalies in the “β+-decay 22Na — neon (∼ 9%
22Ne)” system — blurred shoulder and variability of the ob-

served β+-orthopositronium intensity (I2) (up to factor 2) [9,

14] — are explained by the assumption of existence of the

temperature-dependent resonance I2. The inert gas tempera-

ture (the laboratory temperature) was not monitored in life-

time spectra measurements [2–6, 14].
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The origins of fundamental knowledge, which were mentioned by the genius of

Pushkin, are closed in the history of science like in lens focus. This paper survey the 50-

years history of studying the orthopositronium anomaly, where the author spent decades

on the substantial experiments and further analysis among the experiments made by

other experimental groups in different countries throughout the world.

Oh, how much of wondrous discoveries

Enlightenment Spirit preparing for us

And Experience the son of difficult errors

And genius, the paradoxes’ friend,

And Case — the got of all inventions.

A. S. Pushkin, 1829

. . . Enlightenment spirit. . .

A single (as one might think) yet fundamental (!) phenome-

non — the annihilation of positrons emitted by a 22Na iso-

tope (and the like) in positron beta decay in inert gases

— combines all the types of physical interactions, such as:

strong/nuclear interaction (transformation of a proton into a

neutron in a neutron-deficient atomic nucleus with emission

of a positron and a neutrino); electromagnetic interaction

(electrically charged proton and positron with magnetic mo-

ments); weak interaction (emission of neutrino); and grav-

ity interaction, since experiments have only been made in

ground-based laboratories so far.

Therefore, if we come to think of it, we should not ex-

clude the special role of the half-century observations of ano-

malies in neon (1956–2003) in making a unified description

of physical interactions (unified field theory). Furthermore,

these observations are only possible with monoatomic gases,

which are the closest to the ideal gas status [1].

This idea is relevant against the backdrop of stagnation in

fundamental physics (since mid-1970s), as Standard Model

(SM) formulated in the same period has led to development

of idea started by Einstein (with no final success through) and

for the first time worded by Faraday (in respect of then known

gravity and electromagnetism) [2]. The idea was given an

official status in the XX century. It was the idea of all the

fundamental interactions (the Theory of Everything).

The constructive idea presented by the new (additional)

G~/ck-physics Project could not emerge a priori. The signs

of new physics in the experimental data on the beta-decay

positron annihilation in inert gases were recorded for the first

time by experimentalists involved in solving the issues of or-

thopositronium/parapositronium with a chemical-physical (or

physical-chemical) “pedigree”.

However, it would be impossible to implement the idea

without the results achieved by fundamentalist theoreticians

in their independent efforts on expanding SM [1]. It is clear

why the phenomenology of the G~/ck-physics Project final-

ized among experimenters a decade ago cannot get through to

implementation of the Decisive Experiment Project [4], de-

spite being based on the giant effect exceeding the SM esti-

mate by 6–7 orders of magnitude [3].

Nevertheless, there is another reason, which the promi-

nent ethologist Konrad Lorenz described as one of “the civil-

ised man’s eight deadly sins”. It is indoctrinability of the “Big

Science” (susceptibility to fashion and stereotypes).

“. . . never before have the manipulators had at their dis-

posal such clever advertising techniques or such impressive

mass media as today. [. . .]

However, the worst effect of fashion . . . can be observed

in the realm of science. It is mistake to suppose that all profes-

sional scientists are free from the cultural diseases that are the

subject of this treatise. [. . .] “Big Science” in no way implies

a science concerned with the most important things on our

planet, nor is it the science of the human psyche and intellect:

it is exclusively that science which promises money, energy,

or power. . . [. . .] The special danger of fashionably indoctri-

nation in the field of science lies in the fact that it leads too

many, though fortunately not all modern scientists, in a di-

rections exactly opposite to that of the real aim of all human

striving for truth — the aim for the better self-knowledge” [5].

In 1970s, K. Lorenz still retained hope for overcoming

the “mortal” contradictions. In another essay of this, we can

feel the spirit of the Rome Club (“sustainable development”)

founded in those years:

“I believe that we can see the true sings that self-consci-

ousness begins to awaken in the cultural humanity, based on

scientific knowledge. [. . .] Until now, there has never been

a rational self-study of human culture on our planet, just

like there was no objective, in our opinion, natural science

before Galileo’ s times. [. . .]

Of course, the position of mankind is now more danger-

ous than it has ever been in the past. However, thinking found

by our culture due to its natural science potentially gives it a
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change to escape death that befell all the high cultures in the

past. This is the first time in world history” [6].

The first (and only so far) constructive response by theo-

rists to the unique information on the positron (orthopositron-

ium) annihilation anomalies, received by “quiet physics”

(without accelerators of ultrahigh-energy particles) after they

created the mathematical theory of the existence of the third

form of matter [7], is that the experimental data was under-

stood by the authors as subject for application of their funda-

mental theory [8]. Through paradoxical expansion of the gen-

eral relativity, they “. . . studied the possibility of coexistence

of short-range and long-range actions”, using the method of

chronometric invariants (physical observable values,

A. L. Zelmanov, 1956). The theoretical (mathematical) pre-

diction of the existence of the third form of matter (zero-

particles) in the zero-space became an additional incentive

for building the phenomenology of new (additional) G~/ck-

physics on the way to justifying the anomalies in neon.

And experience the son of difficult errors. . .

The start (1964) of assumption of a new range of time spec-

trometry (up to 200 ns) at the Department of Matter Structure

of the Institute of Chemical Physics Academy of Sciences

USSR/DMS IChP in Moscow (led by Professor V. I. Goldan-

skii) to study the annihilation of beta-decay positrons in phys-

ical media with the large void volume (gases or porous solids)

coincided with the publication of a work by P. E. Osmon from

Columbia University, New York, presenting comparative data

on annihilation of quasi-free positrons (from the Na-22 iso-

tope) in all inert gases at pressures of several atmospheres

and room temperature [9].

Here is the abstract of this work:

“Positron lifetime spectra have been measured in helium,

neon, argon, krypton, and xenon at pressures of a few atmo-

spheres. The annihilation rates of the free positrons are found

to be time-dependent. Physical reasons, based on the strong

correlation between energy and age of a positron, are sug-

gested for this time dependence. Three parameters describing

the main features of the free-positron spectrum are separated

from the data, for each gas, and tabulated”.

Neither the abstract, nor the article itself contains any ref-

erence to the characteristic feature of neon lifetime diagrams.

Lifetime diagrams show a nonexponential feature of this area

of the lifetime spectra — the so-called shoulder. Its mani-

festation is generally enhancing from helium to xenon along

with the increasing atomic number of gas Z. However, neon

stands out — the shoulder in its diagrams is blurred or non-

existent at all.

It was decided to repeat the observation in the helium-

neon-argon area to verify the said distinctive feature of neon.

The blurring effect in the shoulder of neon was confirmed.

The result were published (1967) in the departmental News-

letter of the Institute of Instrument Engineering, which pro-

vided time range converter into digital vernier type code up

to 200 ns for lifetime spectrometer, and in Tables [10].

V.I.Goldanskii discussed the results at international meet-

ings. Later on, several laboratories took up measurements

with neon and confirmed the neon shoulder blur [11–14].

As we known, polyatomic impurities in inert gas influ-

ence the dynamics of positron moderation under the positro-

nium formation threshold due to inelastic energy losses on

the background of elastic moderation in inert (monoatomic)

gas. Therefore, the difference in shoulder parameters between

experimental data obtained in different laboratories could be

attributed to differences in residual polyatomic impurities in

neon samples used in the experiments [9–14], despite the fact

that neon had the ultra-high purity grade in all the experi-

ments.

However, an analysis of all the experimental data showed

that this cannot explain the observed differences in shoulder

parameters in neon. In our measurements, using the same

sample of neon in a wide pressure range (16 atm to 32 atm),

the product of the shoulder length ts and the gas pressure p

(the constant for ideal gas [1]) differ almost twofold (from

500 ns atm to 900 ns atm); in [10] these results are only

represented by upper limit of 900 ns atm). The true result

(500÷900) ns atm was reported by V. I. Goldanskii (see [11]∗,

[14]†). At the same time, according to our measurements, the

shoulder lengths in helium and argon remain constant (with

in the experimental errors) [10].

A decade after the shoulder blur in neon had been con-

firmed, a hypothesis was published that the marker gamma-

quantum of lifetime spectrometer is collectivized under spe-

cial conditions of the system described as “beta-decay of

a Na-22 isotope
positron+neutrino
−−−−−−−−−−−−−→ excited Ne-22 (the source

of the marker gamma-quantum of the lifetime spectrometer/

“start”) in gaseous neon with natural isotope composition

(∼9% of the Ne-22 isotope)” [15].

Two decades later, a comparative critical experiment was

made on separated neon isotopes [3]. The experiment con-

firmed the hypothesis and opened up the prospects for ex-

panding SM and building the phenomenology of G~/ck-

physics.

The project of new G~/ck-physics was surprisingly sup-

ported by the results of the Michigan group (University of

Michigan, Ann Arbor) for absolute measurement of the life-

time (the reciprocal of the self-annihilation rate) of an or-

thopositronium (1982–1990). Two methods (with buffer

gases and in vacuum) revealed that the self-annihilation rate

of an orthopositronium is exceeded by (0.19 ± 0.02 ÷ 0.14 ±

∗“Aside from the presence of the prompt component, it is very difficult to

discern any nonexponential region of the spectrum. Goldanskii claims to see

a shoulder in his room-temperature spectra, (ρ ts = 500–900 nsec amagat),

but he states that it is considerably weaker than that which occurs in helium

and is difficult to locate”.
†“The only other evidence for the shoulder comes from the work

Goldanskii and Levin reported by Hogg et al. [10] to have a width in the

range 500–900 ns amagats”.

Boris M. Levin. Half-Century History of the Project of New (Additional) G~/ck-Physics 19



Volume 13 (2017) PROGRESS IN PHYSICS Issue 1 (January)

0.023) percent compared with the calculated value (quantum

electrodynamics/QED), which has reached the accuracy of

1.6 × 10−4% by now. As we see, the deviation of the ex-

perimental data from the theory was recorded at the level of

10σ (standard deviation)!

These groups of H.M. Randal Laboratory at the Univer-

sity of Michigan led by Professor A. Rich (1937–1990) were

the world leaders in the orthopositronium lifetime absolute

precision measurements. The irony is that the article titled

“Resolution of the Orthopositronium-Lifetime Puzzle” [16],

published by the Michigan group in Phys. Rev. Lett., and

disavowed the results of the group’s previous measurements

(1982–1990), which were in conflict with the theory, and thus

“closed” the problem for the scientific community.

In the modified method, an auxiliary electric field was

introduced vertically in the measurement chamber [16]. A

sequential analysis, taking into account all the information

available, showed that previously found discrepancy between

the theory and the experiment would be preserved with a hor-

izontal direction of the auxiliary electric field [17].

In all fairness, Work-2003 had a constructive role too. Its

destructive conclusions made it possible to find and substanti-

ate the manifestation of the fundamental connection between

gravity and electricity, which was the cause of the wrong con-

clusion by the Michigan group, who did not have all the ex-

perimental data available by the time.

The shoulder shape is influenced by intensity of the or-

thopositronium component I2, since the orthopositronium

component follows the component of annihilation of

quasi-free positrons on the time axis in lifetime spectra.

This can cause the shoulder blurring and problems with ano-

malies of beta-decay positrons (from Na-22) annihilation in

neon [3,9–13], because the laboratory temperature was not

taken into account in all of this measurements.

It is also worth nothing that there is an abnormally high

share of positrons forming a positronium in gaseous neon —

(55±6)% — obtained on the energy spectrum of the annihila-

tion gamma-quanta with Cu-64 as the source of positrons [18]

in contrast to half the value — (28±3)% — obtained by a life-

time method with Na-22 as the source of positrons.

And genius, the paradoxes’ friend. . .

The blatant paradox in the perspective of justification on the

hypothesis of collectivization of Ne-22 nuclear excitation (�

1.28 MeV) by nuclei of Ne-22 atoms with natural isotopic

composition (∼ 9%) in the macroscopic volume of the mea-

suring chamber at the final stage of the beta-decay of Na-22

nucleus was confirmed by comparing the lifetime spectra of

neon samples — a natural one and a sample depleted by Ne-

22 isotope [15]. As said above, the effect of changing I2 was

6–7 orders of magnitude higher than the estimate of SM.

Now we can exclude the general suggested version of the

determining role of the residual polyatomic gas impurities.

The paradox is that, in experimental conditions [3], the

Mössbauer effect (nuclear gamma-resonance) takes place for

a sufficiently hard gamma-quantum (� 1.28 MeV) of the ex-

cited daughter Ne-22 nucleus, located on the solid positron

source, and nuclei of Ne-22 atoms staying in gas at room tem-

perature. As we known, the Mössbauer Effect is possible in

condensed media (solids: crystalline, amorphous, or powder

one).

Most likely, this paradoxical formulation of the issue was

due to the fact that two group of experimenters were working

alongside at DMS IChP in Moscow (from beginning 1960s)

led by V.I. Goldanskii — “positron group” (the group of Che-

mistry of New Atoms) and “Mössbauer group” (the Möss-

bauer Effect laboratory). The groups met at general work-

shops, making presentations and passively sharing informa-

tion and ideas.

The concept of zero-space (zero-particles) as an extension

of the general relativity [7] has set a framework for overcom-

ing the paradox through introduction of the four-dimensional

space-time on the outside of the light cone into fundamental

physics.

But how shall we implement this program on a quantita-

tive level, when compared with the experimental data?

The collective genius of famous and prominent theorists,

who independently sought (each for their own reasons) to go

beyond SM, determined the development of a phenomenol-

ogy of new (additional) G~/ck-physics [1]. The search for

unique and rarely-cited works of theorists with high index of

citing continued for two with half decades (1987–2012) fol-

lowing publication of the critical experiment results [3].

An analysis of the paradoxical experimental situation has

led to the conclusion that the macroscopic volume of the

double-valued (±) four-dimensional space-time of the final

state of positron beta-decay of ∆Jπ = 1π type is filled with

bonded Hamiltonian chains/cycles of the nucleus of the atom

of long-range action (with a number of nodes n̄ � 5.2790 ×

104) and the atom of long-range action as a whole (N(3) =

1.302 × 1019) [1].

Summing up this phenomenology, we can say that two

fundamental (mathematical) abstractions — the material

point (inside the light cone) and absolutely rigid body (out-

side the light cone) — will determine the relevant expansion

of SM (the unified quantum field theory).

A decisive experiment in the study of the supposed tem-

perature resonance I2 in the range −30◦C < T < +30◦C

(see [4], Appendix) will finally clarify the issue of anomalies

of positron (Na-22) annihilation in gaseous neon.

And case — the God of all inventions

One might think that the sacral line by Pushkin is a poetic

paraphrase of a revelation from the New Testament, the Apos-

tle Paul to the Romans 11:33, “Oh, the depth of the riches

and wisdom and knowledge of God! How unsearchable are
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His judgments and His ways!” The deep thought received a

lapidary form — “The ways of God are inscrutable”.

Fundamental physics is the search for Truth, for under-

standing of the basic of Existence — the space-time (quantita-

tive criteria of cause-and-effect relationship, experiment and

theory).

However, since the mid-1970s, physics suffers a profound

crisis. At no time in history there was such a long stagnation

of fundamental knowledge, when the issue was formulated

(e.g. How does the supersymmetry manifest itself? What is

the nature of dark matter/dark energy? What is the mainstay

of consciousness? And others???), but they had no solutions.

This breaks the formation of fundamentally new technolo-

gies. That cannot not have globally destructive social con-

sequences.

There is a high measure of confidence, that crisis could

be overcome for a long time. A decade before the physicists

understood the heuristic importance of supersymmetry, there

was made an experiment [9, 10], which laid the foundation

for the study of anomalies in the system described as “beta-

decay of a Na-22 isotope
positron+neutrino
−−−−−−−−−−−−−→ excited state of

Ne-22 isotope (the source of the marker gamma-quantum

of the lifetime spectrometer/“start”) in gaseous neon with

natural isotopic composition (∼9% of Ne-22 isotope) —

“resonance conditions” [15]”. Later on, this anomaly was

linked to the anomaly of the positronium share in neon (55 ±

6)% under nonresonance conditions (with Cu-64 as the source

of positrons) [16].

All of this have prepared the ground for the introduction

of space-like object physics (i.e., on the outside of the light

cone) in the fundamental context.

Physics is one, but the now prevailing stereotype — the

increased interest in ultra-high energies as a prospect for over-

coming stagnation — and neglect of the unique data received

by “quiet physics”, does not promise to overcome stagna-

tion. The existence of the quantum-field resonance as a con-

sequence of the existence of a nucleus of the atom of long-

range action is possible, if energy mp × n̄ � 50 TeV (where

mp is proton mass), which is half order of magnitude greater

than the energy of the colliding proton beams of the Large

Hadron Collider. It is very distant, if not illusory prospect. . .

The core of the Project of New (Additional) G~/ck-phys-

ics was the critical experiment [3]. It was the result of previ-

ous work in many laboratories [9–13], an independent break-

through by theorists to the double-valued (±) four-dimension-

al space-time [7], which virtually legalized the results of in-

dependent theoretical searches for the way to go beyond Stan-

dard Model by the methods of the general relativity [19] and

the quantum field theory ( [20] and [21]).

Setting a decisive experiment promises a breakthrough to

the unified field theory based on expansion of the Hamiltonian

method by including the Hamiltonian chain/cycle [1].

Submitted on October 5, 2016 / Accepted on October 19, 2016

References

1. Levin B.M. Progress in Physics, 2017, v.13, issue 1, 11–17.

2. Faraday M. The Bakerian Lecture. Philosophical Transactions, 1851,

1.

3. Levin B.M., Kochenda L.M., Markov A.A., and Shantarovich V.P. Sov.

J. Nucl. Phys., 1987, v.45(6), 1119.

4. Levin B.M. http://science.snauka.ru/2013/01/3279 (Appendix).

5. Lorenz K. Die acht todsünden der zivilisierten Menshheit. R. Piper &

Co., München, 1973.
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In this paper we study correlations present in experimental random series extracted
from a Quantum Optical Random Number generator conceived and implemented in our
lab. In particular we study the manifestations of inertia/memory effects. This study is
realized in the single photon regime.

1 Introduction

We learn from classical and quantum physics that the future
properties of a physical system are determined by its instan-
taneous, present state. This is reminiscent of the so-called
Markov property in statistics, according to which∗ “...the con-
ditional probability distribution of future states of the process,
given the present state and all past states, depends only upon
the present state and not on any past states...”

In previous papers (see [5] for a survey), one of us (T. D.)
studied the possibility that quantum correlations exhibit non-
Markovian features [4], in other words that quantum correla-
tions would be endowed with an intrinsic, non-standard mem-
ory effect. Actually, several experiments were realized in
the past, in different contexts, in order to test the possibility
of such memory effects [2–4, 7]. These experiments aimed
at testing hidden variable models (both local and non-local
models [5]) which predicted the appearance of non-standard
correlations between measurement outcomes collected at dif-
ferent times (different places in the case of non-local mod-
els [2]). We shall not enter in the detail of these experiments
and models here, but instead we shall focus on the results of
a statistical test that we developed in the past in order to char-
acterize quantum random number generators that were devel-
oped at the Université Libre de Bruxelles (U.L.B.) and Vrije
Universiteit Brussel (V.U.B.). We developed this test, from
now on denoted the Histogram Inertia Indicator (H.I.I.) test
in order to reveal whether histograms constituted from data
measured at different times were correlated to each other.

Besides the aforementioned hidden variable models, we
found inspiration in the idea of morphic resonance expressed
and developed by Rupert Sheldrake [17] according to which
the evolution of species and development of life in general
are characterized by memory effects having as a consequence
that new shapes/patterns tend to behave as attractors for other
shapes/patterns. In a previous paper we showed that mixing
Sheldrake’s ideas and hidden variable models led to the pre-
diction of observable non-standard memory effects (see [4]
section 3: Sheldrake and Smolin’s Models, and a Related Ex-
perimental Proposal).

∗Quoted from Wiktionary.

Fig. 1: SeQuR QRNG - Raw Data: A “near zone” effect is clearly
present in the SeQuR data (blue graph). Successive histograms, each
drawn from 1000 sequential random values, exhibit a manifest ten-
dency to resemble each other. The green graph represents the same
test on a Matlab pseudo-random series. The red lines represent the
boundaries that are assigned to “perfect” random series. The plotted
p-values confirm the results in graphical form. (quoted from [19])

Our main goal, when we developed the H.I.I. was to try
and reveal whether quantum histograms would exhibit mem-
ory effects. It can be seen as an attempt to extrapolate the
extent of validity of Sheldrake’s ideas to the quantum realm.

A last source of inspiration was provided by the evidence
for annual periodicity in decay data [9, 10] that has been re-
vealed a few years ago. It has been suspected that this peri-
odicity cannot be explained by environmental effects such as
temperature, humidity, pressure, etc [11], nor is there a corre-
lation with the Sun-Earth distance after re-analysation of the
data [13].

All these observations suggest that there could exist some
“regularity in randomness”, some “hidden” pattern, a non-
standard memory effect characterized by correlations betw-
een data collected at different times. This is a very upsetting
and at the same time challenging idea which deserves to be
considered seriously, from a foundational perspective [2–5,
7].

In particular we noticed the presence of an intriguing me-
mory effect already some years ago [19], at the level of a
random optical signal measured in the continuous counting
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regime (see section 2.3). The data were delivered to us by col-
leagues from the U.L.B. developing a prototype of ultra-fast
quantum optical random number generator [6]. Essentially,
this device amplified fluctuations of the intensity delivered
by a laser source. The results plotted at the level of Fig. 1 re-
veal for instance a clear deviation from the theoretical bound-
aries (in red) associated to a fully random process (without
memory effect). We also checked in the same work [19] that
Fourier filtering and/or Faraday filtering diminishes the effect,
but does not suppress it totally. Our interpretation of these ob-
servations is that these correlations could be partially due to
an external mechanism, and partially due to the internal mem-
ory of the device (here the light detector which is acting in the
continuous (many photons) regime).

It was not clear however, uniquely on the basis of the ob-
servations, to decide whether the external source of the corre-
lations had to be attributed solely to electromagnetic pollution
(GSM devices, FM radio channels and so on) or whether it
was necessary to resort to a universal memory effect in order
to explain our observations.

Therefore we decided to test experimentally similar mem-
ory effects in the low intensity (single photon) regime, which
was made possible by the development of quantum random
number generators (QRNG) active in the low intensity (dis-
crete counting) regime in situ in our labs and based on the ran-
dom character of time delays between clicks collected with a
single photon avalanche detector at the output of an attenu-
ated laser source. The corresponding generator, the so-called
Parity Quantum Optical Random Number (PQORN) gener-
ator has been described in a separate publication [6] and is
briefly described in section 3.1 (see also Fig. 2).

As we shall describe in the present paper, we applied the
H.I.I. test to the raw data generated with our PQORN gen-
erator. This program is triply challenging in our eyes be-

Fig. 2: Detailed setup for the near-zone experiment. It is composed
of a laser source, two neutral density filters and a single photon de-
tector. The same setup, supplemented with a nanosecond resolution
clock constitutes the Parity QORNG.

cause, as far as we know, nobody tested in the past the ex-
istence of memory effects by the same method, and a for-
tiori no such test has been achieved so far in the low intensity
regime. Last but not least, if the memory effect revealed by
the H.I.I. indicator is universal, its detection provides a cri-
terion for discriminating physical randomness from pseudo-
randomness which is a very challenging idea.

The paper is structured as follows. We describe in sec-
tion 2 a new statistical test, the H.I.I. test, introduced in [19]
aimed at measuring and/or revealing memory effects (section
2.1), as well as the corresponding p-value (section 2.2). Our
methods are also relevant in the framework of random number
generation because the H.I.I. test and the associated p-value
are thus useful tools in order to characterize randomness.

Before scrutinizing (making use of the tests described in
section 2) the existence of memory effects at the level of the
PQORN generator (section 4), we investigated more in depth
the correlations which appear in the high intensity regime at
the level of our single photon detectors (section 3.2). These
correlations are a priori not of quantum nature but they are
induced by the dead time of the detector. As we show in
section 4, in the high intensity regime, and only in this regime,
the H.I. memory effect is present.

We also studied whether similar memory effects still exist
beyond the near zone regime studied in section 4.1, and in
particular whether non-local in space (section 4.2) and time
(section 4.3) memory effects (previously denoted Spatial and
Temporal Long Range Memory effects) can be measured at
the level of our device. The last section is devoted to the
conclusions and to the interpretation of the collected results.

2 The near-zone H.I.I. test

2.1 Qualitative test

In order to derive a statistical test aimed at revealing mem-
ory effects, we approached the problem as follows [19]: Each
histogram of a given data sample – given it is not too large

Fig. 3: Fluctuations of a sample histogram - constructed from 1 000
gaussian distributed random data values - around the line of the aver-
age histogram computed from a data sample of 10 000 000 gaussian
distributed random values.
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Fig. 4: The difference H̃ of a sample histogram H with the average
histogram.

– fluctuates around the average histogram, which is obtained
from a very large data sample, cfr. Fig. 3. For each histogram
H we compute its difference with the mean histogram. This
leaves us with a new normalized histogram H̃ in which each
value can either have a positive of a negative value, depend-
ing whether that value is observed more or less often than in
average, as shown in Fig. 4. Thereafter, we introduce a quan-
titative “resemblance” value r as follows. Consider H̃i and H̃ j

two neighboring histograms.

ri =
∑
α

H̃iα H̃ jα (with j = i + 1) (1)

with α the corresponding value of the histogram at this entry.
Remark that we are working with histograms where values
can be both positive and negative. Consequently, the inprod-
uct r can be either positive or negative. The following inter-
pretation can now be given to r:

- r is large and negative: Both histograms seem to be
inverse of each other for most of the entries. The his-
tograms have no near zone effect. Instead this suggests
an anti- or complementary- “near-zone” effect.

- r is close to zero: Both histograms have approximately
as much resemblance as difference. Again no “near
zone” effect is observed.

- r is large and positive: Both histograms have the same
shape for most of their entries. A “near zone” effect is
then observed.

Considering that the random sequence of length n is divided
in M data samples of length N, this analysis leaves us with
b N

1000 c − 1 values of r for each of the M samples, since we
choose each histogram to be created from 1000 random val-
ues. Fig. 5 depicts graphical results after calculating all r-
values.

This is only the first part of the investigation since, as one
can deduce from Fig. 5, often, not much can visually be said
about a possible “near-zone” effect. Therefore, it is appropri-
ate to perform a statistical treatment of the data.

Fig. 5: Example graph of 9 999 inproducts between 10 000 succes-
sive histograms obtained from a data sample of N = 107 values.

Let us start by taking the average of all r inproducts:

r̄ =

∑ N
1000−1
i=1 ri
N

1000 − 1
. (2)

Since the analysis is performed on M data samples of length
N, each of the M samples now leaves us with one value of
r̄. These M average values r̄ provide us with a qualitative
indication of a “near zone” effect that we choose to express
through the ratio of positive averages of r̄, i.e.

#r̄pos

M
(3)

with #r̄pos the amount of r̄ ≥ 0. Note that the sign of r̄ can
be regarded as a Bernoulli process, or as a bit sequence with
for example a bit value of 1 corresponding to a positive value
and a bit value of 0 to a negative one. In a perfectly random
process the ratio between them should be close to 1/2 with a
deviation depending on M, the amount of data samples. In or-
der to determine the magnitude of this deviation we consider
the law of large numbers to derive the boundaries:

#r̄pos

M
∼

1
2
±
σbit
√

M
=

1
2

(
1 ±

1
√

M

)
(4)

with M the amount of data samples or the amount of values
r̄. For a data set of length n, M = b n

N c so that the boundaries
also depend on N.

It is expected for perfect random processes that the mag-
nitude of the ratio of positive averages r̄ will remain confined
within the boundaries plotted in Fig. 6. One expects that spo-
radically r̄ will be found outside the boundaries but in the
case that it will remain persistently outside the boundaries we
must suspect that the random sequence is biased. Considered
so, we now have at our disposal a qualitative test aimed at
testing the presence of the near zone effect. In the next sec-
tion, we shall also derive a quantitative criterion, in the form
of a p-value.
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Fig. 6: Boundaries for the fluctuations of the ratio of positive aver-
ages r̄ depending on M, the amount of data samples tested. Since
a very large data sample is divided in M subsamples of length N,
M decreases as N increases and consequently, the fluctuations also
depend on the size N of the subsamples.

2.2 Derivation of a p-value for the near-zone H.I.I. test

The standard randomness tests (e.g. the NIST or Die Hard
tests [12,16]) deliver their results through a so-called p-value.
Typically, p ∈ [0, 1] is the probability of obtaining a test re-
sult at least as extreme as the one that was actually observed,
assuming that the null hypothesis is true, i.e. the tested se-
quence is considered random. A p-value ≥ 0.01 indicates
that the tested series of bits is random with a confidence in-
terval of 99%. While the near-zone H.I.I. test described in
the previous section is of qualitative nature and delivers its
results in a graphical way, we shall now show how to connect
a p-value to the different values in the graph of this near-zone
H.I.I. test.

Recall that the value of r̄ from (2) can be regarded as a
Bernoulli process or conversely as a random walk if one con-
siders a positive value of r̄ as the value +1 and a negative
value of r̄ as −1. Consider the sequence X = X1, X2, . . . of
values ±1 in accordance to positive or negative values of r̄.
We define S M as the sum

S M = X1 + X2 + . . . + XM (5)

with M the amount of values of r̄ (see discussion at (2) and
(3)). Compute the test statistics

Z =
|S M |
√

2M
. (6)

Making use of the law of large numbers, the p-value can be
shown [19] to be equal to

p−value = erfc
(

Z
√

2

)
. (7)

2.3 Near zone memory effect in the continuous counting
regime

Some years ago [19], we investigated the existence of a mem-
ory effect at the level of an optical random number generator
the SeQuR QRNG, acting in the continuous regime. Essen-
tially, the device amplifies the fluctuations of the intensity de-
livered by a laser source [6]. We considered the decimal ran-
dom data delivered by the detector. The tested results show
clear similarities in the successive histograms from the data
samples. This can be observed in Fig. 1, quoted from [19].
This analysis clearly indicates the presence of an inertia or
memory effect in the signal. Let us now consider discrete
data collected with single photon detectors.

3 Randomness in the low photon number regime

3.1 Parity QORNG

The Parity QORNG exploits the random nature of the distri-
bution of clicks in a single photon detector. It is based on
the parity of the time (in nanoseconds) for which the events
(clicks) occur. If this time is even, the bit will be zero; if
this time is odd, the bit will be one. The set-up to carry out
this method consists of an attenuated laser source coupled to
a single-photon detector (Fig. 2). The detector is coupled to
a buffer via an acquisition card synchronized with a clock of
high resolution (1 nanosecond).

As has been shown in [6], the principal advantages with
this method are 1) that it requires to use only one photon-
detector to generate a random number and 2) that even in the
high intensity regime it delivers random series of very high
quality∗.

Before we characterize the H.I. effect, let us study the
physical correlations exhibited by the single photon detectors
of the parity QORNG.

3.2 Study of correlations due to dead-time of detectors

3.2.1 Successive clicks in one single-photon detector

In this section we will check the statistical properties of the
data acquired in single-photon detectors in various regimes.
These regimes are reached by modifying the attenuation of
our two tunable attenuators (Fig. 2), from almost no attenua-
tion at all to a high attenuation.

Before going further it is worth recalling that the single-
photon detector is characterized by a dead time (that is to say
the lapse of time during which the photon-detector will be off

after detecting a photon) in the range of 45 to 50 ns. The
resolution time of the acquisition card is 1 ns, therefore every
1 ns a datum will be acquired, while the maximum data that
the acquisition card can memorize is 750 000 ns, after which
the memory of the acquisition card is full.

∗For instance bit series obtained from the PQORNG successfully pass
[6] the NIST battery of standard randomness tests (frequency test, parity test,
spectral test, entropy test and so on).
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Fig. 7: Statistics of time arrival between photons in the high intensity
regime. Average time between photons estimated to be more or less
36 ns.

Taking into account the specifications above, we perform-
ed a study of the time arrival between two photons in different
regimes changing the attenuation. For instance, in the high in-
tensity regime (low attenuation regime) we observe a distri-
bution of delay times between clicks plotted in Fig. 7 which is
contaminated by the correlations induced by the dead-time of
the detector (as revealed by the presence of peaks separated
by 45 ns). From the tail of the semi-logarithmic plot, we can
infer the average time between two photons, which would be
exactly the slope of the straight line if the distribution was
Poissonian, which corresponds to a dead time equal to zero.

If in turn we work in a low intensity regime, for which
the average time between two clicks is quite larger than the
dead time of the detectors, we observe a nearly Poissonian
distribution, as can be seen from Fig. 8. The single noticeable
difference with a Poisson distribution is the null probability
to measure successive clicks in a time smaller than the dead
time (here 45 ns).

3.2.2 Simultaneous clicks in two single-photon detectors

In order to check the departure from the Poisson distribution,
we estimated another parameter which is the number of si-
multaneous counts in two detectors placed at the output of

Fig. 8: Statistics of time arrival between photons in the low intensity
regime. Average time between photons estimated to be more or less
294 ns.

a beamsplitter. When two photons arrive at the exact same
time to the beamsplitter, there exist four possible scenarios
(Fig. 9):

1. Both photons are detected by the photon-detector A.
2. Both photons are detected by the photon-detector B.
3. Photon A is detected by the photon-detector A and pho-

ton B is detected by the photon-detector B.
4. Photon A is detected by the photon-detector B and pho-

ton B is detected by the photon-detector A.

The probability of obtaining a single photon during a unit-
period of time is (in case of a perfectly Poissonian distribu-

Fig. 9: Possibilities that two photons are detected by two photon-
detectors.
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tion):

P(single) =
1

average time between photons
(8)

The probability of obtaining two photons at the input of the
beamsplitter is then:

P(pair) =

(
1

average time between photons

)2 1
2!

(9)

Henceforth, the probability that two photons arrive during a
same temporal window unity in the two photon-detectors can
be calculated theoretically:

P(double count) =

(
1

(average time between photons)2 · 2!

)
1
2

The average number of double clicks obeys therefore

N(double counts) =

(
total number of photons

average time between photons · 2!

)
1
2

In the high intensity regime we found a significant depar-
ture from the Poisson distribution:

- Total number of photons ≈ 640 000.

- Average time between photons ≈ 21 ns.

- Simultaneous clicks in the 2 photon-detectors = 4 999.(
640 000
21 · 2!

)
1
2
≈ 7 619 (10)

In the low intensity regime we found a better agreement:

- Total number of photons ≈ 184 000.

- Average time between photons ≈ 141 ns.

- Simultaneous clicks in the two photon-detectors = 272.(
184 000
141 · 2!

)
1
2
≈ 326 (11)

This confirms that when the dead time is small compared
to the average time between two photons, the statistics of
counts is Poissonian in good approximation, which fits with
the standard quantum prediction for a coherently attenuated
laser source. From this point of view, the limit of low inten-
sities corresponds to the genuinely quantum regime, while in
the high intensity regime (for which the dead time is compa-
rable to the average time between two photons) quantumness
is spoiled by correlations induced by the dead time mecha-
nism of the detector.

Incidentally, our study also confirms that we nearly al-
ways operate in the single photon regime; the probability to
have two photons or more in the same interval of acquisition
(one nanosecond) being at most of the order of 10−2, even in
the “high” intensity regime.

Fig. 10: Autocorrelation for the low intensity regime.

4 Characterization of the PQORN generator using the
H.I.I. test

4.1 Near-zone temporal memory effect

The existence of a near-zone temporal memory effect would
be revealed through the fact that similar histograms are signif-
icantly more probable to appear in the nearby (neighbouring)
intervals of the time series of the results of measurements.

Using the setup in Fig. 2, we measured this effect in the
two different regimes, the low intensity regime and the high
intensity regime (they were defined in terms of the dead time
at the end of the previous section).

To determine whether the effect is present, we make use
of the H.I.I. test described in section 2, which delivers a p-
value and a graph for a fast visual appreciation. We applied
a level of significance of 0.01 for the p-value, hence if the
p-value delivered is lower than the level of significance, we
assumed that the presence of a significant memory effect gets
confirmed by experimental data. Similarly, if the curve pro-
vided by the test remains outside the boundary curves, we
assume that the existence of a memory effect is experimen-
tally confirmed. We also used a standard auto-correlation
test [6, 12, 16] to corroborate the results of the H.I.I. test.

4.1.1 Low intensity regime

We firstly measured the effect in the (highly attenuated) low
intensity regime. We observed no correlation in this regime,
as it is shown in Fig. 10. The H.I.I. test gives us the option to
choose arbitrarily the sample length, which optimally ought
to be of the order of the memory time of the H.I. effect. We
selected four different sample lengths of 100, 300, 500 and
1000; and for each choice of a sample length, we tested the
possible existence of a memory effect with the first, the sec-
ond, the fifth and the tenth neighbour. For instance selecting
100 as a sample length, the reference sample runs from 1 to
100, the first neighbour sample from 101 to 200, the second
neighbour one runs from 201 to 300, the fifth neighbour sam-
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Fig. 11: Memory effect for the low attenuation regime with sample
length of 100 for the first(a), the second (b), the fifth(c) and the tenth
neighbour (d).

ple runs from 501 to 600 and so on. As is clear from Fig. 11,
no memory effect is present in the low intensity regime. The
result is also confirmed by similar plots obtained for sample
lengths of 300, 500 and 1000 that we do not reproduce here in
order not to overload the presentation. The corresponding p-
values are gathered in Tab. 5. All the p-values are larger than

Fig. 12: Autocorrelation for the high intensity regime.

0.01, thus we can safely conclude that there is no memory
effect in the low intensity regime, confirming the information
provided by the graphics. These p-values are obtained by av-
eraging all p-values associated to one “graphical” test.

4.1.2 High intensity regime

We measured again the correlations in the high intensity (we-
akly attenuated) regime and Fig. 12 shows that in this regime
a strong auto-correlation prevails until the bit 600 approxi-
mately. We also measured the memory effect in the same
way as for the low intensity regime, i.e. for different sample
lengths (100, 300, 500 and 1000) and different neighbours
(1st, 2nd, 5th and 10th). From Figs. 13, 14, 15 and 16, it can be
seen that for a sample length of 100, the H.I. effect is present.
On the other hand, for a sample length of 1000, the experi-
mental curve stays inside the red boundaries most of the time.
Actually, when two samples separated by less than say 1000
bits are compared, the memory effect is present, otherwise
there is no H.I. effect. These results are corroborated by the
auto-correlation (Fig. 12) which is strong until the bit 600 ap-
proximately. They also fit with the average p-values shown
in Tab. 6.

4.2 Long range spatial H.I.-like correlations

In a previous paper [4], one of us (T. D.) predicted that simi-
lar histograms are highly probable to appear at different geo-
graphical points at the same time on the basis of a genuine
quantum hidden variable model incorporating the morphic
resonance concept of Sheldrake [17]. We conceived a new ex-
periment in order to study this prediction, based on the setup
of Fig. 17, which is composed of two sub-setups (sub-setup A
and sub-setup B). Each sub-setup consists of one source, one
neutral density filter and one photodetector and is equivalent
to the set-up described in the previous section that we used for
testing the near-zone effect. The two sources are launched at
the same time. In a first time we implemented the same H.I.I.
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Fig. 13: Memory effect for the high intensity regime with sample
length of 100 for the first (a), the second (b), the fifth (c) and the
tenth neighbour (d).

test as in section 4.1 separately for each detector in order to
check that each individual subset-up exhibits the near-zone
memory effect. This can be seen for instance at the level of
Tab. 1. The period of the near-zone memory effect is of the
order of 500 clicks, as is corroborated by the auto-correlation
tests in Figs. 18a and 18b.

Fig. 14: Memory effect for the high intensity regime with sample
length of 300 for the first (a), the second (b), the fifth (c) and the
tenth neighbour (d).

In a second time, we adapted the H.I.I. test in order to be
able to detect H.I.-like correlations between the two subset-
ups. We have thus to compare the random series of time de-
lays obtained in one photodetector (series A) with the random
series obtained in the other photodetector (series B). Compar-
ing both of them will determine whether the histograms are
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Fig. 15: Memory effect for the high intensity regime with sample
length of 500 for the first (a), the second (b), the fifth (c) and the
tenth neighbour (d).

similar or not. In order to do so, a fixed sample length is
selected (in our case, 100, 300, 500 and 1000) and we com-
pare the histogram built from samples of this length extracted
from series A with the corresponding histograms from series
B, i.e. sample 1-100 of series A with the sample 1-100 of se-
ries B. We also compared neighbour histograms, like we did

Fig. 16: Memory effect for the high intensity regime with sample
length of 1000 for the first (a), the second (b), the fifth (c) and the
tenth neighbour (d).

in section 4. This time we compare one histogram of series
A with the neighbours of series B, i.e. for the first neighbour,
sample 1-100 of series A with sample 101-200 of series B.
We extended this procedure for the second, third, fifth, tenth
and twentieth neighbour too. The results are encapsulated
in Tab. 7. The average p-values are always quite larger than
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Fig. 17: Double set-up for detecting long range spatial H.I.-like cor-
relations.

0.01, for all the cases, which shows that no observable spa-
tial H.I.-like effect is present at the level of our experimental
setup, even in the high intensity regime where individual se-
tups exhibit a near zone memory effect. We checked by sim-
ilar methods that in the low intensity regime no spatial H.I.-
like effect is present. In both regimes we also scrutinized the
graphical presentations of the test results (that we do not re-
produce here in order not to overload the presentation), which
confirmed the conclusions already drawn from the estimate of
the p-values.
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Fig. 18: Correlation for the data obtained in the two different pho-
tondetectors. Fig. (a) and Fig. (b) present a strong correlation.

Sample Length: 100 A B
1 neighbor 0.0036 0.0033
2 neighbor 0.0071 0.0036
3 neighbor 0.0367 0.0094
5 neighbor 0.4984 0.3224
10 neighbor 0.4746 0.3269
20 neighbor 0.3191 0.3168

Tab. 1: p-values for the two sub-setups with a sample length of
100 bits for different neighbours (first, second, third, fifth, tenth and
twentieth.

4.3 Long range temporal memory effects

The aforementioned periodic modulation of radio-active em-
ission with a period of about 365 days [9, 10], suggests that
the phenomenon has a cosmophysical origin. We therefore
investigated the possibility to generalize these observations
in the case of a quantum signal. We focused on the 24-hour
period experiment due to the large amount of time that we
would have spent in tracking yearly memory effects. The 24-
hour period would be an indication of the existence of an ex-
ternal agent that influences the object of study, most probably
the rotation of the Earth. Our aim was to probe the existence
of this effect at the level of the quantum signal obtained from
our QRNG. For our experiment we used the same setup as in
the near-zone experiment in section 4. It consists again of a
laser source, a collimating lens, two neutral density filters and
one avalanche photo-diode.

In February 2015, we realized a series of experiments, af-
ter having synchronized our computer clock with an atomic
clock from the nist.gov website∗ in such a way that all the
measurements were automatized. Then, the runs were per-
formed at exactly the same time every day for three consec-
utive days and we performed 20 different experimental runs
with an interval of 20 second between each of them†.

We estimated, based on the slope of the semi-logarithmic
plot of the histogram of delay times, the average time delay
and we found that the drift was small, with average times
comprised in the interval 45-52 ns. Thereafter we estimated
the individual H.I.I. p-values which measure the cross-corre-
lations between the samples of days 1 and 2, of days 2 and 3,
and of days 1 and 3. The results are encapsulated in Tab. 2.

∗The procedure for doing so is available on the website
http://www.nist.gov/pml/div688/grp40/its.cfm

† We learn from wikipedia that... “A synodic day is the period it takes
for a planet to rotate once in relation to the body it is orbiting. For Earth, the
synodic day is known as a solar day, and is about 24 hours long. The synodic
day is distinguished from the sidereal day, which is one complete rotation in
relation to distant stars. A synodic day may be ”sunrise to sunrise” whereas
a sidereal day can be from the rise of any star to the rise of the same star
on the next day. These two quantities are not equal because of the body’s
movement around its parent”... Henceforth we expect a difference between
the sidereal and synodic (solar) day to be of the order of 24x3600/365 second,
more or less 240 second. Our measurements cover 400 second, which allows
us to address at the same time the synodic and sidereal periods
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Total number of p-values: 3380
Day 1 Day 2

Number p-values < 0.01 = 272
Number p-values < 0.1 = 978

Day 2 Day 3
Number p-values < 0.01 = 284
Number p-values < 0.1 = 980

Day 1 Day 3
Number p-values < 0.01 = 221
Number p-values < 0.1 = 988

Tab. 2: Statistics of “pathological” p-values, from consecutive ran-
dom series separated by 24 or 48 hours.

Total number of p-values: 8000
Day 1 Day 2

Number p-values < 0.01 = 123
Number p-values < 0.1 = 1195

Day 2 – Day 3
Number p-values < 0.01 = 152
Number p-values < 0.1 = 1201

Day 1 – Day 3
Number p-values < 0.01 = 104
Number p-values < 0.1 = 1185

Tab. 3: Statistics of “pathological” p-values, from pseudo-random
series.

There were 13 runs each day and from each pair of runs we
extracted twenty p-values (each of these values is associated
to a point on a graph similar to, for instance, the plots in
Fig. 11). By doing so, for each pair of days, we were able to
estimate 13 times 13 times 20 = 3380 p-values from the cross-
correlations between samples extracted at different days.

In order to properly calibrate the statistical distribution of
p-values we did two things:

A) we generated sixty runs of Poisson distributed time
series characterized by an average time of the order of 50 ns.
The duration of each series was the same as the duration of
each experimental run. We arbitrarily assigned a day to each
of them, according to the rule 1-20 → day 1, 21-40 → day
2, 41-60 → day 3. Then we considered the 400 (20 times
20) cross-correlations between the data “extracted at different
days” and estimated the corresponding p-values, following
the same algorithm already used for establishing Tab. 2. The
results are encapsulated in Tab. 3.

B) We also estimated through the same method the H.I.
cross-correlation between samples that were measured in Ju-
ne 2014 and those measured in February 2015. Here again
there were three runs of 13 samples, measured at different
days, after a period of the order of 24 hours each time, and
also in the high intensity regime, but the timing of the data
collected in June 2014 was not automated. We estimated cor-

Total number of p-values: 3380
Day 1 in June 2014 Day 1 in February 2015

Number p-values < 0.01 = 112
Number p-values < 0.1 = 578

Day 2 in June 2014 Day 1 in February 2015
Number p-values < 0.01 = 82
Number p-values < 0.1 = 526

Day 1 in June 2014 Day 3 in February 2015
Number p-values < 0.01 = 91
Number p-values < 0.1 = 521

Tab. 4: Statistics of “pathological” p-values, from consecutive ran-
dom series measured in June 2014 and February 2015.

relations between data measured in days 1, 2 and 3 in June
2014 and those measured in days 1, 2 and 3 in 2015. The
results are summarized in Tab. 4.

For obvious reasons, we consider that the statistical dis-
tribution of “pathological” p-values which appears in Tabs. 3
and 4 is representative of uncorrelated data. Indeed, pseudo-
random series do not exhibit any memory effect, and we do
not expect that data measured in June 2014 and February
2015 are correlated. This is confirmed by a comparison of
those tables: if we consider the occurrence of p-values smal-
ler than 0.1, we find a probability of the order of 0.15 in each
case∗.

On the contrary, in Tab. 2 the occurrence of p-values sma-
ller than 0.1 is of the order of 0.29, twice more, which reveals
the existence of a systematic memory effect, persisting after
24 hours. We consider therefore that our observations confirm
the existence of long range temporal H.I.-like correlations of
periodicity of the order of 24 hours, which appears, at least in
our eyes, to be a very surprising result.

5 Conclusions and discussions

In this paper we studied the H.I. effect, which, roughly, would
manifest itself through a tendency of random series to present
analogous departures from their mean statistical behaviour.
This tendency would possibly characterize data collected in
the same temporal interval (what we denoted the near zone
memory effect) but could present non-local features (non-
local in time and/or space), what we denoted the long range
temporal (resp. spatial) memory effect.

Our main goal was to study experimentally whether or
not a memory effect of the H.I. type was present in the single
photon regime. We developed a new, self-cooked algorithm,
described in section 2 in order to realize this objective.

∗At first sight we ought to expect 0.1 instead of 0.15, but we must have
in mind that the p-value derived by us corresponds to a situation where the
sign of the parameter r defined at the level of (1) was negative in exactly
fifty percent of the cases and positive in fifty percent of the cases, which is
of course an assumption that is not always strictly verified. From this point
of view, the p-value defined by (7) ought not to be considered as an exact
p-value but still plays the role of a valuable indicator.
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Sample Length 1st Neighbor 2nd Neighbor 5th Neighbor 10th Neighbor
100 0.4762 0.6031 0.6048 0.3997
300 0.4515 0.5647 0.4537 0.5269
500 0.5323 0.3049 0.4101 0.4614

1000 0.4105 0.4745 0.5121 0.2665

Tab. 5: p-values extracted from the H.I. test for the low intensity regime for different sample lengths and different neighbours.

Sample Length 1st Neighbor 2nd Neighbor 5th Neighbor 10th Neighbor
100 0.0037 0.0043 0.0219 0.1005
300 0.0033 0.1100 0.1489 0.4066
500 0.0042 0.1098 0.6511 0.4410

1000 0.0304 0.4866 0.4876 0.3305

Tab. 6: Parity Method: Results of the file generated with the Split Method applying the NIST test battery.

Sample 0th 1st 2nd 3rd 5th 10th

length neighbour neighbour neighbour neighbour neighbour neighbour
100 0.4330 0.5725 0.4067 0.4844 0.4530 0.5348
300 0.4608 0.5303 0.2870 0.2363 0.3765 0.3965
500 0.4508 0.4930 0.5378 0.4623 0.3572 0.0361

1000 0.5029 0.4965 0.4373 0.3953 0.2483 0.1399

Tab. 7: p-values when series A and B are compared for different sample length (100, 300, 500 and 1000 bits) for different
neighbours (first, second, third, fifth, tenth and twentieth.

Our conclusions are the following:
A) The near-zone H.I. memory effect is well present in the

single photon regime, but only in the high intensity regime
(for which the dead time is comparable to the average time
between two photons). As we discussed in section 3.2, the
limit of low intensities (when the dead time is quite larger
than the average time between two photons) corresponds to
the genuinely quantum regime, and in this regime no mem-
ory effect is present. This goes in the sense of the conclu-
sion [19] drawn from the study of the SeQuR QORNG, for
which the H.I. effect could be explained in terms of external
electromagnetic pollution, combined with an internal mem-
ory time (inertia) of the photodetector. The persistence of
H.I.-like correlations after 24 hours (that we address below)
is however more difficult to explain. Anyhow, we can safely
conclude from our experiments and our analysis that “pure”
quantum random series, collected in the low intensity single
photon regime do not exhibit any kind of observable H.I.-like
correlation.

B) We were unable to observe manifestations of a long
range spatial memory effect but detected a systematic ten-
dency indicating the possible presence of the long range tem-
poral memory effect, even after 24 hours. Our preliminary
result ought to be of course confirmed by supplementary stud-
ies. The door remains thus open for what concerns the “daily”
effect. It is worth noting that, even if this effect gets defini-
tively confirmed, its interpretation is not straightforward. It

is well-known for instance that some noises in nature (and in
particular at the surface of our planet) exhibit a 24 hours pe-
riod. It could be that the daily memory effect merely reveals
this feature.

In any case, we hope that, beside contributing to a better
understanding of fundamental aspects of quantum random-
ness∗, our study also brings new tools aimed at characterizing
randomness in general. We actually consider that the H.I.I.
test provides a new statistical test, complementary to the stan-
dard NIST tests, and in particular to the auto-correlation test.

As we have shown (e.g. in section 4.1.2), at the level of
physical random number generators, when auto-correlation
is present, the H.I. effect is most often present too, which is
already remarkable in itself and suggests the existence of a
universal memory effect.

Moreover, as shown in section 4.3, the long range tempo-
ral H.I. effect provide an example where the H.I.I. test reveals
a systematic tendency, even in absence of auto-correlation
(we checked for instance that the auto-correlation between
data collected at different days (1,2,3) was uniformly flat).

We are still far away from one of our initial motivations,
which was to be able to discriminate between physical ran-
domness and pseudo-randomness thanks to the H.I.I. test†,

∗In particular the main motivation of one of us (T. D.) was to investigate
possible memory effects at the level of the quantum statistics, and finds its
place in a series of works centered around this question [2–5, 7]

†In certain cases, pseudo-randomness can be revealed by measuring the
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and the low intensity case provides a counterexample to the
mere possibility of doing so in general, but at least, our mea-
surements confirmed that the H.I. effect is present in nature in
various regimes. In particular it is weakened but still present
after a delay of 24 hours, which is very amazing. There-
fore we are intimately convinced that it is important to pur-
sue these investigations. For instance it would be interest-
ing in the future to compare results obtained with our algo-
rithm and those obtained by Shnoll and coworkers, making
use of a quite different algorithm [8,14,18], and applying it to
noise [15], not to quantum signal as we did, which addressed
relatively short series of data (of the order of 30 clicks only),
contrary to ours, where we systematically made use of the law
of large numbers in order to estimate p-values.

Last but not least, it would be interesting to study the
appearance of the H.I.-effect at various temporal and spatial
scales, the present work constituting only a first probe in this
direction.
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Relativity and the Luminal Structure of Matter

Andrew Laidlaw
Calle Cuesta de los Cubos 17, Velez de Benaudalla, 18670, Spain

It is shown that Lorentz Invariance is a wave phenomenon. The relativistic mass, length
contraction and time dilation all follow from the assumption that energy-momentum
is constrained to propagate at the speed of light, c, in all contexts, matter as well as
radiation. Lorentz Transformations, and both of the usual postulates, then follow upon
adopting Einstein clock synchronisation. The wave interpretation proposed here is para-
dox free and it is compatible with quantum nonlocality.

1 Introduction
“But the division into matter and field is, after

the recognition of the equivalence of mass and energy,
something artificial and not clearly defined. Could we
not reject the concept of matter and build a pure field
physics? What impresses our senses as matter is really
a great concentration of energy into a comparatively
small space. We could regard matter as the regions in
space where the field is extremely strong. In this way a
new philosophical background could be created.” —
Einstein & Infeld [1].

Modern Physics relies heavily on relativistic wave equa-
tions, especially the d’Alembert, Helmholtz and Dirac [2]
equations, that feature either propagation at the characteristic
velocity, c, or a velocity operator of constant modulus equal
to c [3]. There are also many Lorentz covariant classical field
theories in the literature, including nonlinear theories with
subluminal soliton solutions that serve as candidate models
for the fermions. [4–10] are just a few to illustrate the diverse
range of approaches. This Article shows that the first, neces-
sary step towards achieving Einstein’s dream of a pure field
physics is to recognise that, whether it appears as radiation or
as matter, energy is a propagative phenomenon.

We shall consider the basic mechanics of luminal wave
systems, i.e. systems of waves that propagate at c. Adapt-
ing the Newtonian momentum equation, p = mv, for use
with constant speed luminal waves and then applying univer-
sally accepted basic principles of mechanics to luminal waves
leads to a general structural analysis of luminal wave systems
that is inherently relativistic without asserting any principle
of relativity. The usual relativistic mechanics of matter can
thus be interpreted as the basic mechanics of subluminally
moving systems constructed entirely from luminal waves.

The proposed luminal wave ontology provides new per-
spectives on many issues including the Dirac velocity oper-
ator, angular momentum quantisation, the structure of Elec-
tromagnetics [11], gravity [12], the existence of nonlocal re-
lations between observables, and interference phenomena in
matter beams. The plan of the Article is as follows:

Section 2 defines the basic principles of mechanics that
are regarded as universally accepted and identifies the simple
general relationship that governs the connection between in-

ertial frames for systems of luminal wave momenta. Section 3
shows that the usual relativistic momentum equation for par-
ticles applies to systems of luminal wave momenta. Section 4
derives the (forward) relativistic transformation of wave mo-
menta in a form that is useful for analysing wave systems
as a whole. Section 5 extends the results to any kind of lu-
minal wave system, provided a wave vector in the direction
of propagation can be defined, linear momentum is locally
conserved, and propagation is luminal. In particular, linear
superposition is not required so the method is applicable to
nonlinear wave systems with subluminal soliton solutions.

For luminal waves the speed of propagation is, by def-
inition, fixed and any luminal wave model of a subluminal
massive particle is immediately subject to the kinematic con-
straint that, when the speed of the particle changes, the speed
of its constituent wave components does not. Sections 6 and
7 show that length contraction and time dilation are the con-
sequences of this kinematic constraint, so luminal systems
display all the usual relativistic phenomena.

Section 8 addresses the question how the physical phe-
nomena of length contraction and time dilation constrain the
coordinate transformations. Selleri [13, 14] has shown that,
subject mainly to the use of Einstein clock synchronisation,
Lorentz Transformations follow directly from length contrac-
tion and time dilation, which are derived here from the basic
principles of mechanics without making any further assump-
tions. As discussed in Subsection 8.2, the proposed wave in-
terpretation is also equipped with a readily observable pre-
ferred frame, eliminating the paradoxes associated with the
usual, relativist interpretation.

It remains only to point out, in Section 9, that any form of
non-luminal structure for the massive particles is implausible,
hence the conclusion reached is that the relativistic phenom-
ena imply the luminal structure. Finally, Section 10 outlines
the reasons why Lorentz Invariance does not preclude nonlo-
cal relations between observables in this pure field context.

2 Basic physics of luminal waves

2.1 The basic principles of Mechanics

The usual classical field approach to mechanics in wave sys-
tems begins by choosing wave or field equations. Any analy-
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sis is immediately limited to the mechanics of one particular
kind of wave system. We would identify various solutions
to the chosen equations, which are in general expressed as
spatial distributions of some field variables. Field energy and
momentum densities must be induced from these field vari-
ables. After evaluating the spatial integrals of the energy and
momentum densities we would arrive at expressions for the
momenta and energies of the wave solutions and we could
begin the mechanics.

Unfortunately, in many circumstances we do not know
what equations to use, much less their solutions. Moreover,
the great variety of Lorentz covariant wave equations sug-
gests that relativistic mechanics is a general feature that many
wave systems have in common. What kind of wave sys-
tems? As mentioned in the introduction, the leading relativis-
tic wave equations feature the characteristic velocity, suggest-
ing that, when the field energy-momentum in a wave system
is constrained to propagate at c (i.e. luminally), then the sys-
tem displays the usual relativistic mechanics.

Therefore, instead of taking the usual fields approach to
mechanics let us take a mechanics approach to fields, ap-
plying the basic principles of mechanics directly to a field
energy-momentum density that propagates at c. The univer-
sally accepted principles to rely upon can be stated as follows:

1. The momentum of an object is defined as the product of
its inertia times its velocity. Similarly, field momentum
density is the product of inertia density and velocity.

2. Momentum is conserved. Field momentum is locally
conserved.

3. The principle of local action means that wave objects,
as defined below, may interact with each other only in
regions of space where they overlap.

4. The force acting on an object is equal to its rate of
change of momentum.

5. The resulting change in the energy of the object is given
by the work integral.

6. Energy is conserved. Field energy is locally conserved.

Here ‘wave object’ means: some set of functions on a
3-space∗, which together induce a field momentum density,
ρ⃗p (x, y, z, t), that propagates luminally according to a unique
unit wave vector, k̂ (x, y, z, t) and whose spatial integral,∫ ∫ ∫ +∞

−∞ ρ⃗p(x, y, z, t) dxdydz, is finite.†,‡,§

∗That is, spatial distributions of field variables.
†In addition to inducing the field momentum density, the space functions

that define wave objects in a nonlinear field theory may also act as sufficient
causes for any interactions that there may be.

‡Note that infinite plane waves are not wave objects.
§Neither the propagation of the space functions nor their relation to the

linear momentum density are specified here. This allows for wave objects
with intrinsic field angular momentum and, more generally, the definition
accommodates two kinds of internal evolution, via the internal movements
of an otherwise invariant set of functions and via their individual time evolu-
tions.

We are interested in the mechanics of systems that com-
prise multiple wave objects. This begins with non-interacting
systems, where the wave objects are not presently interacting
with each other. The next Subsection focusses on the case
where each object’s unit wave vector, k̂ (x, y, z, t), is a con-
stant vector, independent of x, y, z and t. The momentum den-
sity distribution of such wave objects moves through space in
a self similar form at c. We shall refer to this special kind of
wave object as a light flash.

2.2 Application to light

Consider a source that simultaneously emits a set of N light
flashes in various directions. The development here can be
applied to any kind of light flashes, including individual pho-
tons, short segments of laser beams, or collimated beams in
general, monochromatic or not. We require only that each
flash propagates at c, carrying a finite linear momentum in a
well-defined direction in space.

Let the ith light flash carry linear momentum pi. Accord-
ing to the first basic principle, momentum equals the product
of inertia and velocity and the wave inertia of the ith light flash
is therefore defined as mi = pi/c, where pi = |pi| is the mag-
nitude of the momentum of the ith light flash, also called the
‘scalar momentum’:

pi = mi c . (1)

This Article is essentially a consistent application of the
basic mechanics principles, using (1) in place of the familiar
p = mv, where the speed v is a variable. Note that, prima
facie, the inertia, mi, of a wave propagating in a well-defined
direction in space has nothing to do with the mass of a par-
ticle. However, we use the symbol mi because, unless they
ALL propagate in the same direction, the total inertia of a set
of N waves will be found to correspond to the usual, relativis-
tic particle mass. The time differential of (1) is:

dpi

dt
= c

dmi

dt
. (2)

Having fixed the propagation speed, c, changes of the scalar
momentum are thus associated with changes of the wave in-
ertia. It will become clear in Sect. 8 that the inertia changes
we will be discussing throughout this Article are in fact fre-
quency changes. Such changes may be due to a change of
observer or they may be physical changes due to any forces
that are acting on the wavefield.

In general, if a force acts on a light flash then, since (2)
is the force component parallel to the light flash’s motion, the
work integral is:

W =
∫ pf

ps

dp
dt
· ds =

∫ mf

ms

c
dm
dt

cdt = (mf − ms) c2 , (3)

where subscripts s and f refer to the words ‘start’ and ‘fin-
ish’. The radiation reaction force that acts on a light flash
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reflected by a moving mirror is an example that highlights the
role of the work integral in a basic mechanics calculation∗.
According to the fifth basic principle, the work done equals
the energy change, and we may assume that a light flash that
has zero momentum requires zero energy, so the energy of the
ith flash is:

Ei = mi c2 = cpi . (4)

According to the second basic principle, momentum is
conserved so the total momentum of a set of N wave objects
is given by the vector sum over their momenta:

P =
N∑

i=1

pi . (5)

Suppressing the summation range henceforth, we write the
total inertia as me =

∑
i mi. The total energy of the set is then:

E =
∑

i

cpi = mec2 . (6)

According to the (first and second) basic principles, the
velocity of the centre of inertia of a system of objects is the in-
ertia weighted average velocity, V =

∑
i mivi/

∑
i mi, so that:

V =
∑

i pi

me
⇒ P = meV . (7)

For a relativistic analysis, these basic Equations (1) - (7)
must be good for any observer, however, since we intend inter
alia to show it, no principle of relativity will be asserted a pri-
ori. Consider an incremental change that affects the system of
light flashes as a whole. For example, an incremental change
in the condition of motion of the observer would alter all his
observations of the pi. Similarly, a single observer consider-
ing light flashes emitted by otherwise identical sources that
are in different conditions of motion will find different values
for the pi. Since these two cases are not a priori assumed
equivalent, consider the latter one, and consider, specifically,
two otherwise identical sources moving at velocities v and
v + dv in the inertial frame of a single inertial observer.

This scenario closely corresponds to applying a Lorentz
boost to a system of wave momenta. We may write the mo-
menta of the light flashes as pi and pi + dpi respectively and
their totals as P and P + dP. We are interested in how the dpi

are related to dP. As shown in Appendix 2, this is determined
by the relevant known facts, the relativistic Doppler shift and
aberration phenomena, which together imply:

dpi =
pi

mec
dP . (8)

We are assuming neither Special Relativity nor the relativ-
ity principle by referring to these phenomena. Indeed, while

∗See Appendix 1, which shows that the ratio of reflected and incident
momenta is the square of the relativistic doppler shift.

Lorentz Transformations correctly imply each of them, there
exist other coordinate transformations [13] that also correctly
predict these observables [15]. Because (8) is a direct conse-
quence of the phenomena themselves, it necessarily applies
to any theory that correctly accounts for them†.

It is nonetheless relevant to consider what, if anything,
the facts here are introducing over and above the basic prin-
ciples stated above. If our coordinate transformations are to
be linear and homogeneous, as is usually assumed, then dpi

will be linear in pi. Similarly, when considering the case of
a single light flash, (the case N = 1), dpi should be linear
in, and parallel to, any incremental change of momentum of
the light source, dPLS , prior to emission. Since the same ap-
plies to each of the light flashes in our system it follows that
dpi ∝ dP and we can safely assume that: dpi = αi pi dP.

Eq. (8) means that all the weights, αi, are the same,
αi = α. Summing over i gives α = 1/mec (since

∑
i dpi = dP).

In particular, under an incremental momentum boost of the
whole system, the momentum shifts, dpi, applied to the vari-
ous wave momenta, pi, depend linearly on their energies but
not on their directions of propagation, k̂i.

The next two sections show how (8) governs the connec-
tion between inertial frames for systems of luminal wave mo-
menta. In order to avoid asserting the relativity principle, the
boost will not presently be associated with a change of ob-
server. It will turn out to work relativistically, but for the
present purposes the incremental momentum boost, (8), has
only the restricted meaning of an incremental change dv in
the velocity of a light source, the result of which is to add dP
to the total wave momentum by adding wave momentum dpi

to each of the N constituent light flashes‡.

3 The relativistic momentum

This section shows that systems of luminal wave momenta
that are connected by incremental momentum boosts obey the
usual relativistic momentum equation for particles.

In subsection 2.2, the incremental change in the scalar
momentum of the ith light flash, dpi, is given by the com-
ponent of dpi parallel to pi, which is:

dpi = dpi ·
pi

pi
.

Substituting (8) in this gives mec dpi = pi · dP. Noting that∑
dpi = c dme, summing over i gives c2medme = P · dP,

and integrating this we obtain the common expression for the
invariance of the 4-momentum:

m2
ec2 = P2 + m2

0c2 , (9)

†When Appendix 1 is generalised to the case of non-normal incidence,
the result is the product of the two relativistic Doppler shift and aberration
operations involved. The basic principles are thus arguably sufficient to de-
rive (8) by themselves, although the analysis is tedious.

‡Note that we do not need to assume that dV = dv
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Fig. 1: Binary light flash systems whose centers of inertia are (a) at
rest (b) moving at speed V = βc.

where m0 is the value of me for P = 0. Let β = V/c as usual
so β is a +ve real number in the interval [0, 1]. The basic
equations of relativistic mechanics, P = γm0V and me = γm0,
where γ = 1/

√
1 − β2, follow upon substituting (7) into (9).

4 Wave system transformations in momentum space

In this section we show how the momenta of individual wave
objects in a multi-object wave system transform under the ac-
tion of (8).

By analogy to the usual comoving frame for massive par-
ticles, let us define the rest frame of a multi-object wave sys-
tem as the (unique) inertial frame for which the right hand
side of (5) vanishes. This definition is convenient, but not es-
sential. Given the definition, let us now adopt the perspective
of a single inertial observer who compares systems of light
flashes emitted by two otherwise identical sources in differ-
ent conditions of motion such that he considers one system’s
centre of inertia to be at rest, i.e. P = 0 in (5) and V = 0 in
(7), and the other’s to be moving at speed V in the x-direction,
so that, from Section 3, P = γm0V .

Let us refer to these two systems of light flashes as the
‘rest system’ and the ‘moving system’ respectively. We shall
use a 0 subscript to refer to rest system momenta, so P0 =∑

i pi0 = 0. The analysis is expressed in momentum coordi-
nates and it does not involve anything about spatial relations
between the waves until Section 6.

The simplest case of a compound wave system where
P0 = 0 consists of 2 light flashes of equal scalar momen-
tum, p10 = p20 = p0, propagating in opposite directions, as
shown in Fig. 1a. The moving system is shown in Fig. 1b,
where the x-components of the wave momenta, p10 and p20,
have been modified in accordance with (8) so that the centre
of inertia moves at speed V in the x-direction.

In Fig. 1a, m0 = (p10 + p20)/c = 2p0/c. Recalling from
Section 3 that me = γm0, the sum of scalar momenta in the
moving system of Fig. 1b is:

p1 + p2 = mec = 2γp0 , (10)

whilst the total momentum, P = meV, is the vector sum of

momenta:

P = p1 + p2 =
2γp0

c
V = 2γβp0 î .

Consider the vector p′ in Fig. 1b, where p1 = P/2 + p′ and
p2 = P/2 − p′. Using the law of cosines, its magnitude, p′, is
such that:

p2
1 = p′2 + (γβp0)2 + 2γβp0 p′ cos θ (11)

p2
2 = p′2 + (γβp0)2 − 2γβp0 p′ cos θ , (12)

where θ is the angle p′ makes with the x-axis. Upon elimi-
nating p1 and p2 from (10)-(12) we find that p′ = p′(θ) is the
ellipsoid:

p′(θ) =
p0√

1 − β2 cos2 θ
. (13)

Writing the momenta in component form as {pi j}i=1,2 ; j=x,y,z,
(13) is then the ellipsoid:

(p′x/γ)2 + p2
iy0 + p2

iz0 = p2
i0 ,

where p′x = p1x −γβp10 = −(p2x −γβp20), so that the moving
system momenta satisfy the following equation:(

pix − γβpi0

γ

)2

+ p2
iy0 + p2

iz0 = p2
i0 . (14)

Eq. (14) is here derived only for the case N=2, how-
ever this equation also covers the general case, as we shall
now show. Consider as initial condition an arbitrary system
of light flashes, comprising a number N ⩾ 2 of wave mo-
menta of scalar momentum pi0, whose directions of propaga-
tion are distributed in space such that P0 =

∑
i pi0 = 0 and∑

i pi0 = m0 c. In the rest system components are such that:

p2
ix0 + p2

iy0 + p2
iz0 = p2

i0 . (15)

The example for N = 2 above suggests that after (8) acts
on the set, bringing the total momentum to P = γm0V î, then
(14) applies to the moving system momenta. Fig. 2 shows
the moving system momenta when all the rest system scalar
momenta are the same, i.e. pi0 = p0 for all i. Differentiating
(14) with respect to β gives:

dpix

dβ
= γ (pi0 + γβpix) . (16)

Expanding the first term in (14) and using γ2β2 = γ2 − 1 gives:

pi =
pi0 + γβpix

γ
. (17)

From Px = γm0V , we also have dPx = γ
3m0 dV, so that:

dpix =
dpix

dV
dV =

dpix

dβ
dPx

γ3m0 c
. (18)
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Fig. 2: Individual momenta in an isotropic wave system modified
such that V = βc.

Finally, substituting (16) and (17) in (18):

dpix =
pi

γm0 c
dPx ,

which is the x-component of (8). Due to the choice of coordi-
nates, the y and z components of momentum were unaffected,
so the ellipsoidally modified distribution (14) is generated by
the action of (8) on our arbitrary initial condition as expected.
Comparing (14) and (15), the components of the moving sys-
tem wave momenta are:

pix = γ(pix0 + βpi0) ; piy = piy0 ; piz = piz0 . (19)

Note that these physical transformations due to changes
in the condition of motion of a light source are identical to
Lorentz Transformations of wave momenta between different
reference frames in standard configuration. However, as we
are not asserting the Principle of Relativity there is no guar-
antee (so far) that our analysis works relativistically, and (19)
corresponds only to the forward transformations of wave mo-
menta in relativity theory.

We can now calculate the relative velocity of the ith light
flash, which is to say its velocity relative to the centre of iner-
tia of the system, which our observer considers to be moving
at V in the x-direction. The total velocity of the ith flash has
components {vi j = cpi j/pi}i=1..N ; j=x,y,z. Using γ2β2 = γ2 − 1
with (17) and (19), it is readily shown that the relative veloc-
ity, vri, has components∗:

vrix = vix − V =
cpix0

γpi
; vriy = viy =

cpiy0

pi
; vriz = viz =

c piz0

pi
.

If vri makes the angle ϑi with the x-axis, then:

tanϑi =

√
v2

riy + v
2
riz

vrix
= γ tanϑi0 , (20)

∗Since V, vi and vri are all referred to the same observer

where ϑi0 is the corresponding angle in the rest system. Sect.
6 shows how this basic kinematic relationship leads to length
contraction in ‘pure field’ models of the massive particles
where all the field energy propagates luminally. Such models
are discussed in the next section.

5 Luminal wave models of matter

Up to this point the analysis has dealt with systems of light
flashes emitted by identical sources in different conditions of
motion. No functional description of the light flashes was
required, neither as photons nor as solutions to any particular
wave equation. The fact that these systems obey the usual rel-
ativistic momentum equation for particles strongly suggests
that the massive particles should also be thought of as lumi-
nally propagating field systems. This Section shows how the
basic mechanics principles can be applied quite generally to
compound, interacting systems of wave objects that are com-
mensurate with modelling subluminally moving systems.

5.1 Compound wave systems

At any point in a system of disjoint light flashes (i.e. whose
momentum densities do not overlap), there is a single field
momentum density associated to a well defined unit wave
vector. In principle, this field momentum density could be
induced from a set of space functions in accordance with
the definition of a wave object, so the entire system can be
thought of as a single wave object, but there are also wave
systems that cannot be represented as single wave objects.

Consider instead a system of N light flashes that propa-
gate towards each other. When the field momentum densities
of the various light flashes meet and overlap, the physical sit-
uation is inevitably such that there are multiple waves coex-
isting at the same place, propagating in different directions†.
Since the set of space functions that comprises a wave object
only induces a single momentum density at each point, when
wave objects collide the luminal wave description necessarily
involves multiple wave objects coexisting at the same place
and time.

We shall now see that interactions between these distinct
entities are required in order to construct luminal wave mod-
els of subluminally moving matter.

5.2 Forces, field variables and superposition

The force operating on a wave object is, by definition, equal
to its rate of change of momentum, which is to say the space
integral of the rate of change of its momentum density‡. Mo-
mentum is locally conserved, so forces necessarily manifest

†Note that the vector addition of two non-collinear luminal wave vectors
is not a luminal wave vector because there is no wave actually propagating
at c in the direction of the resultant vector.

‡There is also generally a rate of change of a wave object’s momentum
density at every fixed point due to the movement of the object, but the space
integral of such changes obviously vanishes.
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as reciprocal local exchanges of momentum between the mo-
mentum densities of the participating wave objects. These
exchanges necessarily sum to zero locally as well as globally,
so ‘local action’ can only mean that the objects’ momentum
densities must overlap. Now, when the momentum density
distribution of a wave object changes then so must the field
variables that induce it, so the essential nature of forces in a
wave theory is to modify wave objects.

In a compound wave system formed by intersecting light
flashes, if there were no forces between wave objects, then the
momentum distributions pertaining to each object would not
change as they move through each other, the same space func-
tions could be retained for each wave object throughout the
encounter and it is reasonable to think of each object’s field
variables as being the same as if it were by itself. A linear
field theory is then appropriate. In Electromagnetics, for ex-
ample, the wavefields interact with charges but not with each
other. The chosen field variables, E and H, are force fields
defined by the force that the wavefield exerts on a standard
reference system, a 1 coulomb point charge. The global val-
ues of these field variables are given as linear superpositions
of the disjoint values pertaining to individual wavefields.

In linear field theory, wave components evolve indepen-
dently of each other, there are no interactions amongst the
waves and any superposition must dissipate unless all of the
wave vectors are parallel, in which case the motion of the
centre of inertia of the wave group is V = c. Electromag-
netic field models of subluminal massive particles are thus ex-
cluded. The idea that a finite subluminal image can be formed
as an interference pattern can also be excluded as it requires
infinite wave trains, which requires infinite energy. Therefore,
the construction of luminal wave models for the massive par-
ticles requires multiple distinct wavefields that share the same
space and interact with each other to form bounded systems,
which is to say they form wave solitons.

When the wavefields in a model do interact with each
other, the forces that are actually operating on a given wave
object still superpose (by definition). However, as mentioned
above, the definition of force also implies that wave objects
are distorted under interaction. If the wave object is defined
by force field variables, as in Electromagnetics, then its force
fields (which are propensities to exchange momentum as op-
posed to actual forces) are not the same under interaction as
would be the case if it had been disjoint. Furthermore, if a
wave object in an interacting system persists in a self-similar
form then that form depends in an essential way on the forces
that are operating on it. It is obviously counterfactual to con-
sider such an object as if it were disjoint from the others that
are actually present. If they were not present, it would be a
different object.

Overall, once we include interactions between wave ob-
jects, the global values of field variables cannot be expressed
as a linear superposition of disjoint values so a nonlinear the-
ory is required. If the chosen field variables are force fields,

then global values are by definition still given as a linear su-
perposition, but this is a linear superposition of conjoint val-
ues that correspond to actual transfers of wave momentum
from one object to another.

Of course one might choose other field variables besides
force fields. With water waves for example the vertical dis-
placement of the water surface is commonly used as a field
variable. Such alternatives also do not generally superpose
linearly. Whatever field variables we may choose and how-
ever they may induce it, the field momentum density is lo-
cally conserved. As we shall see in the next two sections,
the field momentum density is also the physical basis for any
mechanical quantities that we may observe including not just
momenta but also lengths and times.

5.3 Wave trajectories

Whereas a field variables description immediately confronts
us with some unknown nonlinearity, we can focus directly on
the inherently linear field momentum density by considering
a wave trajectories description. This kind of description is of-
ten useful in Electromagnetics, where it arises from the field
variables description as follows. Electromagnetic waves in a
vacuum obey the well known d’Alembert wave equation:{

∇2 − 1
c2

∂2

∂ t2

}
ψ = 0 , (21)

where ψ (x, y, z, t) may be any component of either the Elec-
tric field E or the Magnetic field H. Electromagnetic waves
involve both Electric and Magnetic fields and the linear mo-
mentum density is −→ρ p = S/c2, where the Poynting vector
S = E×H is aligned with the wave vector, k (which by defini-
tion points in the direction of propagation). The field lines of
the wave vector trace out well defined trajectories at the ray
velocity vray = c (in vacuo) [16,17], and the linear momentum
carried by the Electromagnetic wave propagates along these
trajectories at the characteristic velocity.

Any luminal wave theory, linear or nonlinear, has a wave
vector pointing in the direction of propagation, and once we
have a wave vector, the wave trajectories description works
as in Electromagnetics.

5.4 Closed wave systems

Whether we consider a subatomic particle or some macro-
scopic object, it is a basic premise that the energy that con-
stitutes a persistent subluminally moving system must remain
in the same general vicinity as the object. From the perspec-
tive of a luminal wave model where the energy is moving at
c, any trajectory of the wave vector will remain bound to the
system because any wave trajectory that leaves the system
bleeds energy from it. Therefore, when considering lumi-
nal wave models for matter, we shall restrict our attention to
closed trajectory systems, where the trajectories may or may
not form closed loops, but any given trajectory remains within
some finite distance of the centre of inertia of the system.
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5.5 Towards coordinate transformations

In order for wave trajectories to remain bound to a sublumi-
nally moving centre of inertia they must be curved. There-
fore, the unit wave vector for any given wave object in a
closed system must be position dependent and may in gen-
eral also be time dependent. Consequently, space functions
that describe light flashes, where the unit wave vector is con-
stant (see for example [18–20]), are unsuitable for describing
closed systems, so we cannot think that the massive particles
are constructed of light flashes. Therefore, we now require
the incremental momentum boosts to operate directly on the
momentum densities.

Eqs. (1) - (7) can be rewritten in terms of momentum den-
sities, however it is more convenient to preserve the notation
by converting momentum densities into momenta as follows.
Let the entire space be divided into small regions of dimen-
sion δx = δy = δz = δl, where δl is sufficiently small that
any of the momentum densities, −→ρ pi(x, y, z, t), can be consid-
ered constant within each region so that −→ρ pi(x, y, z, t) δl3 is a
linear momentum propagating at c in a definite direction in
space. Introducing a new subscript, k, to label the regions,
we write the linear momentum of the ith field in the kth re-
gion as pik(t) = −→ρ pi(rk, t) δl3, where rk is the position vector
to the centre of the kth region. Since the space integral of
the momentum boost must recover (8) for all possible light
flashes, the incremental momentum boost operating on the
pik can only be:

dpik =
pik

mec
dP , (22)

where P =
∑

k
∑

i pik, pik = |pik | and me =
1
c
∑

k
∑

i pik , and
the rest goes through as before.

The rest system in Sect. 4 could be a particle or any
macroscopic system that is comoving with the observer. The
moving system’s internal momenta, pik, are related to the pik0
by (19), with an additional k subscript inserted. The system’s
momentum is P = γm0V, where the velocity of the centre of
inertia of the wavegroup, V, is simply the observed velocity
of the system. The relative velocity we developed at the end
of the last section, vrik = vik −V, describes the internal move-
ments of the system as seen by an observer who considers it
to be moving at V.

Since internal movements obviously change in response
to changes in the observed velocity, neither the shape nor the
internal evolution of a subluminally moving wave system can
be assumed to be velocity independent so that, in order to
determine coordinate transformations, we must first calculate
the impacts this has on rulers and clocks constructed from
luminal wave energy.

Before moving onto the analysis of length contraction and
time dilation in luminal wave models let us contrast (22) with
the Newtonian concept of a force field acting on a point-like
massive particle. According to the fourth basic principle, the
force acting on an interacting field is, by definition, equal to

its rate of change of momentum∗. It might appear at first blush
that:

dpik

dt
=

pik

mec
dP
dt

(23)

and the left hand side of (23) should be interpreted as the force
acting on the ith wave object in the kth region when the total
externally applied force acting on the particle is F = dP/dt.
Such a dynamic interpretation requires making unreasonable
extraneous assumptions, including not least a uniform applied
field. This is unnecessary for our analysis, for which (22) ap-
plies to the relationship between systems in steady state con-
ditions, before and after (but not necessarily during) some
physical process that results in an incremental boost to the
system’s momentum. A one-to-one correspondence between
the momentum densities of rest and moving systems is as-
sumed, but without such an assumption no inherently rela-
tivistic structure would be possible because we could never
equate a boost with a change of observer.

6 The Lorentz-Fitzgerald contraction

This section shows that closed wave trajectory systems con-
tract in the direction of motion. This is easily understood by
considering the special case of a rest system where the wave
vector is transverse to the direction to the centre of inertia so
that the system evolves under rotations and any wave trajec-
tory exists on the surface of a sphere. Such systems are of
particular interest because the usual interpretation [21] of the
little group of transformations that preserves the linear mo-
mentum of a particle in Special Relativity is that rest particles
evolve under the action of elements of the rotations group.

Consider a system of concentric spherical surfaces con-
structed about the rest system’s centre of inertia, which we
shall assume is at the origin. Given the abovementioned con-
dition, all rest system wave trajectories through a given point,
rk0, lie instantaneously in the tangent plane at that point to
the sphere of radius rk0. Without loss of generality, let us
consider the trajectories passing through a point in the xy
plane where the tangent plane makes the angle θ0 with the
x-axis, as shown in the top left of Fig. 3. The wave mo-
mentum along a trajectory lying in this plane has components
in the form px0 = p0 cos θ0 cos ϕ0 , py0 = p0 sin θ0 cos ϕ0 ,
pz0 = p0 sin ϕ0, where ϕ0 is the angle the trajectory makes
with the xy plane. Note that this is just the component form of
any of the pik0. The i and k subscripts can be omitted without
ambiguity: px0 means pikx0 and so on. Using (19), the com-
ponents of the corresponding wave momentum in the moving
system are:

px = p0γ(cos θ0 cos ϕ0 + β) ; py = py0 ; pz = pz0 .

The moving system momenta for different values of ϕ0 are
not coplanar. As shown in the top right of Fig. 3, they lie on

∗Donev and Tashkova [20] have also developed this within a field vari-
ables approach to luminally propagating bivector fields.
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Fig. 3: Momenta and Positions in Rest and Moving Luminal Wave Particle Models.

a conical surface whose vertex is at the origin of momentum
coordinates, and whose base is the intersection of the plane
at angle θ, where tan θ = tan θ0/γ, with the moving system
momentum distribution. This elliptical intersection is shown
in the bottom right of Fig. 3.

The (total) velocity for each of these momenta has com-
ponents of the form {v j = cp j/p} j=x,y,z, where p is given by
(17):

p =
p0 + γβpx

γ
=

p0

γ

(
1 + γ2β(cos θ0 cos ϕ0 + β)

)
. (24)

The group velocity is V î, so using (24) the relative velocity
components are:

vrx =
cpx − pV

p
=

cp0 cos θ0 cos ϕ0

γp
,

vry =
cp0 sin θ0 cos ϕ0

p
and vrz =

cp0 sin ϕ0

p
.

The ratio vry/vrx = γ tan θ0 is independent of ϕ0 (and ϕ), so
the velocities that lay in a given tangent plane in the rest sys-
tem transform into relative velocities lying in a corresponding
moving plane, tangent to the moving trajectory system∗. Let

∗Recall that we showed in Section 4 that the relative velocity of any
trajectory is rotated by the kinematic relation tanϑ = γ tanϑ0, where ϑ was
the angle vr makes with the x-axis. We now see the consequence of the little
group: Locally flat surfaces formed by sets of trajectories at a given point
in the rest system transform into locally flat moving surfaces, rotated so that
the tangent of the angle the moving surface makes with the x-axis is γ tan θ0,
where θ0 is the angle the rest system surface makes with the x-axis.

α be the angle between the plane at θ and the tangent plane,
as shown in the bottom left of Fig. 3. The moving system
tangent plane makes the angle α + θ with the x-axis, where
tan(θ+α) = vry/vrx = γ tan θ0 = γ

2 tan θ. Using the angle sum
trigonometric relations we obtain:

tanα =
β2 sin θ cos θ
1 − β2 cos2 θ

. (25)

The set of all tangent planes defines the surface up to a
scale factor. Due to rotational symmetry we can anticipate
being able to write the equation describing this surface in the
form r = r(ψ), where ψ is the angle from the position vector
to the x-axis. For any function r(ψ) the angle between the
tangent plane and the plane transverse to the radius vector is:

tanα′ =
1
r

dr
dψ

. (26)

Consider as trial function the ellipsoid:

r(ψ) =
λ√

1 − β2 sin2 ψ

, (27)

for which

tanα′ =
β2 cosψ sinψ
1 − β2 sin2 ψ

, (28)

independent of the scale parameter λ. With ψ = π/2 − θ, this
is identical to (25), which therefore describes an ellipsoid of
revolution (27), such that the plane at θ is transverse to the
position vector, r, shown in the bottom left of Fig. 3.
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The scale factor, λ, is readily found by inspection. The
moving system equatorial plane is the plane x = Vt and ψ =

π/2. The tangent plane at any point in the equatorial plane
is parallel to the x-axis so the dpik at these points lie in the
tangent plane. Therefore the equatorial tangent planes are not
altered by the action of (22). Therefore the radius of a cir-
cumferential trajectory in the equatorial plane is invariant un-
der the dimensional transformation (27), and λ = r0/γ, where
r0 is the radius of the spherical surface in the rest system.

The result is that, for our rest observer, any wave trajec-
tory in the moving system lies on the surface of an ellipsoid
moving along the x-axis at speed V and of the form:

r(ψ) =
r0

γ

√
1 − β2 sin2 ψ

. (29)

The moving system wave trajectories are thus compressed by
the factor γ in the direction of motion. Let us now consider
general wave trajectories that are not confined to the surfaces
of spheres in the rest system. The analysis above shows that
any short segment of the general trajectory is rotated so that
the ratio of its dimensions parallel and transverse to V is sup-
pressed by γ. Since this applies to every segment it applies
to entire trajectories and since we have already identified spe-
cific trajectories whose transverse dimensions are invariant,
the same scale factor applies to the general case.

Closed luminal wave trajectory systems are thus physi-
cally compressed by the factor γ in the direction of motion so
that any macroscopic physical objects, including rulers, that
are constructed entirely from luminal wave energy undergo
the usual Lorentz-Fitzgerald length contraction.

7 Time dilation

It can be seen from (7) and Fig. 2 that any movement of
a closed luminal wave system through space is the result of
correlations amongst the directions of propagation of the in-
ternal momenta, k̂i(x, y, z, t). On the other hand, if all the
trajectories of a wave system were exactly parallel the spa-
tial configuration of the system would not change and there
would be no internal evolution. Just as correlations are nec-
essary for movement in space, decorrelations are necessary
for evolution in time. There is a direct tradeoff involved, so
some form of time dilation is an inevitable consequence of
constructing variable speed particles from fixed speed waves.

We shall now show that internal processes in wave sys-
tems slow down according to dt/dt0 = 1/γ. The analysis is
similar to the standard analysis of a light clock.

With respect to the rest system’s wave trajectory system,
consider any closed trajectory formed by n segments, where
the ith segment has length li0 and makes the angle θi0 with the
x-axis. The speed on all segments is v0 = c so the period
around the closed trajectory is T0 =

1
c
∑n

i=1 li0, where T0 is
the time elapsed on a clock in the rest frame to traverse the
trajectory in the rest system. Lengths in the rest system may

be written in component form such that:

l2i0 = l2ix0 + l2iy0 + l2iz0 .

Let the trajectory system now move in the x-direction at speed
V . Given the length contraction, x-components contract by
the factor γ and the corresponding relationship is:

l2i =
l2ix0

γ2 + l2iy0 + l2iz0 .

It is readily shown that:

l2i = l2i0(1 − β2 cos2 θi0) . (30)

The moving and rest system angles are related by tan θi =

γ tan θi0, from which it is easily shown that:

cos θi

cos θi0
=

√
1 − β2 sin2 θi . (31)

The relative velocity on the ith segment in the moving system,
vri, is constrained by:

(vri cos θi + V)2 + v2
ri sin2 θi = c2 , (32)

which leads to: vri + V cos θi = c
√

1 − β2 sin2 θi, from which,
using (31):

vri =
lix0 c (1 − β cos θi0)

γli cos θi0
.

The time taken to traverse the ith segment in the moving
system is li/vri = l2i /vrili, so, using (30), we may write the pe-
riod elapsed on clocks in the rest system for traversals around
the Lorentz contracted moving system trajectory as:

T V
0 =

n∑
i=1

l2i
vrili
=
γ

c

n∑
i=1

li0(1 + β cos θi0) .

Since
∑

i li0 cos θi0 = 0 it follows that T V
0 = γT0. It might be

argued that trajectories need not form closed loops, but a path
that crosses a given plane transverse to V must eventually ei-
ther recross the same plane or become confined to a smaller
region, in which it must either routinely recross a transverse
plane or become confined to an even smaller region and so
on. In steady state, the trajectories can only be transverse
or regularly recross a transverse plane. The analysis above
also covers open paths between points in the same transverse
plane, for which the condition

∑
i li0 cos θi0 = 0 is also full-

filled. The time between such crossing points dilates by γ.
We conclude that the internal processes of a luminal wave
system slow down by the factor γ. The argument from in-
ternal processes to real world clocks is well established [23],
and tested [24–26], so moving clocks will run slow according
to the usual relation dt/dt0 = 1/γ.
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A similar tradeoff occurs in the Dirac Equation. Consider
the equation for the time dependence of the velocity operator
in the Heisenberg representation of the Dirac theory [22]:

−→α (t) =
(
−→α (0) − p

H

)
exp (−2iHt) +

p
H
, (33)

where p and H are both constants, c = 1 and the group veloc-
ity is p/H = vg = const.. The first term on the right is rou-
tinely interpreted to represent the internal movements of the
electron, the ‘Zitterbewegung’. Since −→α has real eigenvalues,
its quantum mechanical expectation, < Ψ | (−→α (0) − vg) | Ψ >

/ < Ψ | Ψ >, varies with vg as
√

1 − v2
g. In other words, the

Zitterbewegung slows down by a Lorentz factor as the group
velocity increases.

Whilst we can now write down a constant overall rate
of spatiotemporal evolution for a single observer as c2dt2 =

c2dt2
0−dx2

0, Lorentz Transformations do involve an additional
ingredient, Einstein clock synchronisation, which will be the
focus of the next Section.

8 Coordinate transformations

We have shown length contraction and time dilation as phys-
ical effects in luminal wave models subject to the basic me-
chanics Eqs. (1) - (7) and the incremental momentum boost
generator (22). The analyses were constructed from the per-
spective of a single observer so the principle of relativity, co-
variance, coordinate independence, and coordinate transfor-
mations were all irrelevant.

Let us now focus on the question of how these physical
phenomena of length contraction and time dilation constrain
the coordinate transformations. Selleri has studied this ques-
tion in some detail [13, 14]. He considered three assump-
tions, namely: length contraction, time dilation and constancy
of the 2-way velocity of light. He showed that any two of
these assumptions both implies the third and constrains the
coordinate transformations between a preferred rest frame,
S 0 = (x0, y0, z0, t0) and a frame S = (x, y, z, t) in standard
configuration moving with speed v to the following form:

x =
(x0 − βct0)√

1 − β2
; y = y0 ; z = z0 ;

t =
√

1 − β2 t0 + e1(x0 − βct0) ,

where β = v/c and e1 is a synchronisation parameter.
Setting e1 = −β/(c

√
1 − β2) corresponds to the usual Ein-

stein clock synchronisation convention and reduces this to the
Lorentz Transformation. Our coordinate transformations are
therefore Lorentz Transformations and the relativity principle
and the constant speed of light for all observers are therefore
results, not postulates. It is also now finally clear that the
wave inertia changes we have analysed are frequency changes
corresponding to the relativistic Doppler shift, as opposed to,
say, amplitude changes.

8.1 Other synchronisation protocols

Selleri also discusses alternative clock synchronisation proto-
cols, especially the case e1 = 0 which corresponds to using
Einstein synchronisation in a preferred rest frame, and setting
clocks in the moving frame to coincide with nearby clocks
in the rest frame at t = 0. Both sets of observers agree that
clocks in the moving system run slow, and they also agree on
the simultaneity of spatially separated events. The transfor-
mations in this case, known as the inertial transformations,
were first found by Tangherlini [27]. The empirical conse-
quences of inertial transformations have been shown to com-
ply with experimental evidence in a wide variety of situations
[28]. As far as the present article is concerned, Appendix
2 derives (8) from the relativistic Doppler shift and aberra-
tion results, which apply equally well to inertial transforma-
tions [15], and therefore so do the structural consequences
developed above.

Selleri and others have advanced various arguments in
favour of absolute simultaneity [29–34] (notably a simplified
analysis on the rotating platform), but nothing that questions
the Lorentz form within the domain of inertial frames. Iner-
tial transformations do not preserve the line element, ds2 =

c2dt2 − dx2 − dy2 − dz2, the physical laws are frame dependent,
the inverse transformation is different, the relative velocity of
the origin of S as seen by S 0 does not equal the relative ve-
locity of S 0 as seen by S and the inertial transformations do
not form a group [14]. In short, they fail to deliver elegant
and simple analysis in most physical situations.

The conventional nature of the Einstein protocol has, of
course, always been stipulated in relativity theory but Sell-
eri has shown something important: Like the choice between
Cartesian and Spherical coordinates, the choice of a clock
synchronisation protocol really is only a matter of conve-
nience. Provided they use it consistently, physicists solv-
ing problems on a rotating platform and engineers developing
GPS satellite networks (which use an inertial clock synchro-
nisation protocol) can use whatever protocol is most effective.

The self-evident fact remains that the events that hap-
pen in the world cannot depend on the coordinate systems
we use to describe them. Coordinate independence is one
of the most powerful practical tools for the development of
new physics. Other coordinate transformations may be em-
pirically adequate, but special status is rightly afforded to
Lorentz Transformations on the basis of symmetry and utility,
not uniqueness, and what we have shown is that their ‘natural
habitat’ is field theory.

8.2 Objective simultaneity and the preferred frame

An immediate consequence of the Einstein synchronisation
protocol is that observers in relative motion find themselves
in disagreement over intrinsically objective facts such as the
rates of their respective clocks and the temporal ordering of
spacelike separated events.
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Philosophical relativism sought to leave these conflicts
unresolved on the basis, ultimately, that a preferred frame
cannot be observed. This approach induces numerous para-
doxes that have been criticised for over a century [35]. More
recently, Hardy [32] and Percival [33, 34] have each shown
that relativity of simultaneity when combined with quantum
nonlocality leads to more than just conflicts between different
observers. It leads to manifest contradictions for individual
observers.

Percival’s double Bell paradox, for example, considers
two EPR/Bell experiments in relative motion. According to
relativity of simultaneity, a temporal loop can be constructed
by using the measurement results in one arm of each experi-
ment to select the measurement axis in the corresponding arm
of the other experiment. Given the quantum predictions for
individual EPR/Bell experiments, he showed that an observ-
able measurement result is, on at least some occasions, in-
verted by the loop becoming equal to its own opposite which
is a manifest contradiction.

The long standing loopholes [36] in EPR experiments fi-
nally having been closed [37], it can no longer be argued that
the quantum predictions are somehow “wrong” when they
correctly predict the experimental outcomes. Instead, one
must simply admit what good sense always demanded: When
two observers disagree about an objective fact, they cannot
both be right. The temporal loop relativistically assumes that
each observer’s view of the temporal order of the relevant
events is indeed “true”, which is impossible because their
views are mutually exclusive.

Therefore, we must admit a distinction between the real
physical state of affairs and how things appear to a given ob-
server. Two different concepts of simultaneity, apparent and
objective, arise. Apparent simultaneity is what appears to ob-
servers using a given clock synchronisation protocol. Pro-
vided the protocol corresponds to a definite value for the syn-
chronisation parameter, e1, apparent simultaneity is sufficient
for making valid predictions — an essential consideration
since Physics expresses itself in terms of observable quanti-
ties∗. Relativistic simultaneity is just the apparent simultane-
ity for observers who use the Einstein protocol and there is
no need to assert the truth value of this clock synchronisation
protocol (which would imply that the forbidden double-Bell
temporal loop is real).

As far as objective simultaneity is concerned, the forego-
ing wave analyses have shown that motion induces objective
changes in clocks and rulers that are constructed entirely from
luminal waves. A unique preferred frame, in which these de-
vices are undistorted, can now be identified in two different
ways, because an observer’s velocity relative to either (a) the
medium in which waves propagate or (b) the universe as a
whole can be determined from Doppler effects in the wave

∗Note that the quantum predictions for EPR experiments are insenstitive
to the temporal order of the Bell measurements, so they cause no difficulty.

interpretation.
Of course, the nett observed Doppler shift for a given

source and detector depends only on their relative velocity
and the direction to the source, so that we cannot isolate the
detector’s velocity. However, with a large number of sources
lying in different, random directions whose individual masses
and conditions of motion are independent of the direction in
space, we can determine the detector velocity relative to the
centre of mass of the group as a whole. Similarly, measure-
ments on an a priori isotropic radiation bath are sufficient [38]
to determine the detector velocity relative to the rest frame of
the bath, as defined in Section 4.

As discussed in [12] and references therein, two important
cases have already been studied, namely the anisotropies of
(1) the Cosmic Microwave Background Radiation (CMBR)
[38, 39], which gives Earth’s velocity relative to the medium
and (2) the angular number density of observable astronom-
ical objects [40], which gives Earth’s velocity relative to the
rest of the universe. In both cases, an identical velocity dipole
of magnitude ∼ 350 km/sec is observed!

It is anticipated that future observations on other isotropic
radiation baths will show the same anisotropy and the same
velocity dipole. Variations in the average red shift of distant
galaxies as a function of the direction in space constitute a
further example that can be tested in the future to confirm
this prediction. Note that these results are at odds with the
relativist interpretation.

Within the wave interpretation of Lorentz Invariance, we
see from Section 2 that the momentum density distribution
of a system whose centre of inertia has zero velocity rela-
tive to the medium has no bias in any given direction, and,
with Sections 6 and 7, we can now safely state that clocks
in this condition of motion really do run faster, rulers really
are longer and so on. The existence of this preferred frame
is implied by the wave analysis and its observability provides
the essential empirical basis for asserting at last that objective
simultaneity coincides with the Einstein simultaneity of ob-
servers at rest in the CMBR frame. The wave interpretation
presented here has therefore eliminated all the paradoxes as-
sociated with Special Relativity without sacrificing any of the
practical benefits of Lorentz symmetry, whilst also covering
a wider range of observables.

However, this interpretation assumes a wave ontology,
with energy constrained to propagate at c. The idea of matter
as constructed from some form of energy that does not prop-
agate at c is considered, and rejected, in the next Section.

9 Non-luminal structures

It is of course possible that wave propagation slows down or
stops altogether under interaction, so that the wave energy
is transformed into some ill-defined notion of ‘substance’.
Nothing prevents applying the same basic mechanics princi-
ples to such non-luminal structures, however once we intro-
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duce entities that do not move at c, an immediate casualty is
the work integral connection between momentum and energy.
We would have no choice but to re-define inertia as being fun-
damentally velocity dependent.

Such a flexible approach to so pivotal a definition might
raise eyebrows if it were not for the fact that this particular
step is an integral part of Special Relativity. So, let us assume
that we could somehow make sense of the relativistic inertia
in its own right, as we have done in this Article but on some
other grounds that are also independent of Special Relativity.

As far as the structure of particles is concerned, without
the concept of internal movements it would not seem pos-
sible to provide any account of internal processes (such as
muon decay for example). Likewise, the fact that the massive
particles possess angular momentum implies the existence of
internal movements∗. Let us consider internal movements at
speeds other than c. To illustrate the difficulties this causes,
we shall also assume that we can somehow produce Lorentz
contracted moving system trajectories on other grounds that
are also independent of Special Relativity.

We must still use (32), with v2
i replacing c2 on the RHS,

to connect the total and relative velocities on the ith segment
(as both are referred to the same observer). If vi were the
same in the moving and rest systems, then clearly the periods
would not dilate by γ, and yet we know that for any physical
system, not just luminal systems, periods must dilate by γ
under Lorentz Transformations.

The resolution is most easily seen from Special Relativity.
If the total speed, vi0, on the ith segment as seen by a comov-
ing observer is such that vi0 , c, then for observers in other
frames, vi , vi0 and must in general be calculated according
to the relativistic composition of velocities:

vi =
V + vi0∥ +

√
1 − β2 vi0⊥

1 + V·vi0
c2

.

Now as we Lorentz boost a particle in the frame of a single
observer, there are two possibilities. If vi0 = c, then vi = c
for all i independent of the condition of motion of the par-
ticle, and structural models incorporating length contraction
and the relativistic momentum are readily available. Sect.
8 showed that these phenomena imply Lorentz Transforma-
tions, whose elegance and simplicity therefore has a coherent
explanation based on the very definition of momentum as in-
ertia times velocity, p = mc.

Alternatively, if vi0 , c the total velocities of internal
movements, vi, must depend on both the particle velocity and
the orientation of individual segments in the above compli-
cated manner. Why? The elegance and simplicity of Lorentz
Transformations then has at its very foundations an implau-
sibly inelegant, complex structure. We are left reasoning in
a circle from Lorentz Transformations to the composition of

∗The quantisation of angular momenta is also readily explicable as a
wave phenomenon [12, 20].

velocities to the proposition that such complex structures are
necessary as the basis for our simple coordinate transforma-
tions and we have no physical basis for either length contrac-
tion or the relativistic momentum. Ockham’s razor insists that
we reject nonluminal structures.

Therefore, we must conclude that, in the comoving frame,
Lorentz invariant structural models of the massive particles
should have internal movements at, and only at, c.

10 Does local action imply retarded interaction?

Local action is the single most basic, self-evident principle in
Physics — interaction requires colocation. Both Newton and
Einstein agreed. This section considers the logic of interac-
tion at a distance, subject to local action, but from a pure field
perspective where mass energy propagates luminally.

In Classical Physics it was taken for granted that matter
emits field, leading to the idea that the far fields of a particle
propagate away from it at c. It then follows that long-range in-
teractions between particles are retarded and the unavoidable
consequence is that there can be no causal relations between
space-like separated events. On the other hand, Quantum Me-
chanics predicts instant causal correlations at a distance and
experiments replicate these predictions [41–43]. However, if
matter and field are one and the same, as Einstein suggested,
then the idea that matter emits field is meaningless. We need
to consider whether or not the far fields propagate away from
the centre of inertia in a pure field particle model.

Section 6 considered a rest system that evolves under rota-
tions, corresponding to Special Relativity’s little group. Note
that the radius of the rest system sphere was not relevant —
the analysis applies to any radius, and there is no good reason,
neither in our analysis nor in Special Relativity, to distinguish
between the near and far fields of a particle. The distinction
in Electromagnetics between the ‘attached’ field [44] and the
‘body’ of the particle is arguably incompatible with Special
Relativity because it implicitly introduces (radial) field move-
ments that contravene the little group.

Consistent with Einstein’s view that relativity theory ren-
ders the division into matter and field ‘artificial’, our luminal
wave structure implies that particles are unbounded with far
fields that propagate transverse to the radius† rather than ra-
dially away from a ‘body’. There is then no good reason to
presume that local action implies retarded interaction.

The long range interaction between two particles, A and
B, depends on the colocation of their respective fields. It is an
integral over all space, dominated by terms close to the two
centres, but any far fields of A that become colocated with the
B particle’s centre of inertia did not travel there from A’s cen-
tre of inertia. They are part of the extended wave system that
is comoving, as a whole, with the A centre of inertia so one

†As is also consistent with Electromagnetics’ radial Coulomb field be-
cause E and H are each transverse to the momentum density S/c2, whilst H
fields cancel in the rest particle due to balanced movements.
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might anticipate that the direct impact of A’s far fields on the
observed location of the B particle would be instantaneous,
while the reaction impact on the observed location of the A
particle might be retarded.

However, it is more apposite simply to observe that field
theory problems are usually formulated and solved on whole
regions evolving subject to local action at all points in par-
allel. The idea of a local realist wave ontology is inherently
Lorentz invariant, but waves are inherently distributed. They
run on correlations at a distance sustained by strictly local ac-
tions. Distributed interactions between distributed waves can
have distributed impacts, occurring simultaneously in differ-
ent places. Waves exemplify Redhead’s conclusion that on-
tological locality does not rule out instant relations between
observables [45]. Trajectories in local realist wave systems
display entanglement as shown in [16], where a Madelung
decomposition of the Helmholtz wave equation shows that
it contains Bohmian mechanics’ nonlocal quantum potential
within it. Therefore, quantum nonlocality and entanglement
can perhaps be interpreted as locally realistic wave phenom-
ena. With specific reference to the EPR paradox [46], the Bell
Inequalities [47] depend on a causality analysis that uses light
cones emanating from point events [48], presuming a one to
one correspondence with point-like ‘beables’ [49], but for in-
herently distributed systems like waves neither beables nor
events can be presumed to be point-like.

11 Discussion

Since massive particles have finite energy, the volume integral
of the field energy density must not diverge as r → ∞. The
1/r2 long range force fields for the charged particles imply
a 1/r4 energy density asymptote for both charged and neutral
particles in luminal wave models [12]. The energy density in-
tegral does not then diverge as r → ∞ so finite but unbounded
luminal wave structures are compatible with the usual basic
physics. They appear as pointlike particles because the field
energy is highly concentrated near the centre. For example,
according to a 1/r4 energy density asymptote the maximum
energy density for a particle with the mass of an electron, at
the radius r ∼ 4 × 10−13m, is ∼ 400, 000 times greater than
that at a radius of 0.1 Angstrom unit.

Unlike Electromagnetics, nothing prevents the method in
this Article from applying to the fermions. A wide range of
candidate models for the massive particles, in the form of
subluminal soliton solutions found in typically nonlinear field
theories, have been reported in the literature. The appearance
of Lorentz covariance in so many disparate field models is
no coincidence as they are all subject to the same basic kine-
matic constraints used in Sects. 2 - 7 to show that Lorentz
invariance is the consequence of constructing subluminally
moving particles from fields that are constrained to propagate
luminally.

While the constraints are simple, the structures of soliton

solutions are generally not simple. For example, evolution
under rotations does not imply spherical symmetry and nor
does it imply that the particle rotates as a whole in a simple
manner, like a solid ball. Due to the kinematic constraint, tra-
jectories at different radii necessarily evolve at different angu-
lar rates and, similarly, wave trajectories at various points on
the same spherical surface in the rest system generally rotate
about different axes.

12 Conclusions

This Article has developed a particularly simple hypothesis:
Energy-momentum propagates at c. It has shown why sublu-
minally moving physical systems, including observers’ mea-
suring devices, then display time dilation and length contrac-
tion, so that an underlying luminal wave reality, although ob-
jective, presents a Lorentz covariant “spacetime” to its ob-
servers. Neither the Relativity Principle nor the invariance of
the observed speed of light were assumed. These two corner-
stones of relativity theory were shown as results, not put in as
postulates.

This 3D+t reality also entails a preferred frame that has
been observed in practice in at least two independent ways,
providing a natural definition of objective simultaneity. All
the paradoxes formerly associated with Special Relativity’s
subjective notions of reality are thus removed, and, unlike
Special Relativity, the proposed luminal wave interpretation
of Lorentz invariance is consistent with all the relevant facts.

Although the Lorentz covariance of luminal wave systems
was perhaps already familiar, the basic mechanics underly-
ing Lorentz symmetry remained unnoticed for over a century.
The discovery of this direct link between wave systems and
relativistic mechanics has wide ranging implications for the
interpretation and unification of modern physics.

Rather than replacing Newtonian Mechanics, Einstein’s
relativistic mechanics is the natural step accompanying the
shift in our founding physical ideas from particle to wave con-
cepts. The wave packet is reformed by giving explicit recog-
nition to the conservation of momentum between wave com-
ponents and particles, which can now be seen as widely dis-
tributed systems with instantly correlated far fields. Quantum
nonlocality can be understood within this framework whilst
general covariance is readily incorporated, conceptually and
analytically, with a refractive medium approach to gravity
[12] that produces the relevant phenomena without the raft
of problems flowing from the usual field equations.

Hopefully, this article has highlighted the absence of any
good reason to presume that any non-propagative form of
mass-energy exists. It’s not so much the introduction of a
new hypothesis, as the removal of an old one — the idea of
matter as a distinct ontological class in its own right.
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Appendix 1

Consider a constant momentum density ρ⃗pi in a region of
transverse crossectional area A and length li. The total mo-
mentum is pi = Aliρpik̂. Let this be normally incident on
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a mirror that is moving with velocity v = −vk̂. Let the re-
flection begin at t = 0. It then ends at ∆t = li/(c + v), after
which there is a reflected wave with momentum density ρ⃗pr
that occupies a region of length lr = (c − v)∆t and crossec-
tional area A, so the momentum of the reflected light flash is
pr = −Alrρprk̂.

During the reflection, the rates of change of momentum
for the incident and reflected waves are ṗi = −(c + v)Aρ⃗pi
and ṗr = (c − v)Aρ⃗pr respectively, where a dot over a variable
indicates the time differential. The total rate of change of
momentum is:

ṗ = ṗi + ṗr = −A((c + v) ρpi + (c − v) ρpr)k̂ ,

where ρpi = |ρ⃗pi| and ρpr = |ρ⃗pr|. As far as scalar momentum
is concerned, for the incident wave ṗi = cṁi = −A(c + v) ρpi,
for the reflected wave ṗr = cṁr = A(c− v) ρpr and the total is:

ṗ = cṁ = cṁr + cṁi = A((c − v) ρpr − (c + v) ρpi) .

The work done by the mirror on the incident and reflected
waves is:

∫
ṗi · dsi = −

∫ ∆t
0 A(c + v) ρpi cdt and

∫
ṗr · dsr =∫ ∆t

0 A(c − v) ρpr cdt respectively, where dsi and dsr are the
incremental movements of the incident and reflected waves,
in the directions k̂ and −k̂ respectively. The total work done
is just W =

∫ ∆t
0 c ṁc dt = (mr − mi)c2.

The energy change of the light flash is of course equal
and opposite to the work done by the radiation pressure force
on the mirror, so (mr − mi)c2 = −(−ṗ)(−v)∆t, and it is easily
shown that pr/pi = (c+v)/(c−v), from which we may infer the
momentum shift factor for light emitted by a source moving
towards an observer as

√
(c + v)/(c − v), in agreement with

the usual relativistic doppler shift.

Appendix 2

With respect to the system of light flashes in Subsect. 2.2,
let us impose the condition in some inertial frame that P0 =∑

i pi0 = 0. The momentum of the ith light flash, referred to
this frame, is then:

pi0 = pi0

(
cos θi0 î + sin θi0 cos ϕi0 ĵ + sin θi0 sin ϕi0 k̂

)
,

where θi0 is the angle with the x-axis and
∑

i pi0 cos θi0 =∑
i pi0 sin θi0 cos ϕi0 =

∑
i pi0 sin θi0 sin ϕi0 = 0.

Let an observer move relative to this frame with veloc-
ity v = −βcî. Since pi/pi0 = fi/ fi0, the standard relativistic
doppler shift and aberration formulae (with the observer mov-
ing towards the source at speed v) give, respectively:

pi = pi0γ
(
1 +

v

c
cos θi0

)
and cos θi =

cos θi0 +
v

c

1 +
v

c
cos θi0

.

Note that the same result also holds for non-monochromatic
light flashes. The scalar momentum of the ith flash in the
observer frame is:

pi = pi0γ(1 + β cos θi0) .

Summing over i, the total energy, mec2 = γc
∑

i pi0 = γm0c2,
where me and m0 are as defined in subsection 2.2 and Section
3 respectively. The (vector) momentum of the ith flash is:

pi = pi0(γ(β + cos θi0) î + sin θi0 cos ϕi0 ĵ + sin θi0 sin ϕi0 k̂) .

Summing over i, the total momentum is P = γβ
∑

i pi0 î. Dif-
ferentiating each of the two previous equations with respect
to β, we get dpi/dβ = γ2 pi î and dP/dβ = γ2mec î, so that:

dpi

dβ
=

dP
dβ

pi∑
j p j
=

dP
dβ

pi

mec
.

Finally, since the above expressions for pi and P are func-
tions of β alone, the incremental changes can be written as
dpi = (dpi/dβ) dβ and dP = (dP/dβ) dβ, upon which:

dpi =
pi

mec
dP .

Therefore (8) holds for a collinear incremental boost. For
transverse boosts, consider as initial condition a system with
a centre of inertia that is moving in the y-direction at speed
V , so me = γ(V)m0. We may repeat the above analysis for an
observer moving at speed vx in the x-direction with β = vx/c
and

∑
i pi0 sin θi0 cos ϕi0 , 0. Evaluating the resulting ex-

pression for dP/dβ at vx = 0, then yields the same result,
dpi = pi dP/mec, for an incremental transverse boost. In Spe-
cial Relativity, the general boost decomposes into a collinear
boost, a transverse boost and a rotation (a Thomas preces-
sion). As the latter has no impact on linear momenta, (8) is
generally valid for incremental boosts of systems of luminal
wave momenta.
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The identical bands (IB’s) phenomenon in normally deformed rare-earth nuclei has been
studied theoretically at low spins. Six neighboring even-even isotopes (N = 92) and the
isotopes 166,168,170Hf are proposed that may represent favorable cases for observation of
this phenomenon. A first step has been done by extracting the smoothed excitation en-
ergies of the yrast rotational bands in these nuclei using the variable moment of inertia
(VMI) model. The optimized parameters of the model have been deduced by using a
computer simulated search programm in order to obtain a minimum root mean square
deviation between the calculated theoretical excitation energies and the experimental
ones. Most of the identical parameters are extracted. It is observed that the nuclei hav-
ing NpNn/∆ values exhibit identical excitation energies and energy ratio R(4/2), R(6/4)
in their ground-state rotational bands, Np and Nn are the valence proton and neutron
number counted as particles or holes from the nearest spherical shell or spherical sub-
shell closure and ∆ is the average pairing gap. The nuclear kinematic and dynamic
moments of inertia for the ground state rotational bands have been calculated, a smooth
gradual increase in both moments of inertia as function of rotational frequency was
seen. The study indicates that each pair of conjugate nuclei have moments of inertia
nearly identical.

1 Introduction

One of the most remarkable properties so far discovered of ro-
tational bands in superdeformed (SD) nuclei is the extremely
close coincidence in the energies of the deexciting γ-ray tran-
sitions or rotational frequencies between certain pairs of ro-
tational bands in adjacent even and odd nuclei with different
mass number [1–5]. In a considerable number of nuclei in
the Dy region as well as in the Hg region one has found dif-
ferent in transition energies Eγ of only 1-3 KeV, i.e there exist
sequence of bands in neighboring nuclei, which are virtually
identical ∆Eγ/Eγ ∼ 10−3. This means that the rotational fre-
quencies of the two bands are very similar because the rota-
tional frequency (dE/dI) is approximately half the transition
energy, and also implies that the dynamical moments of in-
ertia are almost equal. Several groups have tried to under-
stand the phenomenon of SD identical bands (IB’s) or twin
bands [5–10] assuming the occurrence of such IB’s to be a
specific property of the SD states of nuclei.

Shortly afterwards, low spin IB’s were found in the
ground state rotational bands of normally deformed (ND) nu-
clei [11–14], which showed that the occurrence of IB’s is not
restricted to the phenomenon of superdeformation and high-
spin states. Since then, a vast amount of IB’s have been ob-
served both in SD and ND nuclei, and there have been a lot
of theoretical works presented based on various nuclear mod-
els [15–18]. All explantation to IB’s in SD nuclei differing
by one or two particle numbers factor to the odd-even dif-
ference in the moments of inertia, namely the pair force, is
substantially weakened for high-spin SD states. However,

these outlines would fail to explain IB’s at low spin, where
the blocking of the pairing contributions of the odd nucleon is
predicted to reduce the nuclear superfluidity, there by increas-
ing the moment of inertia of the odd-A nucleus. Because of
the known spins, configurations and excitations energies of
the ND bands, the systematic analysis of IB’s in ND nuclei
would be useful in investigation of the origin of IB’s.

It is the purpose of this paper to point out that existence
of low-spin IB’s in the well deformed rare-earth region is a
manifestation of a more general property of nuclear excitation
mechanism in this region, i.e, almost linear dependence of the
moment of inertia on a simple function of the valence pro-
ton and neutron number. The properties of rotational bands
in our selected normal deformed nuclei have been system-
atically analyzed by using the variables moment of inertia
(VIM) model [19, 20].

2 Description of VMI model

The excitation energy of the rotational level with angular mo-
ment I for an axially symmetric deformed nucleus is given
by

E(I) =
ℏ2

2J
I(I + 1), (1)

with J being the rigid moment of inertia. This rigid rotor
formula violated at high angular momenta. Bohr and Mottel-
son [21] introduced a correction term

∆E(I) = −B [I (I + 1)]2 (2)
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which is attributed to rotation-vibration interaction where J
and B are the model parameters.

In the variable moment of inertia (VMI) model [19] the
level energy is given by

E (I, J, J0, c) =
ℏ2

2J
I (I + 1) +

c
2

(J − J00)2 (3)

where J0 is the ground-state moment of inertia. The second
term represents the harmonic term with c in the stiffness pa-
rameter. The moment of inertia J is a function of the spin
I(J(I)).

The equiblirium condition

∂E
∂J
= 0 (4)

determines the values of the variable moment of inertia JI ,
one obtains

J3
I − J0J2

I =
1
2c

I (I + 1) . (5)

This equation has one real root for any finite positive
value of J0 and c can be solved algebraically to yield

J(J0, c, I) =
J0

3

+

1
2

I(I+1)
2C

+
J3

0

27
+

1
4

I2(I+1)2

4c2 +
J3

0

27
I(I+1)

2c

 1
2


1
3

+

1
2

I(I+1)
2c
+

J3
0

27
−

1
4

(I+1)2

4c2 +
J3

0

27
I(I+1)

2c

 1
2


1
3

.

(6)

A softness parameter σ was introduced, which measures
the relative initial variation of J with respect to I. This quan-
tity is obtained from the equation (3)

σ =
1
J

dJ
dI
|I=0=

1
2cJ3

0

. (7)

To find the rotational frequency ℏω, the kinematic J(1) and
dynamic J(2) moments of inertia for VMI model, let Î =
[I(I + 1)]

1
2 . Equations (3,5) can be written in the form

E =
ℏ2

2J
Î2 +

c
2

(J − J0)2 , (8)

J3 − J0J2 − Î2

2c
= 0. (9)

Differentiating these two equations with respect to Î and
using the chain rule, we get

dE
dÎ
=

Î
J
+

[
c (J − J0) − Î2

2J2

]
dJ
dÎ
, (10)

d2E
dÎ2
=

1
J
− 2Î

J2

dJ
dÎ
+

(
c +

Î2

J3

) (
dJ
dÎ

2)
+

[
c (J − J0) − Ĵ2

2J2

]
d2J
dÎ2
,

(11)

dJ
dÎ
=

Î
cJ(3J − 2J0)

, (12)

d2J
dÎ2
=

1 − 2c(3J − J0)
cJ(3J − 2J0)

(
dJ
dÎ

)2

. (13)

Using the above differentiations, we can extract ℏω, J(1)

and J(2) from their definitions:

ℏω =
dE
dÎ
, (14)

J(1) = ℏ2 Î
(

dE
dÎ2

)−1

≃ 2I − 1
Eγ(I → I − 2)

, (15)

J(2) = ℏ2
(

d2E
dÎ2

)−1

≃ 4
Eγ(I + 2→ I) − Eγ(I → I − 2)

. (16)

The J(1) moment of inertia is a direct measure of the tran-
sition energies while J(2) is obtained from differences in tran-
sitions energies (relative change in transition energies).

3 Identical bands parameters

In the concept of F-spin [22], the Nπ proton bosons and Nν
neutron bosons are assigned intrinsic quantum number called
F-spin F = 1

2 , with projection F0 = +
1
2 for proton bosons and

F0 = − 1
2 for neutrons bosons.

Therefore, a given nucleus is then characterized by two
quantum numbers F =

∑
i Fi =

1
2 (Nπ + Nν) = 1

4 (Np + Nn) and
it’s projection F0 =

1
2 (Nπ − Nν) = 1

4 (Np − Nn). Squaring and
subtracting, yield 4(F2 − F2

0) = 4NπNν = NpNn.
That is any pairs of conjugate nuclei with the same F-spin

and ±F0 values in any F-spin multiplet have identical NpNn

values [23]. The product NpNn was used in classification the
changes occur in nuclear structure of transitional region [13,
24].

It was assumed that [14], the moment of inertia J has a
simple dependence on the product of valence proton and neu-
tron numbers (NpNn) written in the form

J ∝ S F · S P (17)

where SF and SP are called the structure factor and saturation
parameter given by

S F = NpNn(Np + Nn), (18)

S P =
[
1 +

S F
(S F)max

]−1

. (19)
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Computing by taking

Np = min [(Z − 50) , (82 − Z)] , (20)

Nn = min [(N − 82) , (126 − N)] , (21)

it was found that the low spin dynamical moment of inertia
defined as

J(2)(I = 2) =
4

Eγ(4+ → 2+) − Eγ(2+ → 0+)
(22)

shows an approximate dependence on SF

J(2)(I = 2) ∝ (S F)
1
2 . (23)

Since the nuclei having identical NpNn and |Np − Nn| val-
ues are found to have identical moment of inertia, the struc-
ture factor SF is related not only to the absolute value of
ground state moment of inertia but also to its angular mo-
mentum dependence.

Also it was shown [11, 25, 26] that the development of
collectivity and deformation in medium and heavy nuclei is
very smoothly parameterized by the p-factor defined as

P =
NpNn

Np + Nn
. (24)

The p-factor can be viewed as the ratio of the number
of valence p-n residual interaction to the number of valence
like-nucleon-pairing interaction, or, if the p-n and pairing in-
teractions are orbit independent, then p is proportional to the
ratio of the integrated p-n interaction strength.

Observables such as E(4+1 )/E(2+1 ) or B(E2, 0+1 → 2+1 ) that
are associated with the mean field vary smoothly with
p-factor.

The square of deformation parameter β2 is invariant under
rotations of the coordinate system fixed in the space. In the
SU(3) limit of the interacting boson model (IBM) [27], the
matrix elements of β2 in a state with angular momenta I are
given by

⟨β2⟩I =
1

6(2N − 1)

[
I (I + 1) + 8N2 + 22N − 15

]
(25)

where N is the total number of the valence bosons For the
expectations value of β2 in the ground state I = 0, yielding

⟨β2⟩I=0 =
1

6(2N − 1)

[
8N2 + 22N − 15

]
(26)

which is increasing function of N.
In order to determine β from equation (26) to a given ro-

tational region or grouped of isotopes, one should normalize
it, then

β0 = α

[
8N2 + 22N − 15

6(2N − 1)

] 1
2

(27)

where α is the normalization constant (α = 0.101 for rare
earth nuclei.)

Table 1: The simulated adopted best VMI parameters used in the
calculations for the identical bands in normal deformed even-even
158Dy, 160Er, 162Yb and 166−170Hf nuclei. σ denoting the softness
parameter of the VMI model. We also list the total percent root
mean square deviation.

Nucleus J0 c σ = 1/2cJ3
0 %

(ℏ2 MeV−1) (10−1MeV3) (10−1) rmsd
158Dy 28.8866 2.37364 8.7372 0.57
170Hf 29.9116 1.93836 9.6386 0.87
160Er 22.7538 2.65536 15.9839 0.86
168Hf 22.8761 2.48160 16.8303 0.70
162Yb 16.8587 2.83884 36.7584 0.60
166Hf 17.6941 2.76559 32.6359 0.82

4 Results and discussion

A fitting procedure has been applied to all measured values
of excitation energies E(I) in a given band. The parameters
J0, c and σ of the VMI model results from the fitting proce-
dure for our selected three pairs IB’s are listed in Table 1. The
percentage root mean square (rms) deviation of the calculated
from the experimental level energies is also given in the Table
and is within a fraction of 1%. To illustrate the quantitative
agreement obtained from the excitation energies, we present
in Table 2 the theoretical values of energies, transition ener-
gies, rotational frequencies kinematic J(1) and dynamic J(2)

moments of inertia and the variable moment of inertia JV MI

as a function of spin for our three pairs of IB’s which each
pair has identical Np Nn product. The calculated kinematic
J(1) and dynamic J(2) moments of inertia are plotted against
rotational frequency ℏω in Figure 1.

The similarities are striking, although the frequency range
covered in each two IB’s is smaller than that observed in the

Fig. 1: Plot of the calculated kinematic J(1) and dynamic J(2) mo-
ments of inertia versus the rotational frequency ℏω for the low lying
states in the conjugate pairs (158Dy, 170Hf), (160Er, 168Hf) and (162Yb,
166Hf).
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Table 2: Theoretical calculations to outline the properties of our selected even rare-earth nuclei in framework of VMI model for each
nucleus we list the energy E(I), the gamma ray transition energy Eγ(I → I −2), the rotational frequency ℏω, the dynamic moment of inertia
J(2), the kinematic moment of inertia J(1) and the variable moment of inertia JV MI

Eexp(I) Iπ Ecal(I) Eγ(I→I−2) ℏω J(2) J(1) JV MI
(keV) (ℏ) (keV) keV (MeV) (ℏ2 MeV−1) (ℏ2 MeV−1) (ℏ2 MeV−1)

158Dy92

99 2+ 101.379 101.379 0.0807 33.2515 29.5919 30
317 4+ 323.053 221.674 0.1354 40.5724 31.5779 33
638 6+ 643.316 320.263 0.1803 49.4620 34.3467 36
1044 8+ 1044.449 401.133 0.2175 58.8001 37.3940 39
1520 10+ 1513.609 469.160 0.2492 68.1419 40.4979 42
2050 12+ 2041.470 527.861 43.5720 45

170Hf92

100.8 2+ 104.135 104.135 0.0820 33.3828 28.8087 30
321.99 4+ 328.092 223.957 0.1356 42.2275 31.2560 33
642.9 6+ 646.774 318.682 0.1783 52.5513 34.5171 36
1043.3 8+ 1041.572 394.798 0.2132 63.1123 37.9941 40
1505.5 10+ 1499.749 458.177 0.2426 73.5077 41.4686 43
2016.4 12+ 2012.342 512.593 44.8699 47

160Er68

126 2+ 126.476 126.476 0.0983 28.4620 23.7199 25
390 4+ 393.490 267.014 0.1603 37.3148 26.2158 28
765 6+ 767.700 374.210 0.2082 47.2533 29.3452 31
1229 8+ 1226.560 458.860 0.2469 57.1845 32.6897 34
1761 10+ 1755.369 528.809 0.2793 66.8337 35.9297 37
2340 12+ 2344.028 588.659 39.0718 41

168Hf96

124 2+ 125.554 125.544 0.0974 28.8591 23.8941 25
386 4+ 389.712 264.158 0.1583 38.0709 26.4992 28
757 6+ 758.937 369.225 0.2052 48.3412 29.7921 31
1214 8+ 1210.907 451.970 0.2430 58.5677 33.1880 35
1736 10+ 1731.174 520.267 0.2747 68.4802 36.5194 38
2306 12+ 2309.582 578.678 39.7457 41

162Yb92

166 2+ 163.728 163.728 0.1220 24.9036 18.3230 20
487 4+ 488.075 324.347 0.1900 35.9266 21.5818 23
923 6+ 923.760 435.685 0.2390 47.0494 25.2475 27
1445 8+ 1444.462 520.702 0.2777 57.6036 28.8072 30
2023 10+ 2034.604 590.142 32.1936 34

166Hf94

159 2+ 157.173 157.173 0.1179 25.4281 19.0872 20
470 4+ 471.652 314.479 0.1848 36.2236 22.2590 24
897 6+ 896.556 424.904 0.2336 47.2768 25.8882 28
1406 8+ 1406.068 509.512 0.2720 57.8285 29.4399 31
1970 10+ 1984.750 578.682 32.8332 34

SD nuclei. The J(2) is significantly larger than J(1) over a
large rotational frequency range.For our three IB pairs, the IB
parameters are listed in Table 3.

5 Conclusion

The problem of identical bands(IB’s) in normal deformed nu-
clei is treated. We investigated three pairs of conjugate nor-
mal deformed nuclei in rare-earth region (158Dy,170Hf),
(160Er, 168Hf) and (162Yb, 166Hf) with the same F spin and
projections ±F0 values have identical product of valence pro-
ton and neutron numbers NpNn values. Also the values of

dynamical moment of inertia J(2) for each IB pair are approx-
imately the same. We extracted all the IB symmetry parame-
ters like p-factor, saturation factor SF, structure factor SP etc.
which all depending on the valence proton and neutron num-
bers. By using the VMI model, we find agreement between
experimental excitation energies and theoretical ones.

The optimized model free parameters for each nucleus
have been deduced by using a computer simulation search
programm to fit the calculated theoretical excitation energies
with the experimental energies.
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Table 3: The calculated correlation factors for selected three pairs of even-even rare-earth nuclei having nearly identical bands.

158Dy 170Hf 160Er 168Hf 162Yb 166Hf

(Nπ, Nν) (8,5) (5,8) (7,5) (5,7) (6,5) (5,6)
NpNn 160 160 140 140 120 120

F 6.5 6.5 6 6 5.5 5.5
F0 1.5 -1.5 1 -1 0.5 -0.5
P 6.1538 6.1538 5.8333 5.8333 5.4545 5.4545

SF 4160 4160 3360 3360 2640 2640
SP 0.6176 0.6176 0.666 0.666 0.7179 0.7179
J(2)

S F 32.2643 32.2645 28.9966 28.9966 25.7027 25.7027
E(2)

S F 103.0160 103.0160 127.5437 127.5437 162.3283 162.3283
R(4/2) 3.2060 3.1943 3.0993 3.1096 2.9230 2.9671
R(6/2) 6.4468 6.3771 6.0866 6.1040 5.5430 5.6586
β0 0.3322 0.3322 0.3218 0.3218 0.3110 0.3110
∆ 0.9546 0.9203 0.9486 0.9258 0.9428 0.9313

NpNn/∆ 167.6094 173.8563 147.5859 151.2205 127.2804 128.8521
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A Telemetric Multispace Formulation of Riemannian Geometry,
General Relativity, and Cosmology: Implications for Relativistic Cosmology

and the True Reality of Time

Larissa Borissova
E-mail: borissova@ptep-online.com

This thesis reveals an extended world-picture of Riemannian geometry as a telemet-
ric multispace model of real space on the cosmological scale: certain new aspects of
General Relativity are presented in terms of a fundamental membrane-transition picture
of the deeper reality of time. We refer to this as “telemetric multispace formulation
of General Relativity”, a world-system with heavy emphasis on Riemannian geometry
“per se” (in light of a particular set of extensive, purely geometric techniques), without
all the usual historical-artificial restrictions imposed on it. This seminal model gives the
purely geometric realization of instantaneous long-range action in the whole space-time
of General Relativity whose sub-structure is extended to include an intrinsic, degener-
ate gravitational-rotational zero-space hosting zero-particles. The mathematical basis
of modern cosmology is the four-dimensional pseudo-Riemannian space which is the
curved space-time of General Relativity. The additional restrictions pre-imposed on
space-time due to so-called “physical reasons” are, regularly: the signature conditions,
the prohibition of super-luminal velocities, and the strictly uni-directional flow of time.
We here study the peculiar conditions by which the observable time 1) is stopped; 2)
flows from the future to the past. Our world and the world wherein time flows oppo-
sitely to us are considered as spaces such that they are “mirror images” of each other.
The space wherein time stops (the present) is the “mirror” reflecting the future and the
past. Then we consider the interaction between a sphere of incompressible liquid (the
Schwarzschild bubble) and the de Sitter bubble filled with physical vacuum: this is
an example of the interaction between the future and the past through the state of the
present.

1 Riemannian geometry as a mathematical model of the
real world

A brief historical background is at hand, followed by a critical
mathematical repraisal. As known, the mathematical basis of
modern cosmology is the four-dimensional pseudo-Riemann-
ian space — the curved space-time of General Relativity. It
belongs to the whole spectrum of Riemannian spaces ob-
tained by Bernhard Riemann as a generalization of Carl
Gauss’ work on curved surfaces. Riemannian spaces pos-
sess any number dimension n. The numerical value of n is
determined by a maximal number of independent basis vec-
tors (general basis, in the collective sense) of the Rieman-
nian space Vn [1]. The basis of the Vn is introduced at ev-
ery point of the flat space En which is tangent to the Vn at
this point. If the basis vectors are linearly dependent, the
dimension of the Vn is less than that of the space wherein
the basis vectors are independent of each other. There exist
two types of basis vectors possessing: 1) the positive square
of the length (a real vector); 2) the negative square of the
length (an imaginary vector). As familiar, if all the basis
vectors of the space are real or imaginary, it is known as
the Riemannian space. If some of the basis vectors are real
while other ones are imaginary, the space is known as the

pseudo-Riemannian space. Flat Riemannian spaces, where
all the basis vectors possess unit or imaginary unit lengths,
are known as the Euclidean spaces En. For example, the E3
is the ordinary flat three-dimensional space where the uni-
tary system of Cartesian coordinates can be introduced. Flat
Riemannian spaces where some basis vectors are real and
other ones are imaginary, are known as the pseudo-Euclidean
spaces. The four-dimensional pseudo-Euclidean space E4,
which possesses one imaginary basis vector along with three
real ones, is known as the Minkowski space (German Min-
kowski introduced time as the fourth coordinate x0 = ct,
where t is the coordinate time while c is the light velocity).
The pseudo-Euclidean space E4 is of course the basic space
(space-time) of Special Relativity. The pseudo-Riemannian
(curved) four-dimensional space V4 with the same set of the
basis vectors is the basic space (space-time) of General Rel-
ativity. The idea of applying the four-dimensional pseudo-
Riemannian space to the description of the real world was
suggested Marcel Grossman, a close mathematician friend of
Albert Einstein. Einstein agreed with him, because the metri-
cal properties of Riemannian spaces are simplest in compari-
son to the properties of other metric spaces. The point is that
Riemannian metrics are invariant relative to transformations
of coordinates. It implies that the square of the elementary
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infinitesimal vector dxα conserves its length:

ds2 = gαβdxαdx β, α, β = 0, 1, 2, 3, (1)

where the contraction by indices α, β denotes the summation.
Metrics of Riemannian spaces are symmetric (gαβ = gβα)

and non-degenerate (g = det ∥gαβ∥ , 0), while the elementary
four-dimensional interval is invariant relative to any reference
system (ds2 = const). The invariance of the ds2 is a very
important argument on behalf of Riemannian geometry as the
mathematical basis of General Relativity.

The metric coefficients are of course the cosines of the
angles between the basis vectors in the locally flat tangent
space. This is because ds2 is the scalar product of dxα with
itself. The dimension of the flat tangent space and the cor-
relation between the imaginary and real basis vectors are the
same as in the corresponding Riemannian space. A system of
basis vectors eα can be introduced at any point of the locally
tangent space. The eα are tangent to the coordinate lines xα.
The fundamental metric tensor can be expressed through the
basis vectors eα as [2]:

gαβ = eαeβ cos
(
x̂α, xβ

)
, (2)

where eα is the length of the eα. Assume here the temporal
basis vector e0 to be real, while, correspondingly, the basis
spatial vectors ei (i = 1, 2, 3) are imaginary.

We recall that the interval ds2 can be positive, negative, or
null. The value ds is used as the parameter along trajectories
of particles (world-lines of particles). These lines can be: 1)
real by ds2 > 0, 2) imaginary by ds2 < 0, 3) zero by ds2 = 0.
The value ds is used as the global parameter along world-
lines. Real mass-bearing particles (the rest-mass m0 , 0,
the relativistic mass m = m0√

1−V2/c2
is real) move along the

non-isotropic lines (ds , 0) at sub-luminal velocities V <
c; imaginary mass-bearing particles or hypothetical tachyons
(the rest-mass m0 , 0, the relativistic mass m = im0√

1−V2/c2
is

imaginary) move along non-isotropic lines (ds , 0) at super-
luminal velocities V > c; massless particles (the rest-mass
m0 = 0, the relativistic mass m , 0) move along isotropic
lines (ds = 0) at light velocity V = c. Thus, for example,
photons are actual light-like particles.

The description of the world is to be linked with the real
reference frame of a real observer who actually defines both
geometrical and mechanical properties of the space of refer-
ence he inhabits. The reference frame is a reference body
where coordinate nets are spanned and clocks are installed at
the every point of the reference’s body. The profound prob-
lem of the introduction of physically observable quantities in
the whole inhomogeneous, anisotropic curved space of Gen-
eral Relativity is to determine which components of the ev-
ery four-dimensional quantity are the physically observable
quantities. This problem was solved decisively and compre-
hensively by A. Zelmanov [2]. He introduced chronomet-
ric invariants (chr.-inv.) as physically observable geometric

quantities in General Relativity. These fundamental quanti-
ties are linked to the reference body which can, in general,
gravitate, rotate, and deform. The three-dimensional observ-
able space (the reference space) can be both curved and flat.
The reference body is considered as a set of real coordinate
systems, to which the observer compares all results of his
measurements. Therefore the physically observable quanti-
ties are constructed as the result of fundamentally (in a uni-
fied, simultaneous geometrical-mechanical fashion) project-
ing four-dimensional quantities on the lines of time and on
the three-dimensional space.

The chr.-inv. form of the four-dimensional interval ds2

is [2]

ds2 = c2dτ2 − dσ2, dτ =
(
1 − w

c2

)
dt − vidxi

c2 ,

dσ2 = hikdxidxk, hik = −gik +
vivk

c2 , i, k = 1, 2, 3,
(3)

where dτ is the interval of the observable time, dσ2 is the
observable spatial interval, w = c2(1 − √g00) is the three-
dimensional gravitational potential, vi = − cg0i√

g00
is the linear

velocity of the space rotation, hik is the three-dimensional
fundamental metric tensor. The expression (3) may be rewrit-
ten in the form

ds2 = c2dτ2
(
1 − V2

c2

)
, V i =

dxi

dτ
, V2 = hikV iVk, (4)

where V i is the observable three-dimensional velocity.
It follows from (4) that ds is: 1) real if V < c, 2) imaginary

if V > c, 3) zero if V = c. The condition ds = 0 has the form

cdτ = ±dσ, (5)

which is of course the equation of the elementary light cone.
The term elementary means that this cone can be introduced
only at every point of the space-time, but not into the whole
space. The elements of the cone are trajectories of massless
particles moving along null geodesic lines.

As follows from (4, 5), photons are at rest within the
space-time (ds = 0) itself, but they move at light velocity
(V = c) along three-dimensional trajectories (cdτ = dσ)
within the three-dimensional observable space. The light
cone is known as the “light barrier” which “prohibits” mo-
tions at super-luminal velocities. Really, this restriction
means that mass-bearing particles, both real ones and
tachyons, cannot move at light velocity. The zero-particles
penetrating the light cone are considered in detail in [3].
These particles are essentially thinner structures than light,
because their relativistic masses m are zeroes. Zero-particles
possess non-zero gravitational-rotational masses
M = m

1−(w+viui)/c2 , where ui = dxi

dt . Zero-particles transfer
instantly (dτ = 0) along three-dimensional null trajectories
(dσ = 0). The light cone is therefore transparent for zero-
particles and non-transparent for mass-bearing real particles
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and tachyons. As such, we may call it a “membrane”. Thus
the apparatus of General Relativity allows the existence of
long-range action as truly instantaneous-transfer zero-
particles. Moreover, this fundamental transfer unifies the
worlds of both real particles and tachyons. As for the other
new aspects of General Relativity, we shall introduce them in
the next sections.

2 The past and the future as the mirror reflections each
other

Most contemporary scientists presuppose that time flows only
in a single direction — from the past to the future. The math-
ematical apparatus of General Relativity does not prohibit the
reverse flow of time, i.e. from the future to the past. Neverthe-
less, the reverse flow of time is not introduced in contempo-
rary physics and cosmology, partly because modern scientists
refer to Hans Reichenbach’s “arrow of time”, which is di-
rected always to the future. However, upon further analysis,
Reichenbach, speaking about a unidirectional flow of time,
implied a rather limited world-process of evolution (transfer
mechanism of energy). He wrote: “Super-time has not a di-
rection, but only an order. Super-time itself, however, con-
tains local sections, each of whom has a direction, while the
directions change from one section to another” [4]. Contem-
porary scientists consider the light cone of Minkowski space
as a mathematical illustration of the time arrow: the lower
half of the cone means the past, while the upper half — the fu-
ture. The past automatically turns into the future at the point
t = 0, meaning the present. But such an automatic transfer
is due to the fact that the Minkowski space of Special Rel-
ativity is de facto empty. Besides, it does not at all include
both gravitation and rotation (in addition to deformation and
the whole curvature), therefore the ideal, uniformly flowing
time of Special Relativity does not (and can not) depend on
gravitation and rotation. In other words, this transfer does not
require fundamental transformations of matter. In fact, in this
picture, photons flow continuously from the lower half of the
cone to the upper one. However the “real space” perceived
by us as the “present” is ultimately penetrated by gravitation.
Besides, the objects of the said space, ranging from electrons
to galaxies and their clusters, do rotate around their centers of
gravitational attraction. The problem is therefore to describe,
in the framework of General Relativity, the fundamental in-
teraction between the future and the past as a proper ener-
getic transfer through the present state. Such description of
the future-past transfer is a more exact approximation, than
in the self-limited Minkowski space, because the observable
time τ essentially depends on both gravitation and rotation:
see (3, 5). The expressions dτ = 0, dσ = 0 describe the
membrane, which is situated between the past and the future.
These expressions can be rewritten in the form [3]:

w + viui = c2, hikdxidxk = 0, ui =
dxi

dt
. (6)

As the metric form dσ2 is positively determined, the con-
dition dσ2 = 0 means that it is degenerated: h = det ||hik || = 0.
The determinants of the matrices g = det ||gαβ|| and h are
linked by the relation

√−g =
√
g00h [2], therefore the four-

dimensional matrix ||gαβ|| is degenerated: g = det ||gαβ|| = 0.
The condition of the membrane transition can be written in
the form [3]:

w + viui = c2, dµ2 = gikdxidxk =

(
1 − w

c2

)2
c2dt2, (7)

where the first expression characterizes the condition of the
stopped time, the second expression describes the geometry
of the hyper-surface, where events of the present are realized.

The conditions (7) describe the zero-space, where, from
a viewpoint of a real observer, zero-particles extend instantly
(dτ = 0) along three-dimensional null lines (dσ = 0) [3].
The instant transfer of zero-particles means the long-range-
action. We conclude that the future-past transfer is real-
ized instantaneously, i.e. it is the long-range-action. Note,
the coordinate length dµ =

(
1 − w

c2

)
cdt depends, in part, on

the gravitational potential w, wherein dµ = 0 by the collapse
condition: w = c2. Thus the metric on the hyper-surface
is, in general, not a Riemannian one, because its interval dµ
is not invariant (yet it is invariant by the collapse, as in this
case dµ2 = 0). The region of space-time, which is located
between the spaces of the past and the future, is percepti-
ble by a real observer as the present. It is the hyper-surface
where all events are realized at the same moment of observ-
able time τ0 = const, i. e. such events are synchronized. The
momentary interaction (the long-range-action) is transferred
by particles of a special kind — zero-particles. They pos-
sess zero rest-mass m0, zero relativistic mass m, and non-zero
gravitational-rotational mass M. This quantity is determined
in the generalized space-time where the condition g = 0 is sat-
isfied. The mass M in the generalized space has the form [3]

M =
mc2

c2 − (w + viui)
.

Thus the elements of the elementary curved light cone
(the so-called “light barrier”) are indeed penetrable for zero-
particles. As follows from (5), trajectories of photons belong
to both the space and time, because they extend along null
four-dimensional trajectories ds = 0. The three-dimensional
body of the real observer can thus move at pre-light veloc-
ity in the three-dimensional space, but it is always rigidly
attached to the moment of time, which is perceptible as the
present.

A brief philosophical digression: transfers both in the past
and in the future are possible, so far, only mentally. The typi-
cal human mind does remember the past (not always clearly)
and does predict the future (not always exactly). It is possible
to say that the past and the future are virtual, because only the
human consciousness moves in these virtual spaces, but the
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physical body is strictly in the present (“reality”). Studying
the past of the Earth and remembering our own past, we see a
recurrence of some events, both planetary and individual. We
know what happened with the Earth in the past due to mainly
the tales of our ancestors, if not historians. Events (three-
dimensional points, as well as threads extended in time) are
ordered in a determined sequence in time. Comparing simi-
lar events from different intervals of time, we can say that the
past and the future are similar, being mirror reflections of one
other. The object of the three-dimensional space and its mir-
ror reflection differ only by the notions of “left” and “right”
possessing the opposite sense for every one of them. The in-
tervals of both coordinate time and observable time are linked
by the formula [3]

dt
dτ
=

viV i

c2 ± 1
√
g00

. (8)

The expression (8) was studied in [3] by the condition√
g00 > 0. It means that we did not consider in [3] the reverse

of time while simultaneously taking into account the state of
collapse g00 = 0. As follows from (8), the coordinate time t:
1) is stopped (dt = 0) if viV i = ∓c2; 2) possesses direct flow
(dt > 0) if viV i > ∓c2; 3) possesses reverse flow (dt < 0) if
viV i < ∓c2. Thus the spaces with direct and the reverse flows
of coordinate time t are divided by a fundamental surface of
rotation, where the vectors vi and V i are linked by the relation,
see (2, 3):

viV i = ∓c2|vi||V i| cos
(
v̂i,V i

)
= ∓c2|ei||V i| cos

(
êiV i

)
,

where ei is the spatial basis vector in the tangent Minkowski
space. It is evident that this relation is realized for two cases:

1) the vectors vi and V i are co-directed, |vi| = |V i| = c;
2) the vectors vi and V i are anti-directed, |vi| = |V i| = c.
Since the vector vi means the linear velocity of space ro-

tation, we conclude that the very surface dividing the spaces
with direct and reverse flow of coordinate time rotates at light
velocity. The rotation is either left or right.

A real observer measures that the time τ coincides com-
pletely with the coordinate time t only in the case wherein the
reference space does not rotate (vi = 0) nor gravitate (w = 0):
see (3). If w , 0 or vi , 0, the τ, in contrast to t, depends
essentially on gravitation and rotation. Because we live in the
real world, where gravitation and rotation do exist, we will
further consider the observable time.

The observable Universe, which is a part of the Infinite
Whole, can belong to one of the aforementioned spaces (ei-
ther possessing positive or negative flow of coordinate time).
Let the flow of coordinate time in the region, where the ob-
server is situated, be positive: dt > 0. The observable time
is divided by the consciousness of a real observer into the
“past”, the “present” and the “future”: time flows from the
past to the future through the present. The problem stated in

the beginning of this paper is to study the future-past transfer
from the point of view of a real observer, who is located in
the world of positive flow of coordinate time dt > 0. This
problem is essentially simplified in the case where the refer-
ence space does not rotate. Then the expression (8) can be
rewritten in the form

dτ = ±√g00 dt = ±
(
1 − w

c2

)
dt. (9)

Taking into account the collapse condition
√
g00, we shall

study the direction of observable time flow in the gravitational
field. It follows from (9) that the observable time τ: 1) pos-
sesses positive direction if

√
g00 > 0, 2) possesses negative

direction if
√
g00 < 0, 3) stops if

√
g00 = 0. Because the

condition g00 = 0 is the collapse condition, the surface of the
collapsar is the mirror separating the spaces with both
positive and negative flow of the observable time. The ob-
servable time is perceptible by human consciousness as flow-
ing from the past to the future, therefore we call the space
of such direct flow of time the “space of the past”. Then the
space of reverse flow of observable time is necessarily the
“space of the future”. The present space is situated between
these spaces. The concrete spaces reflecting from the surface
of the collapsar, as from the mirror, will be studied in detail
in the next section.

3 The interaction between the Schwarzschild and de
Sitter bubbles as instantaneous transfer

All objects in the Universe consist of the same fluid sub-
stance being at different stages of cosmic evolution. Many
cosmic bodies (planets, stars, . . . ) are spheroids, namely spin-
ning, deforming spheres. Probably the physical body of the
Universe has the same form. The problem is to introduce
the space-time (gravitational field) created by a liquid incom-
pressible sphere. A similar model was introduced earlier by
the German astronomer Karl Schwarzschild [5]. He solved
the field equations (Einstein equations) for the sphere by the
assumption that the solution must be everywhere regular. In
other words, Schwarzschild ruled out the existence of sin-
gularities. Meanwhile the problem of singularities is very
actual for astrophysics and cosmology. The more general,
allowing singularities, solution of the Einstein equations for
the sphere filled by ideal incompressible liquid was obtained
in [6]. The substance filling the sphere is described by the
energy-impulse tensor

Tαβ =

(
ρ +

p
c2

)
bαbβ − p

c2 g
αβ, (10)

where ρ = const is the density of substance, p is the pres-
sure, bα = dxα

ds is the four-dimensional unit velocity vector:
gαβbαbβ = 1.

The solution allowing singulary states of the space-time
has the form [6]
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ds2 = 1
4

3
√

1 − κρa2

3
−

√
1 − κρr2

3

2

c2dt2

− dr2

1 − κρr2

3

− r2(dθ2 + sin2 θdφ2),
(11)

where κ = 8πG
c2 is the Einstein gravitational constant, G is the

Newton gravitational constant, a is its radius, r, θ, φ are the
spherical coordinates.

The gravitational field described by (11) has two singu-
larities [6]:

1) it collapses if

3

√
1 − κρa2

3
=

√
1 − κρr2

3
;

2) it breaks the space if

κρr2

3
= 1.

The radius of the collapsar rc and the radius of the break-
ing space rbr have the forms, respectively:

rc =

√
9a2 − 24

κρ
=

√
9a2 − 8rbr

2, (12)

where the breaking radius rbr =
√

3
κρ
= 4×1013

√
ρ

cm.
It follows from (12) that the incompressible liquid sphere

collapses if a >
√

8
9 rbr = 0.94 rbr. (Because by a =

√
8
9 rbr

the collapsing object transforms into the point rc = 0, we
do not consider this case non-sense in the physical mean-
ing). If ρ = 10−29 g/cm3 (the assumed value of the density
of matter in the observable Universe), then the sphere col-
lapses by a > 1.2×1028 cm and breaks the surrounding space
by a = 1.3 × 1028 cm. If the density of matter inside the
sphere is ρ = 1014 g/cm3 (as inside the atomic nucleus), then
a > 3.8 × 106 cm and rbr = 4 × 106 cm. The density of
matter inside a typical neutron star is regularly assumed to
be the same as the nuclear density, while its radius is about a
dozen kilometers. With these, larger-sized neutron stars may
be non-observable, because they are gravitational collapsars.
Estimate now the minimal value of the mass of the neutron
star by the assumption that it collapses. If a = 3.8 × 106 cm,
then the mass M = 4πa3ρ

3 = 23 × 1033 g = 11.5M⊙, where M⊙
is the mass of the Sun. Assuming ρ = 1 g/cm3 (the density of
hydrodynamical fluid), we find rbr = 4 × 1013 cm. It means,
such a fluid sphere collapses if its radius is a > 4 × 1013 cm.

A sphere of incompressible liquid with a constant volume
and a constant density, which is situated in the state of weight-
lessness, is a kind of condensed matter. The planets, rotating

around the Sun, as well as the stars, rotating around the cen-
ter of the Galaxy, are in the state of weightlessness [6]. As-
sume that stationary stars consist of condensed matter. For
example, consider the Sun as an actual sphere of condensed
matter. The density of the Sun is ρ⊙ = 1.4 g/cm3, and its
radius is a = 7 × 107 cm. We find rbr = 3.4 × 1013 cm. It
follows from (12) that the collapse of the Sun is impossible
in this state of matter, because rc has an imaginary value. It is
interesting to note that the surface of breaking of the Sun is at
the distance rbr=2.3 AU, where the Astronomical Unit (AU)
is the average distance between the the Sun and the Earth: 1
AU = 1.49×1013 cm. So we obtain that the surface of break-
ing (curvature discontinuity), created by the Sun, is actually
situated inside the asteroid strip region, very close to the orbit
of the maximal concentration of asteroids: 2.5 AU from the
Sun [6]. (As known, the asteroid strip’s distance from the Sun
is within the limit of 2.1 to 4.3 AU).

Let’s now study the simultaneous mechanical and geo-
metrical properties of the metric (11). As shown in [2], the
three-dimensional observable space (the reference space) is
characterized by the three mechanical characteristics and one
geometrical. The mechanical characteristics are: the vector
of the gravitational inertial force Fi, the tensor of the angular
velocity of rotation Aik, and the tensor of the rate of deforma-
tion Dik:

Fi =
c2

c2 − w

(
∂w
∂xi −

∂vi

∂t

)
, Dik =

1
2

∗∂hik

∂t
,

Aik =
1
2

(
∂vk

∂xi −
∂vi

∂vk

)
+

1
c2 (Fivk − Fkvi),

where
∗∂
∂t =

1√
g00

∂
∂t is the chr.-inv. operator of differentiation

along the temporal coordinate.
We find that the reference space of the metric (11) does

not rotate (Aik = 0) and deform (Dik = 0), but it gravitates.
The gravitational inertial force Fi has the only non-zero com-
ponent [6]

F1 = −
κρc2

3
r(

3
√

1 − κρa2

3 −
√

1 − κρr2

3

) √
1 − κρr2

3

F1 < 0.

(13)

Thus the quantity Fi is the non-Newtonian force of attrac-
tion. Then F1 → ∞ both by the collapse and the breaking of
space [6].

The pressure of the ideal liquid p is determined from the
conservation law [6]. It has the form

p = ρc2

√
1 − κρr2

3
−

√
1 − κρa2

3

3

√
1 − κρa2

3
−

√
1 − κρr2

3

> 0. (14)
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It follows from (14) that p→ ∞ by the collapse and p = − ρc2

3
at the surface of break.

The geometric characteristic of the reference space is the
chr.-inv. three-dimensional tensor of curvature Ci jkl [2] pos-
sessing all the algebraic properties of the Riemann-Christoffel
four-dimensional tensor of curvature Rαβγδ. The Ci jkl has the
form [2]:

Ci jkl =
1
4

(Hi jkl + Hl jki − H jilk + Hkil j), (15)

where Hi jkl is the chr.-inv. close analog of the Schouten tensor
in the theory of non-holonomic manifolds

H···li jk· =
∗∂∆l

ik

∂x j −
∗∂∆l

i j

∂xk + ∆
m
ik∆

l
jm − ∆m

i j∆
l
km, (16)

where

∆k
i j = hkm∆i j,m, ∆i j,m =

1
2

( ∗∂him

∂x j +
∗∂h jm

∂xi −
∗∂hi j

∂xm

)
(17)

are the chr.-inv. Christoffel symbols of the second and first
kind, respectively,

∗∂
∂xi =

∂
∂xi +

vi
c2

∗∂
∂t is the chr.-inv.operator of

differentiation along spatial coordinates [2].
The tensors Hi jkl and Cikl j are linked by the relation [2]

Hi jkl = Ci jkl +
1
c2

(
2A jkDli + AikD jl + Al jDik

+AilD jk + Al jDki

)
.

(18)

It is evident, therefore, that Clki j = Hlki j if Aik = 0 or
Dik = 0. Calculating the Christoffel symbols of the second
kind, we obtain for the non-zero components:

∆1
11 =

κρr
3

1

1 − κρr2

3

,

∆1
22 =

∆1
33

sin2 θ
= −r

(
1 − κρr2

3

)
,

∆2
12 = ∆

3
13 =

1
r
, ∆2

33 = − sin θ cos θ,

∆3
23 = cot θ.

(19)

Substituting (19) into (16) and lowering the upper indices,
we find the non-zero components Cikl j for the space-time de-
scribed by the metric (11)

C1212 =
C1313

sin2 θ
=
κρr2

3
1

1 − κρr2

3

,

C2323 =
κρr4

3
sin2 θ.

(20)

The components Cik = hmnCimkn and the three-dimen-
sional scalar C = hikCik have the form [7]

C11 =
2κρ

3
1

1 − κρr2

3

, C22 =
C33

sin2 θ
=

2κρr2

3
,

C = 2κρ > 0.

(21)

The three-dimensional reference space satisfies the con-
dition

Ci jkl = q(hikh jl − h jkhil), q =
κρ

3
= const, (22)

therefore it is the space of constant positive curvature, where
q is the Gaussian curvature of the three-dimensional reference
space. It follows from (12) that the radius of curvature is 1

q =

rbr =
√

3
κρ

. It is necessary to note that the Gaussian curvature
and, consequently, the radius of space breaking depend on the
density of incompressible liquid.

Thus we have found that the three-dimensional reference
space of the space-time (11) is the space of constant positive
curvature. Study now the geometric properties of the four-
dimensional space (11). As is well-known, the geometric
properties of every curved (Riemannian) space are described
by the Riemann tensor

Rαβγδ =
1
2

(∂βγgαδ + ∂αδgβγ − ∂αγgβδ − ∂βδgαγ)+

+gστ(Γαδ,σΓβγ,τ − Γβδ,σΓαγ,τ),
(23)

where Γαβ, σ are the Christoffel symbols of the first kind

Γαβ, σ =
1
2

(∂αgβσ + ∂βgασ − ∂σgαβ). (24)

Calculating the values Γαβ,σ for the metric (11) we obtain

Γ01, 0 = −Γ00, 1 =
κρr
12

3

√
1 − κρa2

3
−

√
1 − κρr2

3√
1 − κρr2

3

,

Γ11, 1 = −
κρr
3

1(
1 − κρr2

3

)2 ,

Γ22, 1 = −Γ12, 2 = r,
Γ33, 1 = −Γ13, 3 = r sin2 θ,
Γ33, 2 = −Γ23, 3 = r2 sin θ cos θ.

(25)

Calculating the components of Riemann tensor (23) for
the metric (11) we find

R0101 = −
1

4r2
br

3

√
1 − a2

r2
br

−
√

1 − r2

r2
br√

1 − r2

r2
br

,

R0202 = −
r2

4r2
br

3
√

1 − a2

r2
br

−
√

1 − r2

r2
br


√

1 − r2

r2
br

,

R1212 = −
r2

r2
br

1

1 − r2

r2
br

, R2323 = −
r4

r2
br

sin2 θ,

R0303 = R0202 sin2 θ, R1313 = R1212 sin2 θ,

(26)
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where r2
br =

1
q =

3
κρ

.
The space-time is therefore not a constant-curvature

space, because the components R0i0k of the Riemann tensor
do not satisfy the condition

Rαβγδ = K(gαγgβδ − gβγgαδ), K = const, (27)

which is a necessary and sufficient condition that the space-
time possesses constant curvature. Note that the spatial com-
ponents Ri jkl satisfy (27), while the mixed components Roi jk

are zeroes. It means, due the structure of the components
R0i0k, the space-time (11) does not possess constant curva-
ture.

So forth, study the geometric properties of the space-time
(11) in terms of Zelmanov’s theory of physically observable
quantities. Zelmanov selected three groups of all independent
curvature components Rαβγδ — the projections on time, the
projections on space, and the mixed projections [2]:

Xik = −c2 R·i·k0·0·
g00

, Y i jk = c
R·i jk

0···√
g00

, Zikl j = c2Rikl j.

Here we have only interest in the components Xik. Calcu-
lating these components, we obtain

X11 =
c2

r2
br

13
√

1 − a2

r2
br

−
√

1 − r2

r2
br


√

1 − r2

r2
br

> 0,

X22 =
X33

sin2 θ
=

c2r2

r2
br

√
1 − r2

r2
br

3

√
1 − a2

r2
br

−
√

1 − r2

r2
br

> 0.

(28)

All components Xik → ∞ in the state of collapse. Besides,
if the breaking of space takes place, the X11 → ∞ and X22 =

X33 are zeroes. Comparing (13) and (28), we find that the
gravitational inertial force F1 and the radial projection of the
Riemann tensor on time X11 are linked by the relation

F1 = −rX11. (29)

It means that the sign of the r-directed force is opposite to
the sign of the temporal projection of the Riemannian tensor
(the “curvature of the time”) in this direction: the negative
non-Newtonian force of attraction is due to the positive
curvature of time.

The partial case of the collapse of the incompressible liq-
uid sphere rc = rbr = a is studied in detail in [7]. As follows
from (12), in this case the surface of the sphere is simulta-
neously both the surface of the collapsar and the surface of
the breaking of the space. Remember that a = 1√

q is also the
radius of curvature of the sphere of condensed matter, where

q is the Gaussian curvature of the reference space. Assuming

a = rbr =
√

3
κρ

and substituting this expression in (11), we
obtain the de Sitter metric

ds2 =
1
4

(
1 − r2

a2

)
c2dt2 − dr2

1 − r2

a2

− r2(dθ2 + sin2 θdφ2). (30)

The space-time described by the metric (30) satisfies the
Einstein equations

Rαβ −
1
2
gαβR = λgαβ, (31)

where the cosmological constant λ = 3
a2 .

The term λgαβ can be expressed in the form [7]

λgαβ = κT̃αβ. (32)

Thus the λ-field generating the de Sitter space (30) is
equivalent to the substance described by the energy-impulse
tensor

T̃αβ =
λ

κ
gαβ. (33)

Calculating the physically observable components of the
energy-impulse tensor (33) [2], we find

ρ0 =
T̃00

g00
=
λ

κ
, Ji

0 =
cT̃ i

0√
g00
= 0,

U ik
0 = c2T̃ ik = −λc2

κ
,

(34)

where ρ0, Ji
0 and U ik

0 are the chr.-inv. density of matter, the
(vector) density of impulse, and the tensor of stress, respec-
tively.

As seen, the expression (10) transforms into (33) if the
condition is

p = −ρ0c2 = −λc2

κ
, (35)

i.e. it describes matter in the state of inflation.
Thus the energy-impulse tensor (33) describes substance

with positive constant density ρ0 =
λ
κ

and negative constant
pressure p0 = −ρ0c2. The flow of energy is given as q0 =

J0c2 = 0. This substance is called physical vacuum. We
conclude that the collapsing sphere of ideal incompressible
liquid transforms into a de Sitter vacuum bubble by the spe-
cial case of collapse, when the radius of the sphere a equals
the breaking radius rbr

a = rbr =

√
3
κρ
= rc, (36)

where the radius of the collapsar rc coincides with the radius
of the sphere and the breaking radius.
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The physical vacuum is an actual substance, possessing
positive density and negative pressure. Because the bubble
is stationary, the negative pressure, which inflates the bubble,
must be balanced by attraction, thereby compressing it. To
solve the problem of stability of inflation collapsar, it is nec-
essary to find this compressing factor. Study the physical and
geometrical characteristics of the de Sitter bubble and com-
pare them with the corresponding characteristics of the liquid
bubble. This comparison allows us to consider the process of
transformation of the gravitational collapsar (“black hole”)
into the inflational collapsar (“white hole”).

The physical and geometrical properties of the de Sitter
bubble, described by the metric (30), are studied in detail in
[7]. The local reference space does not rotate and deform.
The gravitational inertial force has the form

F1 =
c2r

a2 − r2 > 0, F1 =
c2r
a2 > 0, (37)

i.e. is the force of repulsion. As seen, the formula (13) trans-
forms into (37) by the condition (36). Thus the gravitational
inertial force of attraction (13), acting inside the liquid bub-
ble, transforms into a force of repulsion, acting inside the vac-
uum bubble. Using the collapse condition (36), rewrite (37)
in the form

F1 =
κρ0c2r

3
= −κpr

3
> 0. (38)

It is easy to see that both the positive density and the
negative pressure both inflate the vacuum bubble. As
known, the generally accepted viewpoint consists in that the
stability of the de Sitter vacuum bubble is due to the action
of two opposite factors: 1) compression due to the positive
density; 2) inflation due to the negative pressure. As follows
from (38), the positive density and negative pressure effects
are identical, consequently it is necessary to find the factor,
which causes the compression of the bubble.

Studying the physical and geometrical characteristics of
the Schwarzschild liquid bubble, we have found that the force
of attraction (13) is balanced by the value −rX11, which pos-
sesses the dimension of acceleration: see (29). The quantity
X11 > 0 is the observable projection of the Riemann tensor
component R0101 on time — the “curvature of time in the ra-
dial direction”. Thus the non-Newtonian force of attraction,
which is proportional to the radial distance r, is balanced by
the action of the “positive curvature of the time” (the term
rX11).

Consider the problem of the stability of the vacuum bub-
ble. Calculating the Riemann tensor (23) for the metric (30),
we find

R0101 =
1

4a2 , R0202 =
R0303

sin2 θ
=

r2(a2 − r2)
4a4 ,

R1212 =
R1313

sin2 θ
= − r2

a2 − r2 , R2323 = −
r4 sin2 θ

a2 .

(39)

It is easy to see that the components (26) transform into
(39) by the condition a = rbr. The components (39) satisfy
the condition (27), where the four-dimensional constant cur-
vature is negative: K = − 1

a2 .
The quantities Ci jkl, Cik and C (20–21) of the reference

space (30) then take the form

C1212 =
C1313

sin2 θ
=

r2

a2 − r2 , C2323 =
r4 sin2 θ

a2 ,

C11 =
2

a2 − r2 , C22 =
C33

sin2 θ
=

2r2

a2 ,

C =
6
a2 > 0.

(40)

The components Ci jkl (40) satisfy the condition (22),
where the three-dimensional Gaussian curvature is q = 1

a2 ,
consequently the reference space of the vacuum bubble is a
three-dimensional sphere of the real radius a = 1√

q . We have
shown above that the de Sitter space (30) possesses negative
four-dimensional Gaussian curvature K = − 1

a2 = −q, con-
sequently it is a four-dimensional sphere with the imaginary
radius R = iq.

Comparing the obtained results with the analogical ones
for the liquid sphere (11), we find that both reference spaces
possess positive constant curvature, but the four-dimensional
de Sitter space possesses constant negative curvature. Calcu-
lating the physically observable components of the Riemann-
Christoffel tensor Xik (28) for the de Sitter vacuum bubble,
we find

X11 = −
c2

a2 − r2 < 0, X22 =
X33

sin2 θ
= −c2r2

a2 < 0. (41)

We conclude therefore that the sign of curvature of the
de Sitter vacuum bubble coincides with the signs of the Rαβγδ

projections onto time (the “negative curvature of time”).
Comparing the component X11 (41) with the expression of

the gravitational inertial force (37), we find that these quanti-
ties satisfy the condition (29), i.e. the signs of the F1 and X11
are opposite. We conclude that the non-Newtonian force of
attraction inside the liquid sphere (11) is due to the pos-
itive curvature of time, the force of repulsion inside the
vacuum bubble (30) is due to the negative curvature of
time.

These results are connected with the geometric structure
of the physically observable curvature components Xik. Gen-
erally speaking, they depend on the deformation, rotation, and
gravitation of the reference space [2]. If locally the space does
not deform and rotate, the components Xik take the form

Xik =
1
2

(∗∇iFk +
∗ ∇kFi) −

1
c2 FiFk, (42)

where ∗∇i is the chr.-inv. operator of covariant differentiation
[2].
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We have thus shown that the collapsing liquid bubble (11)
transforms instantly into the vacuum bubble (30) by the spe-
cial case of collapse: a = rbr. The surface r = a in this case is
simultaneously: 1) the breaking surface; 2) the surface of the
inflation collapsar.

Calculating the elementary observable interval of time for
the metrics (11) and (30), we find, respectively:

1) the Schwarzschild liquid bubble

dτl = ±
1
2

3
√

1 − κρa2

3
−

√
1 − κρr2

3

 dt; (43)

2) the de Sitter vacuum bubble

dτv = ±
1
2


√

1 − r2

a2

 dt. (44)

Assuming in (43) a =
√

3
κρ
= rbr, we obtain

dτl = ∓
1
2


√

1 − r2

a2

 dt. (45)

We have obtained as a result that the observable time τ
inside these bubbles flows in the opposite direction. We con-
sider usually the observable time as flowing in the positive
direction — from the past to the future. In order to determine
one of the two signs in the formulaes (43–44), it is neces-
sary to ask, which of the two bubbles is more applicable as
the model of the observed Universe: the Schwarzschild liq-
uid bubble or the de Sitter vacuum bubble? This question
will be studied in detail in the next section.

4 The de Sitter bubble as a proposed cosmological model

Consider the Schwarzschild and de Sitter bubbles as the two
possible cosmological models. The choice of such a model
must be in accordance with astronomical data. The most im-
portant criterion for the choice is the observed red-shift. In
other words, the model, which allows the red-shift, can be
chosen as the cosmological model. The effect of the spectral
line displacement is calculated exactly for every gravitational
field configuration.

As known, the world-lines of light-like particles (null
geodesic lines) are described by the equations of the parallel
transfer of the isotropic (null) four-dimensional wave vector
Kα

dKα

dσ
+ ΓαµνK

µ dxα

dσ
= 0, Kα =

ω

c
dxα

dσ
= 0,

KαKα = 0,

(46)

whereω is the cyclic frequency, Γαµν is the Christoffel symbols
of the second kind, σ is the parameter of differentiation, dxα

dσ is
the isotropic (null) vector of the 4-velocity, which is tangent
to the world-lines (gαβ dxα

dσ
dxβ
dσ = 0).

These equations have the form in terms of the physically
observable quantities (viz. the theory of chronometric invari-
ants) [9]

1
ω

dω
dτ
+

1
c2 Dik

dxi

dτ
dxk

dτ
− 1

c2 Fi
dxi

dτ
= 0, (47)

d
dτ

(
ω

dxi

dτ

)
+ 2ω

(
Di

k+A·ik·
) dxk

dτ
−

−ωF i + ω∆i
nk

dxn

dτ
dxk

dτ
= 0 ,

(48)

hik
dxi

dτ
dxk

dτ
= c2. (49)

The system of equations (47–49) is the chr.-inv. form of
the parallel transfer equations of the four-dimensional wave
vector Kα = ω

c
dxα
dσ , where the equations (47–48) are linked

by the relation (49). Solving the system for every metric,
we find the frequency of the photon and the associted spatial
trajectory in the given space-time.

If the reference space does not rotate and deform, the
equations (47–48) take the form

1
ω

dω
dτ
− 1

c2 Fi
dxi

dτ
= 0, (50)

1
ω

d
dτ

(
ω

dxi

dτ

)
− F i + ∆i

nk
dxn

dτ
dxk

dτ
= 0. (51)

Substituting into (50) the expressions for gravitational in-
ertial force F1 (13) and (40), we obtain the equations describ-
ing the behaviour of the cyclic frequency inside both the con-
densed matter and physical vacuum bubbles, respectively:

1) the Schwarzschild bubble

1
ω

dω
dτ
=

−κρc2

3
r3

√
1−κρa2

3
−

√
1−κρr2

3


√

1−κρr2

3

dr
dτ

;
(52)

2) the de Sitter bubble

1
ω

dω
dτ
=

r
a2 − r2

dr
dτ
. (53)

Integrating (52–53), we obtain, respectively:
1) the Schwarzschild bubble

ω =
P

3

√
1 − κρa2

3
−

√
1 − κρr2

3

, P = const; (54)

2) the de Sitter bubble

ω =
Q√

1 − r2

a2

, Q = const, (55)
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where P and Q are integration constants.
Cosmologists have introduced the quantity z — the rela-

tive variation of the frequency

z =
ωem − ωobs

ωobs
, (56)

where ωem is the frequency, emitted by the source, located at
the radial distance rem relative to the observer, ωobs is the ob-
servable (observed, registered) frequency of this source at the
place, where the observer is located: robs. The condition z < 0
means that the observable frequency is more than the emitted,
consequently the observable light seems shifted more towards
the blue than the emitted one (the phenomenon of blue-shift).
The condition z > 0 implies a red-shift, because in this case
the observable frequency is less than the emitted one.

Calculating the value z for the expressions (54–55), we
obtain

1) the Schwarzschild bubble

z =

√
1 − κρr2

em

3
−

√
1 −
κρr2

obs

3

3

√
1 − κρa2

3
−

√
1 − κρr2

em

3

< 0; (57)

2) the de Sitter bubble

z =

√
a2 − r2

obs −
√

a2 − r2
em√

a2 − r2
em

> 0. (58)

It follows from (58) that the red-shift takes place inside
the de Sitter bubble, therefore namely this space-time can be
considered as a cosmological model.

Let us study more exactly the behavior of the frequency of
photons emitted by distant sources. Assume that the photons
from the source move to the observer in the radial r-direction.
Then (49) takes the form

a2

a2 − r2

(
dr
dτ

)2

= c2. (59)

Taking the root of (59), we obtain

dr
√

a2 − r2
= ± c

a
dτ = ±Hdτ, (60)

where H is the Hubble constant. Assuming H = 75 Mps/sec
= 2.3 × 10−18sec−1, we find a = 1.3 × 1028 cm.

Choose the sign + or −, respectively, if the distance be-
tween the observer and the source is taken into account: 1)
from the observer to the source; 2) from the source to the ob-
server. Integrating (60) from r (the distance from the source)
until r = 0 (the location of the observer), we find∫ 0

r

dr
√

a2 − r2
= − arcsin

r
a
= −Hτ, (61)

where τ is the observable time, in the course that the signal
from the source comes to the observer. It follows from (61)
the expression for r:

r = a sin Hτ, (62)

i.e. the photometric distance is harmonic (sinusoidal) oscil-
lation with the amplitude a and the period T = 2π

H . The am-
plitude a is the maximal distance from any observer — the
so called “event horizon”. It is easy to find that the three-
dimensional observable vector of the light velocity c1 = dr

dτ
has the form

c1 =
dr
dτ
= aH cos Hτ = c cos Hτ, (63)

where

h11c1c1 =
a2

a2 − r2

(
dr
dτ

)2

= c2.

This formula means that the radial component of the vec-
tor of the light velocity oscillates with a frequency H and an
amplitude c. This oscillation is shifted for π

2 with respect to
the oscillation of the radial distance r (62).

Substituting (63) into (55), we obtain

ω =
Q

cos Hτ
, 0 ≦ τ ≦

π

2H
. (64)

As seen, ω → ∞ if τ → π
2H , i.e. by r → a. It follows

from (58) that the value of z increases infinitely by r → a.
This effect takes place from the viewpoint of the real observer,
because the observable time depends on the photometric dis-
tance r from the event horizon:

dτ =
1
2


√

1 − r2

a2

 dt. (65)

Thus the tempo of the observable time decreases by r →
a, and the observable time is stopped at the event horizon.
Therefore the observable cyclic frequency of photons in-
creases infinitely by r → a.

It was shown above, the coordinate (photometric) dis-
tance r is the sinusoidal (harmonic) oscillation (wave) with
the amplitude a and the cyclic frequency H = 2π

T . The quan-
tity T = 2π

H is the full period of the oscillation, the max-
imal value a (amplitude) is the event horizon. Taking into
account only the positive values of r, we are restricted only
to the semi-period of the oscillation. The maximal value of
r = a takes place at τ = π

2H =
T
4 . Introducing the used-

in-contemporary cosmology value H = 2.3 × 10−18sec−1, we
find Ta =

π
2H = 21.6 × 109 years — the time of passing of

the light signal from the event horizon to the observer. Con-
temporary cosmologists calculate the time of the life of the
Universe as the interval of time after the Big Bang. They
obtained the age of the Universe approximately 13.75 × 109
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years. If we’ll introduce H as the ordinary (not the cyclic)
frequency H = Hc

2π =
1
T , we find T = 13.74 × 109 years.

As is well known, the mathematical basis of contempo-
rary relativistic cosmology is the theory of a non-stationary
(extending) universe. It is founded on Friedman’s cosmolog-
ical models, which belong to a particular class of solutions to
Einstein’s field equation, obtained by the imposing condition
that the space of the observable Universe is homogeneous and
isotropic. This class of solutions is described by the metric

ds2 = c2dt2−R2(t)
dx2 + dy2 + dz2[

1 + k
4 (x2 + y2 + z2)

]2 , k = 0, ±1, (66)

where R(t) is the scale factor: 1
R

dR
dt = H. In accordance with

the value k of the three-dimensional space: 1) is flat (k = 0);
2) has negative curvature (k = −1); 3) has positive curvature
(k = +1). Models with k = 0, −1 are called open, and models
with k = +1 are closed ones. Friedman’s spaces are both
empty (Tαβ = 0) and filled by ideal liquid described by (10).

The special reference space (68) does not rotate and grav-
itate, but it does deform. The tensor of the rate of deformation
is described by the formula Dik = R dR

dt . The observable time
flows uniformly: dτ = dt, in particular, it does not depend on
the photometric distance r in contrast to the interval of the ob-
servable time in the de Sitter bubble. Friedman’s models are:
1) extending; 2) compressing; 3) oscillating; 4) stationary [2].
The cosmological term λ can be: 1) positive, 2) negative, 3)
zero. Cosmologists explain the observable red-shift by the
Doppler effect which is due to the expansion of the space
of the Universe. The generally accepted model of the non-
stationary (extending) Universe is the Standard Cosmological
Model. The age of the Universe is determined by means of
extrapolation of the uniformly flowing time from the present
to the past — the beginning of the Universe caused by the
Big Bang. The age of the observable Universe, according to
Friedman’s theory, is determined approximately as 13 × 109

years — the interval of the time from the Big Bang of the ini-
tial singularity (the “point” consisting of super-compact ini-
tial substance).

Now we come to the essential question: What cosmologi-
cal model is more applicable for the description of the observ-
able Universe: the stationary de Sitter space or the extending
Friedman’s space? The criterium of the choice must be the
results of astronomical observations. It follows from the ob-
servations of spectra of galaxies that the observable red-shift
is linear for more near galaxies and it rapidly increases for the
most distant objects. Most cosmologists explain this result as
the accelerated expansion of space, while routinely avoiding
some principal weaknesses. The correct theoretical explana-
tion of this fact has not been obtained until now. Moreover,
contemporary cosmologists do not calculate variations of fre-
quencies as exact solutions to the general relativistic equation
of motion of null geodesic lines. The observable phenom-
ena of the red-shift is explained by the temporal variations

of the scale factor R(t). It is necessary to note that the ex-
act solution(s) to the equations (47–49) can be found only for
concrete metrics. In particular, the expression of the cyclic
frequency ω for Friedman’s metric can be obtained only if the
exact expression for R(t) is known and the value of k is cho-
sen. In other words, in order to study variations of frequen-
cies of cosmic objects, it is necessary before hand to assign
the function R(t), which determines the kind of deformation,
and the value of k, which determines the geometry of the ref-
erence space.

The exact value of the frequency (55) is obtained here as
the solution to equation of motion of null geodesic lines (47–
49). It follows from (55, 59) that the observable frequency ω
and the quantity z increase infinitely while approaching the
event horizon. If r ≪ a, the quantity z can be transformed as

z ≈
r2

em − r2
obs

2a2 . (67)

It means that the red-shift in the spectra of near-to-the
observer objects (r ≪ a) is subject to the parabolic law. In
other words, the linear red-shift cannot be explained in the
de Sitter space. The gravitational inertial force of repulsion
inside the de Sitter bubble causes the parabolic red-shift for
near sources and the infinite increase at the maximal distance
from the observer — the event horizon. Thus the red-shift
in the de Sitter bubble is due to the non-Newtonian force of
repulsion, which is proportional to the radial (photometric)
distance r.

We conclude: neither the Friedman expansion, which is
caused by the deformation of the reference space, nor the de
Sitter force of repulsion can explain simultaneously both the
linear red-shift for near sources and the sharp, non-linear in-
crease for most distant sources. Probably, this problem can
be solved in frames of a generalized metric which includes
both Friedman’s expansion and the de Sitter repulsion. It is
possible that the de Sitter space is applicable near the event
horizon (r ∽ a), while the Friedman extending space correctly
describes more near-to-the observer regions (r ≪ a).

5 The past, the present, and the future are three multi-
space aspects of the observable time

Now, let us consider in detail the collapse mechanism of the
liquid bubble into the vacuum bubble. We have obtained
above the key rôle in the very process the condition (36)
plays. If such a state is realized, then the interval of the
observable time interior to Schwarzschild’s liquid bubble dτl
transforms into the interval of the observable time inside de
Sitter’s vacuum bubble dτv; moreover, each of these intervals
possesses the opposite sign:

dτl = −dτv.

It means that the observable time inside the vacuum de
Sitter bubble flows in the opposite direction. We have as-
sumed in the previous section that once the de Sitter bubble is
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applicable as a cosmological model, the flow of the τ in this
space is positive: the observable time flows from the past to
the future. Then the observable time inside the Schwarzschild
liquid bubble flows from the future to the past, and its interval
has the form:

dτl = −
1
2

3
√

1 − a2

r2
br

−
√

1 − r2

r2
br

 dt < 0. (68)

If a = rbr, then (70) transforms into the expression

dτv =
1
2


√

1 − r2

a2

 dt > 0, (69)

which is the interval of the observable time inside the de Sitter
bubble.

Thus the surface a =
√

3
κρ
= rbr is the mirror dividing

two worlds — the space of the future and the space of the
past. It means, this surface is the space of the present. As
was shown above, the surface a is singular. It means, the
present is the instantaneous state between the future and the
past, where the future transforms into the past by means of
passing through the singulary state. The space of the future
is here the vacuum de Sitter liquid bubble, where the observ-
able time flows from the future to the present: that is, the
future “goes to us”. The future, after the passage through the
said singulary surface, becomes the past: the present “leaves
us”. Thus the singular surface is not only a mirror (a reflect-
ing surface). It is simultaneously a membrane: a telemet-
ric, multispace membrane connecting the worlds of the past
and the future. The future penetrates into the inflation collap-
sar namely through this “mirror-like membrane” — the inte-
rior layer between the past and the future. This situation can
be illustrated in terms of the well-known description of the
interaction between a light beam and some incident surface
(as the light beam falls upon the surface). This beam splits
into three beams: 1) the reflected; 2) the refracted; 3) the
absorbed. The light beam within the framework of General
Relativity is the trajectory of photons — the world-line of the
null four-dimensional length ds = 0, where here every indi-
vidual photon is said to be the event itself. The world-lines
with ds , 0 also consist of four-dimensional world-points.
It is possible to say therefore that the light beam of events,
falling onto the singular surface, splits into: 1) the reflected
light beam (returned into the space of the future); 2) the re-
fracted light beam (directed into the space of the past); 3) the
absorbed light beam, by the said singularity surface. The first
light beam describes those events, which cannot be realized
(materialized) in the present (for example, using analogy with
daily life, certain ideas or epochs which are far too advanced
for the time). The second light beam describes those events,
which could be realized in principle, but they can not actually
be realized (in part, these are not readily perceived by the bulk
human consciousness). Finally, those events in the likeness

of the absorbed light-beam represent the world of the present,
which is uniquely perceived by our consciousness (taking into
account varying internal degrees of consciousness) as “real-
ity”. The said non-realized (for a while) events can be called
virtual events.

An event in General Relativity is the four-dimensional
point of the space-time V4 — the three-dimensional point,
which is expanded into a “thread”. This thread is the four-
dimensional trajectory of the event — the world-line. These
lines can be: 1) non-null (trajectories of mass-bearing parti-
cles, both real and imaginary); 2) null (trajectories of light-
like particles; in particular, photons). Interlacing of these
threads creates the “material of the space”. Because we as-
sume here fundamental interactions between the past, the
present, and the future, we must introduce a “medium”, which
realizes these interactions. We will consider in this paper only
null world-lines, i.e. we will study events of the “life of pho-
tons”.

It is evident that those particles, which realize the transfer
of energies between the future into the past, must penetrate
the singularity surface. As known, regular photons cannot
pass through the singularity surface, but this surface is pen-
etrable for zero-particles, introduced in [3]. These particles
exist in the generalized space-time Ṽ4, which is determined as
an immediate generalization of the Riemannian space-time V4
of General Relativity (both at the differential-geometric man-
ifold and sub-manifold levels): Ṽ4 = V4 ∪ Z, where Z is the
zero-space. Zero-particles have zero rest-mass m0, zero rel-
ativistic mass m, and non-zero gravitational-rotational mass
M, which is described in the Ṽ4 as

M =
m

1 − w + viui

c2

, ui =
dxi

dt
. (70)

The four-dimensional metric of Ṽ4 satisfies the condition
g = det |gαβ| ⩽ 0, i.e. it allows the versatile degeneration of
the metric. The manifold Ṽ4 is the ordinary space-time V4 by
g < 0 and it is the zero-space Z by g = 0. Zero-particles
transfer instantaneously (dτ = 0), from the viewpoint of a
real observer, along three-dimensional lines of null observ-
able length (dσ = 0), i.e. they are mediums for the long-
range-action. Zero-particles can be considered as the more
tenuous and thinner structures than the photon. The condi-
tion (5) takes for zero-particles the form dσ = dτ = 0.

The four-dimensional null wave vector Kα of the Ṽ4 can
be expressed both in the corpuscular form and in the wave
form

Kα =
ω

c
dxα

dσ
, Kα =

∂ψ

∂xα
, (71)

where ψ is the phase of the wave (the eikonal).
The physically observable characteristics of Kα are [3]

K0√
g00
= ±ω =

∗∂ψ

∂t
, Ki =

ω

c2

dxi

dτ
= −hik

∗∂ψ

∂xk , (72)
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where
∗∂

∂t
=

1
√
g00

∂

∂t
,

∗∂

∂xi =
1
√
g00

∂

∂xi +
vi

c2

∗∂

∂t

are the chr.-inv. operators of differentiation along the tempo-
ral and spatial coordinates, respectively [2]. The signs (+) and
(−) are related to the spaces possessing the direct and reverse
flow of time, respectively.

The wave form of the condition KαKα = 0 is the well-
known eikonal equation

gαβ
∂ψ

∂xα
∂ψ

∂xβ
= 0. (73)

Expressing (73) in terms of physically observable values, we
obtain

1
c2

( ∗∂ψ
∂t

)2

− hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0. (74)

The cyclic frequency of zero-particles is ω = 0, con-
sequently the equation (74) takes the form of the standing
wave [3]

hik
∗∂ψ

∂xi

∗∂ψ

∂xk = 0, (75)

which can certainly be interpreted as a hologram, i.e., a stand-
ing wave of the extended space-time. Thus the present, in
the sense of geometric optics, is a holographic picture per-
ceived by our consciousness as the material (real) world.

We conclude therefore that zero-particles are the medi-
ums of the long-range-action in the space of the present
— the boundary between the spaces of the future and the
past. Zero-particles can be considered as a result of the funda-
mental interaction between the photons themselves, moving
in time in the two above-mentioned opposite directions and
possessing certain cyclic frequencies of the opposite signs.
In other words, the standing wave can be interpreted as a re-
sult of the summarization of the two waves ψ+ and ψ−, di-
rected from the past to the future and from the future to the
past, respectively. Let photons, moving in the space of the
past, possess positive frequencies ω+, and photons moving in
the space of the future, possess negative frequencies ω−, re-
spectively. The interaction between the ψ-waves, oppositely
oriented in time, generates information, which is transmitted
instantaneously by means of zero-particles. This informa-
tion creates a hologram (the unique “reality” of the present
moment), which exists during the infinitely small interval of
time as well as after it is substituted by the next hologram.
By analogy, the perception of the continuity (and solidity) of
the present is due to the fact that the successive frames of a
movie are substituted very quickly.

We do not consider here the whole unique process of the
chain of sequential materializations: zero-particles → pho-
tons → mass-bearing particles, because this problem is very
difficult and impractical to be considered in further detail. We
introduce here instead the problem of observation of cosmic

objects. Consider the information which comes to us from
stars and galaxies in the form of light beams. Because the
cosmic objects are distant from us, we register the photons
later than they were first emitted. It means, the observer, reg-
istering the electromagnetic radiation of the source, studies
the past state of this cosmic object. This state corresponds
to the moment of radiation of the electromagnetic signal. The
information about the present state of the object can be ob-
tained by means of registration of zero-particles, emitted by
the source at the moment of observation. But the observer
does not perceive it, because he does not use corresponding
intermediary instruments. Contemporary astronomers use in-
struments, which can register only different ranges of electro-
magnetic radiation transferring at the light velocity.

6 Newtonian and non-Newtonian forces in the Universe

We have studied until now only non-Newtonian forces:
1) the force of attraction (13), created by the homoge-

neous liquid sphere (11);
2) the force of repulsion (37), created by the vacuum bub-

ble (30);
3) the values of these forces are proportional to the radial

coordinate r;
4) both forces are connected to the observable compo-

nents of the Riemann tensor by the correlation (29).
The metrics (11) and (30) describe the gravitational fields

created by the continuous bodies (bubbles). It is necessary
to note that the force of attraction (13) transforms into the
force of repulsion (37) as a result of the collapse of the liq-
uid bubble, and both forces are non-Newtonian. The force of
attraction (13) is created by the liquid sphere, which was ini-
tially introduced by Schwarzschild for the description of the
Sun. On the other hand, the Sun as an attracting body is de-
scribed by the well-known Schwarzschild metric of a single
mass (mass-point) in emptiness (Rαβ = 0) [8]. This metric
has the form

ds2 =

(
1−

rg
r

)
c2dt2− dr2

1−
rg
r

−r2(dθ2+ sin2 θdφ2),

rg =
2GM

c2

(76)

where rg is the gravitational (Hilbert) radius and M is the
mass of the gravitating mass-point.

The space-time (76) collapses by the condition r = rg, and
the surface r = rg is called the Schwarzschild surface. Be-
sides this, the space experiences breakage by the same condi-
tion. Thus the mass-point stops the time and breaks the space
by r = rg = rbr.

The metric (76) is applied for the description of the grav-
itational field of the Sun and the motion of the planets of the
Solar System. It allows the post-Newtonian approximation,
consequently it must include Newtonian gravitation. Let us
study in detail the physical and geometrical characteristics
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of the gravitational field of the mass-point in order to com-
pare the obtained results with the analogous results for the
metric (11), which describes the continuous body — a liquid
sphere. This approach allows us to determine the problem of
the connection between the local geometry of space-time and
the character of attractive forces therein.

We have obtained for the metric (11) that the radial non-
Newtonian force of attraction (13) is linked to the radial pro-
jection of the “curvature of time” (28) by the correlation (29).
As follows from (29), the force of attraction is due to the
positive curvature of time. Let us study the connection be-
tween the observable components of the Riemann tensor and
the gravitational inertial force for the space-time (76).

The reference space described by (76) does not rotate and
deform, but it gravitates. Calculating the gravitational inertial
force Fi by the formula Fi =

c2

c2−w
∂w
∂xi , we obtain

F1 = −
c2rg
2r2

1

1 −
rg
r

, F1 = −
c2rg
2r2 . (77)

Substituting into the expression for F1 the value rg =
2GM

c2 , we rewrite (77) in the form

F1 = −
GM
r2

1

1 − 2GM
c2r

, F1 = −GM
r2 . (78)

We see that the component F1 is the ordinary Newtonian
force of attraction. Calculating the observable components of
the Riemann tensor X11 by the formula (42), we find

X11 = −
c2rg
r3

1

1 −
rg
r

< 0. (79)

It follows from (78–79) the relation between the force of
attraction and the “curvature of time” in the radial direction:

F1 =
r
2

X11. (80)

The signs of F1 and X11 coincide in contrast to the anal-
ogous relation (29), which is satisfied for both the de Sit-
ter and Schwarzschild bubbles. It means that the Newto-
nian force of attraction is due to the “negative curvature of
time”. The point is that the Non-Newtonian and Newtonian
gravitational forces of attraction are originated by different
sources. As shown earlier, the non-Newtonian force of attrac-
tion is connected to the continuous body (the liquid sphere).
The Newtonian force is connected usually to the mass, which
is concentrated inside a small volume, so called a “ mass-
point” [8]. Meanwhile, it is evident that continuous bodies
possess the said Newtonian force, because they attract bod-
ies with smaller masses. Therefore, it is necessary to state
correctly the criterium, which will determine what kind of

cosmic bodies must be described as “continuous bodies” and
what kind — as “mass-points”.

The gravitational field of the mass-point is described by
the Schwarzschild metric (76), which includes Newtonian
gravitation (as well as the post-Newtonian approximation).
The motion of cosmic bodies, which move around the attract-
ing center (mass-point), is usually studied in either the frame-
work of Newtonian gravitation or that of the post-Newtonian
theory of gravitation. In the second case, the motion of cos-
mic objects is calculated in the Schwarzschild mass-point
field by the condition rg ≪ r. This condition means that the
Hilbert radius is very small in comparison to the distance be-
tween the attracting center and the object moving around the
center. This approach is applicable both to the Sun and to the
planets, asteroids, etc. On the other hand, continuous bodies
also possess gravitational attraction. In part, the gravitational
inertial force of attraction in the reference space of the ho-
mogeneous liquid sphere is described by (13). The question
now arises: what are the conditions, by which the Newtonian
force of attraction is the partial case of the non-Newtonian
force (13)?

It follows from (77–78) that the gravitational inertial force
coincides with the Newtonian force of attraction if rg ≪ r.
Because the Newtonian theory of gravitation is constructed in
the flat three-dimensional (Eucledian) space, we can assume
that the homogeneous gravitating mass M has the form

M = ρV, V =
4πa3ρ

3
, (81)

where V is the volume of the mass, a is its radius, ρ = const
is the density of mass. This assumption is admissible also
for any homogeneous sphere. Using (81), we can rewrite the
expression (13) in the form

F1 = −
c2rg
a3

r3 √
1 −

rg
a
−

√
1 −

rgr2

a3


√

1 −
rgr2

a3

. (82)

Let rg ≪ r ≦ a. Expressing the value
√

1 − rgr2

a3 into se-
ries, neglecting the members of the second kind and assum-

ing
√

1 − rg
a ≈ 1 − rg

2a , we obtain, after transformations, the
expression for the F1 in the form

F1 ≈ −
c2rgr
2a3 = −

GMr
a3 . (83)

If r = a, then (83) transforms into the expression for the
Newtonian force of attraction, created by the sphere of radius
a

F1 = −
GM
a2 . (84)

The expression (84) coincides completely with (78) by
rg ≪ r = a. Thus the Newtonian gravitational force is the
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partial case of the non-Newtonian force of gravitation (82) by
the condition rg ≪ r = a. But this fact does not mean that
we must use the Newtonian theory of gravitation for the de-
scription of the gravitational field of the single body, whose
Hilbert radius is small in comparison with its radius. The
point is that the application of the relativistic mass-point met-
ric (76) allows us to calculate the well-known effects (e.g. the
perihelion motion of Mercury, the gravitational shift of light
beams, the gravitational shift of spectral lines). It is possible
that many other effects, unknown until now, will be explained
by means of this metric.

We have studied until now only the case rg ≪ r = a. This
condition corresponds to a single body, whose Hilbert radius
rg is negligible in comparison with its geometrical radius a.
Consider now the case rg ≪ r, where the radial coordinate

r can possess any values. Then the value κρr2

3 =
rgr2

a3 is not
infinitely small for r ≫ a. It follows from (11) that the condi-
tion κρr2

3 = 1 is the condition of space breaking, consequently

the quantity rbr =
√

3
κρ

is the breaking radius. Using the ex-
pressions for the rg and rbr, we can rewrite (13) in the form

F1 = −
2GM
c2a3

r3
√

1 − 2GM
c2a

−
√

1 − r2

r2
br


√

1 − r2

r2
br

. (85)

The formula (85) describes the gravitational inertial force
of the liquid sphere, whose Hilbert radius is small in compar-
ison with the radius of the sphere ( rg

a ≪ 1) and the sphere of
space breaking r = rbr is outside the liquid sphere (rbr > a).
It follows from (85) that the force F1 → ∞ by r → rbr. It
is evident that the force (85) is the non-Newtonian force of
attraction, manifesting a curvature dicontinuity in the envi-
ronment.

The condition of space breaking was initially studied in
[6]. The Sun was introduced as a liquid homogeneous sphere.
It was shown that the Sun would break the surrounding space,
with the breaking radius rbr = 3.43×1013 cm = 2.3 AU (1 AU
= 1.49×1013 cm), where 1 AU is the distance between the Sun
and the Earth. Thus the breaking (curvature discontinuity) of
the Sun’s space is located inside the asteroid strip, i.e. outside
the gravitating body (the Sun). The Hilbert radius of the Sun
is rg = 2.9 × 105 cm, the proper radius being a = 6.95 ×
1010 cm. It is easy to calculate rg

a = 4.2 × 10−6 ≪ 1, and
rbr
a = 4.9 × 102. It is possible that this non-Newtonian force

creates the additional effect on the motion of the bodies in the
Solar System. In partial, those bodies, which recede from the
Sun in the radial direction, must possess additional negative
(directed to the Sun) acceleration.

Analogous calculations were realized for all the planets
of the Solar System [6]. It is important to note that the break-
ing spheres of the Earth, Mars, and Jupiter intersect with the
asteroid strip near the hypothetical planet Phaeton, according
to the Titus-Bode law at r = 2.8 AU. It is possible that the

breaking of the Solar System space by the Sun and the men-
tioned planets plays an important rôle in the very formation
of the Solar System itself. It means that not only the Sun,
but also other planets of the Solar System exert an effect on
the motion of different objects, including artificial satellites,
moving in the orthogonal direction with respect to the orbits
of planets. The additional non-Newtonian force of attraction
is proportional to the radial distance r, and the Newtonian
force decreases as 1

r2 . It means that the more distant the body
moves away from the center of attraction, the more apprecia-
ble the effect of the non-Newtonian part of the force is. It is
possible that the Pioneer anomaly can be explained by the ex-
istence of non-Newtonian forces: this effect is registered near
the boundary of the Solar System, because Newtonian attrac-
tion here decreases (with radial distance), and non-Newtonian
attraction increases.

Thus the gravitational field of a single mass, whose
Hilbert radius is considerably smaller than its radius, can be
described by the Schwarzschild mass-point metric (76) by
way of performing calculations of the orbital motions of the
test bodies. The analogical field must be described by the
metric of a continuous body (such as the simplest metric of
the homogeneous liquid sphere), i.e. if we consider the radial
motion of the moving test body.

Consider now a cosmic body whose Hilbert radius is com-
parable with its proper radius: rg ∼ a. A model of the observ-
able Universe whose whole radius matches the Hilbert radius
was first suggested by Stanyukovich [10]. He studied some
geometric properties of the liquid body in the state of gravita-
tional collapse, but he did not introduce the concrete metric.
Stanyukovich assumed that the space of the Universe was a
collapsar, whose Hilbert radius rg was equal to the distance
up to horizon of events a. According to this concept, the mass
of the Universe could be calculated by the formula M = ac2

2G .
Assuming a = 1.3×1028 cm (the maximal observed distance),
we should find M = 8.78 × 1055 g. This value coincides ap-
proximately with estimates obtained by way of other sorts of
reasoning.

The average value of the density of the liquid substance is
ρ = M

V . Calculating the value of the density of the mass-point
collapsar M = ac2

2G by the assumption V = 4πa3

3 , we obtain

ρ =
3c2

8πGa2 =
3H2

8πG
= 9.5 × 10−30 g

cm3 , H =
c
a
. (86)

This value corresponds to the range of values obtained
from observational data. Moreover, it corresponds to the the-
oretical value of the critical density ρcr by the condition H =
2.3 × 10−18 sec−1.

It is necessary to note that the critical density is deter-
mined in standard cosmology as the density of the Friedman
model (66), whose three-dimensional space is flat: k = 0. It is
evident that this space-time is not a collapsar, because the ob-
servable time τ coincides with the coordinate time t: dτ = dt,
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consequently g00 = 1. (Recall that the collapse condition is√
g00 = 0). Calculating the volume of the gravitational col-

lapsar by the formula V = 4πa3

3 , we have assumed in fact that
the space inside the collapsar is flat. Let us study this problem
in detail below.

Recall once again that Stanyukovich considered the Uni-
verse as the result of the collapse of the space-time (76), cre-
ated in emptiness by the mass-point, because he actually used
the Hilbert radius rg [10]. We have introduced in this paper
the collapse of a specific continuous body — a homogeneous
liquid sphere (liquid bubble). It follows from (12) that the
radius of the liquid sphere (11) in the collapse condition rc

equals its proper radius a and the breaking radius rbr, if

rc = a = rbr =

√
3
κρ
. (87)

Substituting into (87) κ = 8πG
c2 and ρ = 3M

4πa3 , we find, after
elementary transformations,

rc = a = rbr = rg =
2GM

c2 , (88)

where M is the mass of both the liquid and vacuum bubbles,
because the liquid bubble in the state of collapse is precisely
the vacuum bubble.

We have interpreted above that the liquid and vacuum
bubbles are the spaces of the future and the past, respectively.
This is partly how we geometrize the reality of time in terms
of its flows (successive states) and in a cosmological frame-
work. Then the space of the present must: 1) belong to these
states simultaneously; 2) be situated between the future and
past spaces. Of special interest, the singular surface r = a
(the event horizon) satisfies both conditions. Firstly, the event
horizon belongs to the gravitational and inflation collapsars;
secondly, it is between the future and the past, since the ob-
servable time at the surface of the collapsar is stopped.

Since the event horizon is the characteristic surface of
both the gravitational and inflation collapsars, it is simultane-
ously the surface of both the “white” and “black” holes. The
collapsing liquid bubble transforms instantaneously into the
de Sitter vacuum bubble — the inflation collapsar. Besides,
the space inside the inflation collapsar (the “white hole”) is
simultaneously also the space inside the gravitational collap-
sar (the “black hole”). The white and black holes possess the
generic surface r = a, which is simultaneously: 1) the radius
of the liquid sphere and its breaking radius; 2) the event hori-
zon itself and the radius of curvature of the vacuum bubble; 3)
the Hilbert radius of the whole mass-point, which equals both
the masses of the liquid and vacuum bubbles. The transfor-
mation of the liquid into the vacuum is accompanied by the
inversion of the observable time: the flow of time changes
the direction by way of transformation. Let us consider
the causes of this transformation in detail. The question is:

where, in the reality of time, is the mass M? The answer is:
the liquid and vacuum bubbles are reflections of one other,
where the mirror is the singular surface, therefore the mass
is in the very present state of time, i.e. at the singular sur-
face. Thus the materialization of the present (“reality”) is the
transfer of time flows through the said singularity.

Let us return for a moment to the “black-and-white”
model of the Universe. This object is the result of some trans-
formations: 1) the liquid substance transforms instantly into
the physical vacuum in the state of inflation; 2) the “curva-
ture of time” changes its sign; 3) the Non-Newtonian force of
attraction transforms into the force of repulsion. In fact, the
liquid sphere overturns itself in time. This overturning is sim-
ilar to the transfer of a time flow from one side of the Möbius
strip onto the other side where the respective time on each of
these sides flows in the opposite direction (compared to the
other). We know that the Möbius strip is a two-dimensional
one-sided surface which can be included (embedded) in three-
dimensional Eucledian space E3 (otherwise, it is generally
non-orientable).

It is possible to say, therefore, that the observable time
has three dimensions: the past, the present, the future. Time
is perceived by human consciousness as one-dimensional and
directed from the past to the future. Meanwhile, similar
events are repeated for different epochs, demonstrating that
the past and the future are mirror images of one other, where
the mirror is the present. But these events are not identical.
It is possible to say that the spaces of the past and the fu-
ture are created from “different cosmic substances”, which
depends on the time of creation of each space. Thus the past,
present, and future are the three dimensions of the temporal
volume, and these dimensions are different in principle. The
past contains the consequence of holograms — physically re-
alized (materialized) events. Besides, it also contains non-
realized events. The future is virtual, because it contains only
non-materialized events. Some events will be physically re-
alized, others will be virtual. Such materialized events create
the hologram (standing-wave picture) of the events, which is
perceived by human consciousness as the (present) “reality”.

As such, our Universe transforms the space of the future
through the singular surface (the present) into the space of
the past, consequently the following materialization is none
other than time transfer through the pertinent singularity —
the event horizon. This singular surface is the place of inter-
action of two opposite forces — attraction and repulsion. The
energy of physical vacuum creates the force of attraction, ap-
pearing as the “scattering of galaxies”. It can be called “radi-
ant energy”. The energy of compression, which is due to the
force of attraction, can be called “dark energy”. These two
types of energy are divided and connected at the same time
by said singular surface, which transforms the future into the
past. When the course of the future reaches an end, the radi-
ant energy will not develop, and the observable Universe will
be compressed into the state of initial singularity. The cos-
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mos will exist the way it does at present until it transforms all
the virtual realities of the future time (as it flows from the fu-
ture to the past). When this mechanism is exhausted, the ob-
servable Universe will compress itself into a Schwarzschild
black hole, namely the initial singularity. It is possible that
the mass of the singularity itself is the hypothetical “hidden
mass”, which exerts a definite effect on the motion of stars
and galaxies.

Let us now calculate the values rbr and rg for the Earth, the
Galaxy, and the observable Universe: see Table 1. Besides,
let us include into Table 1 the relative values rbr/a and rg/a
for the mentioned objects. It follows from the Table that the
physical-geometric properties of the Universe differ in princi-
ple from the analogous properties of other objects (the Earth,
the Sun, the Milky Way). In reality, only the Universe is si-
multaneously both a white hole and a black hole, because its
Hilbert radius rg equals the radius of the inflation collapsar
a. These values coincide completely with the radius of space
breaking in the curvature of time. It is possible to say that
the forces of attraction and repulsion in the cosmos are in the
state of equilibrium. It is evident that the observable Universe
must be described as a stretched meta-body filled with matter
(physical vacuum in the given case).

The other objects (the Earth, the Sun, the Milky Way)
contain black holes, whose Hilbert radiuses rg are very small
in comparison to their radiuses a. In addition, these objects
break the surrounding space, and the respective spheres of
spatial discontinuities are located out of the bodies (sources),
far away from them. Since the Hilbert radius rg ≪ a depends
only on the mass of the body, we will consider these bodies
as mass-points, for example, by studying test bodies motion
in their gravitational fields. But if we want to study this case
in detail, we must consider the sources as stretched bodies
filled with matter. This approach applied in [6] to the Solar
System allows us to study the coupling between them. It is
easily obtained from the formula (12), that the Earth, the Sun,
and the Galaxy cannot be “white holes”, since the value rc is
imaginary. Therefore, these objects include Hilbert “black
holes” inside their spaces, but the resepctive space breakings
are outside of them.

7 Conclusion

The seminal process of time-transfer transformation of the
future into the past has been considered in this paper. The
future and past spaces are introduced geometrically as two
telemetric spheres (bubbles), filled with ideal substances —
liquid vacuum and physical vacuum respectively. These bub-
bles are mirror reflections of each other, where the mirror is
the singular surface. It means that the transfer of time from
the future to the past is realized through the singular state —
the very space of the present. The singular surface is simul-
taneously the surface of both the gravitational and inflation
collapsar, which can be called the dual “black-white hole”.

Thus, the present is the result of the collapse of the future
space, where the singular surface (the present) is the event
horizon. The collapsar is in the state of equilibrium, because
the two oppositely directed forces equalize each other. They
are 1) the gravitational force of attraction; 2) the force of re-
pulsion, which can be called the “force of anti-gravitation”.
The present is stable, until these forces neutralize one other.
If the force of attraction is greater than the force of repulsion,
the event horizon approaches the observer in space-time: the
space of the observable Universe “compresses”. If the force
repulsion is greater than the force of attraction, the event hori-
zon recedes from the observer: the space of the Universe ob-
servable “expands”.

We have obtained that observable time flows in the oppo-
site directions inside the liquid and vacuum bubbles. As was
shown in [3], spaces with the opposite directions of time are
mirror reflections of each other. In essence, the very term the
“mirror space” is linked immediately to the “arrow of time”.
The widely accepted opinion is that the “arrow of time” can
be directed only from the past to the future. The mathemat-
ical apparatus of General Relativity does not prohibit the re-
verse flow of time, i.e. from the future to the past. Never-
theless the reverse flow of time is not introduced in contem-
porary physics and cosmology, because modern scientists re-
fer to Hans Reichenbach’s “arrow of time”, which is directed
always to the future [4]. However, Reichenbach stipulating
unidirectional time also implied a world process of evolution
(transfer of energy). In particular, in the geometric frame-
work of General Relativity, time can be stopped (as light can
also be frozen) or be directed to the past or the future. Setting
free cosmology from the unidirectional time concept gives us
a definite advantage as to introduce the pontentially revolu-
tionary Mirror Universe into General Relativity.

It is therefore more correct to introduce time as an ul-
timate kind of energy, although formally time is one of the
coordinates of the four-dimensional Riemannian manifold —
the space-time of General Relativity. But the three spatial
coordinates are measured by lines, while time is measured
by clocks, consequently space and time are two aspects of
the indivisible manifold — the space-time. Clearly speaking,
space-time can be considered as material (space), which is
filled with time (time-energy). Time-filled spaces exists only
in pseudo-Riemannian spaces, because the principal differ-
ence between coordinates exists, namely in spaces where the
basis vectors possess both real and imaginary lengths.

It is necessary to mention “rulers” of a special kind, which
are used in contemporary astronomy and cosmology, namely
light rays. Because light transfers at the finite velocity c, ob-
servation of electromagnetic radiation ensuing from cosmic
objects allows us to study only the past states of these ob-
jects. It is evident that the present states of these cosmic ob-
jects could be studied by means of instruments, which could
register a long-range action. The unfortunate negation of a
long-range action allows us to consider only the past states
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of the Universe. In reality, our telescopes perceive only those
light rays from stars and galaxies, emitted in the past. But if
we’d only virtually reflect on the very boundaries of the ob-
servable Universe, that the present exists simultaneously in
the whole space of the Universe, we might be able to build
a space-time apparatus capable of registering the momentary
(present) action of cosmic objects. (For example, such appa-
ratuses have been constructed and tested by Nikolai Kozyrev).
It is well-known that the consensual opinion exists that Gen-
eral Relativity prohibits a long-range action due to the “light
barrier”. This opinion is fundamentally incorrect: only the
typical human consciousness produces this imaginary barrier.
In fact, the mathematical apparatus of General Relativity al-
lows the existence of zero-particles possessed of instantenous
transfer. The rejection of the notion of the “light barrier” al-
lows us to construct, in principle, instruments for the registra-
tion of zero-particles.

All the innovative techniques in this paper are substan-
tially based on Riemannian geometry only. The usual imag-
inary prohibitions (e.g., the speed of light barrier) by way of
consensus in the field of General Relativity retard the devel-
opment of General Relativity and science as a whole on the
furthest horizon, which is a way to negate General Relativ-
ity as a whole. Clearly, those typical conditions restricting
Special Relativity (as in the usual particle physics) do not ul-
timately exist in General Relativity as a whole by way of the
vastness and versatility of the underlying Riemannian geom-
etry (in our extensive case as shown in [3], the basic Rie-
mannian geometry of General Relativity is extended at the
sub-manifold level by the presence of degenerate, generally
rotating zero-spaces and zero-particles). Meanwhile, in prin-
ciple, the fundamental elements of Riemannian geometry al-
low for the existence of both the long-range action and the
reverse flow of time: the long-range action is realized by
null-particles, while the reverse flow of time is due to grav-
itation and rotation. It is necessary to note that these results
are obtained by the condition that gravitation and rotation are
rather strong. Meanwhile, most specialists in General Rela-
tivity consider gravitation and rotation as weak factors. For
example, the gravitational potential w and the linear velocity
of rotation vi from the expression of dτ (3) are taken into ac-
count by the usual problem of the synchronization of clocks
as merely small corrections. Moreover, contemporary cos-
mologists assume that the reality of time of the Universe is
the same in the whole space (being limited usually by the
Hubble volume), since the observable time in the Friedman
cosmological model flows uniformly: dτ = dt. But, as shown
here, even using very simple non-rotating model of the gravi-
tating Universe (the de Sitter bubble) as a start, we have seen
that gravitation causes the accelerated extension of the space
of the Universe near the event horizon.

All that has been said above is similar to the observa-
tion of a thunderstorm: we first see a lightning flash, only
then the thunderpeal is registered by our ears. This is be-

cause light and sound travel at different speeds. A blind ob-
server will, however, perceive only the thunderpeal. More-
over, having not a visual connection to the source of this
sound (which is the lightning flash), he will be unable to
determine the distance to the lightning. (A normal, sighted
observer merely multiplies the sound speed in the air by the
duration between the observed lightning and the heard thun-
derpeal, thus calculating the distance to the lightning.) Most
astronomers may now be compared to the previous blind re-
searcher of the thunderstorm: the instruments they use in their
astronomical observations register only electromagnetic ra-
diations of different sorts (visible light, radio-waves, x-rays,
etc.), while all these radiations travel at the speed of light (in
vacuum) or even slower than light (if travelling in a medium);
their current instruments are not able to register real cosmic
signals which are faster than light. In other words, those
astronomers merely focus on the registration of the “short-
range action” (transferred by photons, in particular). They
do not take the possibility of the “long-range action” (in-
stantaneous geometric interactions) into account. The key
role in this primitive approach is played by the psychologi-
cal wall erected against superluminal (and instantaneous) in-
teractions. There is an easily popular bias that this prohibi-
tion is due to Einstein, whose prior postulate of the Special
Theory of Relativity stipulated that signals travelling faster
than light was practically impossible. This is, however, not
true in the bigger picture. Einstein claimed this postulate
in his early “positivistic” publication prior to General Rel-
ativity, in the framework of his theory of observable phe-
nomena registered by means of signals of light: superlumi-
nal (and instant) signals were naturally out-of-access for such
an observer. However, the geometric (if not hypergeometric)
structure of the four-dimensional pseudo-Riemannian space
(which is the basic space-time of Einstein’s General Theory
of Relativity, being geometrically more complete, vast, and
versatile in comparison to the Special Theory of Relativity)
allows more diverse paths along which particles (signals) of
different kinds may travel. For instance, particles bearing
non-zero rest-mass/energy inhabit the sub-light speed region
of the space-time (located “inside” the light cone); mean-
while, particles bearing imaginary masses and energies in-
habit the superluminal space-time region (located “outside”
the light cone); subsequently, there exist light-like particles
bearing zero rest-mass (they are always in motion), while
their relativistic masses and energies (“kinetic” masses and
energies of motion) are non-zero, as they travel along space-
time trajectories located along the light cone. There are also
the so-called “zero-particles”: they are the ultimate case of
light-like particles, and travel along the fully degenerate light-
like trajectories which seem to have zero length and duration
to an external observer; as a result zero-particles seem to be
travelled instantaneously, thus transferring long-range action
such as that in the case of the geometric non-quantum tele-
portation as shown in [3].
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Object Mass, gram Proper radius, cm Density, g/cm3 Space breaking
radius, cm

Hilbert radius, cm rg/a rbr/a

Earth 5.97 × 1027 6.38 × 108 5.52 1.64 × 1013 0.88 1.4 × 10−9 2.6 × 104

Sun 1.98 × 1033 6.95 × 1010 1.41 3.43 × 1013 2.9 × 105 4.2 × 10−6 4.9 × 102

Milky Way 6.0 × 1045 4.5 × 1022 6.58 × 10−23 4.95 × 1025 8.9 × 1017 2.0 × 10−5 1.1 × 103

Universe 8.8 × 1055 1.3 × 1028 9.5 × 10−30 1.3 × 1028 1.3 × 1028 1.0 1.0

A real observing human whose body is made of regular
substance such as atoms and molecules cannot travel at the
speed of light. At the same time, he perceives light by his
physical organs and the other (artificial) instruments of obser-
vation: there is not a barrier dividing him and light. In anal-
ogy to this case, instruments registering zero-particles (which
seem to be travelling instantaneously) may be invented. All
that the innovative engineers need to do it is set themselves
free of the psychological prohibition and limitation in travel-
ing at the light speed, as to be professionally equipped with
the full extent of the General Theory of Relativity which has
already theoretically predicted zero-particles carrying the
long-range action (geometric non-quantum teleportation).

Again, there are unfortunately many popular biases about
Einstein’s General Theory of Relativity. Most of them
originated in the non-technically equipped reporters of pop-
science, or the pop-science authors themselves whose knowl-
edge in this field is limited with those “first-grade” rudimen-
tary textbooks on the the Theory of Relativity. Such books
present Einstein’s theory rather very shallowly, paying atten-
tion to mostly the native examples based on Einstein’s early
postulates revolving around his theory of exchanging light
signals. The greater true meaning of Einstein’s theory — the
deeper picture of space-time geometry as the basis of all the
physical world — is regularly out-of-scope in such books due
to the psychological threshold of the need to master Rieman-
nian geometry and tensor calculus at a certain great level of
mathematical and physical depth (which is not a trivial task
for a beginner and indeed most would-be specialists, with the
exception of very few gifted and versatile ones). As a re-
sult, we have such a popular bias (not based on geometry)
as the above-mentioned aforementioned myth about the in-
surpassable nature of the light speed limit, and also the myth
about the irreversibility of the arrow of time (which naturally
depends on the physical conditions of observation in differ-
ent space-time regions). There is also another myth saying
that the General Theory of Relativity can result in only small
corrections to Classical Mechanics and Electrodynamics (this
is not true on cosmological scales where the effects of Gen-
eral Relativity greatly rule), and many other biases concern-
ing Einstein’s theory.

Setting ourselves free from these popular, primitive, anti-
progressive biases, and following the deeper versatile trajec-
tory (geometry) of the theory of space-time-matter estab-
lished by Albert Einstein, no doubt certain researchers could

arrive at new instruments of observation based on the geo-
metric resurgence of the long-range action (in parallel with
certain gravitational and gauge field instantons of the Pleban-
ski type). These new developments, based on completely dif-
ferent principles than the usual electromagnetic interactions,
could lead to certain cosmic engines allowing for (geomet-
ric) non-quantum teleportation, as well as other new exotic
technologies in order to carry the human species to an un-
precedented Golden Age in the cosmos.
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Gravity dominated Universe until it was 3.214 Gyr old and, after that, dark energy dom-
inates leading to an eternal expansion, no matter if the Universe is closed, flat or open.
That is the prediction of the expansion factor recently proposed by Silva [2]. It is also
shown that there is an upper limit for the size of the Observable Universe relative radial
comoving coordinate, beyond which nothing is observed by our fundamental observer,
on Earth. Our Observable Universe may be only a tiny portion of a much bigger Uni-
verse most of it unobservable to us. This leads to the idea that an endless number of
other fundamental observers may live on equal number of Observable Universes similar
to ours. An unique Big Bang originated an unique Universe, only part of it observable
to us.

1 Introduction

Since 1929, with Hubble [1], we learned that our Observ-
able Universe has been continuously expanding. Nearly all
galaxies are moving away from us, the further they are, the
faster they move away. If the galaxies are moving apart to-
day, they certainly were closer together when the Universe
was younger. This led to the idea of the Big Bang theory,
which is the most accepted theory for the explanation on how
the Universe began. According to it, all started from a phys-
ical singularity where all Universe matter-energy-space were
extremely concentrated with temperature well above 1032 K,
when a cataclismic expansion ocurred and the size of it went
from a Planck’s length to some Gigayears (Gyrs) in an ex-
tremely tiny fraction of a second.

According to the theory, as the Universe cooled, the first
building blocks of matter, quarks and electrons, were formed,
followed by the production of protons and neutrons. In min-
utes protons and neutrons aggregated to produce nuclei.

Around 380,000 years after the Big Bang, there was the
so called recombination era in which matter cooled enough
to allow formation of atoms transforming the Universe into a
transparent eletrically neutral gas. The first photons that man-
aged to be traveling freely through the Universe constitute the
so called Cosmic Microwave Background (CMB) which are
detected today. This “afterglow light” study is very important
because they show how was the the Primeval Universe. Next
step is the formation of the structure which gave rise to the
astronomical objects [4–10].

Today the Universe keeps expanding, but since 1998 we
learned that it has a positive acceleration rate. This indicates
that there is something overcoming the gravity and that has
been called dark energy. A completely characterization of the
dark energy is not done yet. Most researchers think it comes
from the vacuum.

In previous papers [2, 3], we have succeeded in obtaining
an expression for the Universe scale factor or the Universe

expansion factor as you may well call it too:

a(t) = exp
H0T0

β

( t
T0

)β
− 1

 ,
β = 1 + H0T0

(
−1

2
Ωm(T0) + ΩΛ(T0) − 1

) (1)

and H0 is the so called Hubble constant, the value of the Hub-
ble parameter H(t) at t = T0, the current age of the Universe.
Expression (1) is supposed to be describing the expansion of
the Universe from the beginning of the so called matter era
(t ≈ 10−4 Gyr, after the Big Bang). Right before that the
Universe went through the so called radiation era. Only the
role of the matter (baryonic and non-baryonic) and the dark
energy, both treated as perfect fluids are considered. In our
work the dark energy was associated to an a priori time de-
pendent Λ(t) (cosmological “constant”).

Figure 1 shows the expansion factor a(t) as function of
the Universe age. In Figure 2 the behaviour of the expansion
factor acceleration, ä(t), is reproduced. Before t = T⋆ =
3.214 Gyr, acceleration was negative, and after that, acceler-
ation is positive. To perform the numerical calculations we

Fig. 1: a(t) = exp
(

H0T0
β

((
t

T0

)β
− 1

))
.
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Fig. 2: ä(t) = a(t)
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have used the following values [11]:

H0 = 69.32 kms−1Mpc−1

= 0.0709 Gyr−1,
T0 = 13.772 Gyr,

Ωm(T0) = 0.2865,
ΩΛ(T0) = 0.7135.

(2)

In reference [2], some properties such as Gaussian curva-
ture K(t), Ricci scalar curvature R(t), matter and dark energy
density parameters (Ωm,Ωλ), matter and dark energy densi-
ties (ρm, ρλ), were calculated and plotted against the age of
the Universe, for k = +1, 0,−1. It was found that the cur-
rent curvature radiusℜ(T0) has to be larger than 100 Gly, for
k = ±1. Obviously, for k = 0, ℜ = ∞. So, arbitrarily [2],
we have chosenℜ(T0) = 102 Gly. None of the results were
sufficient to decide which value of k is more appropriate for
the Universe. The bigger the radius of curvature, the less we
can distinguish which should be the right k among the three
possible values. Considering that, we pick the most intuitive
geometry, at least in our view, we work here with the closed
Universe version.

2 Closed Universe

The closed Universe Friedmann - Lemaitre - Robertson -
Walker (FLRW) spacetime metric is given by [4–10]:

ds2 = ℜ2 (t)
(
dψ2+ sin2 ψ

(
dθ2+ sin2 θdϕ2

))
−c2dt2

= ℜ2 (T0) a2 (t)
(
dψ2+ sin2 ψ

(
dθ2+ sin2 θdϕ2

))
− c2dt2,

(3)

where ψ, θ and ϕ are comoving space coordinates (0 ≤ ψ ≤
π, 0 ≤ θ ≤ π and, 0 ≤ ϕ ≤ 2π), t is the time shown by
any observer clock in the comoving system. ℜ(t) is the scale
factor in units of distance; actually it is radius of curvature of
the Universe as already said in previous section. The time t is

also known as the cosmic time. The function a(t) is the usual
expansion factor

a(t) =
ℜ(t)
ℜ(T0)

, (4)

here assumed to be that of Equation 1.
The FLRW metric embodies the so called Cosmological

Principle which says that the Universe is spatially homoge-
neous and isotropic in suficient large scales.

We have to set that our “fundamental” observer (on Earth)
occupies the ψ = 0 position in the comoving reference sys-
tem. To reach him(her) at cosmic time T , the CMB photons
spend time T since their emission at time t ≈ 380, 000 yr,
after the Big Bang, at a specific value of the comoving co-
ordinate ψ. Let us call ψT this specific value of ψ. We are
admitting that the emission of the CMB photons occured si-
multaneously for all possible values of ψ. Although that hap-
pened at t ≈ 380, 000 yr, for purposes of integrations ahead it
is assumed to be t ≈ 0 with no considerable loss.

Having said that, we can write, for the trajectory followed
by a CMB photon (ds2 = 0, dϕ = dθ = 0), the following:

− cdt
ℜ(t)

= dψ, (5)

−
∫ T

0

c
ℜ(t)

dt =
∫ 0

ψT

dψ, (6)

ψT =
c

ℜ(T0)

∫ T

0

1
a(t)

dt, (7)

The events (ψ = 0, t = T ) and (ψ = ψT , t = 0) are con-
nected by a null geodesics. The first event is relative to the
fundamental Observer, while the second event refers to the
emission of the CMB photons at t ≈ 0 as explained above.
ψT gets bigger as T increases which means that the older the
Universe gets, the further the referred Observer sees from the
CMB.

The comoving coordinate which corresponds to the cur-
rent “edge” (horizon) of our Observable Universe is

ψT0 =
c

ℜ(T0)

∫ T0

0

1
a(t)

dt

=
c

ℜ(T0)

∫ T0

0
exp

H0T0

β

1 − (
t

T0

)β dt

= 0.275 Radians = 15.7 Degrees.

(8)

where, again, ℜ(T0) is assumed to be 102 Gly for the rea-
son exposed in reference [2] (ℜ(T0) > 100 Gly). Very much
probablyℜ(T0) should be much greater than that. The value
of the current curvature radius is crucial in the sense of deter-
mining the coordinate ψT0 .

So CMB photons emitted at ψT0 and t = 0 should ar-
rive at ψ = 0 and t = T0, the current age. Along their
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Fig. 3: The null geodesics connecting two events: (ψT0 , t ≈ 0) and
(ψ = 0, t = T0); (ψ2T0 , t ≈ 0) and (ψ = 0, t = 2T0). The null
geodesic between (ψ∞ = 1.697 ψT0 , t ≈ 0) and (ψ = 0, t = ∞) will
never be accomplished. ℜ(T ) is radius of curvature at age T .

whole trajectory, other photons emitted, at later times, by as-
tronomical objects that lie on the way, join the troop before
reaching the fundamental observer. So he(she) while look-
ing outwards deep into the sky, may see all the information
’collected’ along the trajectory of primordial CMB photons.
Other photons emitted at the same time t ≈ 0, at a comoving
position ψ > ψT0 will reach ψ = 0 at t > T0, together with
the other photons provenient from astronomical objects along
the way. As the Universe gets older, its “edge” becomes more
distant and its size gets bigger. See Figure 3.

The current value for ψT0 should actually be smaller than
0.275 Radians, because, as we said above, ℜ(T0) should be
greater than the assumed value (102 Gly).

To get rid of such dependence on ℜ(T0), we find conve-
nient to work with the ratio r

r ≡ ψ

ψT0

, (9)

which we shall call the relative radial comoving coordinate.

Fig. 4: rT =
∫ T

0
1

a(t) dt
/ ∫ T0

0
1

a(t) dt. The relative radial comoving
coordinate rT , from which CMB photons leave, at (t ≈ 0), and reach
relative comoving coordinate r = 0 at age t = T gives the relative
position of the “edge” of the Observable Universe (rT→∞ → 1.697).
(Axes were switched.)

Obviously, at age T , rT is the relative measure of the
“edge” position with respect to the fundamental observer
(ψ = 0)

rT =

∫ T

0

1
a(t)

dt
/ ∫ T0

0

1
a(t)

dt, (10)

and rT0 = 1. For a plot of rT see Figure 4.

3 Observable Universes

One question that should come out of the mind of the funda-
mental observer is: “Is there a maximum value for the relative
comoving coordinate r?” What would be the value of r∞?

By calculating r∞, we get

r∞ =
∫ ∞

0

1
a (t)

dt
/ ∫ T0

0

1
a (t)

dt = 1.697. (11)

To our fundamental observer (Earth), there is an upper
limit for the relative comoving coordinate r = r∞ = 1.697,
beyond that no astronomical object can ever be seen by such
fundamental observer.

This should raise a very interesting point under consider-
ation.

Any other fundamental observer placed at a relative co-
moving coordinate r > 2r∞ (ψ > 2ψ∞), with respect to ours,
will never be able to see what is meant to be our Observable
Universe. He (she) will be in the middle of another visible
portion of the same whole Universe; He (she) will be think-
ing that he (she) lives in an Observable Universe, just like
ours. Everything we have been debating here should equally
be applicable to such an ’other’ Observable Universe.

The maximum possible value of ψ is π (Equation 3), then
the maximum value of r should be at least 11.43. Just re-
call that r = 1 when ψ = ψT0 . This ψT0 was overevalu-
ated as being 0.275 Radians = 15.7 Degrees, in equation (8)

78 Nilton Penha Silva. A Single Big Bang and Innumerable Similar Finite Observable Universes



Issue 2 (April) PROGRESS IN PHYSICS Volume 13 (2017)

Fig. 5: This illustration tries to show schematically a hypersurface
at time T with our Observable Universe surrounded by other similar
Observable Universes, arbitrarily positioned, some of them overlap-
ping.

when considering the current radius of curvature asℜ(T0) =
102 Gly. As found in reference [2] ℜ(T0) should be big-
ger than that, not smaller. Consequently the real ψT0 should
be smaller than 0.275 Radians = 15.7 Degrees, not bigger.
One direct consequence of this is that there is room for the
ocurrence of a large number of isolated similar Observable
Universes just like ours.

We may say that the Big Bang gave birth to a large Uni-
verse, of which our current Observable Universe is part, per-
haps a tiny part. The rest is unobservable to us and an end-
less number of portions just the size of our Observable Uni-
verse certainly exist, each one with their fundamental ob-
server, very much probably discussing the same Physics as
us.

Of course, we have to consider also the cases of overlap-
ping Observable Universes.

One important thing is that we are talking about one Uni-
verse, originated from one Big Bang, which is not observ-
able as a whole, and that may contain many other Observ-
able Universes similar to ours. Would it be a Multiverse?
See Figure 5.

4 Conclusion

The expansion factor a(t) = exp
(

H0T0
β

((
t

T0

)β − 1
))

, where

β = 1+H0T0

(
− 1

2Ωm(T0) + ΩΛ(T0) − 1
)
= 0.5804 [2], is ap-

plied to our Universe, here treated as being closed (k = +1).
Some very interesting conclusions were drawn. One of them
is that the radial relative comoving coordinate r, measured
from the fundamental observer, r = 0 (on Earth), to the
“edge” (horizon) of our Observable Universe has an upper
limit. We found that r → 1.697 when T → ∞. Therefore all
astronomical objects which lie beyond such limit would never
be observed by our fundamental observer (r = 0). On the
other hand any other fundamental observer that might exist at
r > 2 × 1.697 would be in the middle of another Observable

Universe, just like ours; he (she) would never be able to ob-
serve our Universe. Perhaps he (she) might be thinking that
his (her) Observable Universe is the only one to exist. An
endless number of other fundamental observers and an equal
number of Observable Universes similar to ours may clearly
exist. Situations in which overlapping Universes should exist
too. See Figure 5.

The fact is that the Big Bang originated a big Universe.
A tiny portion of that is what we call our Observable Uni-
verse. The rest is unobservable to our fundamental observer
(Earth). Equal portions of the rest may be called also Observ-
able Universes by each of their fundamental observers if they
exist. So we may speak about many Observable Universes - a
Multiverse - or about only one Universe, a small part of it is
observable to the fundamental observer.

By using the expansion factor here discussed we have also
succeeded in finding a generalization of Hubble’s Law, which
may be found in reference [13].

The expansion factor, Equation 1, proposed in reference
[2] has been shown to be a very good candidate to be describ-
ing the expansion of the Universe.
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The present study is an investigation of stellar physics based on observables such as
mass, luminosity, radius, and photosphere temperature. We collected a dataset of these
characteristics for 360 stars, and diagramed the relationships between their characteris-
tics and their type (white dwarf, red dwarf, main sequence star, giant, supergiant, hyper-
giant, Wolf-Rayet, carbon star, etc.). For stars dominated by radiation pressure in the
photosphere which follow the Eddington luminosity, we computed the opacity and cross
section to photon flux per hydrogen nuclei in the photosphere. We considered the Sun
as an example of star dominated by gas pressure in the photosphere, and estimated the
density of the solar photosphere using limb darkening and assuming the adiabatic gradi-
ent of a monoatomic gas. We then estimated the cross section per hydrogen nuclei in the
plasma of the solar photosphere, which we found to be about 2.66 × 10−28 m2, whereas
the cross section of neutral hydrogen as given by the Bohr model is 8.82 × 10−21 m2.
This result suggests that the electrons and protons in the plasma are virtually detached.
Hence, a hydrogen plasma may be represented as a gas mixture of electrons and pro-
tons. If the stellar photosphere was made of large hydrogen atoms or ions such as the
ones we find in gases, its surface would evaporate due to the high temperatures.

1 Introduction

The present study is an investigation of stellar physics based
on characteristics such as mass, luminosity, radius, and pho-
tosphere temperature. We analysed a set of 360 stars for
which we collected available data from the literature. The set
included white dwarfs, red dwarfs, main sequence stars, gi-
ant stars, Wolf-Rayet stars, carbon stars, etc. Let us introduce
the basics to get a sense of how stars regulate fusion reactions
and the basic principles of stellar dynamics.

We can easily infer that stellar equilibrium is driven by
hydrostatic pressure. The internal pressure of a star is de-
termined by the radiation pressure and gas pressure, which
counterbalance the hydrostatatic pressure from gravitation
and prevent the star from collapsing. Radiation pressure and
gas pressure are temperature dependent. When a star cools, it
experiences a drop in internal pressure that causes the star to
contract. This contraction will cause an increase in the hydro-
static pressure within the star. The gravitational force exerted
by the inner mass of the star on a particule at a given radius
is Fg =

GMrmp

r2 , where r is the radius, Mr the interior mass of
the star up to radius r, mp the mass of the particule, and G the
gravitational constant. Therefore, the more the star contracts,
the higher the hydrostatic pressure. The increase in hydro-
static pressure increases the rate of fusion, which produces
excess heat. In return, this excess heat increases the gas and
radiation pressure in the star causing the star to expand. This
process repeats until the star reaches a certain equilibrium.

Nuclear fusion, therefore, is driven by the hydrostatic
pressure in stars. There are three possible mechanisms by
which hydrostatic pressure could affect the fusion power of
stars:

• Assuming that a minimum pressure or temperature is

required to sustain fusion, the volume of the fusing
core increases as hydrostatic pressure increases. Ac-
cording to the Arrhenius equation, reaction kinetics are
highly dependent on temperature. Note that the Ar-
rhenius equation assumes the Maxwell-Boltzmann dis-
tribution, and the relationship would be different for a
Fermi gas.

• The density in the core of the star increases as hydro-
static pressure increases. Hence, a larger quantity of
matter would be subject to fusion in the core of the star.

• The kinetic rate of fusion (i.e. the reaction rate or
speed) may increase as pressure increases.

These are the mechanisms we propose regulate a star. In
some instances the volume and luminosity of the star oscil-
lates. These are the so-called variable stars. A notable ex-
ample of variable stars are the Cepheid variables. They are
known for a method to measure distances based on the period
of their oscillation. As there is a relationship between the
period of the star’s oscillations and its luminosity, one can in-
fer the intrinsic luminosity and compute the distance. Several
different theories explain the oscillations of variable stars. We
enumerate some possible mechanisms below:

• The κ-mechanism or Eddington valve is the most popu-
lar theory explaining variable Cepheids [1]. According
to this theory, doubly ionized helium is more opaque
than single ionized helium. As helium in the star heats,
it becomes more ionized and less transparent so that
the heat is retained longer. As the star expands, it cools
and its helium becomes less ionized and hence more
transparent, allowing the heat to escape. Then the star
contracts again and the process repeats.
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• Another mechanism would be a change in the regime of
the fusion reactions for certain thresholds in the hydro-
static pressure of the star. For example, fusion of heav-
ier elements in the core of large stars could ignite at a
certain temperature threshold and produce large tem-
perature spikes causing the star to oscillate. This the-
ory would be applicable to massive stars where fusion
of heavy elements in the core occurs.

• The ageing model of the core could also explain vari-
able stars. Let us consider a star fusing hydrogen into
helium when the star has too low a mass to ignite he-
lium fusion. As the star ages, the helium core grows,
and the shell of fusing hydrogen around the core thins.
Let us say the hydrogen shell heats the core, making
it expand and push the hydrogen shell to the exterior;
the temperature of the shell would fall below the igni-
tion point, and switch off hydrogen fusion. Then the
core would cool, returning the hydrogen shell to the ig-
nition point and switching hydrogen fusion on again.
This pattern would repeat in cycles. This theory would
apply to stars with small cores and explain the type II
Cepheids, which have about half the mass of the Sun
and therefore are not massive enough to fuse helium.

• Temperature driven kinetics for fusion reactions may
also induce stellar oscillations. If the kinetic rate of
fusion increases as temperature increases, a small in-
crease in temperature at the core would cause large
temperature spikes. Then the star would expand over
a long period of time before cooling and contracting
again. Note that this process would cause stars to be
unstable. The fact that the Sun is stable with very low
oscillations of order 0.1 % of its luminosity would be
a counter example of temperature driven fusion kinet-
ics, unless the sensitivity of the fusion-kinetic rate with
respect to temperature is very small.

When a star has exhausted the nuclear supply at its core,
it will cool. This will eventually trigger a gravitational col-
lapse. When the star contracts, the depleted nuclear fusion at
its core would not be able to counterbalance the hydrostatic
pressure. As the radius of the star diminishes, the gravita-
tional force acting on the particles of the star increases pro-
portionally to 1

r2 . The gravitational collapse of the star can
lead to the formation of a black hole on one extreme or a su-
pernova at the other. The latter occurs if at a certain point
during the collapse the pressure is so high that it triggers fu-
sion reactions in series at a very fast rate, causing the star
to explode and leading to the formation of up to the heaviest
elements of the Mendeleev table such as uranium. A black
hole would form if fusion does not halt the gravitational col-
lapse. In some instances gravitational collapse stops before
the formation of a black hole, producing a neutron star or
white dwarf. These are intermediary stages before the forma-
tion of a black hole. White dwarfs are less dense than neutron

stars, at an earlier stage of matter compression than neutron
stars. Neutron stars are composed of neutronium, a compact
pack of neutrons, and have densities around 4 × 1017 kg/m3.
White dwarfs have densities around 107 to 1010 kg/m3. Elec-
tron degeneracy pressure is the mechanism which supposedly
prevents the further collapse of white dwarfs. Degeneracy of
matter from gravitational collapse starts at the core of the star.
Sometimes the core of the star collapses into a neutron star or
a black hole while the outer shell of the star explodes into a
supernova. Red giants of masses comparable to the Sun gen-
erally blow out their outer layer at the end of their life to form
planetary nebulae, leaving a white dwarf in the core.

We find that stellar photosphere dynamics are crucial in
the determination of the power of stars as measured by their
luminosity. We cannot miss the notable work of Arthur Ed-
dington on the dynamics of stars dominated by radiation pres-
sure in the photosphere, according to which, the luminosity of
such stars is proportional to their mass. Using data from stars
dominated by radiation pressure in their photosphere, we can
estimate the opacity parameter. We also discuss models and
factors which may affect opacity, as this is a preponderant pa-
rameter for radiative heat transfer, a key component of stellar
models. For stellar models we also need boundary condi-
tions such as the density of the photosphere. We show how
to estimate the density of the solar photosphere using limb
darkening. According to the standard solar model, there is a
layer at the surface of the Sun where radiative heat transfer
is not efficient enough and convection takes place. The pho-
tosphere can be viewed as a plasma surface; hence using a
model of the surface we can compute the cross section per
hydrogen nuclei in the photosphere. We computed the cross
section per hydrogen nuclei from radiation pressure and gas
pressure, and found that both values match closely. From the
cross section per hydrogen nuclei we obtained, we can infer
that in stellar plasma the electrons and nuclei are virually de-
tached. Therefore, stellar plasma may be represented as a gas
mixture of electrons and nuclei. We discuss the modelling
implications of this representation of stellar plasma.

2 Overview of stellar data

Stars form a very heterogeneous group having various lumi-
nosities, masses, temperatures, and densitities. In the below
diagrams we show the relationships between these character-
istics for the stars in our catalog. In section 2.1 we introduce
the classification of stars we used for the diagrams. Section
2.2 shows the stellar diagrams we obtained with a emphasise
on their interpretation.

2.1 Classification of stars

Stars can be classified according to their spectra, color, and
size. Stellar spectra provide precious information about their
atmospheric composition by analyzing their spectral lines,
and surface temperature from Planck’s law of black-body
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spectrum. We divided the stars in our catalog according to the
below groups:

• White dwarfs are degenerated stars which are very
dense and composed mostly of electron-degenerate
matter. They have masses comparable to that of the
Sun, volumes comparable to that of Earth, and are very
faint. Some white dwarfs are classified as helium stars
as they have very strong helium lines and weak hydro-
gen lines [2].

• Brown dwarfs have masses comprised in the range of
13 to 80 Jupiter masses. Their mass is below the thresh-
old needed to fuse hydrogen, but enough to fuse deu-
terium.

• Red dwarfs have masses in the range of 0.075 to 0.6 so-
lar masses, and surface temperatures below 4,000 K. A
count the stars nearest to earth, it was estimated that red
dwarfs comprise about 80% of the stars in the Milky
Way.

• Yellow dwarfs are main-sequence stars of comparable
mass to the Sun, with a surface temperature between
5,300 and 6,000 K. We created a broader group that we
called yellow main sequence stars to include all stars
with masses between 0.6 and 1.7 solar masses, and a
temperature between 4,200 and 7,200 K.

• A-type stars are main-sequence stars of spectral type A
of 1.4 to 2.1 solar masses, and a surface temperature
between 7,600 and 11,500 K. Their spectra have strong
hydrogen Balmer absorption lines.

• B-type stars are main-sequence stars of 2 to 16 solar
masses, and a surface temperature between 10,000 and
30,000 K. Their spectra have non-ionized helium lines.

• Subgiants are stars at an intermediary stage of evolu-
tion before becoming giants. These stars are brighter
than main-sequence stars but not as bright as giants.

• Red giants are evolved stars of 0.8 to 8 solar masses
which have exhausted the hydrogen supply in their core
and are fusing helium into carbon. They have high lu-
minosities compared to their main-sequence peers, and
inflated atmospheres making their radii large, resulting
in low surface temperatures between 3,200 and 4,000
K. Orange giants are distinguished from red giants by
their temperature, which ranges from 4,000 to 5,500 K.

• Carbon stars are red giants whose atmosphere contains
more carbon than oxygen.

• S-type stars are giant stars with approximately equal
quantities of carbon and oxygen. These are intermedi-
aries between giants and carbon stars.

• Blue giants are hot giant stars with masses in the range
of ten to hundreds of solar masses, and surface temper-
atures between 22,000 and 45,000 K.

• Supergiants are stars with luminosities between those
of the giants and hypergiants on the Hertzsprung-Rus-
sell diagram. They are divided into red supergiants,
orange supergiants, and blue supergiants according to
their surface temperatures. The red ones have surface
temperatures between 3,200 and 4,000 K, the orange
ones between 4,000 and 7,000 K, and the blue ones
between 7,000 and 50,000 K.

• Hypergiants are stars with tremendous luminosities on
the high end of the Hertzsprung-Russell diagram. They
are divided into red hypergiants, yellow hypergiants,
and blue hypergiants according to their surface temper-
atures. The temperature ranges are the same as for su-
pergiants with the yellow group replacing the orange
stars of the supergiant category.

• Wolf-Rayet stars are evolved massive stars which are
fusing helium or heavier elements in the core. They
have spectra showing broad emission lines of highly
ionized helium and nitrogen or carbon. Most Wolf-
Rayet stars have lost their outer hydrogen and have
an atmosphere predominantly made of helium. Their
surface temperature ranges between 30,000 and
200,000 K. A subgroup of Wolf-Rayet stars referred
to as WO stars have strong oxygen emission lines, in-
dicating the star is on the oxygen sequence.

2.2 Stellar diagrams

In the current section we display several diagrams showing
the relationship among the characteristics of stars along with
their classification. Figure 1 shows the relationship between
the luminosity and mass of stars, Figure 2 the relationship
between the volume and the luminosity of stars, and Figure
3 the relationship between the average density of stars and
temperature of the photosphere.

Figure 1 shows that red giants are much more luminous
than their main-sequence star counterparts for the same mass.
As red giants are evolved stars which fuse helium in the core,
we can infer that the fusion of helium into carbon is much
more exothermic than the fusion of hydrogen into helium.
Red giants are also less dense than their main-sequence coun-
terparts, meaning that helium fusion occurs in a domain at
lower pressure than hydrogen fusion and produces more heat.
In Figure 2, we see that main sequence stars expand when
shifting on the helium burning sequence to form red giants,
and contract when shifting from the main-sequence branch to
Wolf Rayet stars. For Wolf-Rayet stars which fuse helium
or heavier elements in the core, fusion occurs in a domain at
higher pressure than their counterparts. This is especially pro-
nounced for OW Wolf-Rayet stars on the oxygen sequence,
where the fusion pressure domain is clearly higher than for
helium fusion.

There are also mass threadshods for fusion to occur. For
example, red giants of mass less than 0.9 solar mass are never
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Fig. 1: Luminosity versus mass of stars. Mass and luminosity are in solar units.

observed. This limit is commonly attributed to the age of the
universe, because low mass main-sequence stars take longer
to fuse the hydrogen in their core, and therefore it is hypoth-
esized that stars below 0.9 solar masses did not have suffi-
cient time to become red giants. However, this limit could
also represent the minimum mass required to obtain the nec-
essary conditions for helium fusion. Similarly, Wolf-Rayet
stars have masses above the 8.0-9.0 solar mass limit. The-
fore, low mass stars do have the necessary conditions to fuse
elements heavier than helium in the core.

The red dwarfs in Figure 1, show a distribution in their lu-
minosities. This might be due to ageing, as red dwarfs haven’t
sufficient mass to fuse the helium accumulating in their core.
As a star exhausts its hydrogen supply and accumulates he-
lium in its core, the core cools and contracts. As the core
contracts, a new shell of fresh hydrogen fuel is formed at the
periphery of the core. Fusion of this hydrogen shell main-
tains the temperature of the core, preventing it from contract-
ing further. The fact that the atomic mass of helium is greater
than that of hydrogen also plays a role.
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Fig. 2: Volume versus luminosity of stars. Volume and luminosity are in solar units.

Helium nuclei are formed of four nucleons (two protons
and two neutrons). Therefore, there is four times more mass
in a helium gas than in a hydrogen gas at a given pressure,
provided they obey the ideal gas law. As the star gets older,
the core shrinks and grows ever denser by accumulating he-
lium. Therefore, as red dwarfs age, they should become
denser and less luminous. Common stellar age-dating meth-
ods, based on the main-sequence turnoff, are focused on
main-sequence stars that become red giants. Such age cal-
culation methods do not yield stellar ages older than about 15
billion years, perhaps because this is when a solar type main-
sequence star becomes a red giant. No methods have been de-

veloped so far to estimate the age of red dwarfs, which could
possibly be much older. Using stellar models would be an
approach for age-datating of red dwarfs.

3 Stars dominated by radiation pressure in the photo-
sphere

3.1 Eddington luminosity

Inside a star, the internal pressure acting against the hydro-
static pressure is the sum of the radiation pressure and gas
pressure, hence:
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Fig. 3: Average density versus temperature of the photosphere of stars. Density is given in g/cm3, and temperature in Kelvin.

P = ρnkT +
1
3

aT 4 , (1)

where ρn =
N
V , N is the number of molecules in the gas, V is

the volume, a = 4σ
c is the radiation constant, k is the Boltz-

mann constant, σ is the Stefan-Boltzmann constant, T is the
temperature, and c the speed of light.

When the radiation pressure is considerably higher than
the gas pressure, the gas pressure term can be neglected,
therefore we get:

∂Pr

∂T
=

4
3

aT 3 , (2)

The equation for radiative heat transfer is expressed as
follows:

∂T
∂r
= −3

4
1
ac
κρ

T 3

L
4πr2 , (3)

where κ is the opacity, L is the luminosity, T is the tempera-
ture, r is the radius, ρ is the density, c is the speed of light,
and a the radiation constant.

Rewriting (2), we get:

∂Pr

∂r
∂r
∂T
=

4
3

aT 3 , (4)

Combining (3) and (4) we get:
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∂Pr

∂r
= −κρ

c
L

4πr2 , (5)

From hydrostatic equilibrium:

∂P
∂r
= −GMrρ

r2 , (6)

where G is the gravitational constant, Mr is the interior mass
of the star at radius r, and ρ is the density.

By combining (5) and (6) we get:

L =
4πcG
κ

M , (7)

which is the Eddington luminosity. Stars dominated by ra-
diation pressure in their photosphere are fully determined by
the photosphere, meaning that their luminosities will adjust
to match the Eddington luminosity. For such stars luminosity
is proportional to mass as shown by the Eddington luminos-
ity equation. Should excess heat be generated, the star will
lose matter through its photosphere, which may explain why
many Wolf-Rayet stars have lost their outer hydrogen layer.

We can also express this equation in terms of temperature
using Stefan-Boltzmann as:

Flux =
L

4πr2 = σT 4 . (8)

Hence, combining (7) and (8), we get:

T =
(cG
κσ

)1/4 M1/4

R1/2 . (9)

3.2 Cross section of an hydrogen ion from photon flux

There are two different methods to calculate the cross section
of an ion exposed to photon flux in the photosphere; these are
known respectively as the optical and the radiation pressure
cross section approaches.

The optical cross section calculation considers the obscu-
ration of a radiative flux travelling in an isotropic medium.
Let us consider an isotropic gas with a radiative flux going
through a surface A in the x-direction orthogonal to the sur-
face. The flux at step x + dx is equal to the flux at step x
multiplied by one minus the proportion of the area that is ob-
scured by the cross section of the atoms in the volume Adx.
The number of atoms in the volume Adx is ρnAdx. We multi-
ply the number of atoms in the volume by the cross section of
the atom σp to give the total area obscured by the gas. Hence,
we get:

F(x + dx) = F(x)
(
1 − σpρndx

)
, (10)

where F(x) is the flux at step x, F(x + dx) is the flux at step
x + dx, ρn is the density in number of particles per volume,
and σp is the cross section per particle.

As dF = F(x + dx) − F(x), we get:

dF
F
= −σpρndx . (11)

We integrate (11) to obtain:

F(x) = F0 exp(−σpρnx) . (12)

The opacity is defined from the attenuation of radiation
intensity through a medium and is given by
I(x) = I0 exp(−κρx), where I is the intensity, therefore:

κ =
σp

mp
, (13)

where κ is the opacity, σp is the cross section of a particle,
and mp is the mass of a particle.

The radiation pressure cross section considers an ion
above the surface of a star. Let us assume that the ion is in
equilibrium, meaning that the gravitational force exerted by
the star on the atom is equal to the radiation pressure from
the radiation flux coming from the surface of the star times
the cross section of the ion. Therefore, we get:

GMmp

R2 = σp
1
3

aT 4 , (14)

where G is the gravitational constant, M the mass of the star,
R the radius of the star, mp the mass of an ion, σp the cross
section of an ion, T the temperature, and a the radiative con-
stant.

Note that the radiation pressure just above the surface is
the same as the radiation pressure below the surface. This can
be proven but is outside scope of our discussion.

Combining (9) and (14) we get:

κ =
4
3
σp

mp
. (15)

This equation differs slightly from (13) due to factors in-
troduced in the derivation of the radiative heat transfer equa-
tion (3). The factor 3/4 in equation (3) comes from the fact
that a collimated radiation flux was used to compute the ra-
diation pressure dependency on the flux [3]. The two cross
section calculation approaches provide a consistency check
across the different models. We see that the optical and ra-
diation pressure cross sections mean the same thing; it is the
cross section of an ion exposed to photon flux.

3.3 Opacity and cross-section calculations

Now let us confront the model for stars dominated by radia-
tion pressure in the photosphere with actual data. The stars
dominated by radiation pressure must be those with low aver-
age densities and high photosphere temperatures and include
the most massive stars. We included in this group blue giants,
carbon stars, all the supergiants and hyper giants (red to blue),
and all the Wolf-Rayets. Then we did a linear regression of
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photosphere temperature against M1/4R−1/2, where tempera-
ture is in Kelvin, mass M in kilograms, and radius R in me-
ters (see figure 4). We obtained a linear equation with slope
α = 35.87 [K kg−1/4 m1/2] and determination coefficient R2

standing at 93%. Using the formalism of equation (14), we
obtain the below cross section to particle mass ratio function
of the slope α:

σp

mp
=

3G
aα4 . (16)

The cross section σp expresses the surface of the ion ex-
posed to photon flux.

By considering a hydrogen ion having a mass mp = 1.67×
10−27 kg, we obtain a cross section σp = 2.67 × 10−28 m2.
This cross section is equal to four times the Thomson cross
section for the scattering of a free electron by radiation. The
Thomson cross section of free electron scattering is expressed
as follows:

σT =
8π
3

(
q2

4πϵ0mc2

)2

= 6.65 × 10−29 m2 , (17)

where q is the charge of the electron, ϵ0 is the permittivity of
free space , m is the mass of the electron, and c is the speed
of light.

For comparison purpose, the radius of a proton is about
8.8 × 10−16 m, which works out to a cross section of 2.43 ×
10−30 m2, which is about hundred times less than the cross
section we computed. The radius of a hydrogen atom from
the Bohr model is about 5.3 × 10−11 m, or a cross section
of 8.82 × 10−21 m2, which is about 33 million times larger
than the cross section we computed. In contrast, the cross
section of hydrogen ion exposed to photon flux we computed
is four times the Thomson cross section for the scattering of
free electrons.

The corresponding opacity κ is 0.160 m2 kg−1 given (13)
or 0.213 m2 kg−1 given (15). Opacity remains fairly consis-
tent across the range of photosphere temperatures (2,200 K
to 245,000 K), and photosphere compositions (different hy-
drogen to helium ratio) for the stars in our sample. Wolf-
Rayet stars generally exhibit strong helium lines in their at-
mosphere. For example, Wolf-Rayet star WR136 which is
among our sample set was determined to have an atmospheric
composition of 86.5% helium, 12% hydrogen and 1.5% nitro-
gen by mass based on analysis of its spectra [4]. The red hy-
pergiant star WOH G64 has a broad number of emission lines
in its spectrum including Hα ,Hβ, [O I], [N I], [S II], [N II],
and [O III] [5]. Despite the limited data available on helium
to hydrogen ratio estimates for these stars, the variability of
stellar spectra in our sample would suggest that opacity is not
sensitive to the composition of the photosphere, unless all of
these stars have lost their outer hydrogen layer. For example,
if the ratio σp

mp
is higher for hydrogen than for helium, ac-

cording to (14), stars dominated by radiation pressure in the

photosphere would preferentially lose hydrogen through their
surface while retaining their helium.

Ionisation supposedly depends on temperature. However,
the wide range of photosphere temperatures in the sample
would suggest that the degree of ionisation is not relevent.
This could be indicative of the process contributing to radia-
tive opacity in the photosphere. For bound-free transitions
which consist of the absorption of radiation by an electron
bound to an ion, and free-free transitions which consist of
the absorption of a photon by an unbound electron moving in
the field of an ion, the Rosseland opacity is a function of the
temperature and hydrogen fraction, and exhibits the depen-
dency with temperature κ ∝ ρT−7/2 as per Kramers’ law. This
is quite unexpected as the data do not show such a depen-
dency; otherwise, the regression in Figure 4 would not be lin-
ear. Instead, temperature would be proportional to the square
of M1/4R−1/2. As this is not the case, these opacity models do
not seem to adequately describe stellar photosphere plasma.

4 Stars dominated by gas pressure in the photosphere

4.1 Estimation of the density in the solar photosphere

The density of the photosphere is an important parameter re-
quired to solve the heat transfer equation for stars. A way
to probe the density of the photosphere of the Sun is by using
limb darkening. Limb darkening is the observation of the cen-
ter part of a star appearing brighter than the edge or limb of
the luminous disk. This effect is due to the thermal gradient
and transparency of the photosphere. The intensity of light
at the center of the disk corresponds to the black-body spec-
trum at an optical depth of 2/3 because of the transparency
of the photosphere. The intensity of light at the edge of the
disk corresponds to the black-body spectrum at the surface of
the photosphere, which is cooler than the temperature at an
optical depth of 2/3. The intensity of light travelling through
a semi-transparent medium is expressed as follows:

I(x) = I0 exp(−κρx) , (18)

where κ is the opacity, ρ the density, and x the depth of the
medium.

Therefore, the distance from the surface at an optical
depth of 2/3 corresponding to 1/3 of the intensity going
through is expressed as follows:

l = − ln(1/3)
κρ

. (19)

Let us say T0 is the temperature at the limb which is the
surface of the photosphere, and T2/3 is the temperature at the
center of the disk or an optical depth of 2/3. Hence, the tem-
perature gradient is expressed as follows:

dT
dr
=

T0 − T2/3

l
, (20)

where l is given by (19).
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Fig. 4: Photosphere’s temperature versus M1/4R−1/2 ratio for stars dominated by radiation pressure in the photosphere.

Within a star heat transfer is dominated by the process
having the lowest thermal gradient. We know that for the ex-
ternal layer of the Sun, the temperature is too low for radiative
heat transfer to be efficient, and convective heat transfer dom-
inates. The thermal gradient of convective heat transfer in a
gas is the adiabatic gradient. From limb darkening we get T0
and T2/3. Therefore, using (19) and (20), we can estimate the
density of the photosphere.

The ratio of the intensity at an angle θ to intensity at the
center of the star from limb darkening is expressed as follows
[6]:

I(θ)
I(0)
=

2
5
+

3
5

cos(θ) . (21)

The intensity at the limb is the intensity at an angle θ = π2 .

Therefore, the ratio of the intensity at the limb to the intensity
at the center of the star is 0.4. From Stefan-Boltzmann law,
we get the ratio of the temperature at the limb to the temper-
ature at the center:

T0

T2/3
= 0.41/4 . (22)

The average temperature of the solar photosphere is about
5,800 K. Let us say the temperature at the center of the disk
is T2/3 = 6,300 K. Hence, the temperature at the limb is T0=

5,010 K.
The adiabatic gradient is the temperature gradient obtai-

ned for a gas parcel as it rises, assuming an ideal gas. For
an ideal gas we have P = (R/µ)ρT , where R is the ideal gas
constant and µ the molar weight. As we move a gas parcel
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upwards an infinitesimal distance, the variation in pressure is
given by:

dP
dr
=

R
µ

(
ρ

dT
dr
+ T

dρ
dr

)
=

P
T

dT
dr
+

P
ρ

dρ
dr
. (23)

For an adiabatic gas, we also have P = Kργ, hence:

dP
dr
= Kγργ−1 dρ

dr
= γ

P
ρ

dρ
dr
. (24)

Combining (23) and (24) we get:

dT
dr
= (γ − 1)

T
P

P
ρ

dρ
dr
=

(
γ − 1
γ

)
T
P

dP
dr
. (25)

From hydrostatic pressure, we have:

dP
dr
= −GM

R2 ρ . (26)

Combining (25) and (26) with P = ρ
mp

kT we get:

dT
dr
= −

(
γ − 1
γ

)
GM
R2

mp

k
, (27)

which is the adiabatic gradient at the stellar surface, where
k is the Boltzmann constant, G the gravitational constant, M
the mass of the star, R the radius of the star, mp the mass of a
gas molecule.

For a monoatomic gas γ = 5
3 . Hence, the adiabatic gra-

dient at the surface of the sun is 0.013 K/m. In contrast, the
standard solar model uses an adiabatic gradient of 0.010 K/m.

Hence, the density of the photosphere of the Sun from
(19) and (20) is:

ρ = −1
κ

ln(1/3)(
T2/3 − T0

) dT
dr
, (28)

which yields a density of 6.92×10−5 kg/m3, whereas the stan-
dard solar model uses a photosphere density of about
10−6 kg/m3 [7]. For the calculation, we used the opacity ob-
tained in section 3.3.

4.2 Calculation of the cross section per hydrogen nuclei
from gas pressure

Let us consider an ion above the stellar surface. A condition
to have a stable surface is that the gravitational force exerted
by the star on the ion is offset by the repulsive force due to
gas pressure. Assuming an ideal gas, we get:

GMmp

R2 = σe f
ρ k T
mp
, (29)

whereσe f is the effective cross section, mp is the mass per hy-
drogen nuclei, M is the mass of the star, G is the gravitational
constant, R is the radius of the star, ρ is the mass density in
the photosphere, k is the Boltzmann comstant, and T is the
temperature.

Although the photosphere is about 500 km thick, mod-
elling the photosphere as a surface makes sense. As shown
in figure 5, we can see a clear surface of dense plasma at the
photosphere of the Sun. Note that in equation (29) we did not
consider the electromagnetic forces. Because free electrons
are lighter than the protons, they should tend to escape the
surface much easier. However, the plasma may have mecha-
nisms in place to keep its neutrality. For example, a positively
charged surface would retain the electrons while pushing out
the protons. Equation (29) provides a net cross section from
gravity alone and does not model such an effect.

The gas pressure due to molecular collisions is somehow
different than radiation pressure. When a photon collides with
a surface, the momentum vector is applied in the direction of
the trajectory of the photon. For molecular gas collisions,
it is like playing pool. Considering molecules of spherical
shape, the momentum vector is normal to the sphere, meaning
it is applied along the axis between the point of impact of the
collision and the center of the sphere. Therefore, we need
to introduce a shape coefficient to relate the effective cross
section to the geometrical cross section of the molecule.

Let us consider a force f exerted on a sphere of radius r.
The surface element is dS = r2 sin(θ) dθ dφ. The projection
of the force f on the z-axis is fz = f cos(θ), where θ is the
angle between the z-direction and and the vector f. The effec-
tive force is the average of fz over the half sphere. Hence, the
effective force is computed as follows:

fe f =
1

2πr2

∫ 2π

φ=0

∫ π/2

θ=0
f cos(θ)r2 sin(θ) dθ dφ . (30)

Because sin(θ) cos(θ) = sin(2θ)
2 , we get:

fe f =
f

4π

∫ 2π

φ=0

∫ π/2

θ=0
sin(2θ) dθ dφ . (31)

We get:

fe f =
f
2
. (32)

Therefore, the geometric cross section is twice the effec-
tive cross section from gas pressure: σg = 2σe f , where σg
is the geometric cross section and σe f the effective cross sec-
tion.

From (29) and the density we obtained in section 4.1, we
get an effective cross section of 1.33×10−28 m2 or a geometric
cross section of 2.66×10−28 m2. In section 3.3, we obtained a
cross section to photon flux of 2.67×10−28 m2. Hence, in the
plasma the cross section per hydrogen nuclei from gas pres-
sure is virtually the same as the cross section from radiation
pressure.

Neutral hydrogen atoms in the Bohr model are represen-
ted with the nucleus at the center and an electron in orbit
around the nucleus. The Bohr model yields a radius of
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Fig. 5: Image of the solar surface. Credit: NASA/GSFC (December 2000)

5.3 × 10−11 m for the hydrogen atom with a corresponding
cross section of 8.82 × 10−21 m2. Hydrogen cross sections
have been obtained from electron collisions yielding cross
sections on the order of 10−21 m2 for ionized hydrogen [8]. A
precise value was measured by [9], who obtained a cross sec-
tion of 3.86 × 10−21 m2 using photodetachment of negatively
charged hydrogen ions H−, that is in close agreement with
the Bohr model. The fact that we obtained a much smaller
cross section per hydrogen nuclei suggests that in a plasma,
the electrons are virtually detached from the nuclei. There-
fore, a hydrogen plasma may be represented as a gas mixture
of electrons and protons. Hence, the total pressure would be
equal to the sum of the partial pressure of the electrons and
protons.

Assuming that the electrons and protons are at the same
temperature, the adiabatic gradient we computed with
eq. (27) should be divided by two, and the density in the pho-
tosphere would be half the estimate we obtained, leaving the
cross section unchanged. For the proton and electron temper-
atures to equilibrate, the Coulomb collision rates would need
to dominate to allow energy transfer between the electrons
and protons. Most plasmas are considered weakly collisional,

which means that the Coulomb collision rates are negligible
compared to other processes that control the velocity distri-
butions. Therefore, if we assume that the temperature of the
electrons is much lower than the temperature of the protons,
we can neglect the electron pressure; and if it is the reverse,
then we can neglect the proton pressure, provided that both
particles are on the ideal gas domain.

Electrons and protons are fermions, meaning they are
modelled as a Fermi gas. Fermions are particles described by
the Fermi-Dirac distribution thus obeying the Pauli exclusion
principle. Whenever the average interparticular separation is
much larger than the average de Broglie wavelength of the
particules, the Fermi-Dirac distribution can be approximated
by the Maxwell-Boltzmann distribution, and the Fermi gas
behaves similarly to an ideal gas [10]:

R̄ ≫ h
√

3mkT
, (33)

where R̄ is the average interparticle separation, h the Planck’s
constant, m the mass of the particle, k the Boltzmann con-
stant, and T the temperature.

This condition is satisfied in the solar photosphere for
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both the electrons and protons, hence we can use the ideal
gas equation as an approximation in the photosphere.

Note that if the particles in the plasma of the solar photo-
sphere were made of large ions or atoms such as the ones we
find in gases, according to (29), the surface of the Sun would
evaporate due to the high temperatures.

5 Conclusion

In the present study we collected stellar data (mass, radius, lu-
minosity and surface temperature) for a set of 360 stars. From
stars dominated by radiation pressure in the photosphere, we
estimated the opacity, a key parameter for radiative heat trans-
fer. As radiative heat transfer is no longer efficient in the so-
lar convective zone where heat transfer occurs by convection,
we assumed the adiabatic gradient of a monoatomic gas for
the solar photosphere. We then estimated the density in the
photosphere of the Sun using limb darkening. Photosphere
density is a boundary parameter required for the solar model.
We also considered that the stellar photosphere can be mod-
elled as a surface. Hence, for an hydrogen ion in equilib-
rium in the photosphere, the force exerted by the gravitation
of the star on the ion should be offset by the radiation and
gas pressure. Therefore, we computed the cross section per
hydrogen nuclei from radiation pressure for stars dominated
by radiation pressure in the photosphere, and from gas pres-
sure for stars dominated by gas pressure in the photosphere.
We found that the cross section per hydrogen nuclei in stellar
plasma is about 2.66 × 10−28 m2 from both radiation and gas
pressure. The cross section of neutral hydrogen as given by
the Bohr model for an electron in orbit around the nucleus is
8.82 × 10−21 m2, which suggests that the electrons and pro-
tons in the plasma are virtually detached. Hence, a hydro-
gen plasma may be represented as a gas mixture of electrons

and protons. If the stellar photosphere was made of large
hydrogen atoms or ions such as the ones we find in gases,
the surface of the photosphere would evaporate due to the
high temperatures. This result could impact stellar models
as we would have to add together the partial pressures of the
electrons and the protons in the plasma.
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E-mail: arto.annila@helsinki.fi

The observed but unexpected changes in velocity during spacecraft flybys of Earth are
examined using the principle of least action in its original dissipative form. In general,
the spacecraft’s momentum will change when it travels through an energy density gra-
dient of space that is enfolding a gravitating, orbiting and rotating body. When space is
understood as a physical substance that embodies quanta of actions, rather than being
modeled by a mere metric, it becomes apparent that the changes in momentum couple
with flux of quanta from the local system of bodies to the universal surroundings or vice
versa. In this way the original least-action principle accounts also for the ‘anomalous’
change in velocity by an equation of motion which complies with the empirical relation
that has been deduced from Earth-flybys.

1 Introduction

Even a slight deviation from a common rule may entail an
error in the very rule. Here, in the context of flyby anomaly,
the rule – perhaps at stake – is conservation of momentum.
It is a corner stone of physics, whence the flyby anomaly is
worth attention.

The law of conservation of momentum asserts, for ex-
ample, that when a spacecraft is passing by a planet, it will
gain momentum as much as the planet will lose momentum.
The momentum transfer is a minute drop for the massive
planet but a giant boost for the tiny spacecraft. The space-
craft’s velocity v will change relative to the Sun as much as
its flight direction will change relative to orbital velocity u of
the planet [1–3]. The gain can be at most 2u when the planet
is moving straight at the spacecraft which will subsequently
swing a full U-turn around the planet. Curiously though, it
seems as if spacecraft had acquired more speed during cer-
tain flybys than the planet’s orbital momentum could possibly
grant them [4, 5]. The origin of this anomaly is unknown.

However, it has been inferred from meticulously moni-
tored flybys of Earth [6–10] that the anomalous change in
velocity ∆v complies closely with relation [5]

∆v

v
=

2ω⊕R⊕
c

(cos δi − cos δo), (1)

where c is the speed of light, R⊕ is Earth’s radius and ω⊕ an-
gular velocity of rotation, δi is the spacecraft’s inbound and
δo outbound declination, so that 2ω⊕R⊕/c = 0.49× 10−6. The
relationship (Eq. 1) implies that the anomalous gain ∆v in
the spacecraft’s velocity stems from Earth’s angular velocity
ω⊕ depending on how the spacecraft’s inbound and outbound
asymptotes align relative to the axis of rotation. Yet, the ef-
fect of Earth’s gravito-magnetic field on the spacecraft’s ve-
locity has been calculated to be many orders of magnitude
smaller than the measured anomaly [11, 12]. Other expla-
nations have also been considered [13–17] and found feasi-
ble [18], but there is currently no consensus what exactly un-

derlies the phenomenon. Also the general validity of Eq. 1
has been questioned [19–22]. Moreover, it should be noted
that anomalies, when without radar monitoring, are difficult
to detect along flybys of other planetary bodies.

As long as the case is open there ought to be room for
attempts to explain the measurements. Thus, we would like
to contribute to the puzzle of flyby anomaly by maintaining
that the spacecraft does move along a geodesic, i.e., a path of
least action, also when it is subject to the unknown force that
causes the unaccounted change in momentum. So, it should
be possible to infer the cause of anomaly from the principle
of least action. However, the familiar Lagrangian form when
without dissipation applies only to closed stationary orbits
such as ellipses or to ideal paths with symmetrical inbound
and outbound trajectories. In contrast, the general form of the
least action principle by Maupertuis [23–25] accounts also
for open paths, most notably for hyperbolic flyby trajectories
that are asymmetric relative to the planet’s rotation. Further-
more, we are motivated to apply this general principle that
distinguishes itself from particular models of celestial me-
chanics, because it has already accounted for anomalous peri-
helion precession [26], rotation of galaxies [27], geodetic and
frame dragging drift rates [28] as well as for frequency shifts
and bending of light [29], as well as for propagation of cos-
mic rays [30] and the thrust of electromagnetic drive [31].
Thus, our examination of the flyby anomaly using the uni-
versal principle is not a standalone study. It can be seen as a
further test of our approach yet in another physical situation.

2 The least-action principle

The spacecraft is customarily pictured to move along a hy-
perbolic path as if it was coming from a distant asymptotic
state of free space and returning via periapsis back to the
asymptotic state. Per definition this ideal, i.e., fully reversible
passage cannot accommodate any net change in momentum
in the planet’s frame of reference, because the initial and
final asymptotic states are taken as indistinguishable from
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each other in energetic terms. In other words, the Lagrangian
having only kinetic and potential energy terms does not al-
low for any change in the total energy, i.e., dissipation. But
in reality the unaccounted increase (or decrease) in kinetic
energy reveals that during the flyby the spacecraft does de-
scend down (or move up) along a potential energy gradient,
so that the initial and final states are not equal in energetic
terms. Therefore, to account for the flyby anomaly as a non-
conserved phenomenon we will use Mauperutuis’s rather than
Lagrange’s principle of least action. Then it remains for us to
identify among conceivable gradients in energy, the one that
lies asymmetrically with respect to the spacecraft’s inbound
and outbound trajectories, and hence is responsible for the net
change in energy.

In all cases, the spacecraft treks at least through the grav-
itational potential of free space. The all-embracing vacuum
potential energy GM2/R = Mc2 totals from the mass M of
all bodies in the Universe within Hubble’s radius R = cT at
its current age T = 13.8 billion years where G is the grav-
itational constant [32]. In terms of geometry the free space
energy density is characterized by the universal L2-norm [33]
that manifest itself in the quadratic form c2. Physically speak-
ing, the norm means that in the free space there is no shorter
path than that taken by light. Thus, the energy density of free
space, on the order of one nJ/m3, is the ultimate reference for
any other energy density.

A local potential energy, known as the local gravitational
potential energy is in balance with the bound energy density
of a body, for example, a planet, just as the universal grav-
itational potential is energy is in balance with all bodies in
the Universe [34]. Thus, the spacecraft when moving past by
the planet, will be subject to energy density gradients, i.e.,
forces that will show as changes in its momentum. We ac-
knowledge that general relativity accounts for the space with-
out energy density due to the gravitational field itself. Gen-
eral relativity expresses gravity in terms of the geometrical
properties of spacetime through the Einstein field equations.
This mathematical model is excellent for many data, but when
without dissipation, it does not account accurately for irre-
versible changes in momentum, for instance, for the space-
craft anomalous gain in momentum during the flyby.

To work out the energy density gradient responsible for
the dissipative change in momentum we will express the lo-
cal energy density at a distance r from the body relative to
the universal energy density by the ratio of light’s univer-
sal velocity to its local velocity n = c/v. The index n has
been used earlier to describe the gravitational potential in
terms of an optical medium [35] consistently with the fact
that gravity and electromagnetism share the same functional
forms [34, 36]. The local excess in energy density is minis-
cule in the vicinity of an ordinary celestial body. This is to
say that when light is grazing the planet Earth, its speed v ≤ c
will hardly deviate from c. Therefore, light will experience
only a minute change in momentum that will manifest itself

as a tiny blue shift and next-to-negligible bending.
However, the spacecraft with velocity v ≪ c will be sub-

ject to a marked change in its momentum during its passage
through the local potential of space imposed by the gravitat-
ing, orbiting and rotating Earth. This is to say that the space-
craft will gain momentum when inbound and conversely it
will lose momentum when outbound. The inbound gain and
outbound loss will sum up to zero in the case the open hy-
perbolic trajectory through a spherically symmetric field. A
net change in momentum will accrue only if the flight path is
open asymmetric relative to energy density gradients of space
due to the planet’s orbital and rotational motion.

In general the index n for a locus of space can be obtained
from the least action principle in its original form by Mauper-
tuis. The principle [23,25–27,29] equates a change in kinetic
energy dt2K with changes in scalar potential energy ∂tU and
vector potential energy ∂tQ,

dt2K = −∂tU + i∂tQ, (2)

where we emphasize, although self-evidently, the orthogo-
nal relationship between the gradients of scalar and vector
potential energy by the imaginary quotient i. The equation
of motion (Eq. 2) containing both real and imaginary parts
ensures that any (formal) solution is non-conserved. More-
over, orthogonality is familiar from electrodynamics, for in-
stance, as defined by Poynting theorem. Accordingly, when
the spacecraft accelerates in the gravitational field of a planet,
the quanta will dissipate to the surrounding free space from
the local gravitational potential orthogonally to the accelera-
tion.

The equation for the dissipative changes in energy [25,31]
(Eq. 2) corresponds to Newton’s second law of motion for a
change in momentum p = mv when multiplied with velocity
v, i.e.,

F = dtv | · v

F · v = dt(mv) · v = v · ma + v2∂tm

dt2K = −v · ∇U + i∂tQ,

(3)

where kinetic energy, i.e., vis viva is 2K = mv2, and where
the spatial gradient of U relates to the familiar term ma of
acceleration and the change in mass dm = dE/c2 equals dis-
sipation n2dtQ = dtE to the free space. As usual, the mass-
energy equivalence converts mass-bound energy to energy E
of freely propagating photons in the vacuum. In short, Eqs.
2 and 3 simply state that at any position along the space-
craft’s least-time path the momentum will follow the force
F = –∇U + i∇Q, where the energy density gradient subsumes
both the scalar and vector components. In this way our ac-
count on gravity is physical rather than merely mathematical
and consistent with electromagnetism. However, in what fol-
lows, the orthogonality of the two components remains only
implicit when we work out only the magnitude of the total
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potential energy in any given position along the spacecraft’s
path.

3 Passages through gradients

The general principle of least action in its original form al-
lows us to examine the flyby trajectories by specifying the
energy density of space by the index n at a particular position
r of space from the center of a gravitating body with mass
M⊕. Also earlier the gravitational field has been described in
terms of an optical medium [35], but we do not model space
by an explicit metric, instead present it in energetic terms.
When approximating the total potential energy U only with
the local gravitational potential energy GmM⊕/r, Eq. 3 can
be solved for the index of space

dt(mv2) = −∂t
GmM⊕

r
+ i∂tmc2

n2 =
c2

v2
=

(
1 − GM⊕

c2r

)−1

≈ 1 +
GM⊕
c2r

= 1 + φ⊕

(4)

at a locus r. The squared index sums the universal density
(unity) and the local excess φ⊕ as experienced by a test body
of vanishing mass, i.e., a photon. The first order approxima-
tion means that n2 does not differ much from the asymptotic
(r → r∞) unity of free space. Explicitly, a ray of light will
bend hardly at all even when grazing the Earth of radius R⊕,
since φ⊕ = GM⊕/c2R⊕ ≈ 0.7 × 10−9.

However, the spacecraft with its minute velocity v relative
to the speed of light, i.e., v2/c2 ≪ 1, will accelerate consider-
ably when traversing through the gradient d(n2)/dr = ∇φ⊕ =
–GM⊕ro/c2r2 where the unit vector ro = r/r points to the
center of mass. According to Eqs. 2 and 3 the spacecraft will
fly past by the planet when v · dtp/c2 > –v · ∇φ⊕. Conversely,
when v · dtp/c2 < –v · ∇φ⊕, the spacecraft will spiral down to
a crash on the planet. Eventually, when v · dtp/c2 = –v · ∇φ⊕,
Eq. 2 can be integrated to a closed form. Then the net flux
from to the system to its surroundings vanishes dtQ = 0 , and
hence the integration yields the familiar stationary condition
2K +U = 0, i.e., the virial theorem. This is to say, the space-
craft has settled on a stable Keplerian orbit about the planet.

When the planet is not only gravitating but both orbiting
and rotating, then the excess in energy density of space at r is
in balance also with energy that is bound in both the orbital
and rotational motion as much as ro aligns along the planet’s
orbital u and rotational w⊕ = ω⊕R⊕ velocities, denoted by
ur = u · ro and wr = ∥w⊕ × ro ∥, i.e.,

n2 =
c2

v2
=

(
1 − GM⊕

c2r
− u2

r R⊕
c2r
− w

2
r R⊕
c2r

)−1

≈ 1 + φ⊕ + φu + φw.

(5)

Again the first order approximation means that n2 does not
differ much from the free space unity. Explicitly when set-
ting for the Earth with r ≈ R⊕ and ur = u⊕, the orbital

φu = u2
⊕/c

2 ≈ 10-8 and rotational φw = w2
⊕/c

2 ≈ 0.6 × 10−13

contributions are tiny. This means that the Earth hardly drags
the vacuum along with its orbital and rotational motion.

However, the spacecraft with velocity v2/c2 ≪ 1 will ac-
quire momentum markedly during its way through the gradi-
ent ∇φ. The gain in momentum from the orbital motion is the
well-known gravity assist. Obviously this gravitational sling-
shot cannot be used when the spacecraft moves too slowly to
catch the planet, i.e., v · dtp/c2 < –v · ∇φu. Eventually, when
v · dtp/c2 = –v · ∇φu, dissipation vanishes, and hence Eq. 2
can be integrated to the stationary state condition 2K+U = 0.
It means that the spacecraft has settled on a stable Lagrangian
point where it is coorbiting Sun along with Earth.

In addition to the gain in momentum from the planet’s
orbital motion, the spacecraft may gain a detectable amount
of momentum when traversing through the gradient ∇φw due
to the planet’s rotation about its axis. Obviously this ve-
locity excess will be deemed as anomalous when left unac-
counted. Conversely, when the gradients along the inbound
and outbound trajectories are opposite and equal, i.e., sym-
metric about the planet’s rotation, there is no net dissipation
and no net change in momentum. Eventually, when dissi-
pation vanishes, v · dtp/c2 = –v · ∇φw, and hence Eq. 2 re-
duces to the steady-state condition 2K + U = 0. It means
that the spacecraft has settled on a geostationary orbit. When
the spacecraft is in synchrony with the planet’s rotation, ob-
viously it will not be exposed to any energy density gradients
due to the rotation.

4 Anomalous change in velocity

The above classification of spatial energy density in the grav-
itational, orbital and rotational terms (Eq. 5) serves us to
specify the equation for the “anomalous” gain in velocity ∆v.
It accrues during the flyby through the energy density gra-
dient of space ∇φw imposed by the rotating planet. In gen-
eral the change in the spacecraft’s momentum at any point
along the trajectory is, according to Eq. 3, equal to the force
F = dtp = dt(mv) = mc2∇φw. When the minute change
in mass dm is neglected, the anomalous gain in velocity ∆v
due to the gradient ∂w of rotational contribution φw can be
obtained by summing up the changes in velocity dv

∆v =

∫ vo

vi

∂wφwdv =
∫ θo

θi

v
∂(ω⊕R⊕ cos δ/c)2

∂(ω⊕R⊕ sin δ/c)
R⊕
r

dδ

=

∫ δo

δi

v
2ω⊕R⊕ sin δ

c
R⊕
r

dδ

≈ v2ω⊕R⊕
c

(cos δi − cos δo)

(6)

along the flight path from the inbound asymptotic velocity
vi to the outbound asymptotic velocity vo. The equation 6
integrates the gradient ∂w of the rotational contribution φw
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given by Eq. 5 from the inbound asymptote with declina-
tion δi to the outbound asymptote with declination δo along
the spacecraft’s path. The gain in velocity will accrue only
when the inbound and outbound trajectories through the en-
ergy gradients due to the planet’s rotation are asymmetric.
The trigonometric form of the energy density gradient ∂w =
∂/∂(ω⊕R⊕ sin δ/c), where δ denotes declination (Figure 1),
for the integration of declination from the inbound to out-
bound asymptote has been derived earlier [16]. It is easy to
check by inspecting the following two points. At the Equato-
rial plane δ = 0, where the quadratic factor (ω⊕R⊕ cos δ/c)2 of
φw peaks, the energy density gradient vanishes. Conversely,
at poles δ = ±π/2, where φw in turn vanishes, the gradient
in space due to the planet’s rotation peaks. In addition to the
declination by sin δ, the gradient depends on the angular ve-
locity ω⊕ and radius R⊕ relative to c. The product form of
the three factors ensures the obvious fact that if any one of
them vanishes, the gradient does not exist. The transforma-
tion from one variable of integration to another dv = vdδ fol-
lows from vdt = rdδ, e.g., defining dv = adt via acceleration
a = v2/r.

We motivate the approximation R⊕/r ≈ 1 in Eq. 6 to
recognize the empirical equation (Eq. 1) because the radial
gradient of φ falls as 1/r2, and hence most of ∆v accumu-
lates when the spacecraft is near the periapsis whereas con-

Fig. 1: Equatorial view of a grazing flyby trajectory. The hyperbolic
flight path is defined by the planet’s radius R extending nearly to
the periapsis (solid dot) at declination δa and the distance C from
the center of mass at the origin O to the intersection of inbound
and outbound asymptotes (dashed lines) with declinations δi and δo.
The path’s radial coordinate is given by r and polar angle by θ as
measured from δa. The planet’s axis of rotation with angular velocity
ωR stands upright.

tribution from the long opposite inbound and outbound legs
is negligible. The polar coordinate representation R⊕/r =
1/2(1 – R⊕/C+cos θ)/(1 – R⊕/2C) reveals the decreasing con-
tribution of a path position r in the sum (Eq. 6) as a function
of increasing polar angle θ. The distance from the center of
mass to the intersection of the inbound and outbound asymp-
totes of the hyperbola is denoted with C. Specifically, Eq. 6
yields the maximum change ∆v/v = 2ω⊕R⊕/c for the flight
along the rectangular hyperbola from the inbound arm δi = π
to the outbound arm δo = –π/2 via the periapsis at δa = π/4
for a low altitude r → R⊕ passage. Conversely, for a high
altitude path, such as that of Rosetta’s last flyby, the approxi-
mation r → R⊕ underlying the empirical equation is less mo-
tivated, and hence the anomaly is negligible.

Obviously the derived formula (Eq. 6) is not only an ex-
plicit approximation by R⊕/r ≈ 1, but also implicit in mod-
eling the planet as a rigid homogenous sphere. Moreover,
the derivation also neglects apparent forces that are imposed
on the spacecraft, such as a drag due to atmospheric friction.
However, our study does not aim at producing a formula to
calculate ∆v due to the atmospheric drag or planet’s geoid,
instead it targets by the derivation of ∆v/v to explain the phe-
nomenological formula (Eq. 1) and to identify the anomalous
gain in momentum to result from the spacecraft traversing
through the energy density gradient of space imposed by the
rotation of the planet. Undoubtedly, when more flyby data
accumulates, the empirical formula (Eq. 1) will be verified or
falsified, thereby giving also a verdict on this study.

5 Discussion

The mathematical correspondence between the empirical re-
lationship (Eq. 1) and the derived formula (Eq. 6) is reassur-
ing, but not alone an explanation for the anomalous gain in
velocity. Namely, the obtained consistency in energetic terms
is by itself not a tangible explanation, because energy as such
does not exist but it is an attribute of its carrier. Thus, the
profound question is: What is the carrier substance that em-
bodies the universal density of space and local gravitational
potentials that the spacecraft is subject to during its flyby? Of
course, this query is not relevant when general relativity is
used as a mathematical model for measurements. But when
one is after the cause, i.e., the force responsible for the flyby
anomaly, the physical form of space must be considered.

The carrier of gravitational force has been sought for long.
Nonetheless the graviton of quantum field theory remains a
hypothetical elementary particle. In the past the photon was
considered as the carrier, because gravity and electromag-
netism share similar functional forms [34, 36, 38] as well as
because the squared speed of light in the vacuum relates to
the absolute electromagnetic characteristics of free space via
c2 = 1/εoµo. Also the free space gauge ∂tϕ + c2∇ ·A = 0 im-
plies physical existence of scalar ϕ and vector A potentials,
so that ϕ will decrease with time when quanta move down
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Fig. 2: The photon γ (blue) is the undividable quantum of ac-
tion whose momentum resides on its wavelength, and equivalently,
whose energy is within its period of time. The photon with opposite
polarization (red) is the antiphoton γ∗. When γ and γ∗ copropa-
gate, the net electromagnetic force will vanish, but the compound
boson continues to carry momentum and energy. These compound
actions embody space universally and locally. Thus, the associated
energy density appears as the universal gravitational potential en-
ergy, known as the vacuum density, which is in balance with all
bodies. Likewise, a local potential energy is in balance with a lo-
cal gravitating, orbiting and rotating body.

along the gradient of A or vice versa. Recently the old tenet
of photon-embodied space has been revived so that the pho-
tons are considered to propagate in pairs of opposite polariza-
tion, and hence the pairs are without electromagnetic forces
[28, 31, 39]. This destructive interference is, of course, fa-
miliar from diffraction. By the same token, Aharonov-Bohm
experiment demonstrates how an applied vector potential will
increase the energy density without introducing fields along
the path [40]. According to this percept the two quanta of
light do not vanish for nothing when interfering destructively,
instead they continue in copropagation with opposite phases,
and hence continue in carrying energy and momentum (Fig-
ure 2).

Our portrayal of the physical vacuum reminds of de Brog-
lie’s theory [41] about a spatially extended, particle centered
pilot wave [42]. This view of the physical vacuum, as ours,
makes sense of quantum mechanical phenomena without con-
ceptual challenges [43]. In view of that, it has been under-
stood also earlier that c, εo and µo are not constants, but prop-
erties when the vacuum has been considered to embody con-
tinuously appearing and disappearing fermion pairs [44, 45].
Instead of accounting for the vacuum’s electromagnetic prop-
erties by transiently appearing paired charges we reason that
when a charge appears in the vacuum, a corresponding force
will appear. The force will move the paired photons away
from the out-of-phase relation, and hence an electromagnetic
field will appear around the charge. Thus, when an atom
ionizes, the photons of the electromagnetic field will not ap-
pear out of the blue, but they have been around all the time,
however in the out-of-phase configuration that manifests it-
self only as energy density.

The photon-embodied vacuum is understood to emerge
from various processes, such as annihilation, where constitu-

ents of matter with opposite charge transform to mere radia-
tion. For example, the annihilation of electron with positron
will yield, in addition to the two readily observable photons of
opposite polarization and directions of propagation, also pairs
of co-propagating photons. Conversely, the photon-embodied
vacuum is the source of quanta for pair production [37,39,46].
Likewise, electron capture where a proton turns to a neu-
tron, pairs of co-propagating photons will emerge from an-
nihilation of the constituents with opposite charges. When
the space is understood to embody the oppositely paired pho-
tons, it is easy to envision that space around a body of high
energy density houses a radially decreasing energy density,
known as the local gravitational potential energy. In this way
gravity can be understood as force, like any other force, to
result from the energy density difference over a distance, i.e.,
from a gradient. Ensuing motions consume the free energy
in least time. This evolution is expressed by the principle of
least action in its original form (Eq. 2). Namely, all bodies
move from one state to another along geodesics to diminish
density gradients in the least time.

The least-time imperative means that the two bodies will
move toward each other when the surrounding universal space
is sparse enough to accept the paired quanta that are released
from the dense gravitational potential of the bodies to the sur-
rounding free space along the paths of least time. For exam-
ple, an object falls straight down on the ground, i.e., along
the least-time path, to consume the energy density difference
between the local gravitational potential and the sparse sur-
rounding vacuum. When the body is falling down, the oppo-
sitely paired photons are released from the local gravitational
potential to the surrounding universal vacuum also along their
paths of least time. Conversely, the two bodies will move
away from each other when the surrounding potential is rich
enough to grant paired quanta with energy to the local poten-
tial about the bodies.

In the same manner it is inescapable that it takes some
form of free energy, ultimately carried by the photons that
have been acquired from insolation, to lift up the fallen object
from the ground back up on its initial height. So, the logic of
reversibility says that the photons that were absorbed when
the object was lifted up must have been emitted when the
object was falling down. Thus, gravity is a dissipative phe-
nomenon. When the bodies move toward each other, there is
an efflux of quanta with energy to the surroundings, and con-
versely when the bodies move away from each other, there is
an influx of quanta with energy from the surroundings. Man-
ifestly, there is no net flux, i.e., no net dissipation from the
system of bodies at a stationary state corresponding to an en-
ergetic balance with its surroundings.

This insight to gravity allows us to describe the space-
craft’s flyby as an energy transfer process where quanta move
from the local system of bodies to the surrounding space or
vice versa. Flyby mission data show temporary maxima and
minima in energy transfer that moderate toward the space-
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craft’s asymptotic courses [4]. We remind that oscillations
are characteristics of least-time transitions from one state to
another [47]. The oscillations are pronounced when the rate
of energy transfer is rapid compared with the bound energy.

With this insight to gravity as a dissipative phenomenon,
let us first consider the flight past a gravitating spherical body.
The spacecraft treks along its inbound trajectory through an
increasing energy density of space, i.e., the 1/r2-force field
when the distance r closes toward the body. The increase in
the spatial potential energy is balanced, according to Eqs. 2
and 3, by an increase in kinetic energy as well as by efflux
of the oppositely paired quanta from the local gravitational
potential comprising the body and the spacecraft to the uni-
versal gravitational potential due to all bodies in the Universe.
The flux of quanta is often overlooked because the oppositely
paired quanta without net electromagnetic field cannot be de-
tected readily. However, the dissipation can be inferred re-
calling that the total gravitational potential energy of the body
and the spacecraft at the periapsis is not exactly equal to the
total potential energy when the spacecraft is at a point on the
arm of hyperbola. The emission of quanta will cease, i.e.,
dissipation will vanish dtQ = 0 momentarily, when the space-
craft arrives at the periapsis, where kinetic energy 2K matches
the scalar potential energy U. Thereafter, along the outbound
asymptote 2K will exceed U, and hence the paired quanta will
be acquired from the surrounding vacuum to the local grav-
itational potential so that the balance with the surrounding
density will be eventually regained far away from the planet.
Since the passage from the inbound asymptotic state via the
periapsis to the outbound asymptotic state is symmetric, the
emission of quanta from the local system and the absorption
to the local system match perfectly, and hence the net dissipa-
tion vanishes. Thus, the momentum of the two-body system
is conserved.

Next, let us consider the flight past by an orbiting body.
Along the inbound trajectory the spacecraft travels through
the energy density of space that increases more rapidly than
in the case of the merely gravitating body, namely at the rate
that the planet orbits straight at the spacecraft. This more
rapid increase in the potential energy is balanced, just as rea-
soned above, by a more rapid increase in kinetic energy con-
currently with dissipation of the oppositely paired quanta to
the surrounding space. First when at the periapsis, where the
spacecraft moves orthogonal to the planetary orbit, dissipa-
tion vanishes momentarily. Thereafter, along the outbound
asymptote 2K will exceed U, and hence quanta will be ac-
quired from the surrounding vacuum to the local gravitational
potential energy comprising the body and the spacecraft to re-
gain the balance eventually when far away. Clearly the flyby
about the approaching planet and the flyby about the depart-
ing planet differ from each by the rates of momentum and
energy transfer from the system to the surrounding space.
Thus, the spacecraft will pick up momentum in the former
case and it will lose momentum in the latter case. The for-

mula for the spacecraft’s change in velocity can be derived in
the same manner as Eq. 6 was derived. Consistently, also the
(very slightly) perturbed planet will regain a stable orbit by
processes where the paired quanta carry energy from the sur-
roundings to the local potential and vice versa until the free
energy minimum state has been attained.

Finally, let us consider the flight past a rotating planet that
imposes an axially symmetric energy density gradient on the
surrounding space. When the gradient along the inbound tra-
jectory is equal in magnitude to the gradient along the out-
bound trajectory but of opposite sign, the emission and ab-
sorption of quanta from the system comprising the body and
the spacecraft to the surrounding vacuum are equal. Thus, in
that case the momentum is conserved, and hence no anoma-
lous gain or loss in velocity will detected. Conversely, when
the emission of quanta along the inbound trajectory and the
absorption of quanta along the outbound trajectory do not
cancel each other exactly, the spacecraft will either pick up
or lose momentum depending on the sign of net dissipation.
Likewise the concurrent (minute) perturbation of the planet’s
rotational momentum will damp down toward a stable state of
spinning by energy transfer processes from the systemic po-
tential to the surroundings and vice versa until the net dissi-
pation finally vanishes at the free energy minimum state. Per-
haps our account on gravity summons up the old abandoned
idea of luminiferous ether [48]. Therefore, it is worth em-
phasizing that the proposed physical vacuum is not a medium
that supports propagation of light, instead the photons consti-
tute space. The paired photons without net polarization do not
couple in electromagnetic terms, and hence the space is dark,
but not illusive or only a mathematical metric. It reacts to
every act. Any change in momentum is met with resistance,
known as inertia, since the spatial energy density redistributes
to regain balance among perturbed bodies [31].

6 Conclusions

We conclude that the flyby anomaly only appears as an odd
phenomenon when not all components of force are included
in its explanation. Specifically, we maintain that the law of
conservation of momentum holds when the system of bodies
associated with local potentials of space will in total neither
lose nor gain quanta from the surrounding systems. The ul-
timate surroundings for any local system is the universal free
space. It must be taken into account in the explanation of
flyby anomaly.

We resort to the old idea that the vacuum is embodied by
the quanta of light which pair in opposite polarization. Hence
space is dark but it holds an energy density [32] on the order
of one nJ/m3. The non-zero energy density displays itself also
in the Aharanov-Bohm experiment [40] and as the Casimir
effect [49]. So in any closed system the conservation of mo-
mentum is a solid law. In fact, the law may seem universal,
since the Universe as a whole may by definition seem like
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a closed system. However, the quanta of light, that embody
the space both in pairs of opposite polarization and solo, are
open actions (Figure 2), whose momentum p may decrease
concomitantly with increasing wavelength λ or vice versa so
that the measure, known as Planck’s constant, h = p · λ re-
mains invariant. Equivalently stated, a decrease in energy E
is counterbalanced by an increase in time t, so that h = Et is
constant. Indeed, astronomical observations imply that the to-
tal energy density of the Universe is decreasing with increas-
ing time. The photon that emerged from the nascent energy-
dense Universe has shifted down in frequency f = 1/t when
adapting to ever more sparse surrounding densities on its way
to us and eventually terminating at absorption to our detec-
tor. Conversely, when insisting on that energy is conserved,
i.e., by applying a theory that conserves a symmetry, the en-
suing interpretation of supernovae data will require an ad hoc
patching, for instance, by dark energy [26].

Rules and regularities that are so apparent across scales of
nature, are rightfully related to conservation laws. However,
to avoid assigning phenomena as anomalous, it is necessary to
include everything in an explanation. To this end among the
laws of nature the truly superior and solid one is the conser-
vation of the total number of quantized actions in the whole
Universe.
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It has been found that in muonic hydrogen either the proton radius is 4% smaller than
usual (a 7σ anomaly) or an unexplained extra binding energy of 320 µeV is present.
Here it is shown that 55% of this extra energy can be explained if Unruh radiation seen
by the orbiting muon can push on it, and is being asymmetrically blocked by the proton.

1 Introduction

The proton radius has been measured for many years to be
0.88 fm, with experiments using electron-proton scattering
and by using atomic spectoscopy to look at the Lamb shift
seen by an orbiting electron, a shift which depends on the
proton radius [1].

More recently, it was realised that a more accurate proton
radius could be obtained by replacing the electron in the atom
with its heavier twin: the muon, but when this was done, the,
more accurate, proton radius was found to be 0.84 fm, 4%
smaller and a difference seven times larger than the uncer-
tainty in the original measurement [2]. This was confirmed in
2013 [3] and has also been confirmed using a muon orbiting
a deuterium nucleus [4].

The standard model has no mechanism that allows the
proton to change size in the proximity of a muon as opposed
to an electron, so this is a crucial finding. Another possibility
however, is that the proton size is not changing but that a new
binding energy equal to 320 µeV is appearing [1]. It is the
contention of this paper that this extra binding energy comes
from sheltering by the hypothesised Unruh radiation.

[5] suggested that black hole event horizons can sepa-
rate pairs of particles in the zero point field, swallowing one
and allowing the other to escape as a real particle, thus allow-
ing black holes to radiate. [6], [7] and [8] then suggested that
the same thing may occur when objects accelerate since then
a horizon appears, and may similarly seperate paired virtual
particles making half of them real. This is now called Unruh
radiation.

[9] and [10] suggested that inertia is caused by Unruh
radiation: the acceleration of an object causes a Rindler hori-
zon to form on the side opposite to the acceleration vector and
this damps Unruh radiation on that side of the object, caus-
ing a net imblance in Unruh radiation pressure that pushes it
back against the original acceleration. This new process pre-
dicts inertial mass [10] and [11] and also predicts deviations
from the standard inertial mass that explains the galaxy rota-
tion problem without the need for dark matter [12] and also
cosmic acceleration [13]. The crucial point here is that Unruh
radiation is taken to exist and to be able to push on particles.

In this paper it is argued that the usually isotropic Unruh
radiation seen by the orbiting muon is blocked by the cen-
tral proton, which subtends a much larger solid angle at the

close-orbiting muon than at the distantly-orbiting electron. It
is shown that this sheltering effect on Unruh radiation can ac-
count for about half of the proton radius anomaly in muonic
hydrogen.

2 Method and Results

Let us imagine a muon orbiting around a proton as shown in
Figure 1.

In quantum mechanics of course it is not possible to spec-
ify an exact orbital speed for the muon, but one can estimate
the probable speed: v ∼ αc where α is the fine structure con-
stant and c is the speed of light. The acceleration of the muon
as it orbits at a radius R is then

a =
v2

R
=

(αc)2

R
(1)

where α ∼ 1/137. The wavelength of Unruh radiation seen
by the muon while orbiting can be found using Wien’s law
for the wavelength emitted by a body of temperature T , λ =
βhc/kT where β = 0.2, h is Planck’s constant, c is the speed

Fig. 1: Schematic showing a muon (the small right hand circle) or-
biting close to a proton (the large left hand circle). The muon is
pushed by the Unruh radiation associated with its acceleration (the
arrows) from all directions except from the direction of the blocking
proton (the truncated arrow). So there is a new net force pushing the
muon towards the proton. The size of this force produces 55% of the
proton radius anomaly.
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of light and k is Boltzmann’s constant, and combining it with
the temperature of Unruh radiation seen at an acceleration a:
T = ℏa/2πck, so that

λU ∼
8c2

a
. (2)

The de Broglie energy associated with this wavelength is

E =
hc
λU
. (3)

Using (2) we get

E ∼ ha
8c

(4)

and using (1) we get

E ∼ hα2c
8R
. (5)

This is the energy in the Unruh radiation field at the muon,
which usually strikes the muon isotropically so does not push
it in any net direction. However, we shall assume that the
proton, as seen from the muon, blocks all the Unruh radia-
tion coming from that direction (Fig. 1). The amount will
be proportional to the solid angle of the proton as seen by the
muon, which is πr2

P/2πR
2 = 5.7×10−6, where rP is the proton

radius and R is the muon-proton distance. Note that we are
only looking at one side of the muon, to work out the energy
asymmetry that pushes on the muon, so it is the half-sphere
we consider.

As energy is being blocked on the side of the muon closer
to the proton, this represents a new source of energy pushing
the muon towards the proton, and adding to its boundedness.
The specific amount of energy is

E ∼ hα2c
8R
×
πr2

P

2πR2 = 2.8 × 10−23J. (6)

The extra binding energy required to account for the ob-
served proton radius anomaly is 320µeV or 5.1 × 10−23 J.
Therefore a sheltering of Unruh radiation by the proton pre-
dicts roughly 55% or 180 µeV of the energy needed to explain
the observed proton radius anomaly for muonic hydrogen.

This extra Unruh binding energy is far smaller in the case
of the electron. Electrons orbit the proton about 200 times
further out than the muon and so the solid angle of the proton
at the electron is much smaller. The energy released in the
electron case would be

E ∼ hα2c
8R
×
πr2

P

2πR2 = 7.1 × 10−28J (7)

or about 5 orders of magnitude smaller than for the muon. So
there is no anomaly for normal hydrogen. When the electron
is replaced by a muon there is a difference of roughly 180
µeV, or 55% of the observed anomaly.

3 Conclusion

It has been observed that the radius of the proton, as deter-
mined by the Lamb shift, is apparently 4% less when mea-
sured using an orbiting muon instead of an electron. This can
be interpreted as an anomalous increase in the proton-muon
binding energy of 320 µeV.

Assuming that Unruh radiation is able to push on parti-
cles, and that the proton can block it, predicts an extra proton-
muon binding energy of 180 µeV, about 55% of the observed
anomaly.
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Here, using Mach’s principle we symmetrize the Schwarzschild solution. It enables

to compute the universe densities of baryonic matter, dark matter, and dark energy as

distinct effects of the same unique source and the time invariance of the theory naturally

gives an inflation period (or its illusion). The theory does not change GR equations but

its classical limit is a MOND theory which parameter is predicted. Hence we claim the

discovery of a natural law.

1 Introduction

In relativity and cosmology, the mystery of the time is the na-

ture of dark matter and dark energy. Dark matter is inferred

from the anomalous galaxies rotation curves and dark energy

from the universe accelerated expansion. The debate is long

open between dark matter particles and modified gravity; the

nature of the dark energy field is unknown. On the other hand

of physical theories, quantum gravity which cannot be renor-

malized and gives absurd predictions.

The purpose of this paper is to provide with a natural

solution to the first issue without modifying GR, firstly by

computing the amount of matter, dark matter and dark energy

from elementary symmetry considerations; thus uncovering a

fundamental law of nature. It addresses in the most general

manner the long expected rule of energy and metric formation

— namely space-time and everything therein. We also show

that the classical approximation is a MOND-type theory and

compute its parameter. Concerning quantum gravity, it shows

why a different approach is needed.

Note that all masses, densities and accelerations in this

paper are computed using as input the universe age T given

by the Planck mission and two natural constants G, and c.

The other ΛCDM parameters output of this mission are only

used for comparison.

2 Theory

Theoretical physics works by the study of symmetry; for any

variation, compensation exists. The universe expands, there-

fore compensation exists and then symmetry. Take the Ein-

stein field equation:

Rµν −
1

2
R gµν =

8πG

c4
Tµν − Λ gµν , (1)

where the term Λ is experimentally justified and is a constant

scalar; meaning its density is constant in space. It leads to

results which are unique in physics: two kinds of energies

do not transform in each other and, as we know from phe-

nomenology, it eventually requires a third kind with the same

property, namely dark matter. This is the problem we shall

discuss.

On the other hand theΛCDM model is well verified and it

gives no reason to doubt the Friedman-Lemaitre-Robertson-

Walker (FRLW) cosmology. Therefore we shall neither mod-

ify gravity nor implement ad-hoc fields, but instead discuss

energy formation; masses, the scalar Λ, and their relation

with G. For this we shall take the problem by the other end

and use the standard short distance case with central mass M.

The Schwarzschild spherical solution reads:

c2 dτ2 =

(

1−
Rs

r

)

c2dt2 −
(

1−
Rs

r

)−1

dr2 − r2 (dθ2 + sin2θ dφ2) . (2)

This “local” solution does not admit a scalar Λ; it is not ap-

propriate but we shall make direct use of this defect. If we

properly instantiate Mach’s principle therein we should get a

nice correction, because by definition it should includes all

effects. The symmetry in (2) is unbalanced since two of the

quantities are not geometrical, namely G and M. Then in an

attempt to symmetrize the Schwarzschild solution we write:

Rs

r
=

RU M

MS r
→

2G

c2
=

RU

MS

, (3)

where MS and RU represent respectively the scalar field en-

ergy and the distance to the event horizon (RU = c T ). Note

that this equation instantiates Mach’s principle in the most

trivial manner. Now compute:

MS =
RU c2

2 G
= 8.790 × 1052 kg. (4)

It looks to the observer like an energy contained in a 3-sphere,

but it is actually a conic 4-dimensional structure intersecting

the present, the surface of the 4-sphere. Then consider the

constancy of Λ: with respect to the 4-sphere volume, and in

order to reduce to its surface, we divide MS by the 4-sphere

surface coefficient, namely 2 π2; we get:

MV =
MS

2 π2
= 4.453 × 1051 kg, (5)

which corresponds to 4.82% of the total mass and density:

Mtotal = MS + MV = 9.236 × 1052 kg, (6)

Dtotal =
3 (MS + MV )

4 πR3
U

= 9.91 × 10−27 kg/m3. (7)
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All numerical results above are in great agreement with the

Planck mission outputs [1] even though we get a single dark

field MS summing dark energy and dark matter.

The Planck mission also gave H0 = 67.74 (46) km/s/Mpc

and we use H = 1/T = 71.10 km/s/Mpc to compute the dis-

tance to the event horizon. Then compare:

MS + MV

MS

= 1 +
1

2π2
= 1.0507 , (8)

with:
1

H0 T
= 1.0496 . (9)

This utterly stunning not only for the right orders of magni-

tude, but for getting also the first two or three decimals right

and multiple coincidences — seemingly coherent — which,

in principle, address independent quantities. Considering also

that from (3) MS is the critical density, it suggests that the

mass terms are linked to G by geometry in a manner that is

consistent with GR; possibly a fundamental law of nature rul-

ing the universe formation. Now the equation (4) also reads:

2MS c2 = Pp T =
Pp RU

c
, (10)

where Pp = c5/G is the Planck power. It looks as though

a 4-sphere at the surface of which observable energy lies is

either inflated or heated by a constant feed; in other words,

it replaces the big bang singularity by a constant power and

the correlation is such that we must conjecture the follow-

ing identification: energy is the expansion; meaning that MS

and MV increase linearly in time. Expansion is observed, and

then we shall discuss the conjecture as a new theory which is

embodied by the equation (3) and the following premises:

P1: The scalar Λ is a constant of nature.

P2: The matter field (all particles) is the surface of a

4-sphere.

P3: A feed mechanism exists inflating the sphere and ex-

panding its inner metric; both effects are simultaneous.

P4: The inner metric expansion is the product of inflation

of the sphere radius by the reduction of particles wave-

lengths; both effects have identical coefficients.

Essentially, we states that MS is the critical density, that

the matter field MV has no effect on the course of the uni-

verse expansion, and that the source terms of the Einstein

field equation (1) are not identified for what they are. In the

following sections we analyze what the new theory predicts.

3 Predictions

3.1 Inflation

Considering P3 and P4 the wavelength of massive particles

reduce in time while the 4-sphere expands, the product of this

reduction by this expansion gives a linear increase of the uni-

verse radius.

But this is considering constant energy; since the wave-

lengths reduce the relative rate of time is not constant be-

tween distinct epochs and reaches zero at the origin. There-

fore the theory requires an inflation period; the global curve

is a straight line if expressed in “constant” time T , but a log-

arithmic law if expressed in proper time.

3.2 The dark matter effect

Let us study the effects at different heights in the gravitational

pit of a central mass M (the basic test case) and assume the

system far away from other gravitational sources. With re-

spect to (2), MS is variable in time but constant in space

(MS ∼ T ). At the opposite since gravitation is a retarded

interaction, the metric in r is retarded and the equation (3)

must be modified accordingly. Hence, using P3-P4, since r

and M (or Rs) expand, we write:

Rs

r
→

Rs

r
×

√

1 − Hr/c

1 + Hr/c
, (11)

which second order limited development yields:

2 G M

r c2
→

2 G M

r c2
−

M

MS

+
M r

MS RU

. (12)

Now examine this expression:

• The first term is nominal.

• The middle term cannot be seen negligible since it ad-

dresses identically all masses of the universe. Hence

it must be identified to the contribution of MS to the

mass M, and then integrated to MS , giving −1 which is

the flat metric. Finding the flat metric here may look

stunning but it is coherent with its production.

• Therefore the right hand term must also be integrated

to MS giving H r c of unit squared velocity, and a cos-

mological term H c with unit of acceleration; it comes

from the expansion but its effect in the gravitational

field is not trivial.

Still, we know that this value is in the range of the anoma-

lous acceleration at galaxies borders. Then let us discuss an-

gular momentum.

Quantum gravity is usually expected to work from the

same principles as any other field. But this assumption holds

a fundamental contradiction with the spirit of GR and even

more with the theory we discuss, because here gravitation de-

fines entirely the context in which the rest of physics lives. In

this way, the position of MS at the denominator of (3) is quite

evident since like GR it scales the matter field — but globally.

Still, the theory is compatible with the SM fields. The bottom

line is scale-independence and all SM couplings constants are

unitless including mass ratios.

Now on angular momentum, consider simply the Bohr ra-

dius for the simplest but most general case:

a0 =
~

me cα
=

1

2 π
×
λe

α
. (13)
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We know that the fine structure constant α did not change

during many billion years; then with a linear increase of me,

the electron wavelength and the Bohr radius decrease together

and coherently; but when considering only lengths like in (13)

the orbit radius scaling factor is 1/2 π.

Expressing this simply, when the electron mass increases

in time, the Bohr radius and the first Bohr orbit reduce like:

da0

dt
=

dλe

α dt
×

1

2π
→
α da0

dλe

=
1

2π
. (14)

But this contraction is universal. It addresses all phenomena

ruled by quantum physics (rulers, clocks, etc...); it is not mea-

surable where only quantum physics rules.

But there is a neat difference with gravitation: with quan-

tum fields, angular momentum quantizes distances as the in-

verse of mass, but gravity cannot since its classical force is a

product of masses. With the product of two masses increas-

ing simultaneously, we get a square and only half the effect

is non-measurable. Hence in the gravitational field a residual

term H c/2π gives measurable effects.

3.3 Dark matter and dark energy

In the spirit of the coincidence in (4), GR (or the ΛCDM

model) splits the scalar energy MS into a massive dark matter

field and the scalar field Λ, and we have a compression fac-

tor which derivative is H c applied on any piece of the matter

field MV . But for any scalar field X having this double effect,

and for any R and HR = c/R, its compression energy MCo

(dark matter) at any place is given by:

MCo

MX

=
1

2

∫ R

0

4π ρX r2

MX c2
(HR c r) dr =

3

8
= 0.375 , (15)

where in the integral energy is given by acceleration, then ki-

netic energy p2/2m; thus the factor 1/2. The kinetic impact

of X has effect of pressure and its energy is calculable. Obvi-

ously, the Planck mission gave the same result:

ΩC

ΩDE

=
0.2589

0.6911
= 0.3746. (16)

From this equation the sum ΩC + ΩDE = ΩS is not a split

but a unique field giving distinct effects ruled by geometry, a

consequence of which is MS :

ΩS = 2π2 ΩV =
11

8
ΩDE =

11

3
ΩC . (17)

This is not unification of distinct fields, this is unity. In GR:

• ΩDE provides with negative pressure, a repelling force;

• ΩC is seen as mass but here it must be seen as counter-

part, an isotropic stress and a positive pressure applied

to massive particles by the same repelling force; in the

equation (1), stress is part of the stress-energy tensor.

• ΩV the matter density is the proportion of their sum at

the 4-sphere surface.

Here there is no contradiction with (1) nor with the FLRW

universe; but the concept appears to imply that dark matter is

pressure and that mass is compression work.

3.4 The Hubble paramater

Let a photon be emitted in A at date t1 with observable energy

m, the transit time to the receptor in B is t, and then t1+ t = T .

It has no mass, but it takes away a part of the emitter mass m,

and then the full energy it transfers includes its share of MS

and corresponds to m (2π2 + 1).

During the transfer, its wavelength increases of a factor√
(t1 + t)/t1. Hence:

mtransfer =
(2π2 + 1)

√
t1

√
t1 + t

m .

But during the time t, the mass of the receptor evolved by a

factor
√

t1 →
√

t1 + t. Therefore the energy transferred by

the photon to the receptor, before it reconstitutes mass in B

evolves like:

mtransfer

mreceptor

∼ (2π2 + 1)
t1

t1 + t
.

Once the photon is absorbed, it gives:

mabsorbed

mreceptor

∼ 1 − Ht , (18)

which is standard red-shift for a universe of age T expand-

ing at constant rate c for which H T = 1. It fits with ob-

servation of type 1A supernova with accelerated expansion

due to the scalar field Λ. On the other hand, consider a field

of photons created at the origin (not emitted by mass); the

term (2π2 + 1) is not present at emission, meaning in facts

that the field MS has decayed of a factor (1 + 1/2π2)−1 with

mass creation; hence the equation (9). So the theory predicts

a discrepancy between measurements of the Hubble parame-

ter from the CMB and type 1A supernovas:

H0
1A =

1

T
= H0

CMB

(

1 +
1

2π2

)

. (19)

This equation is in range of the discrepancy given by the Hub-

ble space telescope measurements in [5], which is currently

valid at ∼ 3σ, as compared to the Planck mission. Older data

is also compatible with the prediction.

3.5 The classical limit

The limited development in (12) also applies in the classi-

cal theory provided a retarded field. (Even though we would

obtain MS → 2 MS with a classical equation in place of (3)

and the same reasoning.) According to (14), the cosmological

term to apply is is:

S HC =
H c

2π
= 1.10 × 10−10m/s2, (20)

where Milgrom’s limit is a0 = 1.20 (±0.2) × 10−10m/s2; so

we shall compare with MOND.
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But here S HC is a derivative that scales the gravitational

field and it cannot be independent of the “normal” accelera-

tion. In a classical manner we need to discuss forces with the

following substitution:

G m M

r2
→

G m M

r2
+ m S HC ,

which, on circular orbit, corresponds to the Newton accelera-

tion at a distance R such that:

G M

R2
=

G M

r2
+ S HC .

Then multiplying this expression by R2 r2, using A = G M/r2

we get:

R2 = r2
(

1 +
S HC

A

)−1
.

Now this result is the exact opposite of MOND interpolation.

This is perfect since we work in forces while MOND mod-

ifies the dynamics, namely the effective acceleration a but

preserves the Newton force. Then reversing the correction,

that is conserving the Newton force in r, using MOND con-

cept that is an anomalous acceleration a and notations with

a0 = S HC , we get:

F = m a
(

1 +
a0

a

)−1
, (21)

which is the so called “simple” MOND interpolation func-

tion. Hence the classical approximation is MOND [4], which

is important considering the wide range of effects it predicts

that agree with observation.

It shows, rather stunningly, that MOND and GR as it is

are not incompatible, but that the former comes naturally as

the classical approximation of the latter if we replace the big

bang energy emission by a constant feed. Here again there is

no need to choose between modified gravity and dark matter

particles; we find that both are irrelevant.

3.6 Other consequences

Firstly the theory does not need dark matter particles nor does

it accept any. Considering the “energy feed” a good candidate

is a continuous scalar field propagating at light speed — and

quantum physics live therein; importantly, the existence of

such a field is opposite to the very notion of isolated particle.

Secondly, all fields known to particles physics take energy at

the same source and they do so permanently; unity is there

but theories are not unified. Hence, even though it requires

an intuitive leap, the consequence is that all parameters of the

SM of particle physics reduce to geometry; a geometry which

is scale-independent and fits locally and globally with the new

theory. Those parameters need to be natural.

4 Conclusions

It is well known that Einstein was influenced by Mach’s prin-

ciple when designing general relativity. In this article, the

principle is expressed in the most trivial manner and leads

to an extended theory enabling to compute the densities of

the matter, dark matter, and dark energy fields of the ΛCDM

model. Its classical approximation is MOND which parame-

ter and equation are predicted; it shows that the ΛCDM and

MOND are discussing the same physics. This is an enlight-

ening surprise for it shows the irrelevance of discussing mod-

ified gravity and dark matter particles. The theory is also in-

structive as to the structure of space-time and imposes con-

straints to its evolution, but also to its nature and origin. It

refutes the existence of a big bang as a huge and final en-

ergy emission — the very first issue in cosmology; instead it

provides with a first step toward unity.

Hence, considering those results, we claim the discovery

of law of nature that rules gravity and the universe formation,

including metric and energy.

A first note [6] on this theory was previously published by

the same author. With respect to this note the present paper

was written based on minimal hypothesis.

5 Addendum

The new theory implies that an almost empty galaxy will be

understood as made of close to 100% dark matter. Here, with

an estimate of 98% dark matter, the observations of Dragonfly

44 recently reported by Van Dokkum & al. [2] is an impor-

tant test because it will be systematic. A similar ratio will

be found in any galaxy of this type; in a general manner, the

lesser the baryonic mass the higher the ratio of dark matter

given by the standard theory.
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In an earlier publication, we showed that a slightly varying cosmological term is a nec-

essary ingredient to restore the true tensor nature of the gravitational field produced by

neutral matter. As a result, this term induces a background field filling the entire vac-

uum. The global energy-momentum tensor of matter and its gravity field is proved to

be intrinsically conserved like the Einstein tensor, once it has been identified with the

Rosenfeld-Belinfante symmetric tensor. Within the GR representation in the absence of

matter, the remnant field never vanishes and we showed that it represents the lower hori-

zon state of the Lorentzian space-time vacuum. In what follows, we work out a 4th rank

tensor theory of gravity which formally leads to have the background field superim-

posed onto the large scale structure of space-time classically described by the de Sitter

Universe with a cosmological constant. Our 4th rank tensor theory thus substantiates

the recent investigations which would adopt the de Sitter Space-time as a mathematical

frame more general that the Minkowski space.

Introduction

By introducing a space-time variable term Ξ that supersedes

the so-called cosmological constant Λ in Einstein’s field

equations, we formally showed that the gravity field of a (neu-

tral) massive source is no longer described by an ill-defined

pseudo-tensor, but it is represented by a true canonical ten-

sor [1]. As a result, the physical space should be always filled

with a homogeneous vacuum background field [2] which is

described by a tensor on the r.h.s. of the Einstein’s “source

free” equations. Inspection shows that the matter-gravity ten-

sor must be identified with the Rosenfeld-Belinfante symmet-

ric tensor [3, 4], thus complying with the intrinsic conserva-

tion property of the Einstein tensor as it should be. Regarding

the vacuum background field, it was shown to be a space-

time contraction unveiling a low horizon state, arising from

the geodesics incompleteness postulate [5]. Conversely, it is

desirable to analyze the background field nature in the larger

scale. To this effect, we suggest here a 4th rank tensor theory

based on the full Riemann curvature, and which suitably gen-

eralizes the Einstein-Ricci 2nd rank tensor formulation. Un-

like many attempts of the kind, our mathematical approach

does not trivially entail Einstein GR theory. In fact, due to

its peculiar formulation, it leads to view the usual Einstein

equations as merely initial conditions following the Cauchy

problem.

As will turn out, such a broader theory clearly grants the

background field a sound macroscopic meaning. When mat-

ter is absent, it closely follows the pattern of the constant cur-

vature space-time described by the de Sitter metric when the

term Ξ is reduced to the cosmological constant Λ.

In this way, the vacuum background field may be regarded

as an intrinsic property of the basic physical structure of our

Universe.

Notations

Space-time Greek indices run from α = β: 0, 1, 2, 3, while

spatial Latin indices run from a = b: 1, 2, 3. The space-time

signature is −2. In the present text, κ is Einstein’s constant

8πG/c4 = 8πG with c = 1.

1 The background field and the gravitational field ten-

sor (reminder)

In a pseudo-Riemannian manifold V4, let us first set the fol-

lowing tensor densities

gαβ =
√

−ggαβ , (1.1)

Gαβ =
√
−g Gαβ (Einstein tensor density), (1.2)

G
α
β =
√
−g Gα

β , (1.2bis)

Rαβ =
√
−g Rαβ (Ricci tensor density). (1.2ter)

In density notations, the usual field equations with a mas-

sive source then read

Gαβ = Rαβ − 1

2
gαβR − gαβΛ

√
−g = κTαβ, (1.3)

where

Tαβ =
√
−g Tαβ

while Λ is the so-called cosmological constant.

However, unlike the Einstein tensor Gαβ which is concep-

tually conserved, the conditions

∂αT
α
β = 0 (1.4)

are never satisfied in a general coordinates system [6]. To

cure this problem, we have demonstrated once more the con-

servation condition

∂α
[

(Tαβ )matter + (t
β
α)gravity

]

= 0 , (1.5)
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but where (t
β
α)gravity is no longer a pseudo-tensor density.

To achieve this, we introduced a space-time varying term

Ξ in place of the cosmological constant Λ, and whose scalar

density is denoted by

ζ = Ξ
√
−g . (1.6)

Its variation is given by

ζ =
√
−g ∇a κ

a = ∂a

(√
−g κa

)

(1.7)

and the term

ζ =
√
−g ∇a κ

a (1.8)

is related to the vacuum volume expansion scalar θ = ∇a θ
a

(see [7] for detail).

Such a form allows to maintain the original Einstein La-

grangian density as

LE =
√
−g gαβ

[{

ν
αβ

} {

λ
λν

}

−
{

λ
αν

} {

ν
βλ

}]

, (1.9)

the latter expression being used to derive the new canonical

gravity tensor attached to a mass:

(tαβ )gravity =
1

2κ

[{

α
γµ

}

∂β g
γµ −

−
{

γ
γµ

}

∂β g
µα − δαβ (LE − ζ)

]

, (1.10)

ζ can be regarded as a Lagrangian density characterizing a

specific vacuum background field which pre-exists in the ab-

sence of matter. Close inspection of equation (1.10) shows

that local gravitational field of matter is just a mere “excited

state” of the background field. Sufficiently far from the mas-

sive source, (tα
β
)gravity → (tα

β
)background.

2 Symmetrization of the gravity tensor

The tensor density (1.10) includes the Einstein-Dirac pseudo-

tensor density [8] which is not symmetric.

Symmetrizing the canonical tensor (Θα
β
)gravity extracted

from (tα
β
)gravity =

√−g (Θα
β
)gravity is equivalent to identifying

it with the Belinfante-Rosenfeld tensor:

(tγβ)gravity = (Θγβ)gravity + ∇αΥγβα (2.1)

with

Υγβα =
1

2

(

S γβα + S βγα − S αβγ
)

, (2.2)

where the antisymmetric tensor S αβγ is the contribution of the

intrinsic angular momentum. Now, we check that:

∇α (Θαβ )gravity = ∇α (tαβ )gravity = 0 . (2.3)

Far from matter (tαβ)gravity → (tαβ)background and Υαβγ = 0.

By essence, (tαβ)background is thus symmetric.

The field equations with a (neutral) massive source to-

gether with its gravity tensor can now be explicitly written

down

Gαβ = Rαβ −
1

2
gαβR = κ(Tαβ)global , (2.4)

where

(Tαβ)global = (Tαβ)matter + (tαβ)gravity (2.5)

with, for example (Tαβ)matter = ρuαuβ (here ρ is the homoge-

neous mass density).

3 The 4th rank theory of the gravitational field

3.1 The new field equations

We now state that the true gravitational field equations with

a source are the 4th rank tensor equations

G α
βγ µ = κT α

βγ µ , (3.1)

where

G α
βγ µ = R α

βγ µ −
1

2
R
(

δαγ gβµ − δαµ gβγ
)

(3.1bis)

and

T α
βγ µ = δ

α
γ(Tβµ)global − δαµ(Tβγ)global (3.2)

is the generalized energy-momentum tensor.

Our assumption can be legitimized by the following con-

siderations. From Bianchi’s second identities [9]

(s)αβγ∇αRβγλµ = 0 , (3.3)

where (s) denotes the cyclic sum, we easily infer [10]

∇αR α
βγ µ = ∇γRβµ − ∇µRβγ , (3.4)

hence

∇αG α
βγ µ = ∇γRβµ − ∇µRβγ −

1

2
∇αR

(

δαγgβµ − δαµ gβγ
)

(3.5)

i.e.

∇αG α
βγ µ = ∇γRβµ−∇µRβγ−

1

2
∇γRgβµ+

1

2
∇µRgβγ . (3.5bis)

The right hand side equation is obviously zero, therefore:

∇αG α
βγ µ = 0 . (3.6)

The tensor

G α
βγ µ = δ

α
γ Rβµ − δαµ Rβγ −

1

2
R
(

δαγ gβµ − δαµ gβγ
)

(3.6bis)

is thus intrinsically conserved as is the case for the Einstein-

Ricci tensor Gβµ, and we call it the Einstein 4th rank tensor.

In addition, we also have:

∇α T α
βγ µ = ∇α

[

δαγ(Tβµ)global − δαµ(Tβγ)global

]

= 0 . (3.7)

Proof:

δαγ(Tβµ)global = δ
ν
γ gβν(T

α
µ )global = gβγ(T

α
µ )global (3.8)

and since∇α (Tα
µ )global = 0 according to our initial demonstra-

tion, then ∇α
[

δαγ (Tβµ)global

]

= 0. The same reasoning holds

for δαµ(Tβγ)global

δαµ(Tβγ)global = δ
ν
µgβν(T

α
γ )global = gβµ(T

α
γ )global (3.8bis)
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which finally yields (3.7).

Equations (3.6) and (3.7) tell us that the conservation con-

ditions are fully satisfied by the system:

G α
βγ µ = κT α

βγ µ . (3.9)

Hence, T α
βγ µ

is confirmed to be the appropriate generalization

of the energy-momentum 2nd rank tensor (Tγµ)global.

How do the Einstein second rank tensor equations fit in

the theory?

3.2 Some hypothesis on the Cauchy problem

Let us consider again (3.1bis) and (3.2)

G α
βγ µ = δ

α
γ Rβµ − δαµ Rβγ −

1

2
R
(

δαγ gβµ − δαµ gβγ
)

,

T α
βγ µ = δ

α
γ(Tβµ)global − δαµ(Tβγ)global ,

and by subtraction we have:

δαγ

[

Gβµ − κ(Tβµ)global

]

− δαµ
[

Gβγ − κ(Tβγ)global

]

= 0 (3.10)

i.e.

Pβµ − Pβγ = 0 . (3.10bis)

where P = G − κT = 0 are the Einstein equations with a

source which read in mixed indices as:

Pα
β = 0 . (3.11)

Both relations (3.10bis) and (3.11) then strongly suggest

that the Einstein equations P = 0 can be regarded as mere

initial conditions on a spacelike hypersurface Σ defined on

V4. To see this, consider Σ on which is given Pα
β
= 0, we

must show that upon the above conditions, P = 0 also holds

beyond Σ [11].

For β = 0 and α reduced to spatial indices i, k = 1, 2, 3,

equation (3.10bis) can be expressed by

P0µ = P0γ (3.12)

and (3.11) becomes:

g00Pi0 = −2gi0P00 − gikPk0 (3.12bis)

Now, if the hypersurface Σ admits the local equation

x0 = 0, we have g00 , 0 which means that P = 0 would

also hold beyond Σ.

On the hypersurfaceΣ, the zero initial data require that the

system (3.12)–(3.12bis) admits nothing but the zero solution

leading to P = 0 as well. This is what we wanted to show.

In relation with (3.12), one may regard the equations

G α
β0 µ − κ

[

δα0 (Tβµ)global − δαµ(Tβ0)global

]

= 0 (3.13)

as constraint equations for the initial data at the time x0 = 0

which are usually set in the Cauchy problem. For a particular

example see [12].

3.3 Newton’s law

Let us consider the massive tensor classically expressed by

(Tαβ)global = ρuαuβ + (tαβ)gravity (3.14)

which becomes here

T α
βγ µ = δ

α
γ

[

ρuβuµ + (tβµ)gravity

]

−

− δαµ
[

ρuβuγ + (tβγ)gravity

]

. (3.15)

When the spatial 3-velocities are low and the gravitational

field is weak, the static case corresponds to the Newton’s law

for which u0 = 1 in an orthonormal basis. In the framework

of our theory, this translates to:

G i
0i 0 = κT i

0i 0 (3.16)

Explicitly: the left hand side is easily shown to reduce to:

G i
0i 0 = R00 −

1

2
Rg00 . (3.17)

In the same way, the right hand side of (3.16) reduces to:

T i
0i 0 = ( ρ + tgravity). (3.17bis)

As usual, we can re-write the field equations as

R0
0 = κ

[

( ρ + tgravity ) − 1

2
δ0

0( ρ + tgravity )

]

(3.18)

which eventually yields with the explicit value of the Ein-

stein’s constant

R0
0 = 4πG ( ρ + tgravity ) , (3.19)

where G is Newton’s constant.

We then retrieve the Poisson equation which is also ex-

pressed by:

∆ψ = 4πGρ′. (3.19bis)

We have set: ρ′ = ρ + tgravity because we consider a sta-

tionary gravity field (in a general case, the gravity field is

“dragged” along with the mass and ρ′ = ρ + tgravity no longer

holds). With the metric approximation:

g00 = 1 + 2ψ , (3.20)

where ψ is the Newton’s gravitational potential

ψ = −G

∫

ρ′

R
dV , (3.21)

while R is here the distance from the observer to the volume

element dV . Integration is performed over a volume V which

comprises both the bare mass and its (stationary) gravitational

field.
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4 The background field in our Universe

We now come to the persistent field appearing in the 2nd rank

tensor field equations when matter is absent. These are

Gβγ = Rβγ − 1

2
gβγR = κ(tβγ)background (4.1)

with

(tαβ)background =
Ξ

2κ
gαβ . (4.2)

Expressed in the framework of the 4th rank tensor theory, this

yields:

G α
βγ µ = R α

βγ µ −
1

2
R
(

δαγ gβµ − δαµ gβγ
)

=

=
Ξ

2

(

δαγ gβµ − δαµ gβγ
)

. (4.3)

In virtue of ∇αG α
βγ µ
= 0, the r.h.s. is conserved:

∇α
[

Ξ

2

(

δαγ gβµ − δαµ gβγ
)

]

= 0 . (4.3bis)

The latter equation is worthy of attention, for the term Ξ

never happens to be a constant as could be (ambiguously) the

case for ∇αGαβ = ∇α Ξ2 g
αβ.

This lends support to the fact that only a 4th rank ten-

sor theory can strictly describe a metric with a variable cos-

mological term. Therefore, after interchanging α with β, we

find:

Gαβγµ =
Ξ

2

(

gαγ gβµ − gαµ gβγ
)

. (4.4)

The latter equations constitute here the 4th rank tensor

background field equations which characterize the fundamen-

tal structure of physical space-time.

They adequately generalize the Einstein space endowed

with the cosmological constant Λ defined as:

Gβγ = Rβγ = Λ gβγ . (4.5)

For a specific value of Ξ, we retrieve the space-time of

constant curvature [13], which characterizes the de Sitter Uni-

verse when 3Λ = R [14]:

Rαβγµ =
R

12

(

gαγ gβµ − gαµgβγ
)

. (4.6)

Finally, let us emphasize a major point. In a Universe

devoid of matter described by equations (4.4), the Weyl con-

formal trace-free tensor Cαβγµ never vanishes, in contrast to

the de Sitter model equipped with curvature (4.6). However,

the Weyl tensor being that part of the curvature which is not

determined locally by the matter distribution, there is no rea-

son why it should disappear in an “empty” model of space-

time. Hence, our approach of a Universe with a pervasive

background field proves to be physically consistent for it pre-

serves the Weyl tensor, whatever its content.

So, as expected from our 2nd rank tensor field equations

(4.1), the case Gα
βγ µ
= 0 will never occur.

Conclusion

Our 4 th rank tensor gravitational field theory appears to be

the appropriate extension of the 2nd order Einstein-Ricci for-

mulation.

However, it should be noted that the presented theory does

not use the well-known Bel-Robinson tensor [15] which gave

birth to the very thorough paper of R. Debever on Super En-

ergy [16].

The presented remarkably simple theory is partly inspired

from a lecture given by A. Lichnérowicz in a Paris seminar

dedicated to linearized field quantization solutions prior to

their global formulation [17]. We have however substantially

modified this theory allowing for a clearer physical signifi-

cance of the vacuum background field on the very large scale

structure of space-time.

Indeed, when matter is absent, the intrinsic curvature of

space-time is modeled by the background field through its

variable term Ξ, just as de Sitter’s empty Universe does with

its cosmological constant Λ arbitrarily introduced.

Such a close similarity with the de Sitter curvature should

not come as a surprise. The de Sitter metric recently saw

some revived interest among several physicists [18–20]. They

conjectured that the laws of physics are invariant under the

symmetry group of de Sitter space (maximally symmetric

space-time), rather than the Poincaré group of special rela-

tivity. The full Poincare group is the semi-direct product of

translations T with the Lorentz group L = SO(3, 1): P =

L ⊗ T. The latter acts transitively on the Minkowski space M

which is homogeneous under P.

In the framework of a generalized group where transla-

tions mix up non trivially with rotations, the requirements

of homogeneity and isotropy lead ipso facto to the de Sitter

Universe with a uniform scalar curvature. More specifically,

the de Sitter space whose metric is induced from the pseudo-

Euclidean metric (+1,−1,−1,−1,−1) has a specific group of

motion which is the pseudo-orthogonal group SO(4, 1) [21].

Then, de Sitter group obviously involves an additional length

parameter l which is related to the (positive) cosmological

term by:

Λ =
3

l2
.

The Poincaré group “contracts” to the Galilean group for low

velocities.

Analogously the de Sitter group “contracts” to the Poin-

caré group for short distance kinematics, when the order of

magnitude of all translations are small compared to the de Sit-

ter radius. (See: Wigner and Inönü, for the group contraction

concept [22]). These distances are probed by high energies

meaning that quantum effects must be taken into account. In

that case, when we have Λ → ∞, this would correspond to

ΛP = 3/l2
P
, where lP is the Planck length. If Λ→ 0, however,

the underlying space-time would reduce to the Minkowski

space.
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From the fundamental vacuum field equations (4.4), the

variable term Ξ would represent a fluctuation between two

appropriate values of Λ wherein the de Sitter space-time can

be fully represented. In this view, the 4th rank tensor field

equations are to the de Sitter space-time, what the 2nd rank

tensor field equations are to the Minkowski space.
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gique (Mémoires de Classes de Sciences 18), 1940.

5. Marquet P. Some insights on the nature of the vacuum background field

in General Relativity. Progress in Physics, v. 12, issue 4, 366–367.

6. Landau L. and Lifshitz E. The Classical Theory of Fields. Addison-

Wesley, Reading (Massachusetts), 1962, p. 402 (French translation).

7. Straumann N. General Relativity and Relativistic Astrophysics.

Springer-Verlag (Berlin), 1984, p. 159.

8. Dirac P.A.M. General Theory of Relativity. Princeton University Press,

2nd edition, 1975, p. 61.

9. Hawking S.W., Ellis G.F.R. The Large Scale Structure of Space time.

Cambridge University Press, 1987, p. 62.
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Optimizing the Teflon Thickness for Fast Neutron Detection Using a Ge Detector
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The optimum Teflon (C2F4)n thickness for fast neutron detection through the
19F(n,α)16N reaction was calculated and found to be ≈ 5.0 cm. Here, the 6.13 MeV
γ ray emitted by 16N is assumed to be detected by a Ge diode. The geometry of the
system is discussed and the γ line intensity was found to vary weakly with Teflon
thickness.

1 Introduction

Several methods are used in the literature for fast neutron
detection. Among those methods are: (1) the detection of
protons recoiling from the impinging neutrons [1], (2) the
use of plastic and liquid scintillators [2], (3) the use of Gd-
loaded liquid scintillators [3], (4) 3He gas-filled detectors can
be used for both neutron detection and spectroscopy measure-
ments [4], (5) Semiconductor-based neutron detectors [5]. In
other methods the neutrons are first moderated to thermal ve-
locities then captured using BF3 detectors via the 10B(n,α)7Li
reaction [6]. In addition, fast neutron detection often relies on
neutron induced nuclear reaction.

The topic of the present work is the use the 19F(n,α)16N
reaction [7] to detect fast neutrons with energies En > 3 MeV.
This may be done by holding Teflon (C2F4)n in close vicin-
ity to a Ge gamma detector. When the Teflon is hit by fast
neutrons it forms 16N; it is a β emitter (τ = 7.2 s) proceed-
ing to an excited state in 16O (68%) which emits a 6.13 MeV
photon. This can readily be measured using a Ge detector.
Teflon is a combination of 24.0% C and 76.0% F (by weight),
with a density of 2.2 g/cc [8]. Note that because of the high

Fig. 1: A pencil neutron beam is hitting few cm thick Teflon ab-
sorber, at 5.0 mm above a ϕ 64×90 mm Ge coaxial detector, placed
in a 1 mm thick Aluminum case (not shown).

gamma energy emitted by 16O, it is easily visible above back-
ground and may be viewed as an excellent finger print of
fast neutrons. The 19F(n,α)16N reaction is endothermic with
Q = −1.52 MeV and because of the Coulomb barrier viewed
by the emitted α–particles, a non-zero yield is obtained only
for En > 3 MeV.

In the past, this reaction was discussed in some detail for
the detection of fast neutrons [7] where a Teflon cup covering
a 30 cc Ge(Li) diode was used to detect the 6.13 MeV photon.
Our interest here is to calculate the optimum thickness of the
Teflon covering a pure Ge detector.

We use the simple geometry described in Fig. 1. The
present calculation includes two representative Ge detector
volumes: 100 cc, and 300 cc. In Fig. 1 the neutron beam is
assumed to be mono-energetic with En = 5 to 11 MeV, hit-
ting the Teflon in a normal direction (shown by the arrows),
or embedded in a neutron field of uniform flux. Results were
obtained also for a fission neutron spectrum having a Watt
shape.

2 Simulations

The goal of the simulations is to “measure” the response of
a Ge detector to the gamma rays induced by incoming neu-
trons on a Teflon shield, 5 mm above the detector, placed in
an Aluminum cover, Fig. 1. This is calculated as a function
of the Teflon thickness. We are especially interested in the
β decaying 16N nuclei proceeding to the excited level in 16O
emitting the 6.13 MeV γ line. The incoming neutron under-
goes nuclear reactions with the Fluorine nuclei producing 16N
by 19F(n,α) and 15N by 19F(n,α+n) respectively. 15N is stable
with no further decays or γ rays. The respective cross sec-
tions, from Janis [9], are shown in Fig. 2.

It can be seen that the first reaction has a non-zero cross
section at a threshold of 3 MeV while the threshold of the
second is 5 MeV. The simulations proceed in two steps, one
for neutrons and one for gammas. The neutron simulation
“measures” the production yield of the 16N nuclei in Teflon
cylinders of different thicknesses. The gamma simulations
“measure” the actual detector response to the 6.13 MeV γ
produced in the same Teflon cylinders. A convolution of the
two results produces the response of the detector, per neutron,
as a function of the Teflon thickness.
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Fig. 2: The cross sections of the 19F(n,α) and 19F(n,α+n) reactions
taken from the Japanese cross sections library JENDL-4.0.

Fig. 3: Calculated yield of 16N nuclei as a function of Teflon thick-
ness obtained by assuming a neutron pencil beam of En = 5 MeV.
The line is only a guide to the eye.

2.1 Neutrons

Two different geometries were employed: in one a monoener-
getic and monodirectional pencil beam of neutrons impinges
on a cylindrical Teflon sheet placed above the Ge detector,
Fig. 1; in the second, the same Teflon cylinder, is placed in a
“bath” of monoenergetic neutrons, simulating a uniform neu-
tron field. The number of 16N nuclei produced is counted
and normalized to the number of neutrons used in the simula-
tion. For the present purpose this quantity is called Yield–16N
which is the γ–source of interest. It increases with Teflon
thickness reaching a saturation which depends on the extent
of neutron absorption (Fig. 3). The statistical error in this
Monte Carlo calculations is less than 1%, using 106 neutrons

Fig. 4: The distribution of the 16N nuclei along the z axis of the
Teflon cylinder for two cases: (a) pencil beam and (b) uniform flux.
In the second case the standard deviation is larger (17%) but the
distribution is undoubtedly uniform.

Fig. 5: Energies of the gammas produced in Teflon by 5 MeV neu-
trons. The gammas at 6.13 MeV are free of any interference.

for the case of a pencil beam and 4×106 for an uniform flux
of neutrons.

Additionally, we calculated the distribution of the 16N nu-
clei along the z axis of the Teflon cylinders (taken to be along
the direction of the normal). Obviously, in the case of a uni-
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Fig. 6: Calculated spectrum in the 300 cc detector from a Teflon
shield of 5cm.

Fig. 7: Photopeak (6.13 MeV) intensity as a function of the Teflon
thickness, calculated for the 100 cc detector.

form neutron field this distribution is also uniform, but in the
case of a pencil beam the nuclei density is highest at the beam
entrance, Fig. 4.

2.2 Technical details

The neutron simulations were performed with Geant4 [10].
This platform was chosen because it produces a plethora of
ions in Teflon, both by nuclear reactions and by radioactive
decay. An example is given in Tab. 1.

The kinetic energies of the C- and F–ions appearing in
the table are acquired via elastic and inelastic neutron scat-
tering. The number of α’s is equal to the sum of 15N and
16N ions. The total number of gammas (1.4×106) is far larger
than the ones at 6.13 MeV (4×104), but most of the gammas
have low energies < 0.3 MeV (Fig. 5) and do not interfere
with the measurements. The Geant4 system offers many op-

Fig. 8: Relative intensities versus Teflon thickness for various neu-
tron energies and different Ge volumes. Some input data are listed
in the figures.

tions concerning the exact physics to be used in the simula-
tions. We borrowed the detailed physics which appears in the
example Hadr06 (/examples/extended/hadronic) found in its
distribution. It employs high precision (HP) neutron physics
i.e. uses actual neutron cross sections, for neutrons under 20
MeV, and not models, standard electromagnetic physics, ra-
dioactive decay and ion physics based on the internal models
used by Geant4. Furthermore, the new neutron cross sections,
developed by Mendoza and Cano-Ott [11], based on ENDF-
VII, were adopted.

2.3 Gammas

Here, the Teflon cylinder acts as a volume source. The ex-
act departing point of each gamma is sampled in this volume,
uniformly in the radial direction, and according to the distri-
butions of Fig. 4 in the z direction. The statistical error is
negligible. The simulations were carried out for two detector
volumes: 100 cc (ϕ 50×51 mm), and 300 cc (ϕ 64×90 mm).
These dimensions correspond to one of our detectors (100 cc)
or taken from the ORTEC catalog (300 cc). The spectrum of
the energy deposition is calculated by assuming no broaden-
ing, i.e. with zero energy resolution, in 1 keV bins (Fig. 6).
This is because we did not compare to an actual measured
spectrum but are interested only in the relative peak intensi-
ties.
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Table 1: Number of ions produced in Teflon by a uniform neutron
field of 5 MeV (4×106 neutrons). The numbers in square brackets
are the energies of excited levels in keV, i.e. 19F [1554.0] stands for
the 1554.0 keV level of 19F.

Ion Numbers produced Mean Energy
12C 559603 436.0 keV
13C 5907 404.1 keV
19F 1414198 267.8 keV
19F [109.9] 46 60.9 eV
19F [1554.0] 1033 217.1 eV
19F [197.1] 1884 224.2 eV
19F [2779.9] 1 72.1 eV
19F [4377.7] 1 11.2 eV
20F 77 188.3 keV
15N 294 535.9 keV
16N 60366 891.2 keV
20Ne 77 71.7 eV
20Ne [1633.7] 77 487.1 eV
16O 60364 1.6 keV
16O [6049.4] 9 387.2 eV
16O [6129.9] 40378 427.6 eV
16O [6917.1] 22 128.20 eV
16O [7116.9] 3037 260.8 eV
16O [8871.9] 614 70.9 eV
19O 2025 294.2 keV
α 60660 2.38 MeV
anti-νe 62466 3.14 MeV
e+ 2786 2.00 MeV
e- 2030049 186.6 keV
γ 1416604 707.0 keV
Neutron 564213 2.72 MeV
Proton 2025 673.2 keV

The peak intensities are normalized per one gamma at
source. As a function of the Teflon thickness it is a descend-
ing plot (less Teflon, less absorption) – Fig. 7. In order to
obtain the intensities per neutron one has to multiply by the
number of gammas found at a given Teflon thickness, this is
what we called Yield-16N, in Fig. 3. One of the graphs is going
up (Fig. 3) and one is going down (Fig. 7), hence a maximum
appears at a point corresponding to the optimum thickness –
Fig. 8.

We sought the optimum with a resolution of 1 cm. We
obtained a thickness of 5 cm for this optimum, for both de-
tectors, for both neutron fields and for all the energies studied
(between 5 to 11 MeV).

Fig. 8 presents the obtained intensities as percentage
points where the optimum is 100%. Data come from the first
escape (FE) peak in the case of the 100 cc detector and from
the photopeak in the case of the 300 cc detector. While the
optimum is well defined it is not very sharp, Fig. 8 shows that
there are additional values, for the Teflon thickness, which

differ from the optimum by only few percent. An interest-
ing point in the results of the calculations is that the optimum
thickness is sensitive neither to the incident neutron energy
(in the energy range of our calculations) nor to the size of the
detector. It may be seen that by varying the Teflon thickness
between 4 to 6 cm, the counting rate of the detector varies
by few percent only. In general, it can be said that the range
4–6 cm for Teflon will provide equally good counting results
in an actual measurement. Even when using a much thinner
Teflon of 2 cm we are within 15% from the optimum (in the
uniform field case).

2.4 Fission like neutron spectrum

In the vicinity of nuclear reactors or a ccelerators there are
non monoenergetic neutron fields. For nuclear reactors one
can assume a fission like uniform Watt spectrum:

f (E) = exp(−E/0.965) × sinh(2.29 × E). (1)

With the parameters taken from the defaults given in the
MCNP manual [12] (the units are MeV for the first parameter
and MeV−1 for the second). Obviously, because we obtained
a flat value of 5 cm for all the energies of interest in the Watt
spectrum, the optimum value for a reactor spectrum will be
also 5 cm.

2.5 Other details

The simulations for the gammas were done with the MCNP
program [12]. In principle, they can be done also by using
Geant4 but with greater effort. Geant4 is a library and the user
has to possess considerable programming skills in order to
build a running program. MCNP is a closed, tested program
and the user has to provide only the input data.

3 Conclusions

As may be seen from the above, the Teflon thickness yielding
the optimum intensity of the 6.13 MeV γ line is ≈ 5.0 cm. It is
surprising to see that this thickness is almost independent on
the volume of the Ge detector, on the incident neutron energy
(in the range studied) and on the direction of incidence of the
neutrons.
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The measurement of the Newtonian constant of gravitation G is in an impasse because
most results deviate from the average value more than 10 times their estimated measure-
ments uncertainties. Via the Einstein field equations G is related to the cosmological
constant Λ and because normal matter, dark matter and dark energy must add up to
100%, Λ is a measure for dark energy. So it follows that G is related to dark matter. The
density of the dark matter halo around the earth is influenced by the gravitational attrac-
tion of the earth and because the earth is not a perfect sphere, the halo varies along the
surface. So we expect a variation of dark matter density with the gravitational accelera-
tion g. These variations in dark matter affect G and indeed we have found a correlation
between the constant G and the local value of the gravitational acceleration g.

1 Introduction

The gravitational constant G is commonly measured by using
a torsion balance suspended by a wire as has been introduced
by Cavendish. The plane of the rotating masses is positioned
exactly horizontal and therefore the influence of local gravity
variations is supposed to be negligible. However, the horizon-
tal attraction force between the test masses in the apparatus
is not only governed by these masses and their distance, but
also by the local density of dark matter. We accept that grav-
itational attraction forces are influenced by dark matter and
the local density of dark matter will vary with the local mass
variations of the earth. So we expect a correlation between G
and the gravitational acceleration g.

2 The correlation between G and g

In the following analyses 16 values of G recommended by
CODATA in the period 1999-2014 [1, 2, 3] are represented,
as they were measured by 9 institutes. The values of the grav-
itational acceleration g at 8 different locations are calculated
by the website Wolfram Alpha. This calculation method is
based on the Earth Gravitational Model, EGM 2008. It is
noted that Uci-14 has not been measured at Irvine, California
but near Handford, Washington [4].Therefore the value of g
is calculated for the nearby city Richland.

Furthermore, the g value of Florence was measured in situ
with the Atom Interferometer by the group of Tino [5, 6].

The analysis results in the following table and Figure 1.
G is the gravitational constant in 10−11 m3kg−1s−2 and the

last column in the table shows the standard uncertainty u of
the measured value of G.

The graph shows a correlation of the gravitational con-
stant G with the gravitational acceleration g according to the
best-fit linear regression line, having a slope of 0.1371 and
the coefficient of determination R2 = 0.6323.

Obviously this effect also results in a dependency of G on
the geographical latitude on the earth, as shown in Figure 2.

From 1999 onwards the measured values of G seem to be
more reliable than before, so we have included only the val-

Fig. 1: Correlation of the gravitational constant G with the gravita-
tional acceleration g. G= 0.1371 g + 5.328; R2=0.6323.

Fig. 2: Dependency of G on the geographical latitude.

ues from the year 1999 and after. Where CODATA replaces
old measured values by later measurements from the same
institute, we have included all values measured in the named
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Table 1: The 16 values of G recommended by CODATA in the pe-
riod 1999-2014.

g G Institute Location Latitude std
- ×10−11 - - Degree ×10−11

9.7927 6.67097 hust 99 Wuhan 30.58 0.00067
9.7927 6.67229 hust 05 Wuhan 30.58 0.00087
9.7927 6.67349 hust 09 Wuhan 30.58 0.00018
9.79795 6.67234 jila 010 Boulder 40.07 0.00014
9.80422 6.67427 msl 99 New

Zeland
41.28 0.00067

9.80422 6.67387 msl 03 New
Zeland

41.28 0.00027

9.80492 6.67191 lens 14 Florence 43.82 0.00099
9.80943 6.67433 uci 14 Richland 47.62 0.00013
9.81007 6.67542 uzur 99 Zurich 47.37 0.00147
9.81007 6.67407 uzur 02 Zurich 47.37 0.00022
9.81007 6.67425 uzur 06 Zurich 47.37 0.00013
9.81145 6.67422 uwash 00 Seattle 47.62 0.00009
9.81289 6.67559 bipm 01 Paris 48.87 0.00027
9.81289 6.67545 bipm 13 Paris 48.87 0.00016
9.81498 6.67542 uwup 99 Wuppertal 51.26 0.00287
9.81498 6.67423 uwup 02 Wuppertal 51.26 0.00100

period. The horizontal line in the graph at G = 6.674×10−11

m3kg−1s−1 represents the average value calculated by
CODATA in the year 2010. However, the correlation between
G and g as we have found, renders it not useful to calculate
an average value for G.

3 Further measurements

It has been raised by Quinn [7] that the Newtonian constant
may be too difficult to measure, as the measured values spread
10 times more than the uncertainties of most measurements.
However, we maintain that the problem is not the difficulty
of the measurement but ignorance about the correlation of G
and g.

Further compelling evidence for the named correlation
can be obtained by doing several measurements with one and
the same apparatus at different locations. Then the measured
values can be compared better, because their accuracy is the
same and no differences occur due to different measuring
methods and different devices. It is also necessary to mea-
sure g in situ instead of calculating that value. More clarity
can be obtained by taking additional measurements at places
where g has an extreme value, for instance far away from the
equator (e.g. at Helsinki) and nearby (e.g. at Quito). The
group of Tino [5, 6] has developed a small apparatus based
on atom interferometry. Such apparatus would be quite suit-
able for measuring both G and g.

4 Conclusion

Our analysis shows a correlation between G and g. This cor-
relation suggests that the value of G depends on the place
where it is measured, and thus G is not a universal constant
of nature.

5 Appendix

The original Einstein field equations are:

Rµν −
1
2

Rgµν =
8πG
c4 Tµν.

The right hand part of the equation is the energy/momentum
tensor and governs the curvature of space-time. The left hand
part describes the measure of this curvature.

This set of equations generates no stationary solution, and
therefore Einstein made a correction by adding an extra term
with the cosmological constant Λ. The corrected field equa-
tions are:

Rµν −
1
2

Rgµν + Λgµν =
8πG
c4 Tµν

which can generate a stationary solution by inserting a suit-
able value for Λ.

At the end of the 20th century dark matter and dark energy
were introduced in order to understand the uneven expansion
of the universe and since thenΛ is considered to be a measure
of dark energy. When dark energy dominates dark matter,
there is an accelerated expansion of the universe, and when
dark matter dominates, the expansion is decelerated.

The cosmological constant Λ is linked to the gravitational
constant G by the corrected field equations of Einstein. At the
same time dark energy, dark matter and normal matter must
add up to 100%. So dark energy and dark matter are depen-
dent. In the field equations Λ and G are dependent as well.
This means that we can rewrite the corrected field equations
in the original form, without Λ, realizing that G depends on
place and time. The field equations then become:

Rµν −
1
2

Rgµν =
8πG(r, t)

c4 Tµν.

Submitted on January 27, 2017 / Accepted on January 27, 2017

References
1. Mohr P.J. and Taylor B.N. CODATA recommended values of the fun-

damental physical constants: 2002.

2. Mohr P.J., Taylor B.N. and Newell D.B. CODATA recommended val-
ues of the fundamental physical constants: 2006.

3. Mohr P.J., Taylor B.N. and Newell D.B. CODATA Recommended
Values of the Fundamental Physical Constants. arXiv: 1203.5425v1
[physics, atom-ph] 24 Mar 2012.

4. Schlamminger S., Gundlach J.H. and Newman R.D. Recent measure-
ments of the gravitational constant as a function of time. Phys. Rev. D,
2015, v. 91, 121101(R).

5. Rosi G., Sorrentino F., Cacciapuoti L., Prevedelli M. and Tino G.M.
Nature, 2014, v. 510, 518–521.

6. De Angelis M., Greco F., Pistorio A., Poli N., Prevedelli M., Saccorotti
G., Sorrentino F. and Tino G.M. Eur. Phys. J. Plus, 2012, v. 127, 27.

7. Quin T. and Speake C. The Newtonian constant of gravitation - a con-
stant too difficult to measure? An introduction. Phil. Trans. R. Soc. A,
2014, v. 372, 20140253.

B.G. Colenbrander and W.S. Hulscher. The Newtonian Constant G and the Einstein Equations 117



Volume 13 (2017) PROGRESS IN PHYSICS Issue 2 (April)

Null Result for Cahill’s 3-Space Gravitational Wave Experiment
with Zener Diode Detectors

Wolfgang Baer1, Eric Reiter2, Harry Jabs3

1Nascent Systems Inc., 380 W Carmel Valley Rd., Carmel Valley, CA 93924 , USA, wolf@NascentInc.com
2Unquantum Lab, 251 Nelson Avenue, Pacifica, CA 94044, USA, unquant@yahoo.com

3Institute for Frontier Science, 6114 LaSalle Avenue, no. 605, Oakland, CA 94611, USA, harryjabs@yahoo.com

Zener diode detectors have been reported to show correlated current output related to the
absolute motion of the earth through space [1–4]. Such reports are of utmost importance
since it would contradict the Michelson-Morely experiments, the basis of Special Rel-
ativity, and connect the randomness of quantum theory with gravitation. Experiments
designed to reproduce the reported effects have not seen the reported wave form output
or any correlation between Zener diode detectors. Instead we found no detectable sig-
nal could be discerned above the noise floor of the digital storage scopes themselves.
This does not mean the Cahill’s space flow effect does not exist, however the meth-
ods reported in the literature do not describe equipment that reproduced the reported
measurements.

1 Introduction

Experimental detection of space inhomogeneities flowing at
approximately 500 km/sec in the direction of the constellation
Vega has been reported [1–3]. Two Zener Diode detectors
were oriented in inertial space so that the flow passing first
through one detector and subsequently the second detector
would produce correlated current output.

A diagram showing a single detector and its circuit dia-
gram copied from reference [1] is shown in Figure 1. The
voltage V across the resistor is used to determine the turbu-
lent space flow driven fluctuating tunneling through the Zener
diodes. Two such detectors are placed next to each other as
shown in Figure 2.

At the bottom of the detector boxes a coaxial cable is
shown which in the original experiment connected to a

Fig. 1: Left: Circuit of Zener Diode Space Flow Detector, showing
a 1.5 V AA battery, two 1N4728A Zener diodes operating in reverse
bias mode, having a Zener voltage of 3.3 V, and resistor R=10 kΩ
[2].

LeCroy Waverunner 6051A 500 MHz, 2 channel 5 Gs/sec
Digital Storage Oscilloscope (DSO), which was used to
record and display the two resistor voltage measurements.
Correlated voltage from the two collocated detectors reported
in reference [1] and [2] are shown in Fig 3.

A clear correlation is indicated by the wave forms of ap-
proximately 200 MHz along with some noise. A similar dia-
gram with the two wave forms 180◦ out of phase was reported
when the alignment of the two detectors was reversed so that
one coaxial lead came out the top while the second one came
out the bottom.

The correlation presumed by R. Cahill is due to structure
in the flow which passed through each diode in the detectors.
When the detectors were separated by 25 cm and aligned in
direction RA=5 h, Dec=-80 deg similar correlation diagrams
were shown but required a delay of 0.48 µs to compensate for
the flow speed estimated to be 520 km/s from these measure-
ments.

The simplicity of the detectors and the obvious correlated
wave forms along with the enormous significance of these

Fig. 2: Two collocated detectors.
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Fig. 3: Correlated current fluctuations as indicated by voltage across
resistor R and with DSO operated with 1 MΩ AC input, and no
Filters.

reported experiments encouraged us to attempt a verification
experiment.

2 Initial verification experiment

The straight forward verification of the Space Flow Detec-
tors was a simple experiment which consisted of building two
Space Flow Detectors, connect their two channels to a DSO,
move the detectors around a Southerly direction and watch
the sum and difference signals on the screen. A qualitative
indicator of signal correlation would show a small difference
reading for the difference display and relatively large ampli-
tudes in the sum display. Such oscilloscope comparisons are
easy to make, and if seen would be the initial indicator that the
equipment was functioning properly and the hoped for space
flow could be measured.

The initial work was done in E. Reiter’s lab. Figure 4
shows the two detectors. Each one has two Zener Diodes
closely packed together. The bottom metal square shows the
coaxial cable connection. In the left corner the metal shield-
ing tube can be seen. In operation the detectors are com-
pletely encased in metal shielding so any external electromag-
netic signals would be attenuated all the way to the DSO’s
two input channels. The initial correlation search experiment
was run over many trials, days, orientations, and separation
distances.

We also built detectors with more diodes packed in a clus-
ter. A side view of a single detector with 5 z-diodes, in
front of the LeCroy Waverunner LT344 500 MHz, 4 channel,
500 Ms/sec DSO, is seen in Figure 5.

No evidence of correlation could be detected. A typical
screen shot of the DSO front panel showing Channels 1 and
2, at the first and fourth trace, is shown in Figure 6.

The second and third traces shows an amplified difference
and sum trace. These traces show noise without discernible
amplitude differences we would expect if correlations were
present.

Using the storage facility of the DSO, E. Reiter searched
for signals. A typical report reads: “I’m looking at diode
noise for 10 div × 20 sec × 1412 sweeps = 282400 s = 3.2

Fig. 4: Two Zener diode detectors.

Fig. 5: Detector in front of DSO.

days. It is just non-interesting noise. Trigger is at 0.32 milli-
volts. I also searched with the trigger at 1 mV to see if there
were periodicities; there were none.”

We had not seen any indication of either a correlated sig-
nal or a periodic wave form as reported in the literature. We
must assume something was wrong with our equipment or
technique. To get to the bottom of the problem we contacted
Prof. Cahill, who helped us diagnose our experimental setup.

3 Configuration refinement

The details of the actual phenomena had to be examined to
determine whether any features could be detected. The earth
is moving at roughly 500 km/s toward the direction RA=5 h,
Dec=-80 deg. Figure 7 shows a space flow coming from the
southerly direction. In this orientation the flow past our de-
tectors should be in parallel so that no time delay would be
encountered. However if the orientation to the South Side-
real Pole is offset by θ degrees when the spacing between
the detector clusters is “d”centimeters then the time delay is
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Fig. 6: Typical DSO trace.

Fig. 7: Detector configuration.

calculated by

t =
d sin(θ)

500 km/sec
. (1)

For a typical spacing of d=5 cm between side by side
shielded detectors with an angle of θ = 30◦, the delay is 50 ns.
The delay time for a 25 cm spacing would be on the order of
250 ns at 30◦ angle and 500 ns at 90◦. This time delay of
0.5 µs corresponds to side by side direction pointing to the
Sidereal South Pole and was also calculated in reference [3,
Fig. 28].

Wave features similar to those shown in Figure 3 above
where published showing wave features with approximate pe-
riodicities, of 10 ns in reference [1] Fig. 5, of 100 ns in refer-
ences [2] Fig. 5, of 6 ns reference [1] Fig. 4, and 200 to 300 ns
in reference [3] Fig. 28.

From this analysis it can be concluded that with a 500
Msamples/sec scope all but the highest frequency features re-
ported would be adequately sampled to allow simple corre-
lation. The time delay issue is more critical. Features with
a structure on the order of 10 ns can only be convincingly

correlated using our sum-difference strategy when the delay
between the signals A and B in Fig. 7 is on the order of 1 ns.
Using eq. 1 and assuming that the packaging distance “d” is
limited to 2 cm the alignment angle must be controlled to,

1.4◦ = arcsin
(

1 ns · 500 km/s
2 cm

)
. (2)

This is not only a difficult orientation tolerance to main-
tain but the 1.4◦ angle at 2 cm spacing corresponds to 1.4 mm
linear distance by which the diodes must be aligned with each
other in a cluster. If the packaging could be reduced to half
a centimeter and the time delay restriction relaxed to 2 ns we
would get an angular tolerance of 11.5◦. This is an orientation
tolerance that could be met with fairly primitive equipment.

During our communications with Prof. Cahill many ad-
ditional possible error sources were discussed. Improper ca-
bling allowing EM radiation from external sources could ex-
plain sinusoidal wave forms. This possibility was soundly
rejected by Prof. Cahill. Whether additional data processing
was used to searched for correlations in oder to achieve the
results was also denied. Cherry picking of accidental corre-
lations to show in the reported papers was also denied. Prof.
Cahill claimed to have observed consistent and reproducible
correlation measurements many times.

We explored the possibility of borrowing the detectors to
explore any differences in construction but such an exchange
was rejected as time consuming due to the requirements of
export regulations. This left some additional theoretical ques-
tions. We wondered about the size of the features in both time
and space that were predicted. Since correlations were found
between well separated detectors after time delay adjustment
and time features of between 5 and 200 ns were routinely
measured by Prof. Cahill. This could not be a problem.

Could the earth mass between the detector location and
the Sidereal South pole attenuate the space flow signals more
in the northern hemisphere than the south? A mass shielding
effect was not considered likely from Cahills theory and be-
cause measurements of the effect were reported involving ran-
dom number generators in Europe. Therefore the improve-
ment in the three design features discussed above were left to
consider when designing a follow on experiment.

4 Follow on experiment design

A repetition of the experiment was planned with the following
changes:

1. Collocated detector design with minimum Zener Diode
distances

2. careful alignment of the diode cluster to less than 1 mm

3. Less than 10◦ orientation with the direction of the ex-
pected velocity vector.
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Fig. 8: Earth motion directions [3].

4.1 Orientation in inertial space

Fig. 8 shows the Sidereal South pole region. The right dot
(red) at RA=4.3 h, Dec=75◦S is the direction of motion of the
solar system through space with a speed of 486 km/s as de-
termined from NASA spacecraft earth-flyby Doppler shifts.
The thick circle centered on this direction is the observed ve-
locity direction for different days of the year. Relative to the
earth location of the San Francisco Airport is 37.61 latitude
and -122.39 longitude.

Figure 9 shows the Earth with San Francisco (SF) on the
left edge. The local time in San Fransisco is 3.8 h AM and
the Greenwich Meridian 122.39◦ toward the East is at 0 h.
The Sidereal south pole is 4.3 h or 64.5◦ further east and 75◦

south latitude. The bold arrow shows the direction of the earth
motion pointing toward the center of the earth. The parallel
velocity vector at that time will point down toward an elliptic
path.

4.2 Detector configuration

A stand placed flat on the ground aligned to geographic
North, with a beam pointing down toward the ellipse marked
by local time of day shows the direction of the Sidereal South
Pole from San Francisco.

A dual detector is aligned so the Zener diodes clusters
are correctly aligned to intercept the Flow vector as nearly
perpendicular as possible.

The dual detector assembly was constructed with two sin-
gle Zener diodes, mounted in a sealed metal box to eliminate
external noise so that the entire assembly could be oriented
perpendicular to the presumed space flow. A variable battery
voltage supply was introduced to allow us to adjust the volt-
age close to the reverse bias breakdown voltage and thereby
maximize the expected noise output. Dip switch jumpers

Fig. 9: Sidereal geography.

Fig. 10: Detector stand.

were added to allow multiple circuit configurations of the cir-
cuit shown in Figure 11.

With this new detector we began calibrating the variable
battery voltage to determine the optimum noise output before
attempting space flow alignment.

4.3 Experimental result

To our surprise we could not determine any sensitivity of out-
put noise level. The noise level remained the same even when
the battery power was completely turned off. In fact after first
disconnecting the battery and then disconnecting the Detec-
tor from the DSO and replacing the cables with terminators
placed directly on the oscilloscope input connector no differ-
ence in noise level showed. We had all along been attempting
to find correlations between internally generated DSO noise.

Could Dr. Cahill have used a white noise amplifier [5] in
his circuit and simply failed to mention the fact? He claimed
no amplifier was used but did acknowledge that he had dis-
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Fig. 11: Dual detector.

covered a space flow correlation simply between DSO de-
vices and sent us the article [6]. We separately tested a second
available DSO to verify the noise output when

(a) no detector was attached,

(b) no battery was in the detector, and

(c) everything was connected as described in the literature.

We performed sum and difference signal testing on the
two input channels to see if any correlation between the noise
sources existed. These experiments also showed nothing.
FFT analysis of the signals only showed power at frequen-
cies corresponding to wi-fi routers. Leakage from these high
frequency signals were surprisingly difficult to eliminate but
clearly not due to Zener diode noise.

5 Conclusion

We have attempted to verify the space flow detector experi-
ment reported by Dr. Cahill which reported an effect that is
consistent with the absolute motion of the earth through iner-
tial space. Our conclusions are:

1. Zener Diode circuits without a white noise amplifier
could not provide the signal levels reported in the liter-
ature as duplicated here in Figure 3.

2. Nothing in any signals produced by Zener diodes in re-
verse bias mode contains substantial power at frequen-
cies whether of the 7ns periods or any others published
by Dr. Cahill.

3. Internal Noise by Zener Diodes or other components
in DSO equipment may be the source of the signals
reported by Dr. Cahill.

4. There is no indication any signals generated by equip-
ment reported by Dr. Cahill in the literature contains
correlations that can support the space flow hypothesis.

No statement is made here regarding the theory of space
flow as proposed by R. Cahill. There are other experiments

supporting similar theoretical results [7] are also controver-
sial [8]. Only the ability to detect space flow with the Zener
diode detector design reported by Cahill in the literature has
been tested.

In order to further explore the possibility that a Cahill
type space flow disturbance may exist and may have a de-
tectable effect on quantum devices it will be necessary to re-
peat Dr. Cahill’s correlation experiments augmented by white
noise amplifiers, statistical correlation software, and adequate
shielding tested to eliminate any possibility of local signal
corruption.
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Calculating the Parameters of the Tetraneutron
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A large international group of theorists, using the high precision nucleon-nucleon inter-

action between neutrons, issued the theoretical estimates of the four-neutron (4n) system

resonance state energy and its lifetime. For this purpose numerous calculations using

supercomputers have been made and obtained the values of 0.84 MeV and 5×10−22 sec-

onds. The same results were obtained with much less efforts based on the mechanistic

interpretation of John Wheeler’s geometrodynamic idea.

1 Introduction

In the Japanese RIKEN Institute as a result of experiments

by the decay of 8He nuclei (alpha particle and four neutrons)

some events managed to allocate, which are interpreted as

short-lived resonance state of the tetraneutron. In a recent

article, published in Physical Review Letters [1], according

to calculations the tetraneutron resonance energy is estimated

at 0.84 MeV, and its lifetime is about 5×10−22 seconds, which

is consistent with the Japanese experimental data.

According to the first author of the article Andrey Shiro-

kov (MSU: Lomonosov Moscow State University), “. . . theo-

retical approach has been carefully designed and numerous

calculations using supercomputers were made. . . ”. For the

calculation of only a few parameters characterizing tetraneu-

tron scientific forces of the various institutes and organiza-

tions were involved in the work process and the expensive

computing resources based on international scientific coop-

eration were expended. As stated in the original, “Compu-

tational resources were provided by NERSC, which is sup-

ported by the U.S. Department of Energy under Contract No.

DE-AC02-05CH11231 and by Lawrence Livermore National

Laboratory (LLNL) institutional Computing Grand Challen-

ge program under Contract No. DEAC52-07NA27344”.

There is a great regret for the efforts and the lack of other

physical paradigms that could have given the same result with

much less expenses. The same is confirmed by the authors

themselves: “More recent state-of-the-art theoretical calcu-

lations have concluded that without altering fundamental

characteristics of the nuclear forces, the tetraneutron should

not be bound. More theoretical calculations were performed,

all of them agreeing that a bound tetraneutron is not sup-

ported by theory”.

2 Calculation of the tetraneutron parameters

The basis for one of the alternative theories could be a model

based on the use of the elementary mechanistic interpretation

of J. Wheeler’s geometrodynamic concept where the charges

are seen as singular points on the three-dimensional surface,

connected “wormholes” or current tubes by drain-source type

through an extra dimension, forming in general a closed con-

tour. It is assumed the existence of common or similar natural

laws, which are reproduced at different scale levels of matter.

Earlier, on the basis of this model the binding energy of the

deuteron, triton and alpha particle have been determined [2],

as well as many other parameters for both micro- and macro-

cosm [3–6].

We now determine the binding energy for the tetraneu-

tron. Let us recall that the contour or vortex thread having

a radius re and the linear density me/re, along which some

medium with velocity v circulates, a vortex thread with ra-

dius r fills a spiral manner. The vortex thread can be regarded

as completely “stretched”, i.e. elongated proportional to re/r

or, on the contrary, extremely “compressed”, i.e. shortened

proportional to re/r and filling all the vortex tube of radius re.

In papers [3, 4], proceeding from the conditions of con-

servation of charge and constancy of the linear density when

contour’s changing, parameters of the vortex thread v, r for an

arbitrary plus-minus contour is defined as a proportion of the

light speed and electron radius as:

v =
c

1/3

0

(an)2
, (1)

r =
c

2/3

0

(an)4
, (2)

where n is the own quantum number for the microparticles, a

is the inverse fine structure constant, c0 is the dimensionless

velocity of light, c/[m /sec]. For the proton

n =

(

2c0

a5

)1/4

= 0.3338, (3)

and of the above formulas it follows: v = 0.320, r = 0.102.

Assume that neutrons, surrounding an alpha particle be-

fore decay of 8He, is polarized the same as in the alpha-

particle (1, −2/3, and 1/3). Let the four polarized neutrons

disposed symmetrically like the nucleons in the alpha parti-

cle, as shown in the figure. Charge radius neutrons rn is as-

sumed to be the radius of the proton, plus 3% (since on this
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value the radius of the neutron magnetic moment distribution

is increased in comparison with that of a proton), then

rn = 0.322 (or 9.07) × 10−16 m. (4)

There are taken into account four interactions between

charges of +1 and −1/3 (attraction) at a distance r = 0.102,

and six interactions between charges of −2/3 (repulsion), i.e.

their projections on the sides of the square and along the di-

agonals at distances determined from geometrical consider-

ations (0.291 and 0.411). The minimum distance between

the charges made equal to the transverse dimension of the

nucleon vortex tube (thread) r = 0.102. This characteristic

size has also been adopted by reason that for the magneto-

gravitational equilibrium with given parameter and charges

of +1 and −1/3 the product of the quark masses, involved

in the circulation contour, found to be equal to the value of

84.3. Thus, the average mass of the quarks (84.3)1/2 = 9.18

is nearly the mass of two neutron quarks (8.6 me), defined on

the basis of entirely different reasons earlier [4].

The tetraneutron bonds form a closed system, so one can

assume that the tetraneutron binding energy is the averaged

binding energy of a link, since at destruction of a link the

particle splits as a whole (as the alpha particle). Having in

mind the accepted scheme of charges arrangement, tetraneu-

tron geometry, and specified dimensions, we can write the

final formula for the binding energy as the average energy per

bond. For single charges in units of MeV, and in a proportion

of re we have:

E =
0.511

r
. (5)

In our case by substituting the data we obtain:

E =
0.511

4
×

(

4 × 1 × 1
3

0.102
–

4 × 2
3
×

2
3
× cos 45◦

0.291
–

−

2 × 2
3
×

2
3

0.411

)

= 0.835. (6)

Note, that if the charges of the polarized neutron is (+2/3,

−1/3, and 1/3), and in this case the binding energy is approx-

imately the same amount.

Tetraneutron instability can be explained by the fact that

kinetic energy of the tetraneutron quarks (having a total mass

mk and rotating on the same radius r at speed v), is comparable

to the binding energy. Let’s equate these energies. At the

units of MeV we have:

mk me (vc)2 = 0.835 MeV. (7)

Since mec2 = 0.511 MeV, then from (7), by substituting

the values of v, we have mk = 16.0. That is, the value, which

is close to the total two neutron quark mass involved in the

circulation counter, creates the inertia repulsive forces that

can destroy, at least, one bond of the tetraneutron.

The lifetime of the tetraneutron τ is determined from the

reason of the duration of existence of four neutrons in a bound

state, which should at least be sufficient for one circulation

of medium flow along the contour having some diameter d.

Suppose that it is equal to the distance between the centers of

neutrons, d = 0.745.

Then, taking into account the “stretching” (i.e. elongation

of the vortex thread is a multiple of 1/r and decreasing in the

flow velocity is a multiple of v), and substituting the data we

obtain:

τ =
π d re

c
×

1

vr
= 6.73 × 10−22 sec. (8)

3 Conclusion

Thus, the calculated parameters of the tetraneutron are con-

sistent with those obtained in the experiments of RIKEN and

coincide to those declared in [1] that once again proves the

validity of the proposed model.
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Recently, seven exoplanets orbiting the ultra-cool dwarf star TRAPPIST-1 were re-

ported. The present paper explores whether (i) the sequence of semi-major axis values

of the planets shows a long-range order, and whether (ii) the values can be described

by harmonic orbital resonances. The analysis showed that orbits of the planets fol-

low (i) a long-range order, and (ii) a quantization in accordance with harmonic orbital

resonances. The study supports the view that planetary systems are best viewed as self-

organizing systems with attractor states of the planet orbits being related to resonance

effects.

1 Introduction

A paper [1] was recently published on the discovery and de-

scription of an extrasolar planetary system with seven plan-

ets (TRAPPIST-1b, c, d, e, f, g and h) orbiting an ultra-cool

dwarf star (TRAPPIST-1, 2MASS J23062928-0502285; ap-

parent magnitude: V = 18.80) in the constellation Aquarius

(RA = 23h 06m 29.28s, dec = −05◦ 02′ 28.5′′).

This discovery was the result of an intensive observation

program using space- and earth-based telescopes comprising

the TRAPPIST (TRansiting Planets and PlanestIsimals Small

Telescope) North system (Chile), the TRAPPIST-North tele-

scope (Morocco), the Himalayan Chandra Telescope (India),

the Very Large Telescope (Chile), the UK Infrared Telescope

(Hawaii), the Spitzer Space Telescope, the William Herschel

and Liverpool telescopes (La Palma, Spain), as well as the

South African Astronomical Observatory telescope [1, 2].

The orbital parameters of the TRAPPIST-1 planetary sys-

tem exhibit a non-random behaviour, i.e., “the six inner plan-

ets form the longest known near-resonant chain of exoplanets,

with the ratios of the orbital periods (P) Pc/Pb, Pd/Pc, Pe/Pd,

Pf/Pe and Pg/Pf being close to the ratios of small integers,

namely 8/5, 5/3, 3/2, 3/2 and 4/3, respectively”, as noted in

the recent Nature publication [1]. A property that is associ-

ated with an orbital resonance, or a mean-motion orbital res-

onance, in particular. Other examples of planetary systems

where the orbital periods are in a specific resonance-like re-

lationship include the exoplanetary systems Kepler-223 [3],

Kepler-80 [4], GJ 876 [5] and HD 82943 [6]. If the orbital

periods show this resonance phenomenon, then also the or-

bital spacing of a planetary system follows the same pattern –

a direct consequence of Kepler’s third law linking the orbital

spacing (given as the semi-major axis, (a)) with the period of

an planet orbiting a star, P2 ∝ a3, leading to the relationships

a ∝ P2/3 and P ∝ a3/2.

The orbital resonances can be analysed by examining the

orbital spacings locally and separately, or by analysing the

whole planetary system orbital spacing in toto. Foundational

work on this second approach was conducted by J. Bohr and

K. Olsen [9, 10] who showed that the orbital spacing of the

planets of our solar system follows long-range order on a

logarithmic scale, i.e., the logarithmic positions of the plan-

ets are correlated and follow a periodic pattern (a kind of

“quantization”) [9]. This long-range order of the orbital spac-

ing was also detected in the exoplanetary system HD 10180

[10]. Stimulated by this work, I showed in 2013 that the or-

bital spacing of the exoplanetary system Kepler-62 exhibits

a long-range order too and I predicted an additional planet

(which has not been detected yet, however) based on this

analysis [7].

The discovery of the TRAPPIST-1 planetary system [1]

triggered the question of whether the orbital spacing of this

system also follows a long-range order, and how the orbital

structure of the planetary system can be described based on

approach of orbital resonances. The aim of the present work

was therefore to investigate these two asepcts in detail.

2 Materials and methods

2.1 Data

The parameter values of the TRAPPIST-1’s exoplanets were

obtained from Gillon et al. [1]. In the present work, two pa-

rameters were selected for analysis: the semi-major axis (a)

and the radius (r) of each planet (see Table 1).

2.2 Analysis of the orbital long-range order

To analyse the TRAPPIST-1 system, the same approach as al-

ready employed for the previously published analysis of the

Kepler-62 system [7] was used. In particular, the semi-major

axis values a (given in units of 106 km) of each exoplanet

were first divided by 106 km, then logarithmized

(âi = ln(ai/106 km)) and according to these values a multi-

modal probability distribution function (PDF) p(â) was cal-

culated by

p(â) =

N
∑

i=1

αi e−β, (1)
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Planet i a [AU] a [km] r [R⊕] r [km] â

b 1 0.01111 ± 0.00034 1.6621× 106 ± 5.0864 × 104 1.086 ± 0.035 6926.508 ± 223.23 0.5081

c 2 0.01521 ± 0.00047 2.2754 × 106 ±7.0312 × 104 1.056 ± 0.035 6735.168 ± 223.23 0.8222

d 3 0.02144+0.00066
−0.00063

3.2074 × 106 +9.8736× 104

−9.4248× 104
0.772 ± 0.03 4923.816 ± 191.34 1.1655

e 4 0.02817+0.00083
−0.00087

4.2142 × 106 +1.2417× 104

−1.3015× 104
0.918 ± 0.039 5855.004 ± 248.742 1.4385

f 5 0.0371 ± 0.0011 5.5502 × 106 ± 1.6456 × 105 1.045 ± 0.038 6665.01 ± 242.364 1.7138

g 6 0.0451 ± 0.0014 6.7470 × 106 ± 2.0944 × 105 1.127 ± 0.041 7188.006 ± 261.498 1.9091

h 7 0.063+0.027
−0.013

9.4248 × 106 +4.0392× 106

−1.9448× 106
0.755 ± 0.034 4815.39 ± 216.852 2.2433

Table 1: TRAPPIST-1 system parameters according to [1]. i: planet number counting outwardly from the star TRAPPIST-1, a: semi-major

axis, r: radius of the planet, âi = ln(ai/106 km), a and r are given in two different units ([AU], [km]) and ([R⊕], [km]), respectively.

with N = 7 (i.e., the maximum number of planets of the

TRAPPIST-1 system) and β given as

β =
j − â i

wp / 2
√

2 ln(2)
, (2)

for j = 1, 1.01, 1.02, . . . , 3, with wp the width (i.e., the full-

width-at-half-maximum) of each Gaussian peak of the PDF,

and αi a scale factor. This approach was first introduced by

Bohr and Olsen [9]. The scale factor α in equation (1) defines

the magnitude of each peak of the PDF and was assigned to

the radius of the specific planet (αi = ri). With this the size of

the planets is incorporated to determine the PDF, i.e., larger

planets then contribute more to the overall multimodal PDF

than smaller planets. The width of each peak wp was set to

such a parameter value that is was ensured that an optimum

compromise between a too strong overlap of the Gaussian

peaks on the one side and to small peaks on the other was

realized. This was ensured with wp = 0.15. The final mul-

timodal PDF, ρ(â), then represents a sum of Gaussian peaks

located at the logarithmized planets’ semi-major axis values

(â) and weighted by the individual radius value of the pla-

net (αi).

To quantify the correlation structure of ρ(â), the auto-

correlation function (ACF) of ρ(â ) was determined accord-

ing to equations (3) and (4) given in [7]. The ACF proper-

ties correspond to the type and grade of the order (short- or

long-range) of the input sequence. Finally, the frequency-

dependent power spectral density (PSD) of the multimodal

PDF ρ(â ) was determined by the periodogram method.

At present, the exact semi-major axis value of the exo-

planet TRAPPIST-1h is known only with large uncertainity

(a = 0.063 +0.027
−0.013

AU). In an additional analysis, it was tested

which a value in the range [0.05, 0.09] AU will maximize the

long-range order of the orbital spacing. The maximum was

determined by fitting an exponential function to the orbital

spacing values while changing the a value for the planet 1h

in the range given. The goodness-of-fit was then determined

by the coefficient of determination (R2) and the root-mean-

square error (RMSE). The a value that maximized the R2 and

minimized the RMSE was chosen as the one to most likely

representing the true value for this exoplanet.

Fig. 1: Distance ratios Q with respect to the rank (given according

to the period ratios q). The red dots and vertical lines mark the po-

sitions of the exoplanet’s orbits according to the distance ratios. (a)

Range of distance ratios as used by Aschwanden and McFadden [8].

(b) Range of distance ratios as used in the present study. The green

bar marks the interval where it is most likely to find the distances

ratios based on empirical data (according to [8]).

2.3 Analysis of harmonic orbital resonances

The methodology based on the recently published harmonic

orbit resonance model by Aschwanden and McFadden [8]

was employed for this analysis. The harmonic orbit reso-

nance model states that the planetary system is best viewed

as a self-organisation system where the orbital parameters

evolve to attractor states in the sense of harmonical relations

(the harmonic orbit resonance). Attracttor states of the or-

bits are realised when harmonical relations are reached, en-

suring stability of the planetary system. The basic idea is that

the distance ratios (Q) of semi-major axis values a are (i) not
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Harmonic ratio

(Hi+1 : Hi)

Distance ratio

(Q)

Period ratio

(q)

Rank

(#)

(8:7) 1.0931 1.1429 1

(8:5) 1.3680 1.6000 8

(8:3) 1.9230 2.6667 14

(8:1) 4.0000 8.0000 21

(7:6) 1.1082 1.1667 2

(7:5) 1.2515 1.4000 6

(7:4) 1.4522 1.7500 10

(7:3) 1.7592 2.3333 12

(7:2) 2.3052 3.5000 16

(7:1) 3.6593 7.0000 20

(6:5) 1.1292 1.2000 3

(6:1) 3.3019 6.0000 19

(5:4) 1.1604 1.2500 4

(5:3) 1.4057 1.6667 9

(5:2) 1.8420 2.5000 13

(5:1) 2.9240 5.0000 18

(4:3) 1.2114 1.3333 5

(4:1) 2.5198 4.0000 17

(3:2) 1.3104 1.5000 7

(3:1) 2.0801 3.0000 15

(2:1) 1.5874 2.0000 11

Table 2: Numerical values of the harmonic ratios, distance ratios and

period ratios for all harmonic ratios in the interval (2 : 1) to (8 : 7).

The rank of the harmonic ratios is given according to the period ratio

values.

constant for a planetary system and (ii) show a quantization

whereas only specific values are “allowed” according to

Q =

(

ai+1

ai

)

=

(

Hi+1

Hi

)2/3

, (1)

with H being harmonic numbers (H = [1, 2, . . . ,M]) that

form harmonic ratios. Due to Kepler’s third law, this equation

leads automatically also to quantized orbital period ratios q:

q =

(

Pi+1

Pi

)

=

(

ai+1

ai

)3/2

= Q3/2. (1)

For M = 8 (i.e., H = [1, 2, . . . , 8]), the attractor states

are realized by the harmonic ratios Q = (Hi+1/Hi) = (8 : 7),

(8 : 5), (8 : 3), (8/1), (7 : 6), (7 : 5), (7 : 3), (7 : 2), (7 : 1),

(6 : 5), (6 : 1), (5 : 4), (5 : 3), (5 : 2), (5 : 1), (4 : 3),

(4 : 1), (3 : 2), (3 : 1) and (2 : 1). The associated numerical

values of the distance and period ratios are given in Table 2.

When sorted in ascending order of q, the attractor values of

the distance ratios Q follow the function as shown in Figure 1.

The most dominant ratios in a planetary system, according to

Aschwanden and McFadden [8], are marked with a green bar.

3 Results

3.1 Orbital long-range order

As shown in Figure 2(c) the analysis of the semi-major axis

values of TRAPPIST-1’s planets b-h revealed an exponen-

tial function (or a quasi linear one when logarithmized values

were used; Figure 2(d)). The parameter values for the expo-

nential function f (n) = α expβ n were found to be (given as

optimal value (95% confidence bound)): α = 4.086 × 106

(3.85 × 106, 4.321× 106), β = 0.5936 (0.5398, 0.6475).

In an additional analysis, it was investigated if the fit with

an exponential function related to the Titius-Bode law [12] in

the form f (n) = α + β 2n was better or worse at describing

the data than the exponential function of type f (n) = α expβ n

(with α and β free parameters), as also used by Naficy et al.

[11] to describe the planetray orbit scaling. It was found (see

Figures 4(a) and (b)) that the second exponential model fitted

the data better than the first one (coefficient of determination

(R2: 0.9921 and 0.9944, respectively).

Figure 2(e) shows the calculated multimodal PDF. The

ACF and the power spectrum are depicted in Figures 2(f) and

2(g), respectively. A clear peak of the spectrum of the mul-

timodal PDF is evident with a center frequency of 3.47 1/â ,

corresponding to a an orbital spacing regularity with a spac-

ing of 0.288.

3.2 Prediction of the TRAPPIST-1h exoplanet position

Figure 3 depicts the results of the analysis investigating how

the orbital position of the TRAPPIST-1h exoplanet has an ef-

fect on the long-range order. The “optimal” position (i.e.,

maximizing R2 and minimizing RMSE) were found to be in

the range a = [0.060, 0.061 AU].

3.3 Harmonic orbital resonances

The analysis with the harmonic orbit resonance model by

Aschwanden and McFadden [8] revelaed that all exoplanets

of the TRAPPIST-1 system occupy orbitals that are attrac-

tor states according to the harmonic orbital resonance model

(see Figure 4(c)). The harmonic ratios describing the plan-

etary system are found to be: (Hi+1/Hi) = (4 : 3), (3 : 2),

(8 : 5), and (5 : 3). The ratios (3 : 2), (8 : 5), and (5 : 3)

are in the interval where the most dominant ratios are being

expected according to Aschwanden and McFadden [8]. The

ratios (4 : 3) is at the border of this interval (see Figure 1).

4 Discussion and conclusion

The following conclusions can be drawn from the analysis

conducted in the present study:

(i) The orbitals of the exoplanets of the TRAPPIST-1 plan-

etary system exhibit a long-range order. This property

is cleary visible in the linear periodicity of the multi-

modal PDF when lograithmizing the distances between

the planets. The single peak in the power spectrum

quantifies this characteristic.

(ii) The orbital postition of the TRAPPIST-1h exoplanet is

most likely in the range of a = [0.060, 0.061 AU].

(iii) All exoplanets of the TRAPPIST-1 system occupy or-

bitals that are attractor states according to the harmonic

orbital resonance model.
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Fig. 2: (a) Diagram with the orbits of the exoplanets of TRAPPIST-1. (b) Comparison of the exoplanets’ sizes with respect to the size of

the Earth. (c, d) Semi-major axis values with respect to the rank (n), plotted in linear and logartihmic space, respectively. (e) Multimodal

PDF of the seven exoplanets. (f) ACF and (f) power spectrum of the multimodal PDF

Fig. 3: (a, b) Multimodal PDFs ρ(â ) with different positions of the exoplanet TRAPPIST-1h. The corresponding scaling functions (a vs.

rank (n)) are shown in (c) and (d), respectively. (e) R2 vs. a. (f) RMSE vs. a.
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Fig. 4: Fitting of the semi-major axis values with two different types of exponential functions, i.e., (a) f (n) = α+β 2n and (b) f (n) = α expβ n.

(c) Predicitons of the orbital positions according to the harmonic orbit resonance model, and the corresponding values of the TRAPPIST-1

exoplanetary system.

What is the physical mechanism causing this long-range

order and the harmonic orbital resonances? A review of dif-

ferent approaches and models related to this question can be

found in my previously published paper [7] as well as one

recently published by Aschwanden and McFadden [8]. In

my opinion, the most promising and interesting aproaches

are those based on plasma physics [13–17], the concept of

macroscopic quantization due to finite gravitational propaga-

tion speed [18], and the view that the solar system is a self-

organising system with attractor states leading to harmonic

orbit resonances [8].

In conclusion, the present analysis of the extrasolar plan-

etary system TRAPPIST-1 reveals that the semi-major axis

values of the planets follow (i) a long-range order and (ii)

a quantization in accordance with the harmonic orbital reso-

nance model. Furthermore, the analysis predicts that the ex-

act position of the exoplanet TRAPPIST-1h is in the range

of a = [0.060, 0.061 AU], slightly less then the determined

mean semi-major axis value of 0.063 AU given by Gillon et

al. [1].
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Introducing a Theory of Neutrosophic Evolution: Degrees of

Evolution, Indeterminacy, and Involution

Florentin Smarandache
University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA. E-mail: smarand@unm.edu

During the process of adaptation of a being (plant, animal, or human), to a new envi-

ronment or conditions, the being partially evolves, partially devolves (degenerates), and

partially is indeterminate i.e. neither evolving nor devolving, therefore unchanged (neu-

tral), or the change is unclear, ambiguous, vague, as in neutrosophic logic. Thank to

adaptation, one therefore has: evolution, involution, and indeterminacy (or neutrality),

each one of these three neutrosophic components in some degree. The degrees of evo-

lution/indeterminacy/involution are referred to both: the structure of the being (its body

parts), and functionality of the being (functionality of each part, or inter-functionality

of the parts among each other, or functionality of the being as a whole). We therefore

introduce now for the first time the Neutrosophic Theory of Evolution, Involution, and

Indeterminacy (or Neutrality).

1 Introduction

During the 2016–2017 winter, in December-January, I went

to a cultural and scientific trip to Galápagos Archipelago,

Ecuador, in the Pacific Ocean, and visited seven islands and

islets: Mosquera, Isabela, Fernandina, Santiago, Sombrero

Chino, Santa Cruz, and Rabida, in a cruise with Golondrina

Ship. I had extensive discussions with our likeable guide,

señor Milton Ulloa, about natural habitats and their transfor-

mations.

After seeing many animals and plants, that evolved dif-

ferently from their ancestors that came from the continental

land, I consulted, returning back to my University of New

Mexico, various scientific literature about the life of animals

and plants, their reproductions, and about multiple theories of

evolutions. I used the online scientific databases that UNM

Library has subscribed to, such as MathSciNet, Web of Sci-

ence, EBSCO, Thomson Gale (Cengage), ProQuest, IEEE/

IET Electronic Library, IEEE Xplore Digital Library etc., and

DOAJ, Amazon Kindle, Google Play Books as well, doing

searches for keywords related to origins of life, species, evo-

lution, controversial ideas about evolution, adaptation and in-

adaptation, life curiosities, mutations, genetics, embryology,

and so on.

My general conclusion was that each evolution theory

had some degree of truth, some degree of indeterminacy, and

some degree of untruth (as in neutrosophic logic), depend-

ing on the types of species, environment, timespan, and other

hidden parameters that may exist.

And all these degrees are different from a species to an-

other species, from an environment to another environment,

from a timespan to another timespan, and in general from a

parameter to another parameter.

By environment, one understands: geography, climate,

prays and predators of that species, i.e. the whole ecosystem.

I have observed that the animals and plants (and even

human beings) not only evolve, but also devolve (i.e. invol-

ve back, decline, atrophy, pass down, regress, degenerate).

Some treats increase, other treats decrease, while others re-

mains unchanged (neutrality).

One also sees: adaptation by physical or functional evo-

lution of a body part, and physical or functional involution

of another body part, while other body parts and functions

remain unchanged. After evolution, a new process start, re-

evaluation, and so on.

In the society it looks that the most opportunistic (which

is the fittest!) succeeds, not the smartest. And professional

deformation signifies evolution (specialization in a narrow

field), and involution (incapability of doing things in another

field).

The paper is organized as follows: some information on

taxonomy, species, a short list of theories of origin of life, an-

other list of theories and ideas about evolution. Afterwards

the main contribution of this paper, the theory of neutrosoph-

ic evolution, the dynamicity of species, several examples of

evolution, involution, and indeterminacy (neutrality), neutro-

sophic selection, refined neutrosophic theory of evolution,

and the paper ends with open questions on evolution/neutral-

ity/involution.

2 Taxonomy

Let’s recall several notions from classical biology.

The taxonomy is a classification, from a scientifically

point of view, of the living things, and it classifies them into

three categories: species, genus, and family.

3 Species

A species means a group of organisms, living in a specific

area, sharing many characteristics, and able to reproduce with
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each other.

In some cases, the distinction between a population sub-

group to be a different species, or not, is unclear, as in the

Sorites Paradoxes in the frame of neutrosophy: the frontier

between <A> (where <A> can be a species, a genus, or a fa-

mily), and <nonA> (which means that is not <A>) is vague,

incomplete, ambiguous. Similarly, for the distinction be-

tween a series and its subseries.

4 Theories of origin of life

Louis Pasteur (1822–1895) developed in 1860 the theory of

precellular (prebiotic) evolution, which says that life evolved

from non-living chemical combinations that, over long time,

arose spontaneously.

In the late 19th century a theory, called abiogenesis, pro-

mulgated that the living organisms originated from lifeless

matter spontaneously, without any living parents’ action.

Carl R. Woese (b. 1928) has proposed in 1970’s that the

progenotes were the very first living cells, but their biological

specificity was small. The genes were considered probable

(rather than identical) proteins.

John Burdon Sanderson Haldane (1872–1964) proposed

in 1929 the theory that the viruses were precursors to the liv-

ing cells [1].

John Bernal and A. G. Cairns-Smith stated in 1966 the mi-

neral theory: that life evolved from inorganic crystals found

in the clay, by natural selection [2].

According to the little bags theory of evolution, the life

is considered as having evolved from organic chemicals that

happened to get trapped in some tiny vesicles.

Eigen and Schuster, adepts of the hypercycle theory, as-

serted in 1977 that the precursors of single cells were these

little bags, and their chemical reactions cycles were equiva-

lent to the life’s functionality [3].

Other theories about the origin of life have been proposed

in the biology literature, such as: primordial soup, dynamic

state theory, and phenotype theory, but they were later dis-

missed by experiments.

5 Theories and ideas about evolution

The theory of fixism says that species are fixed, they do not

evolve or devolve, and therefore the today’s species are iden-

tical to the past species.

Of course, the creationism is a fixism theory, from a re-

ligious point of view. Opposed to the fixism is the theory of

transformism, antecedent to the evolutionary doctrine, in the

pre-Darwinian period, which asserts that plants and animals

are modified and transformed gradually from one species into

another through many generations [22].

Jean Baptiste Pierre Antoine de Monet Lamarck (1749–

1829), in 1801, ahead of Charles Darwin, is associated with

the theory of inheritance of acquired characteristics (or use-

inheritance), and even of acquired habits. Which is called

Lamarckism or Lamarckian Evolution.

If an animal repeatedly stresses in the environment, its

body part under stress will modify in order to overcome the

environmental stress, and the modification will be transmitted

to its offspring.

For example: the giraffe having a long neck in order to

catch the tree leaves [4].

Herbert Spencer (1820–1903) used for the first time the

term evolution in biology, showing that a population’s gene

pool changes from a generation to another generation, pro-

ducing new species after a time [5].

Charles Darwin (1809–1882) introduced the natural se-

lection, meaning that individuals that are more endowed with

characteristics for reproduction and survival will prevail (“se-

lection of the fittest”), while those less endowed would perish

[6].

Darwin had also explained the structure similarities of

leaving things in genera and families, due to the common de-

scent of related species [7].

In his gradualism (or phyletic gradualism), Darwin said

that species evolve slowly, rather than suddenly.

The adaptation of an organism means nervous response

change, after being exposed to a permanent stimulus.

In the modern gradualism, from the genetic point of view,

the beneficial genes of the individuals best adapted to the en-

vironment, will have a higher frequency into the population

over a period of time, giving birth to a new species [8].

Herbert Spencer also coined the phrase survival of the

fittest in 1864, that those individuals the best adapted to the

environment are the most likely to survive and reproduce. Al-

fred Russel Wallace (1823–1913) coined in 1888 the terms

Darwinism (individuals the most adapted to environment pass

their characteristics to their offspring), and Darwinian fitness

(the better adapted, the better surviving chance) [9].

One has upward evolution (anagenesis, coined by Alph-

eus Hyatt, 1838–1902, in 1889), as the progressive evolution

of the species into another [10], and a branching evolution

(cladogenesis, coined in 1953 by Sir Julian Sorell Huxley,

1887–1975), when the population diverges and new species

evolve [11].

George John Romanes (1848–1894) coined the word neo-

Darwinism, related to natural selection and the theory of ge-

netics that explains the synthetic theory of evolution. What

counts for the natural selection is the gene frequency in the

population [12]. The Darwinism is put together with the pa-

leontology, systematics, embryology, molecular biology, and

genetics.

In the 19th century Gregor Johann Mendel (1822–1884)

set the base of genetics, together with other scientists, among

them Thomas Hunt Morgan (1866–1945).

The Mendelism is the study of heredity according to the

chromosome theory: the living thing reproductive cells con-

tain factors which transmit to their offspring particular char-

acteristics [13].
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August Weismann (1834-1914) in year 1892 enounced

the germ plasm theory, saying that the offspring do not in-

herit the acquired characteristics of the parents [14].

Hugo de Vries (1848–1935) published a book in 1901

on mutation theory, considering that randomly genetic mu-

tations may produce new forms of living things. Therefore,

new species may occur suddenly [15].

Louis Antoine Marie Joseph Dollo (1857–1931) enunci-

ated the Dollo’s principle (law or rule) that evolution is irre-

versible, i.e. the lost functions and structures in species are

not regained by future evolving species.

In the present, the synergetic theory of evolution considers

that one has a natural or artificial multipolar selection, which

occurs at all life levels, from the molecule to the ecosystem

— not only at the population level.

But nowadays it has been discovered organisms that have

re-evolved structured similar to those lost by their ances-

tors [16].

Life is. . . complicated!

The genetic assimilation (for Baldwin Effect, after James

Mark Baldwin, 1861–1934) considered that an advantageous

trait (or phenotype) may appear in several individuals of a

population in response to the environmental cues, which

would determine the gene responsible for the trait to spread

through this population [17].

The British geneticist Sir Ronald A. Fisher (1890–1962)

elaborated in 1930 the evolutionary or directional determin-

ism, when a trait of individuals is preferred for the new gen-

erations (for example the largest grains to replant, chosen by

farmers) [18].

The theory of speciation was associated with Ernst Mayr

(b. 1904) and asserts that because of geographic isolation new

species arise, that diverge genetically from the larger original

population of sexually reproducing organisms. A subgroup

becomes new species if its distinct characteristics allow it to

survive and its genes do not mix with other species [19].

In the 20th century, Trofim Denisovitch Lysenko (1898–

1976) revived the Lamarckism to the Lysenkoism school of

genetics, proclaiming that the new characteristics acquired by

parents will be passed on to the offspring [20].

Richard Goldschmidt (1878–1958) in 1940 has coined the

terms of macroevolution, which means evolution from a long

timespan (geological) perspective, and microevolution, which

means evolution from a small timespan (a few generations)

perspective with observable changes [1].

Sewall Wright (1889–1988), in the mid 20th century, de-

veloped the founders effect of principle, that in isolated places

population arrived from the continent or from another island,

becomes little by little distinct from its original place pop-

ulation. This is explained because the founders are few in

number and therefore the genetic pool is smaller in diversity,

whence their offspring are more similar in comparison to the

offspring of the original place population.

The founders effect or principle is regarded as a particu-

lar case of the genetic drift (authored by the same biologist,

Sewall Wright), which tells that the change in gene occurs by

chance [21].

The mathematician John Maynard Smith has applied the

game theory to animal behavior and in 1976 he stated the

evolutionary stable strategy in a population. It means that,

unless the environment changes, the best strategy will evolve,

and persist for solving problems.

Other theories related to evolution such as: punctuated

equilibrium (instantaneous evolution), hopeful monsters, and

saltation (quantum) speciation (that new species suddenly oc-

cur; by Ernst Mayr) have been criticized by the majority of

biologists.

6 Open research

By genetic engineering it is possible to make another com-

bination of genes, within the same number of chromosomes.

Thus, it is possible to mating a species with another closer

species, but their offspring is sterile (the offspring cannot re-

produce).

Despite the tremendous genetic engineering development

in the last decades, there has not been possible to prove by

experiments in the laboratory that: from an inorganic matter

one can make organic matter that may reproduce and assimi-

late energy; nor was possible in the laboratory to transform a

species into a new species that has a number of chromosomes

different from the existent species.

7 Involution

According to several online dictionaries, involution means:

— Decay, retrogression or shrinkage in size; or return

to a former state [Collins Dictionary of Medicine, Robert M.

Youngson, 2005];

— Returning of an enlarged organ to normal size; or

turning inward of the edges of a part; mental decline associ-

ated with advanced age (psychiatry) [Medical Dictionary for

the Health Professions and Nursing, Farlex, 2012];

— Having rolled-up margins (for the plant organs) [Col-

lins Dictionary of Biology, 3rd edition, W. G. Hale, V. A.

Saunders, J. P. Margham, 2005];

— A retrograde change of the body or of an organ [Dor-

land’s Medical Dictionary for Health Consumers, Saunders,

an imprint of Elsevier, Inc., 2007];

— A progressive decline or degeneration of normal phy-

siological functioning [The American Heritage, Houghton

Mifflin Company, 2007].

8 Theory of Neutrosophic Evolution

During the process of adaptation of a being (plant, animal, or

human) B, to a new environment η,

— B partially evolves;

132 Florentin Smarandache. Introducing a Theory of Neutrosophic Evolution



Issue 2 (April) PROGRESS IN PHYSICS Volume 13 (2017)

— B partially devolves (involves, regresses, degene-

rates);

— and B partially remains indeterminate which means

neutral (unchanged), or ambigous — i.e. not sure if it is evo-

lution or involution.

Any action has a reaction. We see, thank to adaptation:

evolution, involution, and neutrality (indeterminacy), each

one of these three neutrosophic components in some degree.

The degrees of evolution/indeterminacy/involution are re-

ferred to both: the structure of B (its body parts), and func-

tionality of B (functionality of each part, or inter-functiona-

lity of the parts among each other, or functionality of B as a

whole).

Adaptation to new environment conditions means de-

adaptation from the old environment conditions.

Evolution in one direction means involution in the oppo-

site direction.

Loosing in one direction, one has to gain in another direc-

tion in order to survive (for equilibrium). And reciprocally.

A species, with respect to an environment, can be:

— in equilibrium, disequilibrium, or indetermination;

— stable, unstable, or indeterminate (ambiguous state);

— optimal, suboptimal, or indeterminate.

One therefore has a Neutrosophic Theory of Evolution,

Involution, and Indeterminacy (neutrality, or fluctuation

between Evolution and Involution). The evolution, the in-

volution, and the indeterminate-evolution depend not only on

natural selection, but also on many other factors such as: ar-

tificial selection, friends and enemies, bad luck or good luck,

weather change, environment juncture etc.

9 Dynamicity of the species

If the species is in indeterminate (unclear, vague, ambiguous)

state with respect to its environment, it tends to converge to-

wards one extreme:

— either to equilibrium/stability/optimality, or to dise-

quilibrium/instability/suboptimality with respect to an envi-

ronment;

— therefore the species either rises up gradually or sud-

denly by mutation towards equilibrium/stability/optimality;

— or the species deeps down gradually or suddenly by

mutation to disequilibrium/instability/suboptimality and

perish.

The attraction point in this neutrosophic dynamic sys-

tem is, of course, the state of equilibrium/stability/optimality.

But even in this state, the species is not fixed, it may get,

due to new conditions or accidents, to a degree of disequilib-

rium/instability/suboptimality, and from this new state again

the struggle on the long way back of the species to its attrac-

tion point.

10 Several examples of evolution, involution, and inde-

terminacy (neutrality)

10.1 Cormorants example

Let’s take the flightless cormorants (Nannopterum harrisi) in

Galápagos Islands, their wings and tail have atrophied (hence

devolved) due to their no need to fly (for they having no

predators on the land), and because their permanent need to

dive on near-shore bottom after fish, octopi, eels etc.

Their avian breastbone vanished (involution), since no

flying muscles to support were needed.

But their neck got longer, their legs stronger, and their

feet got huge webbed is order to catch fish underwater (evo-

lution).

Yet, the flightless cormorants kept several of their ances-

tors’ habits (functionality as a whole): make nests, hatch the

eggs etc. (hence neutrality).

10.2 Cosmos example

The astronauts, in space, for extended period of time get ac-

customed to low or no gravity (evolution), but they lose bone

density (involution). Yet other body parts do not change, or

it has not been find out so far (neutrality/indeterminacy).

10.3 Example of evolution and involution

The whales evolved with respect to their teeth from pig-like

teeth to cusped teeth. Afterwards, the whales devolved from

cusped teeth back to conical teeth without cusps.

10.4 Penguin example

The Galápagos Penguin (Spheniscus mendiculus) evolved

from the Humboldt Penguin by shrinking its size at 35 cm

high (adaptation by involution) in order to be able to stay cool

in the equatorial sun.

10.5 Frigate birds example

The Galápagos Frigate birds are birds that lost their ability to

dive for food, since their feathers are not waterproof (invo-

lution), but they became masters of faster-and-maneuverable

flying by stealing food from other birds, called kleptoparasite

feeding (evolution).

10.6 Example of Darwin’s finches

The 13 Galápagos species of Darwin’s Finches manifest var-

ious degrees of evolution upon their beak, having different

shapes and sizes for each species in order to gobble different

types of foods (hence evolution):

— for cracking hard seeds, a thick beak (ground finch);

— for insects, flowers and cacti, a long and slim beak

(another finch species).

Besides their beaks, the finches look similar, proving they

came from a common ancestor (hence neutrality).
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If one experiments, let’s suppose one moves the thick-

beak ground finches back to an environment with soft seeds,

where it is not needed a thick beak, then the thick beak will

atrophy and, in time, since it becomes hard for the finches to

use the heavy beak, the thin-beak finches will prevail (hence

involution).

10.7 El Niño example

Professor of ecology, ethology, and evolution Martin Wikel-

ski, from the University of Illinois at Urbana-Champaign, has

published in Nature a curious report, regarding data he and

his team collected about marine iguanas since 1987. During

the 1997–1998 El Niño, the marine algae died, and because

the lack of food, on one of the Galápagos islands some ma-

rine iguanas shrank a quarter of their length and lost half of

their weight (adaptation by involution).

After plentiful of food became available again, the ma-

rine iguanas grew back to their original length and weight

(re-adaptation by evolution).

[J. Smith, J. Brown, The Incredible Shrinking Iguanas, in

Ecuador & The Galápagos Islands, Moon Handbook, Avalon

Travel, p. 325.]

10.8 Bat example

The bats are the only mammals capable of naturally flying,

due to the fact that their forelimbs have developed into webb-

ed wings (evolution by transformation). But navigating and

foraging in the darkness, have caused their eyes’ function-

ality to diminish (involution), yet the bats “see” with their

ears (evolution by transformation) using the echolocation (or

the bio sonar) in the following way: the bats emit sounds by

mouth (one emitter), and their ears receive echoes (two re-

ceivers); the time delay (between emission and reception of

the sound) and the relative intensity of the received sound give

to the bats information about the distance, direction, size and

type of animal in its environment.

10.9 Mole example

For the moles, mammals that live underground, their eyes

and ears have degenerated and become minuscule since their

functions are not much needed (hence adaptation by invo-

lution), yet their forelimbs became more powerful and their

paws larger for better digging (adaptation by evolution).

11 Neutrosophic selection

Neutrosophic selection with respect to a population of a spe-

cies means that over a specific timespan a percentage of its in-

dividuals evolve, another percentage of individuals devolve,

and a third category of individuals do not change or their

change is indeterminate (not knowing if it is evolution or in-

volution). We may have a natural or artificial neutrosophic

selection.

12 Refined Neutrosophic Theory of Evolution

Refined Neutrosophic Theory of Evolution is an extension

of the neutrosophic theory of evolution, when the degrees of

evolution/indeterminacy/involution are considered separately

with respect to each body part, and with respect to each body

part functionality, and with respect to the whole organism

functionality.

13 Open questions on evolution/neutrality/involution

13.1. How to measure the degree of evolution, degree of in-

volution, and degree of indeterminacy (neutrality) of a species

in a given environment and a specific timespan?

13.2. How to compute the degree of similarity to ances-

tors, degree of dissimilarity to ancestors, and degree of inde-

terminate similarity-dissimilarity to ancestors?

13.3. Experimental Question. Let’s suppose that a par-

tial population of species S 1 moves from environment η1 to

a different environment η2; after a while, a new species S 2

emerges by adaptation to η2; then a partial population S 2

moves back from η2 to η1; will S 2 evolve back (actually de-

volve to S 1)?

13.4. Are all species needed by nature, or they arrived by

accident?

14 Conclusion

We have introduced for the first time the concept of Neutro-

sophic Theory of Evolution, Indeterminacy (or Neutrality),

and Involution.

For each being, during a long timespan, there is a process

of partial evolution, partial indeterminacy or neutrality, and

partial involution with respect to the being body parts and

functionalities.

The function creates the organ. The lack of organ func-

tioning, brings atrophy to the organ.

In order to survive, the being has to adapt. One has adap-

tation by evolution, or adaptation by involution — as many

examples have been provided in this paper. The being par-

tially evolves, partially devolves, and partially remains un-

changed (fixed) or its process of evolution-involution is inde-

terminate. There are species partially adapted and partially

struggling to adapt.
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On the Vacuum Induced Periodicities Inherent to Maxwell Equations
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The hypothesis that the Planck’s vacuum is inherent to all physical laws, given that
it interact with massless elementary electrical charges, is examined exploring gauge
invariance. It is then found that Compton’s and de Broglie’s periodicities, parameters
of distinct vacuum induced fluctuations, are inherent to Maxwell equations.

Electromagnetic fields, in principle, are produced by electri-
cal charges (and its movements), which are permanently actu-
ated by the Planck’s vacuum [1]. In this sense, it is expected
that Maxwell’s equations contain some (hidden) information
about vacuum induced fluctuations.

The above hypothesis will be examined, firstly, consider-
ing the well-known redefinitions of the electromagnetic po-
tentials that leaves the Maxwell equations unchanged, i.e.

A→ A + ∇χ, φ→ φ − ∂tχ, (1)

where χ is a scalar function (not as arbitrary as it may seem),
together with the Lorenz condition (SI units)

c−2∂tφ + ∇ · A = 0, (2)

which is not a condition (nor a gauge) but a physical law [2].
In order to preserve the local conservation law (2) under

the redefinitions (1), χ must obey

∇2χ − c−2∂ttχ = 0, (3)

as can be seen in the reference [3, p.2̇39]. This wave equa-
tion (and the assumptions to get it) suggests that electrical
charges – regardless of their ordinary translational motions
– present local periodical space-time evolutions at the light
speed c. It means that massless elementary electrical charges
(MEECs), everywhere, incorporate the local space-time evo-
lution of the incoming zero-point radiation (ZPR). Apart ran-
domness, this interpretation agrees with the Schrödinger’s zit-
terbewegung [4]; i.e., electrons describe random curvilinear
paths (Compton’s angular frequency) at the light speed.

Aiming to proof that the periodicity of the local Eq.(3)
is indeed the Compton’s one, the observed motion will be
introduced through the simple (but rich in content) relation

A =
(
φ/c2
)

v, (4)

which relates the potentials of a free charged particle moving
with velocity v, as can be verified from the corresponding cur-
rent density J = ρv, where ρ is charge density, together with

∇2A − c−2∂ttA = −µoJ, ∇2φ − c−2∂ttφ = −ρ/εo. (5)

Following the same steps that led to Eq.(3), to preserve
the form of Eq.(4) – relativistic energy-momentum relation
(per unit charge) – under the redefinitions (1), χ must obey

∇χ + c−2∂tχ = 0. (6)

Assuming that the inferred periodicity of χ obeys the stan-
dard phase ωt − k · x, the Eq.(6) implies

−k + (ω/c2)v = 0, (7)

from which we obtain the improper phase velocity

vp = ω/|k| = c2/v; (8)

i.e., the phase velocity of the inherent de Broglie wave.
The above result implies that ω is the Compton’s angular

frequency (γmoc2/~), and |k| is the de Broglie wave number
(γmov/~), where γ is the Lorentz factor [5].

Notice, the periodicity of the (co-moving) Eq.(3) is there-
fore moc2/~, as inferred in connection with zitterbewegung.

The improper nature of vp and its close relation with in-
ertia [6] are indicative of vibrations triggered by “imminent”
violations of the radiation speed limit (ZPR absorbed-emitted
by MEECs) when the ordinary motion takes place (quantum
wave-packet), as suggested in the reference [5].

Keep the form of Eq.(4), considering the non-uniqueness
of A and φ, is convenient for comparing eA = (eφ/c2)v, calcu-
lated in the domain d of the extended charge e producing the
potentials, with the relativistic relation p = (E/c2)v. It means
admitting that p = [eA]d and E = [eφ]d. This, besides agreeing
with the classical electron radius as well as with the canon-
ical momentum of a charged particle in an external field, in
the sense that P = eAtot = eA + eAext = mv + eAext, implies
that the mass E/c2 is of electromagnetic origin [7].
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The Curved Space is the Electrified Flat Space
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The responsibility of the electric field E in the modification of the nature of the space
is proved. We investigate the way the fundamental strings are related to super-gravity
background of D5-branes; i.e. once the endpoints of the D-strings are electrified the flat
space becomes curved. We study the electrified relative and overall transverse pertur-
bations of fuzzy funnel solutions of intersecting (N,N f )-strings and D5-branes in flat
and super-gravity backgrounds respectively. As a result the perturbations have a dis-
continuity which corresponds to a zero phase shift realizing Polchinski’s open string
Neumann boundary condition. And once the electric field E is turned on in flat space
these perturbations decrease and when E is close to the critical value 1/λ the perturba-
tions disappear forever and the string coupling becomes strong. At this stage the space is
considered curved and the electric field is responsible for this effect. This phenomenon
is also enhanced by the behavior of the potential V associated to the perturbations Φ
on the funnel solutions under the influence of the electric field. The potential goes too
fast to −∞ when E goes to the critical value 1/λ in flat space which looks like a kink
to increase the velocity for Φ to disappear. But in curved space and close to the inter-
secting point we do not find any perturbation for all E and there is no effect of E on V
and this is a sign to the absence of the perturbation effects in super-gravity background.
This clarifies the existence of a relation between the electric field and the super-gravity
background.

1 Introduction

The present work proves the fact that the flat space becomes
curved because of the presence of the electric field. We use
the non-Abelian Dirac-Born-Infeld (DBI) effective action for
this study. Many results using this action have dealt with
brane intersections and polarization [1–3, 5, 6, 18]. The study
of brane intersections has given a realization of non-commu-
tative geometry in the form of so-called fuzzy funnels [7–13].
In the context of time dependence in string theory from the
effective D-brane action, we expect that the hyperplanes can
fluctuate in shape and position as dynamical objects.

We deal with the branes intersection problem of (N,N f )-
strings with D5-branes in flat and curved spaces by treating
the relative and overall transverse perturbations. And it will
be devoted to extend the research begun in [9, 12, 13]. The
duality of intersecting D1-D3 branes in the low energy ef-
fective theory in the presence of electric field is found to be
broken in [11] but the duality of intersecting D1-D5 branes
discussed in [12] is unbroken in the same theory with the elec-
tric field switched on which allows us to be more interested
by the study of the intersecting D1-D5 branes.

We observe, in section 2, that the most lowest energy is
gotten as the electric field E is approximately its critical value
1/λ (λ = 2πℓ2

s and ℓs the string length) and also as E is going
to 1/λ the physical radius is going to the highest value and
then D5-brane is getting bulky.

The analysis we give in sections 3 and 4 proves that the
perturbations have a discontinuity which corresponds to zero

phase shift and then the string is Polchinski’s open string
obeying Neumann boundary condition. Hence the endpoints
lie on the hyperplane are still free to move in.

We also look for more effects of E on the perturbations
and the associated potentials. The behavior of the perturba-
tions in both backgrounds is as follows: in flat space (section
3), the perturbations are disappearing because of the presence
of E and when E ≈ 1/λ we end by no perturbation and our
system is stable; and in curved space (section 4) we did not
get any perturbation for all E which means the presence of
the super-gravity does not allow any perturbation to appear in
the same way that E does in flat space.

The effect of E on the potentials associated to the pertur-
bations in flat and curved spaces is the following: the poten-
tial is going down too fast to a very low amplitude minima
(−∞) in flat space as E is going to its maxima, this is inter-
preted as inducing an increase in the velocity of the perturba-
tion to disappear; and in curved space the effect of E on the
potential is absent.

The comparison of the flat and curved cases leads us to
say if E or super-gravity is present then the perturbations
should be absent. This looks like E affects the flat background
of D5-brane and transformed it to super-gravity background
where the objects are stable. Consequently, we can think of
E and super-gravity as dual.

It’s known that in curved space the string coupling gs is
strong. And from our study the electric field E is fixed in
terms of gs by the relation E = 1

λ
(1 + (N/N f gs)2)−1/2. Then
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if E ≈ 1/λ that means N f gs ≫ 1 and gs is strong. In this
case the system should be described by Quantum Field The-
ory (QFT) in curved space where no perturbations show up.
Hence our electric field is sending us to another theory such
that our space is not flat any more.

The effect of the electric field is clear in this work. E in-
creases the volume of D5-brane and decreases the low energy
of the system and changes the nature of the background from
flat to curved and tells us the system should now be studied
in QFT in curved space.

We start the study by introducing D1⊥D5 branes and dis-
cussing the influence of the electric field on the low energy
and the volume of D5-brane in section 2. We give the so-
lutions of the linearized equations of motion of the relative
transverse perturbations in flat space and we treat the effect
of the electric field on the perturbations and the associated
potentials in section 3. Then in section 4, we study the over-
all transverse perturbations and their associated potentials in
zero and non-zero modes propagating on a dyonic string in
the super-gravity background of the orthogonal D5-branes
and we look for the effect of the electric field in this case.
The discussion and conclusion are presented in section 5.

2 Intersecting D1 and D5 branes

Let’s briefly review the non-abelian viewpoint of the (N,N f )-
strings which grow into D5-branes by using non-commutative
coordinates [7, 15, 18]. The dual picture is the intersecting
D5 and D1 branes such that (N,N f )-strings can end on D5-
branes, but they must act as sources of second Chern class
or instanton number in the world volume theory of the D5-
branes. Hence D5 world volume description is complicated
because of the second chern term which is not vanishing. The
most important feature of the intersecting D1-D5 branes is
the fact that the duality of this system discussed in [12] in the
low energy effective theory with the electric field switched on
is unbroken.

In the present description, the fundamental N f strings are
introduced by adding a U(1) electric field denoted Fτσ = EIN ,
with IN the N × N identity matrix. In fact the electric field
turns the N D-strings into a (N,N f )-strings by dissolving the
fundamental string degrees of freedom into the world volume.

For a fixed E we consider the quantization condition on
the displacement D = N f

N such that

D ≡ 1
N
δS
δE
=

λ2T1E
√

1 − λ2E2
.

Then the electric field is expressed in terms of string coupling
gs and the number of fundamental strings N f ,

E =
1
λ

1 + (
N

N f gs

)2−1/2

. (1)

The electric field is turned on and the system dyonic is
described by the action

S = −T1

∫
d2σ×

× S Tr
[
−det

(
ηab + λFabλ∂aΦ

j − λ∂bΦ
iQi j

)] 1
2

(2)

with i, j = 1, ..., 5, a, b = τ, σ and using T = 1/λgs such that
λ = 2πl2s with ls is the string length, gs is the string coupling
and Qi j = δi j + iλ[Φi,Φ j]. The funnel solution is given by
suggesting the ansatz

Φi(σ) = ∓R̂(σ)Gi (3)

i = 1, ..., 5, where R̂(σ) is the (positive) radial profile and
Gi are the matrices constructed by Castelino, Lee and Taylor
in [14]. We note that Gi are given by the totally symmet-
ric n-fold tensor product of 4×4 Euclidean gamma matrices,
such that 1

2 [Gi,G j] are generators of SO(5) rotations, and that
the dimension of the matrices is related to the integer n by
N = (n + 1)(n + 2)(n + 3)/6. The funnel solution (3) has the
following physical radius

R(σ) =
√

cλR̂(σ) (4)

with c is the Casimir associated with the Gi matrices, given
by c = n(n + 4), and the funnel solution is

Φi(σ) = ±R(σ)
λ
√

c
Gi . (5)

We compute the determinant in (2) and we obtain

S = −NT1

∫
d2σ

√
1 − λ2E2 + (R′)2

(
1 + 4

R4

cλ2

)
. (6)

This result only captures the leading large N contribution at
each order in the expansion of the square root. Using the
action (6), we can derive the lowest energy ξmin as the electric
field is present and E ∈ ]0, 1/λ[, (the low energy in the case
of intersecting D1-D5 branes when the electric field is absent
was discussed in [15])

ξ = NT1

∫
dσ

[(√
1 − λ2E2 ∓ R′

(
8R4

cλ2 +
16R8

c2λ4

) 1
2
)2

+

+

(
R′ ±

√
1 − λ2E2

(
8R4

cλ2 +
16R8

c2λ4

) 1
2
)2] 1

2

and

ξmin = NT1

√
1 − λ2E2

∫ (
1 +

4R4

cλ2

)2

dσ. (7)

such that

R′ = ∓
√

1 − λ2E2

(
8R4

cλ2 +
16R8

c2λ4

) 1
2

. (8)
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The lowest energy (7) can be rewritten in the following ex-
pression

ξmin = N f gsT1
1 − λ2E2

λE

∫ ∞

0
dσ+

+
6N
c

T5

√
1 − λ2E2

∫ ∞

0
Ω4R4dR+

+NT1

√
1 − λ2E2

∫ ∞

0
dR − ∆ξ.

(9)

In this equation, T5 = T1/(2πls)4 and we can interpret the four
terms as follows; the first term is the energy of N f strings and
the second is the energy of 6N/c ≈ n (for large N) D5-branes
and the third is of N D-strings running out radially across D5-
brane world volume and the last term is a binding energy

∆ξ = 2NT1

√
1 − λ2E2 ×

×
∫ ∞

0
du u4

1 + 1
2u4 −

√
1 +

1
u4


≈ 1.0102 T1lsNc

1
4

√
1 − λ2E2.

(10)

This equation shows that the lowest energy is gotten more
lowest as the value of electric field is more important.

The equation (6) can be solved in the dyonic case by con-
sidering various limits. For small R, the physical radius of the
fuzzy funnel solution (5) is found to be

R(σ) ≈ λ
√

c

2
√

2
√

1 − λ2E2σ
(11)

and for large R the solution is

R(σ) ≈
(

λ2c
√

18
√

1 − λ2E2σ

) 1
3

(12)

with an upper bound on the electric field E < 1/λ for both
cases.

According to equations (11) and (12), we remark that as
the higher order terms in the BI action would effect a tran-
sition from the universal small R behavior to the “harmonic”
expansion at large R (σ goes to zero). The effect we get at
this stage when the electric field is turned on is that R is go-
ing up faster as σ goes to zero once E reaches approximately
1/2λ as shown in Fig. 1, and we are on D5-brane. It looks like
the electric field increases the velocity of the transition from
strings to D5-branes world volume. Also we remark that D5
brane got highest radius once E close to its critical value.

The equations (9) and (12) give us the impression that
the presence of the electric field is an important phenomena;
it decreases the low energy and makes the D5-brane more
voluminous.

In the following sections, we include a perturbation in the
D5-brane configuration by simply adding lower and higher
order symmetric polynomials in the Gi to the matrix configu-
ration. We study the spatial perturbations of the moving D1-
branes as the electric field is switched on.

Fig. 1: Large radius.

3 Flat space

In this section, we examine the propagation of the perturba-
tions on the fuzzy funnel by considering dyonic strings in flat
background. We discuss the relative transverse perturbations
which are transverse to the string, but parallel to the D5-brane
world volume (i.e. along X1,..,5). The overall transverse per-
turbations were studied in [13].

We give the relative transverse perturbations in the fol-
lowing form

δϕi(σ, t) = f i(σ, t)IN , (13)

as zero mode with i = 1, .., 5 and IN the identity matrix. By
inserting this perturbation into the full (N,N f )-string action
(2), together with the funnel (6) the action is found to be

S ≈ −NT1

∫
d2σ

[ (
1 − λ2E2

)
A−

− (1 − λE)
λ2

2

(
ḟ i
)2
+

(1 + λE)λ2

2A

(
∂σ f i

)2
+ ...

] (14)

with

A =
(
1 +

4R(σ)4

cλ2

)2

. (15)

Then, in large and fixed n the equations of motion are

1 − λE
1 + λE

{
1 +

n2λ2

16(1 − λ2E2)2σ4

}2

∂2
τ − ∂2

σ

 f i = 0 . (16)

Let’s suggest that

f i = Φ(σ)e−iwτδxi,
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in the direction of δxi with Φ is a function of σ and the equa-
tions of motion become−1 − λE

1 + λE

(
1 +

n2λ2

16(1 − λ2E2)2σ4

)2

w2 − ∂2
σ

Φ = 0 (17)

which can be rewritten as(
− 1 − λE

1 + λE

(
n2λ2

8(1 − λ2E2)2σ4+

+
n4λ4

162(1 − λ2E2)4σ8

)
w2 − ∂2

σ

)
Φ =

1 − λE
1 + λE

w2Φ .

(18)

Since the equation looks complicated, we simplify the calcu-
lations by dealing with asymptotic analysis; we start by the
system in small and then large σ limits.

3.1 Small σ region

In this region, we see that σ8 dominates and the equation of
motion is reduced to(

− ∂2
σ + V(σ)

)
Φ =

1 − λE
1 + λE

w2Φ (19)

for each direction δxi, with the potential

V(σ) = − w2n4λ4

162(1 + λE)5(1 − λE)3σ8 . (20)

The progress of this potential is shown in Fig. 2; when we
are close to the D5-brane the potential is close to zero and
once E is turned on it gets negative values until E is close
to its maxima, we see this potential goes down too fast to a
very low amplitude minima (−∞). This phenomenon should
have a physical meaning! This could be thought as a kink to
increase theΦ’s velocity to push the perturbation to disappear.

To solve (19), we consider the total differential on the per-
turbation. Let’s denote ∂σΦ ≡ Φ′. Since Φ depends only on
σ we find dΦ

dσ = ∂σΦ. We rewrite (19) in this form

1
Φ

dΦ′

dσ
= −w2

[
n4λ4

162(1 + λE)5(1 − λE)3σ8 + 1
]
. (21)

An integral formula can be written as follows

Φ′∫
0

dΦ′

Φ
= −

σ∫
0

w2
[

n4λ4

162(1 + λE)5(1 − λE)3σ8 + 1
]

dσ (22)

which gives

Φ′

Φ
= −w2

[
− n4λ4

162(1 + λE)5(1 − λE)3 × 7σ7 + σ

]
+ α . (23)

We integrate again the following

Φ∫
0

dΦ
Φ
= −

σ∫
0

dσ×

×
(
w2

[
− n4λ4

162 7(1 + λE)5(1 − λE)3σ7 + σ

]
+ α

)
.

(24)

Fig. 2: Potential associated to the relative transverse perturbations in
small region in flat space.

Fig. 3: Relative transverse perturbations in small region in flat space.

We get

lnΦ = −w2
[
− n4λ4

162 42(1 + λE)5(1 − λE)3σ6 +
σ2

2

]
+

+ ασ + β

(25)

and the perturbation in small σ region is found to be

Φ(σ) = β e
−w2

[
− n4λ4

162 42(1+λE)5(1−λE)3σ6 +
σ2
2

]
+ασ

(26)

with β and α are constants.
We plot the progress of the obtained perturbation. First

we consider the constants β = 1 = α, then the small spatial
coordinate in the interval [0, 10] with the unit of λ = 1, w = 1
and n ≈ 103 with the electric field in [0, 1[.

As shown in Fig. 3, close to D5-brane there is perturba-
tion. We remark that as E goes up, the perturbation goes
down. And when E ≈ 1/λwe observe no perturbation effects.
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Fig. 4: Potential of relative transverse perturbations in large region
in flat space.

At this stage, according to (1) the string coupling gets strong
N f gs ≫ 1 which means the system background is changed.
We know that with strong coupling the system should be in
super-gravity background where the perturbations are no
more. Consequently, the presence of E kills the perturbation
and moves the system from flat to super-gravity background.

3.2 Large σ region

By considering large σ limit the equation of motion (18) be-
comes (

− ∂2
σ + V(σ)

)
Φ =

1 − λE
1 + λE

w2Φ (27)

with the potential

V(σ) = − w2n2λ2

8(1 + λE)3(1 − λE)σ4 . (28)

By plotting the progress of this potential (Fig. 4) we remark
that when σ goes faraway from the D5-brane the potential
vanishes approximately for all values of the electric field.
And close to D5-brane the potential gets negative values. The
effect of E is very clear; as E goes up V slows down the de-
creasing until the medium of E, then V decreases too fast until
its minimum value for E going up to its critical value.

Consequently, the electric field has the same effect on V
in both regions of σ; as E goes to its maxima V goes to its
minima.

To solve (27) we rewrite it in the following form(
∂2
σ̃ +

κ2

σ̃4 + 1
)
Φ = 0, (29)

Fig. 5: Relative transverse perturbations in large region in flat space.

with

σ̃ =

√
1 − λE
1 + λE

wσ (30)

and

κ2 =
n2λ2

8w2(1 + λE)(1 − λE)3 . (31)

Eq. (29) is a Schrödinger equation for an attractive singu-
lar potential ∝ σ̃−4 and depends on the single coupling param-
eter κwith constant positive Schrödinger energy. The solution
is then known by making the following coordinate change

χ(σ̃) =

σ̃∫
√
κ

dy

√
1 +

κ2

y4 (32)

and

Φ =

(
1 +

κ2

σ̃4

)− 1
4

Φ̃. (33)

Thus, (29) becomes(
− ∂2

χ + V(χ)
)
Φ̃ = 0 (34)

with

V(χ) =
5κ2(

σ̃2 +
κ2

σ̃2

)3 . (35)

Then, the perturbation is found to be

Φ =

(
1 +

κ2

σ̃4

)− 1
4

e±iχ(σ̃) (36)
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which has the following limit; since we are in large σ re-
gion Φ ∼ e±iχ(σ̃). This is the asymptotic wave function in
the region χ → +∞, while around χ ∼ 0, i.e. σ̃ ∼

√
κ and

σ ∼ nλ/2
√

2w2(1 − λE)2, Φ ∼ 2−
1
4 .

Owing to the plotting of the progress of this perturbation
(Fig. 5), by considering the real part of the function, the per-
turbation solution is totally different from the one gotten in
the small σ limit (26). Hence the perturbations have a dis-
continuity and the system is divided into two regions which
implies Neumann boundary conditions and the end of an open
string can move freely on the brane in the dyonic case, which
means the end of a string on D5-brane can be seen as an elec-
trically charged particle.

Fig. 5 shows that the perturbation is slowing down as E
is turned on then starts to disappear once E reaches the value
1/2λ. The perturbation disappears when E is too close to 1/λ
for all values of σ. The effect of E is very surprising! The
presence of E stops the perturbations.

No electric field means the intersecting point is in high
perturbation. Then as E is turned on the perturbations de-
crease. When E is close to its critical value the perturbations
are no more. They are killed by E. This phenomena matches
very well with the fact that gs becomes strong (N f gs ≫ 1)
at this point according to the relation (5) such that E ≈ 1/λ.
Consequently, we can suggest that the presence of the electric
field changes the background of D-branes from flat to super-
gravity background (where the string coupling is strong).

4 Curved space

We extend the investigation of the intersecting D1-D5 branes
to curved space. We consider again the presence of electric
field and the resulting configuration is a bound state of fun-
damental strings and D-strings. Under these conditions the
bosonic part of the effective action is the non-abelian BI ac-
tion

S = −T1

∫
d2σe−ϕS Tr

[
− det

(
P

(
Gab+

+Gai (Q−1 − δ)i jG jb + λFab
))

detQi j
] 1

2
(37)

with T1 the D1-brane tension, G the bulk metric, (for sim-
plicity we set the Kalb-Ramond two form B to be zero), ϕ
the dilaton and F the field strength, a, b = τ, σ and i, j =
1, 2, 3, 4, 5. Furthermore, P denotes the pullback of the bulk
space time tensors to each of the brane world volume. The
matrix Q is given by Qi

j = δ
i
j + iλ

[
ϕi, ϕk

]
Gk j, with ϕi are the

transverse coordinates to the D1-branes.
We consider the super-gravity background and the metric

of n D5-branes

ds2 =
1
√

h
ηµνdxµdxν +

√
h

(
dσ2 + σ2dΩ2

3

)
e−ϕ =

√
h

h = 1 +
L2

σ2

(38)

with µ, ν = τ, σ and L = nl2sgs.

4.1 Zero mode

In our work we treat E as a variable to discuss its influence
on the perturbations. We investigate the perturbations in the
super-gravity background of an orthogonal 5-brane in the
context of dyonic strings growing into D5-branes. The study
is focused on overall transverse perturbations in the zero
mode; δϕi = f i(τ, σ)I, i = 6, 7, 8, 9 and I is N × N identity
matrix.

The action describing the perturbed intersecting D1-D5
branes in the super-gravity background is

S ≡ −NT1e−ϕ
∫

d2σ

[
GττGσσ(1 + λE)−

λ2

2

(
1 − λ2E2

)
GσσGii( ḟ i)2+

+
λ2

2
(1 + λE) GττGii( f i)′2 + ...

]
≡ −NT1

∫
d2σ
√

h
[
1 + λE−

− λ
2αi

2h
(1 − λ2E2)( ḟ i)2+

+
λ2
√

hαi

2
(1 + λE)( f i)′2 + ...

]

(39)

where h(σ) = e−2ϕ = 1 + L2/σ2, ḟ i = ∂τ f i, ( f i)′ = ∂σ f i,
Gττ = h−1/2Gσσ =

√
he−ϕ and Gii = αi with αi some real

numbers.
The equations of motion of the perturbations are found to

be (
1 − λE

h3/2 ∂2
τ − ∂2

σ +
L2

hσ3 ∂σ

)
f i = 0 . (40)

If we consider σ̃2 = σ2 + L2 the equations of motion become(
1 − λE
√

h
∂2
τ − ∂2

σ̃

)
f i(σ̃, t) = 0 . (41)

We define the perturbations as

f i(σ̃, t) = Ψ(σ̃) e−iwτδxi (42)

with δxi (i = 6, 7, 8, 9) the direction of the perturbation and
(41) becomes(
−w2(1 − λE)

σ̃
√
σ̃2 − L2

− ∂2
σ̃

)
Ψ = w2(1 − λE)Ψ (43)
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Fig. 6: Potential in curved space for zero mode.

with the potential

V = −w2(1 − λE)
σ̃

√
σ̃2 − L2

= −w2(1 − λE)

√
σ2 + L2

σ
.

Fig. 6 shows the variation of the potential V in terms of σ.
We remark approximately the absence of the potential for all
large values of σ and V goes to zero as E goes to 1/λ. When
σ is too close to zero, in this case V is negative and goes
down too quick for all E and the potential is not that low. In
addition, in the curved space the effect of E is approximately
absent.

Let’s solve the differential equation (43). As we see this
is Heun’s equation and the solution is the perturbation

Ψ =
(
−σ̃2 + L2

)
×

×
[
ηHeunC

(
0,
−1
2
, 1,

1
4
w2(1 − λE)L2,

1
2
+

+
1
4

(−L2 + L2)w2(1 − λE), σ̃2/L2
)
+

+ βHeunC
(
0,

1
2
, 1,

1
4
w2(1 − λE)L2,

1
2
+

+
1
4

(−L2 + L2)w2(1 − λE), σ̃2/L2
)]
σ̃

(44)

with η and β are constants.
We tried to plot the perturbation (44) for small region of

σ (the radius of funnel solution is too large) and there is no
perturbation in this region. The intersecting point is stable in
super-gravity background even if the electric field is present.

Fig. 7 shows the variation of the perturbation in terms of
the electric field E and the coordinate σ̃ in large region such
that the radius of funnel solution is too small. We set λ = 1,
w = 1 and n = 102. The perturbation is showing up as a peak

Fig. 7: Overall transverse perturbations in curved space for zero
mode.

for a while and for low electric field. In general we observe
approximately no perturbation effects for all E in this case.

The important remark we obtain by comparing the influ-
ence of E on the perturbation in flat and curved spaces is that
E kills the perturbation in flat space (Fig. 3, Fig. 5) and turns
the string coupling to be strong and then the flat space in this
case becomes curved when E reaches its critical value, but
when the space is already curved the influence of E is absent.
This observation leads us to think that E is strongly related in
some way to the super-gravity background.

4.2 Non-zero modes

Let’s now consider the non-zero modes, the perturbations can
be written in the form

δϕm(σ, t) =
N−1∑
ℓ=1

ψm
i1...iℓG

i1 ...Giℓ

and ψm
i1...iℓ

are completely symmetric and traceless in the lower
indices. We get two terms added to the action (39) to describe
the present system [ϕi, δϕm]2 and [∂σϕi, ∂tδϕ

m]2. Then in the
equation of motion (40) these two terms [ϕi, [ϕi, δϕm]] and
[∂σϕi, [∂σϕi, ∂2

t δϕ
m]] appeared. We have ϕi = RGi and by

straightforward calculations we have

[Gi, [Gi, δϕm], ] =
N−1∑
ℓ<N

ψm
i1...iℓ [G

i, [Gi,Gi1 ...Giℓ ]]

=

N−1∑
ℓ<N

ψm
i1...iℓϵ

i1...iℓGi1 ...Giℓ ,

=

N−1∑
ℓ<N

4ℓ(ℓ + β) δϕm
ℓ

(45)
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with ϵ i1...iℓ antisymmetric tensor and β a real number. To ob-
tain a specific spherical harmonic on 4-sphere, we have

[ϕi, [ϕi, δϕm
ℓ ]] =

ℓ(ℓ + β)λ2c
2(1 − λ2E2)σ2 δϕ

m
ℓ ,

[∂σϕi, [∂σϕi, ∂2
t δϕ

m]] =
ℓ(ℓ + β)λ2c

2(1 − λ2E2)σ4 ∂
2
t δϕ

m
ℓ .

(46)

Then for each mode we set δϕm
ℓ = f m

ℓ (σ̃)e−iωτδxm with f m
ℓ

some function for each mode. Then the equations of motion
will be in this form

(−∂2
σ̃ + V(σ̃)) f m

ℓ (σ̃) = −w2(1 − λE) f m
ℓ (σ̃) (47)

with V(σ̃) = V1 + V2 + V3 and

V1 = −w2(1−λE)
σ̃

√
σ̃2 − L2

= −w2(1−λE)

√
σ2 + L2

σ
(48)

V2 =
ℓ(ℓ + β)λ2c
2(σ̃2 − L2)

=
ℓ(ℓ + β)λ2c

2σ2 (49)

V3 =
ℓ(ℓ + β)λ6cw2αiαm

24(1 − λ2E2)(σ̃2 − L2)2 =
ℓ(ℓ + β)λ6cw2αiαm

24(1 − λ2E2)σ4 . (50)

These expressions can be treated by taking into account the
limits of σ such as σ goes to zero and the infinity.

For small σ, V3 dominates and in large σ, V1 + V2 will
dominate. From now on, it is clear that the system in the
present background will get different potentials and perturba-
tions from region to other which support the idea of Neumann
boundary condition in super-gravity background.

We start by small σ region, and the plot of V3 (Fig. 8)
shows that if σ goes to zero then the potential goes to +∞.
Physically this behavior should mean something! This could
be a sign to the absence of the perturbation effects and the
influence of E is absent.

We remark that the electric field does not have any influ-
ence on the perturbations in non-zero mode at the presence of
the super-gravity background.

Then the perturbation for each mode ℓ is gotten (see (51)
at the top of the next page) with b1 and b2 are constants and
d = ℓ(ℓ + β)λ6n(n + 1)αiαmw2. We tried to plot this function
but noway we could not get any perturbation for the values
λ = 1, w = 1 and for all E, ℓ > 4 and n > 1 in the region
σ ∈ [0, 10].

Also the potential shows up with little values by compar-
ison to the case of small region and for all E which means E
does not change anything in the case of curved space.

Let’s move to the large σ. As σ goes to infinity we see
the potential goes to zero (Fig. 9) but when σ approaches the
small σ region the potential goes up too quick and reaches the
maximum value, approximately for all E. Then the electric
field does not have influence on the behavior of the potential
in curved space.

Fig. 8: Potential in curved space for non-zero mode for different
values of E in small region.

The perturbation for each mode is (see (52)) with a1 and
a2 are real constants. We tried to plot this function for all E,
ℓ = 10 and n = 102, and no perturbations appear which is
consistent with the nature of space. Since the system is in
super-gravity background, there is no perturbations then no
influence of electric field.

5 Discussion and conclusion

In the low energy effective theory with the electric field E is
switched on, we proved in [11] that the duality of intersecting
D1-D3 branes is broken and in [12] the duality of intersecting
D1-D5 branes is unbroken. Hence, it is interesting to know
more about the effect of the electric field, and the intersecting
D1-D5 branes looks more important as a system.

We consider the non-abelian Born-Infeld (BI) dynamics
of the dyonic string such that the electric field E has a lim-
ited value. If we suppose there is no excitation on transverse
directions then the action of D1-branes is

S = −NT1

∫
d2σ
√

1 − λ2E2.

The limit of E attains a maximum value Emax = 1/λ just as
there is an upper limit for the velocity in special relativity.
In fact, if E is constant, after T-duality along the direction
of E the speed of the brane is precisely λE so that the upper
limit on the electric field follows from the upper limit on the
velocity. Hence if this critical value arises such as Emax >
1/λ the action ceases to make physical sense and the system
becomes unstable. Since the string effectively carries electric
charges of equal sign at each of its endpoints, as E increases
the charges start to repel each other and stretch the string. For
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f m
ℓ = b1 HeunT
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−d
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−6d
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exp
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Fig. 9: Potential in curved space for non-zero modes in large region.

E larger than the critical value, the string tension T1 can no
longer hold the strings together.

In this context, we have treated in this project in partic-
ular the perturbations of a set of (N,N f )-strings ending on a
collection of n orthogonal D5-branes in lowest energy world
volume theory. The fundamental strings ending on an orthog-
onal D5-branes act as an electric point sources in the world
volume theory of D5-brane and the perturbations in both flat
and curved spaces were studied from this point of view.

We showed in section 2 that the semi-infinite fuzzy fun-
nel is a minimum energy configuration by imposing singular
boundary conditions that have interesting physical interpreta-
tion in terms of D-brane geometries. And to consider the low-
est energy effective theory the electric field should be present.

We found the lowest energy

ξmin = N f gsT1
1 − λ2E2

λE

∫ ∞

0
dσ+

+
6N
c

T5

√
1 − λ2E2

∫ ∞

0
Ω4R4dR+

+NT1

√
1 − λ2E2

∫ ∞

0
dR−

−1.0102 T1lsNc
1
4

√
1 − λ2E2

by considering E switched on in the low energy effective the-
ory. The energy of intersecting D1-D5 branes is found to be
a sum of four parts depending on the electric field E and all
these energies are decreasing as E goes to 1/λ. The first is
for N f fundamental strings extending orthogonally away from
the D5-branes and the second for the n D5-branes and the
third for the N D-strings extending out radially in D5-branes
and the fourth is the binding energy.

In this theory, the transition between the universal behav-
ior at small radius of the funnel solution and the harmonic
behavior at large one in terms of electric field is mentioned
too. When the electric field is turned on the physical radius
of the fuzzy funnel solution R(σ) ≈ (λ2c/

√
18
√

1 − λ2E2σ)
1
3

is going up faster as σ goes to zero (the intersecting point)
and E reaches approximately 1/2λ which looks like the elec-
tric field increases the velocity of the transition from strings
to D5-branes world volume. Then D5-branes get highest ra-
dius once E is close to 1/λ which interprets the increasing of
the volume of the D5-branes under the effect of the electric
field (Fig. 1).

In section 3, we have investigated the relative transverse
perturbations of the funnel solutions of the intersecting D1-
D5 branes in flat space and the associated potentials in terms
of the electric field E ∈]0, 1/λ[ and the spatial coordinate σ.
We find that too close to the intersecting point the potential is
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f m
ℓ = a1 HeunC

0, √
2w2L4(λE − 1) + L2 − 4λ2cl(l + β)

2L
,−2,

w2L2(λE − 1)
8

,
5
4
− w

2L2(λE − 1)
8

,

2σ̃2 − 2σ̃
√
σ̃2 − L2 − L2

L2

 (√σ̃2 − L2 + σ̃
)L −

√
2w2L4(λE − 1) + L2 − 4λ2cl(l + β)

2L

+a2 HeunC

0,− √
2w2L4(λE − 1) + L2 − 4λ2cl(l + β)

2L
,−2,

w2L2(λE − 1)
8

,
5
4
− w

2L2(λE − 1)
8

,

2σ̃2 − 2σ̃
√
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L2

 (√σ̃2 − L2 + σ̃
)L +

√
2w2L4(λE − 1) + L2 − 4λ2cl(l + β)

2L
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close to zero and once E is turned on it gets negative values
until E is close to its maxima, we see this potential goes down
too fast to a very low amplitude minima −∞ (Figs. 2,4) and
away from the intersecting point there is approximately no
potential for all E. This is interpreted as inducing an increase
in the velocity of the perturbation to disappear at the inter-
secting point toward the D5-brane world volume. Figs. 3,5
show that when E goes to its maxima there is no perturbation
effects. Hence the presence of E kills in general the perturba-
tions. At this stage, according to (1) the string coupling starts
to get strong which means the system background is chang-
ing.

In curved space, we have studied the same system by
looking for the effect of electric field on the perturbations
and the associated potentials in zero (Figs. 6,7) and non zero-
modes (Figs. 8,9) of the overall transverse perturbations in
section 4. It was surprisingly that too close to the intersecting
point; i.e. at large physical radius of D5-brane, we could not
find any perturbation and also there is approximately no influ-
ence of E on potentials. The effect of E appears only when we
are too far away from the intersecting point where the radius
is too small and still E makes the perturbations to disappear
on the strings. In general we do not see the influence of E in
curved space.

The main and very important feature we got from this in-
vestigation is the following; the presence of electric field flux
on the strings changes the background of the system. We
proved explicitly that when the coupling is going to be strong
which means E goes to its critical value we should move to
QFT to describe the system where no perturbations exist. In
curved space the influence of the electric field appears for too
small radius of funnel solution which means for large spatial
coordinate σ of strings and this phenomena decreases from
zero mode to non-zero modes but when the radius is impor-
tant as σ goes to zero there is no effect of E. By contrast in
the case of flat space that was very clear when E is turned on
the perturbations change their behavior in general. E forces

them to disappear as it is close to the critical value and in
meantime the string coupling is getting strong.

The string coupling is strong means N f gs ≫ 1 and gs ≈
N/N f since E ≈ 1/λwhich is the critical value and if the elec-
tric field exceeds this value the system will be non-physical
phenomena as discussed above and to be out of this problem
we should choose another theory to describe our system.

In the case of weak coupling N f gs ≪ 1 the electric field
will be approximately E ≈ N f gs/λN and the condition match-
es our perturbative phenomena E ∈ [0, 1/λ[. We mention
here that if E goes to zero then N f gs does too which means
the number of fundamental strings decreases and simply the
endpoints of the strings loose their electric charges and vice-
versa.

In curved space, we can say the electric field E has no
effect on the intersecting point. We can connect then the phe-
nomena to the electric field E and the string coupling gs such
as E and gs are connected by the relation (5). We see that
once E is turned on and goes up gs is getting stronger. At the
critical point, E reaches its maxima and gs is strong then the
space should become curved. Hence we can remark at this
stage that the effect of E looks like it transforms the flat space
to curved one. In this context we can say there is a one-to-one
map between the super-gravity background and the electric
field that we should look for!
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Recent controversy on the existence (versus non-existence) of variability in the ob-
servation of decay rate can be settled by considering mixing in decay configuration.
Variability in decay rate was investigated based on the available information of beta
decay rate data, solar neutrino flux, and energy distribution. Full systematic analysis of
the oscillatory behavior was carried out. Based on the zero threshold energy for neu-
trino absorption in beta emitters, a model for configuration mixing between two distinct
beta disintegration modes βν-disintegration (electron from neutrino interaction) and the
β−-disintegration (electron from natural decay) was proposed. The phenomenon of vari-
ability in beta decay rate was related to the possible exothermic neutrino absorption by
unstable nuclei which, in principle, should include the whole range of flux energies
involving flux with energy below the 71Ga threshold at 0.23 MeV. These two disintegra-
tion modes occur independently and model for their apparent mixing rate was proposed.
The configuration mixing between the two modes cause depletion of radioactive nuclei
which is subject to change with seasonal solar neutrino variability. Ability to detect this
variability was found to be dependent on the Q-value of the βν disintegration and detec-
tion instrument setup. Value of neutrino cross section, weighted by the ratio between
βν and β− detection efficiencies, was found to be in the range 10−44 to 10−36 cm2. For
experiments that uses the end point to determine the neutrino mass, interference due to
mixing should be taken into account.

1 Introduction

Anomalous behavior in radioisotopes activity was reported
by several scientists, they considered it as influence of solar
proximity and activity. Several scientist are in favor of the in-
fluence of solar activity/distance on the decay rate. Early re-
sults of Alburger et al. [3] are based on normalizing the count
rate ratio of 32Si/32P decay rate. Siegert et al. [34] had re-
ported oscillatory behavior of 226Ra, 152Eu, and 154Eu. Jenk-
ins et al. [44] had studied these cases and reported several
new data and measurements. Most investigator had reported
seasonal relation between oscillatory behavior and the earth’s
position with respect to its sun’s orbit; referring to the neu-
trino influence to the decay process.

Several other scientists oppose the connection between
sun and the phenomenon. In one of the oppose thoughts, sci-
entists may consider the rare neutrino events in experiments
like Ice Cube and Sudbury Neutrino Observatory [2]; yet, the
energy threshold of there detection system may not fall be-
low 71Ga border at 0.233 MeV (3.5-5 MeV for electron scat-
tering [7], 1.44 MeV for d(νe, e)pp interaction.) In all mea-
surements, no relation between half-life and the existence of
this phenomenon was reported. Several other oppose reports,
based on measurements by different techniques, were pub-
lished, see Refs. [5, 8, 10, 11, 29].

In the present work, full systematic analysis and treatment
of the oscillatory behavior was performed in order to recon-
cile these viewpoints. Based on the zero threshold energy for
neutrino absorption beta emitters, a model for configuration

mixing between distinct βν-disintegration (the electrons from
neutrino interaction) and the β−-disintegration (the electrons
from natural decay) was proposed.

2 Model for analysis

The majority of solar neutrino are with electron flavor asso-
ciated with proton burn-up processes (φνe,pp = 6±0.8×10

10

cm−1s−1) with maximum energy around 0.41 MeV [1].
During solar flares protons stimulates production of pions /

muons; π+ (π−) decays into νµ(νµ) with µ+ (µ−), later partners
decay and emit νe (νe) together with νµ (νµ) [30] total flux is
of order 109 cm−2s−1 and has energy up to 10 MeV.

Rare reaction of neutrino with stable isotopes is attributed
to its small coupling with W± and Z0 bosons, and higher
threshold of reaction kinematics. Coupling with Z0 may be
not appreciated due to non-existence of flavor changing neu-
tral currents. If happened, an electron neutrino in the vicinity
of the nucleus couples with a W boson emitting a βν and in-
duces beta transformation in the nucleus. Threshold energy
of neutrino capture in 37Cl is about 0.813 MeV compared to
0.233 MeV in 61Ga, these isotopes are used as monitor for
8Be neutrinos. Radioactive isotopes, on the other hand, have
excess energy to deliver due to positive Q-values as illustrated
in Table 1. Hence, one can conclude that the solar influence
on the apparent decay rate is associated mixing of specific
mode of disintegration in consequence of neutrino capture
in nuclei with the natural disintegration rate. The apparent
decay rate of radioactive isotopes, λ′ may be split into two
terms; a term for usual disintegration of the nucleus labelled
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λd and a terms for neutrino interaction. Presumably, neutral
current will contribute to scattering only. β−-decay rate is
proportional to the matrix element of the decay, |Md |

2 while
the reaction terms are associated with matrix elements of neu-
trino interaction with charged current, |MνW± |

2.

N(t)λ′ =N(t)λd + N(t)
∑

flavors

φν(t)NN

〈
Kβν (Q)

〉
σνn (1)

The summation is taken over all possible neutrino flavors.
Here, N(t) is the number of nuclei at time t, 〈K(Q)〉 is the
factor representing the modification of nucleon properties in
the nuclear medium, which can be investigated by nucleon
induced nuclear reactions [12,13]; 〈K(Q)〉 depends on the Q-
value of the reaction and the state of the nucleus upon inter-
action. The in-medium neutrino cross section σν can replace
〈K(Q)〉 σνn.

The flux would be altered with the change in earth to sun
distance R. Hence the time varying function is inversely pro-
portional to the area of a sphere centered at sun. The radius
vector has the form

R = a
1 − ε2

1 + ε cos(θ)
, θ ≈ ωt. (2)

Where ε is the eccentricity of earth’s orbit (now, 0.0167 [35])
and the cosine argument is the angle relative to the distance
of closest approach (2-4 January) in which value equals to
R = a(1 − ε). ω = 2π/Tω is the average orbital velocity, and
Tω is the duration of earth’s years in days. The approximate
sign is introduced because earth’s spend much more time at
larger distance from the sun than in the near distances. As-
suming that the average flux (φ(0)

ν ) occurs at time t0 during the
revolution around the sun, the flux at any other time will be

φν(t) = φ(0)
ν F(t), (3)

F(t) =
(1 + ε cos(ωt))2

(1 + ε cos(ωt0))2 . (4)

Here, φ(0)
ν is the average flux of neutrinos reaching earth’s sur-

face (about 6.65 × 1010 cm−2s−1 as average of all sun’s pro-
ducing routes [37], in which only 2.3×106 cm−2s−1 are from
8Be. Comparison between F(t) (taking t0 = 0) and normal-
ized seasonal variation of 8Be neutrons (data taken from Yoo
et al. [46] and normalised to its yearly average) is represented
in Fig. 1. F(t) gives the averaged trend of Yoo et al. data
within the experimental uncertainty of measurement.

For simplicity, and due to nature of available data of being
related to oscillatory behavior, effect of cosmological neutri-
nos will be disregarded. Additionally, non-predominant ra-
dioactive isotopes should have the neutrino-induced beta dis-
integration of contribution much smaller than that of the β−-
decay; hence, λd can be replaced by the laboratory decay con-
stant, λ, with good precision. The apparent decay rate for
specific interaction current can be described by the formulae

λ′ ⇒ λ + φ(0)
ν NNσνF(t). (5)
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Fig. 1: Normalized measurements of 8Be neutrino variation by Yoo
et al. [46] in comparison with predictions of F(t) function in Eq. 4.

Where, φ(0)
ν , NN , and σν = 〈K〉σνn are related to the con-

sidered current and the disintegrated nucleus. Differential
nuclear decay rate is simply described by the rate equation
dN(t)/dt = −N(t)λ′. Upon integration, the number of sur-
vived nuclei become

N(t) =N(0) exp
(
−λt − µ

(
1 +

ε2

2

)
t
)
×

exp
(
−2εµ

(
1 +

ε

4
cos (ωt)

)
sin (ωt)

)
,

µ =
φ(0)
ν NNσν

ω (1 + ε cos(ωt0))2 .

(6)

The first exponential represent the depletion of nuclei with
neutrino interaction together with the radioactive decay. The
second exponential can be represented as

1 +
∑
i=1

(−1)i

i!

(
2εµ

(
1 +

ε

4
cos (ωt)

)
sin (ωt)

)i
. (7)

The value of 2εµ << 1; hence, only the first term in the sum-
mation is effective. I.e.,

N(t) =e
−λt−µ

(
1+ ε2

2

)
t
(
N(0) − A

(
1 +

ε

4
cos (ωt)

)
sin (ωt)

)
, (8)

which reveal seasonal variability. The amplitude of the oscil-
lation is A = 2 N(0) ε µ with the depletion factor exp

(
− λt

− µ
(
1 + ε2

2

)
t
)
; depletion factor reaches unity for long-lived

isotopes with relative short-term measurements.
The method of normalization of data, mentioned in con-

text, is intended to remove the effect of isotope decay rate
and give the residual of neutrino interaction. So, when nor-
malized to 1, the normalized fraction (proportional to decay
rate or detector count) becomes

N(t) =

(
1 − Ae−λte

−µ
(
1+ ε2

2

)
t
(
1 +

ε

4
cos (ωt)

)
sin (ωt)

)
. (9)

E.K. Elmaghraby. Configuration Mixing in Particle Decay and Reaction 151



Volume 13 (2017) PROGRESS IN PHYSICS Issue 3 (July)

Similarly, for normalization of the ratio between two isotope
1 and 2,

N1/2(t) ≈1 − 2
N1(0)
N2(0)

e−(λ1−λ2)te
−(µ1−µ2)

(
1+ ε2

2

)
t
×

εµ1

(
1 + ε

4 cos(ωt)
)

sin(ωt)

1 − 2εµ2

(
1 + ε

4 cos(ωt)
)

sin(ωt)
.

(10)

Which is not a complete sinusoidal variation. The amplitude
and depletion factors in case of two activity ratio becomes

A1/2 = 2
N1(0)
N2(0)

εµ1

1 − 2εµ2
e−(λ1−λ2)te

−(µ1−µ2)
(
1+ ε2

2

)
t
. (11)

This depletion term can be ignored if both isotopes have com-
parable half-life and mass.

3 Discussion

Normalized oscillatory data, were collected for the decay of
isotopes given in Table 1. Because we need to have a starting
point, data retrieved relative to 1 Jan. 1980. The time shift, t0,
was obtained using least square fitting of every data set with
Eq. 9 by shifting time with free parameter–say t1. Results are
illustrated in Table 1 in which a shift of -120±14(1σ-stat.) ±
5(1σ-syst.) days was found; i.e. the average flux received
on earth from the sun occurs around end of October (or, al-
ternatively, May first.) This is consistent with data given in
measurement of 8Be neutrino variation by Yoo et al. [46].

Before going further in the discussion, we must appre-
hend measurement techniques and circumstance of each ex-
periment. The correlation between earth sun distance and de-
cay rate for 32Si and 226Ra was reported by Jenkins et al. [17]
based on Alburger et al. [3] and Siegert et al. [34]; those
measurements are based on the β spectrum measurements.
Alburger and coworkers used end-window gas-flow propor-
tional counter system and a liquid/plastic scintillation detec-
tors and Siegert and coworkers used both 4π ionization cham-
ber and Ge and Si semiconductor detectors with reference to
ionization chamber measurements. Same group of Ref. [17]
and others in later work [24] had measured the 54Mn us-
ing the 834.8 keVγ-line during 2 years without significant
seasonal variation, they only report a connection with solar
storm. Similar results appeared after solar flare [16]. Varia-
tion of 36Cl decay rate was reported by BNL group [18] us-
ing Geiger-Müller counter and in PTB-2014 measurements
[22] using the triple-to-double coincidence ratio liquid scin-
tillation counting system. PTB-2014 detection system ex-
cluded the idea of time varying decay rate while the BNL
measurements prove the phenomenon. Power spectrum anal-
ysis [15, 18, 20, 26, 40, 43] reveal several spectral frequencies
especially at 1 y−1. Some explanations of seasonal variation
of decay rate were related to decoherence in gravitational
field [36] and internal sun modes [42]. An experiment was
performed for 222Rn decay in controlled environment showed

dependence on the angular emission of gamma ray [39] and
daily behavior [9,19,44]; however Bellotti et al. [9] excluded
the sun influenced decay rate in support with their earlier
work [8]. Ware et al. [45] returned the variation to change
in the pressure of counting chamber during the seasonal vari-
ation.

Opposition to the connection between sun’s and the vari-
ability phenomenon of apparent decay rate came out as a con-
sequence of measurements, as well. No significant deviations
from exponential decay are observed in Cassini spacecraft
power production due to the decay of 238Pu [11]. Bellotti
et al. [8] studied decay of 40K, 137Cs and 232Th using NaI
and Ge detectors with no significant effect of earth-sun dis-
tance. Same results had been reported by Alexeyev et al. [5]
in the alpha decay of 214Po measured by α-particle absorp-
tion. However, Stancil et al. [38] detected seasonal variation
in the gamma transition in 214Po due to 214Bi decay in ra-
dium chain. Others [4] had reported seasonal variation in life
time of 214Po. Recently, Pommé et al. [29] re-performed mea-
surements in several laboratories by all possible measurement
techniques including ionisation chamber, HPGe detector, sil-
icon detector, proportional counter, anti-coincidence count-
ing, triple-to-double coincidence, liquid scintillation, CsI(Tl)
spectrometer, internal gas counting. They returned the phe-
nomenon to lower stability of instruments. Bikit et al [10]
investigated the 3H decay rate by measured by liquid scintil-
lation and related the fluctuation of the high-energy tail of the
beta spectrum to instrumental instability.

The techniques of measurements is different among these
two parties. Among all measurements given above, all tech-
niques that are based on detecting β-radiation, or combined β-
γ-radiation coming from its daughter, had signaled variabil-
ity. Which can be explained as a consequence of the mixing
between βν and β− disintegrations. In such case, both terms
in Eq. 5 are effective and the apparent decay rate should be
influenced by solar proximity and activity. On the other hand,
techniques that uses specific decay parameter such as specific
γ-line from β±- or α-decay may not be able to recorded any
variability because the oscillatory part of configuration mix-
ing in Eq. 5 is not operative. With pure α-emitters like 241Am
and 226Ra, the mixing oscillatory term will change sign and
time shift of half-period may appear. In accordance to Siegert
et al. [34] results, time shift of a half period in the fluctuation
measured between 4πγ-ionization chamber measurement of
226Ra and measurements of 152,154Eu by GeLi semiconductor
detectors was found. Hence, both parties concluded existence
or non-existence of the phenomenon based on their technique
of measuring it. Each team draw the correct picture of his
viewpoint; that is determined by whether the mixing part of
Eqs. 5 and 9 were taken into account or not.

The βν energy spectrum should, in principle, reflects the
energy distribution of neutrino and the structure of residual
nucleus. In βν-decay, all energy of neutrino plus the major
contribution of mass access (Q-value) is transferred to the
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Table 1: Data of seasonal variability of radioactive disintegration. Unit of ξσν is cm2, Q-value is calculated from AME2003 atomic mass
evaluation [6] in the unit of MeV; t1 is the time shift in days.

Isotope Ref A ×104 −t1 ξσν × 1041 Q Eth

3H [21, 27] 5.29 ± 2 ± 6 -10 ± 30 1.8 ± 0.4 ± 2 ×10−6 0.0186 0
3H [14] 38.4 ± 0.8 ± 35 138 ± 1 13 ± 0.1 ± 12×10−6 0.0186 0

32Si [3] 10.8 ± 2 ± 5 109 ± 12 1.15 ± 0.01 ± 0.5×10−3 0.2243 0
32Si/36Cl [3, 15, 17] 15.8 ± 0.67 ± 7 126 ± 5

36Cl [18] 19 ± 0.9 ± 10 160 ± 5 4.52 ± 0.01 ± 2.4 0.7097 0
152Eu [31, 32, 41] 8.4 ± 0.3 ± 2 113 ± 3 3.51 ± 0.01 ± 0.79 1.8197 0
154Eu [31, 32, 41] 8.5 ± 0.4 ± 3 121 ± 2 8.7 ± 0.004 ± 3 1.9688 0
214Bi [38] 31 ± 2 ± 17 119 ± 6 39.7 ± 0.02 ± 22 3.2701 0
214Bi [38] 30 ± 2 ± 12 118 ± 5 38.5 ± 0.02 ± 15 3.2701 0
85Kr [32, 41] 7.2 ± 0.35 ± 1.5 113 ± 3 0.687 0
90Sr [32, 41] 8.8 ± 0.4 ± 2 121 ± 3 0.546 0

108Ag [32, 41] 8.6 ± 0.3 ± 2 126 ± 2 1.76 0
133Ba [32, 41] 6.18 ± 0.6 ± 4 119 ± 5 -2.061 2.061
226Ra [15, 17] 10.1 ± 0.3 ± 3 105 ± 20 83 ± 0.02 ± 20×10−3 diverse
226Ra [34] 11.9 ± 0.2 ± 2 125 ± 2 99 ± 0.01 ± 20×10−3 diverse

beta particle. The higher the Q-value, the higher the energy of
the emitted βν. This is another source of disagreement among
both teams supporting and declining the phenomenon. Obser-
vation of the phenomenon is determined by the ability of their
system to detect βν or the specific γ-transition or mass loss
subsequent the disintegration. Detection volume, in general,
is selective to a band of radiation energy. Ionization chamber
detects gamma radiation and fraction of beta radiation above
few hundreds eV [31]. Additionally, higher energy of βν have
higher value of detection efficiency. Counting of βν, and β−,
and/or their corresponding γ-ray from nuclei, have different
efficiencies due to difference in energy distribution and end-
point(c.f. [33]); literally, βν has no end-point. Hence, each
count rate must be related to its efficiency; i.e. the amplitude
of the variation must be modified by a ratio–say ξ–between
βν counting efficiency and β− counting efficiency; which de-
pends on the βν energy and the measurement setup. If vari-
ation occurs, it would be reflected on the counting rate. The
value of ξσν represent a weighted cross section and it was
calculated as a whole in Table 1.

The amplitude of the variability was obtained from each
dataset by fitting using Eq. 9; results are represented in Ta-
ble 1. The value of N(0) (alternatively, mass or activity) was
found for 3H (assuming 1-20 g of 3H2O as for PTB measure-
ments catalogue of activity standards [25]), 32Si (0.0477 g of
32SiO2 [3]), 36Cl(0.4 µCi [22]), 152Eu (40 MBq [31, 32, 41]),
154Eu (2.5 MBq [31,32,41]), and 214Bi(2 µCi [38]), see Table
1. Mass, activity, and/or number of decaying atoms were not
reported for other datasets. Then, the value (ξσν) are calcu-
lated only for the said isotopes. A plot for the variation of ξσν
with Q-value is represented in Fig. 2. The known limit of

 (c
m

2 )

Q (MeV)

 n  at E =1 MeV

3H

32Si

36Cl
152Eu

154Eu

214Po via
 214Bi

Fig. 2: Value of the reduced cross section ξσν in the unit of cm2 in
correlation with the Q-value of the possible βν-disintegration. Line
represent the value of σνn=0.881×10−38 Eν(GeV) cm2 at Eν=1 MeV.
Insert: possible disintegration probabilities of represented isotopes
to levels in daughter nuclei.

νe-neutron cross section is σνn= 0.881×10−38 Eν(GeV) cm2

which is represented by the line in Fig. 2 for electron neu-
trino with Eν=1 MeV considering ξ = 1. The increase of
ξσν with Q-value confirms the mentioned hypothesis of exis-
tence of instrumental setting participation in the detection of
the variability of apparent decay rate.

In the insert of Fig. 2, decay schemes of said isotopes
are represented. The βν spectrum is expected to have definite
spectrum corresponding to direct transition to levels in daugh-
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ter nuclei in similarity to neutrinoless double beta decay; one
of the possible broadening that could occur is due to original
energy distribution of neutrinos. Sensitive detector like KA-
TRINE [23] can be used to detect such energy distribution in
3H; fortunately, neutrinoless double beta decay cannot occur
in case of 3H without fission of the whole nucleus. Disin-
tegration of 3H, 32Si and 36Cl have single possible transition
for both βν and β− decays. The maximum energy of βν-3H
decay is expected to be 0.42 MeV with ξσν = 1.82 ± 0.4
stat. ±2 syst. ×10−44 cm2 as calculated from Pomme et
al. [27] data, and 13.2 ± 0.1 stat. ± 11 syst. ×10−44 cm2

as calculated from Falkenberg [14] data. Systematic uncer-
tainties are mostly related to unknown mass of the material.
The BNL data of 226Ra and other data of radium had been
evaluated but was not represented in Fig. 2. 226Ra has thresh-
old for βν decay of 0.641 MeV, its daughters have possible
beta decay probability, that is why variability can be observed
[15,17,31,32,34,41]. The phenomenon disappeared when α-
detection system is used [28].

4 Conclusion

Rare mixed configuration between neutrino induced beta dis-
integration and natural beta disintegration may exists. These
two distinct classes of beta decay could, in principle, explain
the variation of apparent decay rate of radioactive isotopes
with sun proximity. The circumstances of detection and in-
strumental ability determine whether to detect pure natural
disintegration or the mixed mode. Configuration mixing be-
tween βν and β− is, presumably, happen among all existing
β− emitters. The mixing in configuration of decay and reac-
tion can be extended to all particles and nuclei. It must be
taken into account in the in high precision measurements of
neutrino mass. Mixing may be of significance for nucleosyn-
thesis in astronomical object.
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Are Energy and Space-time Expanding Together?

Jacques Consiglio
52, Chemin de Labarthe. 31600 Labastidette. France. E-mail: Jacques.Consiglio@gmail.com

Assuming the universe has permanent critical density gives energy non-conservation, a
linear increase of the universe total energy as a function of time. It enables to compute
the universe densities of matter, dark matter, and dark energy as distinct effects of a
unique source, where dark matter is stress. We show coherence with the Schwarzschild
and the Schwarzschild-de Sitter solutions from which we compute the term Λ as geo-
metrical effect of expansion. In this context, we show that MOND is consequence of
the universe expansion and compute its parameter value and time evolution.

1 Introduction

This paper follows [1], where we find that energy “is” the uni-
verse expansion, and complements the analysis. But here we
proceed from side-thinking: The next theory of gravity, if any,
will have to recover the Einstein field equations (EFE). There-
fore correlations between quantities considered independent
in general relativity (GR), are instructive as to the object and
contents of a better theory. Then in order to find new cor-
relations we shall rely on a) the geometry of existing EFE
solutions, and b) one coincidence which is critical density.

1.1 Coincidences

According to the Planck mission (PM) 2015 results [10], it
seems that the universe has critical density:

ρT =
3 H2

8πG
, (1)

where G is Newton’s constant, and H the Hubble parameter.
Note, with respect to [1], that we compute ρT from (1) instead
of the total dark fields density. Taking H = 1/T , where T is
the universe age and the distance to the cosmological event
horizon RU = c T , it also reads:

2 G =
RU c2

MT
, (2)

where MT c2 is the total energy of the observed universe.
Then (1-2) uncovers a symmetry of the Schwarzschild solu-
tion:

Rs

r
=

RU M
MT r

, (3)

where gravity is the interaction of all energies of the observed
universe; that is to say Mach’s principle. But (1) also reads:

MT c2 =
Pp T

2
, (4)

which means that the energy of the observed universe grows
linearly according to half the Planck power Pp = c5/G. We
see that the same equation (1) takes 4 forms which can be

given very large significance ranging from the simplest sys-
tem (3) to cosmology (4) and the absence of a big bang.
Now take the Bekenstein-Hawking area-entropy law:

S =
K A c3

4 G ~
, (5)

which states that the entropy S associated with an event hori-
zon is its area A divided by 4G [2] [3] (where K and ~ are
Boltzmann and the reduced Planck constants respectively). It
also applies to the de Sitter cosmological event horizon [4]
seen at RU :

S =
4πK R2

U c3

4 G ~
. (6)

Now injecting (1) in (6) gives:

~

K
×

S
MT c2 = 2πT , (7)

which means that the ratio between entropy S and energy
MT c2 at any given epoch, “is cosmic time” – or the oppo-
site, entropy is accumulation of action in the manner of an
old de Broglie conjecture about the physical significance of
h S = K A which associates an action A and an entropy S to
any piece of energy.

Using GR the probability for the “coincidence” (1) to be
observed is about zero, there is not even a theoretical reason
for the order of magnitude to ever come out; secondly (2) and
(7) establish a simple, clear, and unexpected quantitative fit
between gravity, cosmic time, energy, and entropy – where
energy is not supposed to be. So maybe this is a big deal
and we shall assume that (1) is not a coincidence but a law of
nature ruling the universe expansion together with its energy.

Consider now the FLRW metric with a positive cosmo-
logical term and homogeneous density - that is to say the
ΛCDM model. Assuming that (1) is not just a coincidence
implies that it is valid at any epoch; then using (4) since the
FLRW metric describes a simple 4-ball, we can slice it with
4-spheres centered at the origin, of radius r and thickness 2 lp

(both along the light cone), and each slice adds an identical
energy increment Mp, the non-reduced Planck mass, and it
looks like the universe is a Planck power space-time gene-
rator.
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The visible matter field exists “now” at the surface of the
4-sphere while MT , as defined from RU , is causal and occu-
pies the light cone. Then a geometrical ratio exists between
the two quantities, which evolve together. Simple integration
gives 2π2 the 4-sphere surface coefficient and removing the
“surface” we get the total dark field density ρD:

ρD = ρT ×
2π2

1 + 2π2 = 8.98 × 10−27 kg m−3 , (8)

which agrees with PM results. The difference ρV = ρT − ρD

is the visible matter density and represents 4.82% of the total
density ρT where the PM found 4.86 (8)%.

So, computing matter density ρV from geometry and (1) is
totally abnormal in GR; we can even say irrelevant. But at the
opposite, if those quantities and others are calculable, GR is
incomplete and we can even say that it misses a fundamental
point. In the remainder of this paper we shall analyze the
consequences of (1) and (8) and check if nature agrees.

1.2 Premises

Noether’s theorem is the basis of conservation laws; it is used
to evaluate energy conservation, and it works perfectly in
quantum field theory. In GR, an area in which energy is as-
sumed constant is defined by physical rods and clocks.

But how do we measure the rod? Essentially by decree
of conservation. We define a-priori what a meter is and the
postulate is that a rod does not evolve; up to now, there is
no experimental results which is recognized to require any
change to this postulate. But we cannot physically compare
rods between distinct epochs. Even though GR studies the
transfers of clocks and rods between distinct space-time lo-
cations, it assumes that no hidden source comes to expand
its energy – and this is what (2) states: G is assumed con-
stant, then the total energy MT evolves in proportion of RU ,
and we measure that the observable universe radius RU = c T
grows.

It can be interpreted in different manners and we have to
choose one that can be logically understood and requires min-
imal hypothesis. In the next sections we shall proceed from
the four premises hereafter which were chosen appropriately,
explaining how (2) physically works; we shall then use three
EFE solutions to show coherence with existing theory and
unexplained experimental data. Premises are:

P1: The universe proceeds from the FLRW metric with cos-
mological term Λ > 0.

P2: The observable matter field (particles) rests at the sur-
face of a 4-sphere.

P3: A mechanism exists inflating the 4-sphere and ex-
panding masses and energy; both effects are simulta-
neous.

P4: The metric expansion includes inflation of the 4-sphere
radius and a reduction of particles wavelengths; energy
condenses permanently and progressively.

Those premises are easily justified:

• P1 agree with the best verified model, and

• P2 is direct consequences of the “coincidences”.

• P3 and P4 must be taken together; the feed mechanism
in P3 could be just the radial expansion of a 4-ball
in a preexisting 4-dimensional space filled with con-
stant energy density. The sphere expands and masses
increase reducing wavelengths; this is permanent and
progressive condensation, hence P4.

2 The dark fields and the expansions

2.1 Expansion in the Schwarzschild solution

We first use the Schwarzschild solution to study the effects of
(2) and expansion at different heights in the gravitational pit
of a central mass M (the basic test case) and assume the sys-
tem far away from other gravitational sources. With respect
to (2), MT is variable in time but constant in space (MT ∼ T ),
so M is also variable in time. At the opposite since grav-
itation is a retarded interaction, the metric in r is retarded
and the Schwarzschild solution must be modified accordingly.
Hence, using P3-P4, r and M (or Rs) expand; with respect
to [1], introducing new ad-hoc parameters α, β to separate
the effects of energy and space expansion, we write from (2):

Rs

r
=

RU M
MT r

→
RU M
MT r

×
1 − αHr/c
1 + βHr/c

. (9)

Gravitation is retarded; a signal goes from M to r. Hence
the correction at the numerator of (9) denotes that when the
signal was emitted the mass M was lesser than expected in
GR. Secondly, the additional delay we introduce comes from
expansion. Then at the denominator, r “looks” advanced be-
cause the signal dilutes more than with a static r, and we ex-
pect β = 1. Second order limited development yields:

RU M
MT r

→
RU M
MT r

− (α + β)
M
MT

+ β(α + β)
M r

MT RU
. (10)

Now examine this expression:

• The first term is nominal and now corresponds to a
static field.

• The middle term cannot be seen negligible since it ad-
dresses identically all masses of the universe. It must
be integrated to MT , giving −1 which is the flat metric
and it denotes its production; from (8), α + β = 2π2.

• Therefore the right hand term must also be integrated
to MT giving H r/c, or a cosmological term H c with
unit of acceleration; and we find β = 1.
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Note that we use a limited development in r so we cannot
integrate to RU , but we can still integrate to MT as the middle
term of (10) requires. Overall, after integration to MT we get:

2 G M
r c2 =

RU M
MT r

→
2 G M

r c2 − 1 +
r

RU
. (11)

We shall now analyze this modified solution and show that
the two new terms correspond to dark energy (DE) and dark
matter (DM) – meaning exactly.

2.2 Dark energy and dark matter

The limited development above corresponds to a unique field
that we split in three non-independent components. In [1], we
analyzed the relations between the two new components; we
showed that considering the first as an energy field X and the
second as stress leads to:

Mse(R) c2 =
1
2

∫ R

0

(
4π ρX r2

)
(HR c r) dr =

3
8

MX(R) c2 ,

where MX(R) is the energy of the field X in a 3-sphere of radius
R � RU , while Mse(R) c2 is the stress given by the acceleration
H c, which is equivalent to a potential H c r. (Note that in the
integral energy is given by acceleration, then kinetic energy
p2/2m; thus the factor 1/2.) Therefore:

Mse(R)

MX(R)
=

3
8

= 0.375 , (12)

which agrees with the ratio of DM to DE given by the PM:

ΩC

ΩDE
=

0.2589
0.6911

= 0.3746 , (13)

and, since Mse is stress, identification is trivial; X is dark en-
ergy which creates stress interpreted as dark matter. Now we
solve the system of equations and coincidences:

ρD = 2π2 ρV =
2π2

2π2 + 1
ρT =

11
8
ρDE =

11
3
ρC . (14)

It leaves no freedom or randomness in cosmological energies.
In GR theory, those energy densities give four distinct effects:

• ρDE provides with a decreasing repelling force at the
origin of expansion and then of the flat metric.

• ρC is stress due to the same repelling force; in the EFE
stress comes in the stress-energy tensor, like mass, and
then this result agrees with the ΛCDM model.

• ρV lies at the 4-sphere surface and non-homogeneity
creates deviations to the flat metric.

• ρT is their sum and has critical density.

Each density finds its appropriate places in the EFE, and we
can use MT and RU to replace G in the equations; we could
compute Λ = 8πG ρDE but we shall deduce it differently.

2.3 Λ and the CDM

In recent papers, [5–7] P. Marquet formally showed that a
varying cosmological term restores in the EFE a conserved
energy-momentum true tensor of matter and gravity with a
massive source:

Gαβ =
8πG

c4

[
(Tαβ)matter + (tαβ)gravity

]
, (15)

Here (tαβ)gravity includes a background field tensor which per-
sists in the absence of matter:

(t αβ )background =
c3

8πG
δ α
β (Ξ/2) , (16)

where Ξ/2 is the variation of cosmological constant Λ. As a
result the de Sitter-Schwarzschild metric is slightly modified:

1 −
Rs

r
−

Λ r2

3
→ 1 −

Rs

r
−

Λ + δΛ

3
r2 ,

which we identify term to term with (11). But recall that the
factor 1/3 in this metric is given by integration, it is then ir-
relevant for a correspondence with a derivative. We also in-
troduce a parameter k to solve:

k Λ + k δΛ↔ −1 +
r

RU
, (17)

which means that since Λ is a constant, integration to RU is
now possible and will give the flat metric like in (11); then:

−k Λ

∫ RU

0
r2dr = 1→ k Λ =

1
3 R3

U

. (18)

Then for any r we have k δΛ(r) = −1/r2. Integrating the last
term to the full solid angle (as stress), multiplying by 1/2 for
kinetic energy and identifying with H r/c gives:

1
2

∫
4π k δΛ(r) r2 dr =

∫
2π k dr =

H r
c

→ k =
H

2π c
=

1
2πRU

, (19)

where k is also the ratio entropy/energy on the right-hand side
of (7). Here it links the expansion of RU (∼ energy) to that
of DE (∼Λ) through 2πRU . Now we have completed the
correspondence and using (18) and (19) we get:

Λ =
2π c

3 H R3
U

=
2π

3 R2
U

= 1.229 × 10−52 m−2 . (20)

The standard ΛCDM estimate is:

Λ ≈ 1.19 × 10−52 m−2 , (21)

and then our reasoning on energy expansion is appropriate.
But we found that the dark field has a unique source since
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ρDE → ρDM; then extending the source unicity to ρV explains
the difference between (20) and (21) as the share of dark en-
ergy invested at the surface, its share of ρV . Picking Λ in (20)
and following the ratios in (8) and (14):

Λ

1 + 1
2π2 ×

8
11

= 1.185 × 10−52 m−2 , (22)

which is well within precision of (21); here the complimen-
tary 3/11 of ρV comes from stress (12) in agreement with (8)
where ρV is the surface.

3 The classical field

As shown in [1], using the Bohr hydrogen model (or inspect-
ing the Dirac equation), we find the effects of H c/2π when
elementary particles mass increase linearly in time, and abu-
sively computing with respect to a fixed frame:

da0

dt
=

H c
2π ν

, (23)

where a0 is the Bohr radius and ν the electron pulsation (E =

h ν). In quantum theory, distances like a0 are quantized as the
inverse of mass, but in gravity the classical force is given by a
product of masses, which doubles the effect. Then in the very
weak gravitational field the acceleration H c gives measurable
effects in the form of anomalous acceleration; in circular orbit
it will be:

aHc =
H c
2 π

= 1.10 × 10−10 m s−2 , (24)

like in (7) and (19). Then Newton’s theory is no more the
weak field limit of GR as it also needs RU → ∞. Now
aHc is in range with Milgrom’s modified Newton dynamics
(MOND) limit acceleration [8, 9], which estimate is:

a0 = 1.20 (±0.2) × 10−10 m s−2 . (25)

Then we shall recover MOND in the weak field/circular orbit
problem. In the modified Schwarzschild solution in (11), the
term H c denotes that the classical potential is permanently
becoming steeper. Then aHc has specific direction; it just am-
plifies the local Newton acceleration. The simple sum gives:

A =
G M

r2 + aHc . (26)

Applying a force to an object in free fall gives reaction, so
denoting AN the Newton acceleration we can write:

AN

(
1 +

a
AN

)
⇒ −a , (27)

where −a corresponds to the effect of inertia, as a reaction to
a non-gravitational acceleration a when AN and a are paral-
lel. In GR this equation is given by the field transformation in

weak accelerations. Now denoting Ae f f the effective acceler-
ation in circular orbit we have Ae f f ⇒ 0; meaning that it is
Ae f f that transforms the field, and not AN . Then in order to
link AN , AE f f and AHc, we must write:

AN =
f
m

= Ae f f

(
1 +

aHc

Ae f f

)−1

, (28)

where, since (27) defines the field transformation, the denom-
inator of the right-hand side formally removes aHc from Ae f f

and then recovers the Newton force. This equation is MOND
simple interpolation function; needless to list the wide range
of astrophysical data it fits. It is then a formal approximation
of the modified Schwarzschild solution in (11). QED.

4 The Hubble parameter and accelerated expansion

The parameters α = 2π2 − 1 and β = 1 in (9), which values
are deduced reasoning on (10), show that the contribution of
space expansion to the metric is trivial (β = 1), and the contri-
bution of mass expansion is 1/2π2. Therefore the observable
r, which depends on massive clocks and rulers, expands more
than simple space expansion. Then we can approximate the
metric state at distance r from the observer with:

dτ(r)2 ≈ dτ(0)2 ×

 2π2

2π2 +
RU−r

RU

2

. (29)

Therefore, measurements of the Hubble parameter from the
CMB spectrum (r → RU) will give a value different from and
larger than H = 1/T ; we find:

H =
1
T
→ H0

CMB =
2π2 H

2π2 + 1
= 67.53 km/s/Mpc , (30)

which agrees with the PM results:

H0
CMB = 67.74 ± 0.46 km/s/Mpc .

Eq. (29) gives other measurable effects:
• When measuring H0 from baryon acoustic oscillations

(BAO) for which T is also close to zero, the same dis-
crepancy appears, H0

BAO ≈ H0
CMB, as shown in [10].

• At the opposite, H = 1/T = 71.1 km/s/Mpc is compat-
ible with most recent Hubble space telescope data [11]
taken from SN1A (73.24 ± 1.73 km/s/Mpc, currently
valid at ∼ 2 − 3σ), for which r → 0.

• A simple plot shows that the denominator of (29) per-
manently gives the illusion of accelerating expansion.

Last, the symmetry in (1) is:

λRU = const , (31)

where λ is the Compton wavelength of any piece of energy.
Taking the universe mass and λT = h/MT c yields:

λT
T
2

= lp tp ,
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where lp and tp are the non-reduced Planck length and time
respectively. It gives immediate significance to those units as
they define the symmetry of the field expansion versus con-
densation. It denotes an inversion between spaces and times
which reads:

T
tp

=
2 lp

λT
, (32)

and a similar equation also applies to any mass. Hence the
energy scales corresponding to lp and tp are epoch-relative
like clocks and rulers, and also other Planck units (Mp, Pp).
It just means that the laws of nature are constant but that the
scale at which they apply vary in time.

It makes a big difference when thinking of quantum grav-
ity which is expected to solve the big bang problem, because
(32) is a symmetry linking the expansions of space-time and
energy in a non-linear manner. To show this, from (32) and
since energies increase, we find that at any given epoch:

RU = c T0

∫
tp/t , (33)

where the quantum of time tp replaces dt, and T0 is a con-
stant. Integration gives a logarithm which implies that the
universe radius as observed from loopback time at any epoch,
but assuming energy conservation, starts with inflation.

5 Conclusion

Overall, we found 9 strong correlations (∗) giving distinct nu-
merical results agreeing with unexplained experimental data
in several domains of cosmology and astrophysics. We also
find inflation for which a quantitative fit is out of reach, and
the illusion of accelerating expansion. All come from a single
assumption, a limited development, and classical solutions of
the Einstein field equations.

The correlations above are totally irrelevant in GR, and
also in QFT, but nature agrees at all scales. Hence the answer
to the title is positive, and then GR and QFT miss the most
important point which is that the expansion of space-time is
identical to the expansion of energy. That is to say that space-
time and energy are the same phenomenon. Importantly, all
correlations are geometrical and all calculus use as input only
one parameter, namely the universe age T , and natural con-
stants G and c; then the next theory uses geometry and has no
free parameters.
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2Universidade do Vale do Paraı́ba, UNIVAP, São José dos Campos, Brasil.
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The Smaller Alignment Index (SALI) is a new mathematical tool for chaos detection
in the phase space of Hamiltonian Dynamical Systems. With temporal behavior very
specific to movements ordered or chaotic, the SALI method is very efficient in dis-
tinguishing between chaotic and regular movements. In this work, this method will
be applied in the study of stellar orbits immersed in a gravitational potential of barred
galaxies, once the motion of a test particle, in a rotating barred galaxy model is given by
a Hamiltonian function. Using an analytical potential representative of a galaxy with bar
(two degrees of freedom), we integrate some orbits and apply SALI in order to verify
their stabilities. In this paper, we will discuss a few cases illustrating the trajectories of
chaotic and regular orbits accompanied by the graph containing the behavior of SALI.
All calculations and integrations were performed with the LP-VIcode program.

1 Introduction
One of the schemes more used to classify galaxies according
to their morphology was proposed by Edwin Powell Hubble.
Basically, the Hubble fork separates galaxies in two types:
regular spirals (S) and barred spirals (SB). The galaxy bar,
spiral arms and even galactic rings are structures that can be
interpreted as disturbance to axisymmetric potential of the
galactic disk.

In this work, we study the nature of some orbits immersed
in analytical potentials with two degrees of freedom repre-
senting barred galaxies. In order to do this, we applied the
Smaller Alignment Index (SALI) [9–13], which is a mathe-
matical tool for distinguishing regular and chaotic motions in
the phase space of Hamiltonian Dynamical Systems in analyt-
ical gravitational potentials. It is possible because the motion
of a test particle in a rotating barred galaxy model is given by
a Hamiltonian function.

The orbits integration and the SALI calculation were per-
formed using the LP-VIcode program [2]. The LP-VIcode
is a fully operational code in Fortran 77 that calculates effi-
ciently 10 chaos indicators for dynamic systems, regardless
of the number of dimensions, where SALI is one of them.
To construct our barred galaxies models, two different sets
of parameters were extracted from the paper of Manos and
Athanassoula [5].

The main purpose of this paper is to show some regu-
lar and chaotic orbits, where the stability study was done us-
ing the SALI method. Such orbits were taken immersed in a
mathematical model for the gravitational potential that simu-
lates a barred galaxy in a system with two degrees of freedom.

2 Methodology
2.1 The SALI method
Considering a Hamiltonian flow (N degrees of freedom), an

orbit in the 2N-dimensional phase space with initial condition
P(0) = (x1(0), · · · , x2N(0)) and two different initial deviation
vectors from the initial point P(0), w1(t) and w2(t), we define
the Smaller Alignment Index (SALI) by:

SALI(t) = min
{
‖ŵ1(t) + ŵ2(t)‖, ‖ŵ1(t) − ŵ2(t)‖

}
(1)

where ŵi(t) = wi(t)/‖wi(t)‖ for i ∈ {1, 2}.
In the case of chaotic orbits, SALI(t) falls exponentially

to zero as follows:

SALI(t) ∝ e−(L1−L2)t (2)

where L1 and L2 are the biggest Lyapunov Exponents.
When the behavior is ordered, SALI oscillates in non-zero

values, that is:

SALI(t) ≈ constant > 0, t −→ ∞ . (3)

Therefore, there is a clear distinction between orderly and
chaotic behavior using this method.

2.2 Gravitational potential of a barred galaxy

We apply the SALI method in the study of stellar orbits im-
mersed in a gravitational potential of barred galaxies, once
the movement of a test particle in a rotating three-dimensional
model of a barred galaxy is given by the Hamiltonian:

H(x, y, z, px, py, pz) =

=
(
p2

x + p2
y + p2

z

)
+ ΦT (x, y, z) + Ωb(xpy − ypx)

(4)

where the bar rotates around z; x and y contain respectively
the major and minor axes of the galactic bar, ΦT is the gravi-
tational potential (which will be described later), and Ωb rep-
resents the standard angular velocity of the bar.
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(a) Initial Condition: (0,0.5436,0.1411,0) - Model S (b) Initial Condition: (0,0.1912,-0.1550,0) - Model S

(c) Initial Condition: (0,4.2280,-0.1491,0) - Model S (d) Initial Condition: (0,0.9090,-0.4139,0) - Model B

(e) Initial Condition: (0,5.7570,-0.2926,0) - Model B (f) Initial Condition: (0,0.4242,0.0602,0) - Model B

Fig. 1: Six orbits, each one with its SALI diagram. All orbits were integrated up to 10,000 Myr. Only the first 500 Myr were plotted in (a),
(b), (d) and (f), for clarity.

For this Hamiltonian, the corresponding equations of mo-
tion and the corresponding variational equations that govern
the evolution of a deviation vector can be found in [4]. With
such equations it is possible to follow the temporal evolution
of a moving particle immersed in the potential ΦT , as well as
verify if this orbit is chaotic or regular, following the evolu-
tion of deviation vectors by the SALI method.

In this work, the total potential ΦT is composed by three
components, representing the galactic bulge, disk and bar:

ΦT = ΦBulge + ΦDisk + ΦBar . (5)

We represent the bulge by the Plummer Model [8]

ΦBulge = −
GMS√

x2 + y2 + z2 + ε2
S

, (6)

where εS is the length scale and MS is the bulge mass.
We represent the disk by the Miyamoto-Nagai Model [6]

ΦDisk = −
GMD√

x2 + y2 + (A +
√

z2 + B2)2
(7)

where A and B are respectively the radial and vertical scale
lengths, and MD is the disk mass.

We represent the bar by the Ferrers Model [3]. In this
model, the density in given by

ρB(x, y, z) = ρc

(
1 − m2

)2
, m < 1

ρB(x, y, z) = 0 , m ≥ 1
(8)

where the central density is

ρc =
105
32π

GMB

abc
,

MB is the bar mass and

m2 =
x2

a2 +
y2

b2 +
z2

c2 ,

where a > b > c > 0 are the semi-axes of the ellipsoid which
represents the bar.

The potential created by the galactic bar is calculated with
the Poisson equation (see [1]):

ΦBar = −πG abc
ρc

3

∫ ∞

λ

du
∆(u)

(
1 − m2(u)

)3
(9)
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(a) Initial Condition: (0,0.0640,0.7960,0) - Model S (b) Initial Condition: (0,1.9932,0.0576,0) - Model S

(c) Initial Condition: (0,3.5032,-0.2931,0) - Model S (d) Initial Condition: (0,2.6664,-0.2257,0) - Model B

(e) Initial Condition: (0,3.5148,-0.0508,0) - Model B (f) Initial Condition: (0,5.5146,-0.2951,0) - Model B

Fig. 2: The SALI graphics has both axes in logarithmic scale. All orbits were integrated into 10,000 Myr. Only the first 5,000 Myr were
plotted in (b), for clarity.

where

m2(u) =
x2

a2 + u
+

y2

b2 + u
+

z2

c2 + u
,

∆2(u) = (a2 + u)(b2 + u)(c2 + u)

and λ is the positive solution of m2(λ) = 1 for the region
outside the bar (m ≥ 1) and λ = 0 for the region inside the bar
(m < 1).

2.3 The LP-VIcode program with minor adjustments

To perform the orbits integrations and the SALI calculation,
we used the LP-VIcode program [2], which is an operational
code in Fortran 77 that calculates efficiently 10 chaos indica-
tors for dynamical systems, including SALI.

In this program, the user must provide the expressions
of the potential as well the expressions of motion and vari-
ational equations. However, the general structure of motion
and variational equations previously written in the main pro-
gram, take into account only a static reference frame, and it
is known that in order to model the galactic bar potential, it is
necessary to consider a coordinate system that rotates along
with the bar.

In this context, considering Ωb the bar angular velocity,
our reference frame should also rotate with angular velocity
Ωb. This affects the motion and variational equations since,
as can be seen in [4], they depend on Ωb. In order to solve
this problem, adjustments were made to the main program to
include the rotation in the coordinate system with the same
angular velocity of the bar.

2.4 Parameters sets

We used the two parameter sets shown in Table 1 for the po-
tential model, taken from the paper by Manos & Athanas-
soula [5]. The model units adopted are: 1 kpc for length,
103 km s−1 for velocity, 103 km s−1 kpc−1 for angular velocity,
1 Myr for time, and 2 × 1011 Msolar for mass. The universal
gravitational constant G will always be considered 1 and the
total mass G(MS + MD + MB) will be always equal to 1.

2.5 Initial conditions

We emphasize that in this paper we study orbits with two de-
grees of freedom. In order to do that, we consider z = 0 and
pz = 0 in the three-dimensional Hamiltonian (4).
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Table 1: Parameter Sets and the Bars Co-rotation.

MS εS MD A B MB a b c Ωb CR
Model S 0.08 0.4 0.82 3.0 1.0 0.1 6.0 1.5 0.6 0.054 6.04
Model B 0.08 0.4 0.82 3.0 1.0 0.1 6.0 3.0 0.6 0.054 6.06

The effective potential, which is the sum of the gravita-
tional potential with the potential generated by the repulsive
centrifugal force, is given by:

Φe f f (x) = ΦT (x) −
1
2
|Ω × x|2 . (10)

Written like that, this potential represents a rotating system.
The quantity

EJ =
1
2
|v|2 + Φe f f (x) (11)

is called Jacobi Energy and is conserved in the rotating sys-
tem.

The curve given by Φe f f (0, y, 0) = EJ is called Zero Ve-
locity Curve and provides a good demarcation for the choice
of initial conditions, since there is only possibility of orbits
when Φe f f ≤ EJ , in other words, below this curve (see [1]).

Therefore, we generated some random initial conditions
initially taking a value to y0 less than the highest possible
value of y for a given energy EJ , taking x0 = 0 and vy0 = 0.
This done, we could calculate vx as follows:

EJ =
1
2

(
v2

x0
+ v2

y0

)
+ Φe f f =

1
2
v2

x0
+ Φe f f (12)

and this implies

vx0 = ±

√
2(EJ − Φe f f ) . (13)

Then we constructed initial conditions (x0, y0, vx0 , vy0 ) to
integrate the orbits. As x0 = 0 and vy0 = 0, the launched
orbits will always be initially over the y axis and will have
initial velocity only in the x direction.

Notice that we have two possible velocities from equation
(13): one negative and one positive. We decided to take y0
always positive, so that when vx0 is positive, the orbits are
prograde (orbits that rotate in the same direction of the bar)
and when vx0 is negative, the orbits are retrograde (orbits that
rotate in the opposite direction of the bar).

3 Results

In our computational calculations, we consider SALI < 10−8

close enough to zero to consider the movement chaotic.

3.1 Regular orbits

In Fig. 1 we show 6 different orbits, each one with its SALI
diagram, from where we can identify them as regular orbits,
as explained in section 2.1.

3.2 Chaotic orbits

Fig. 2 shows a sample of 6 chaotic orbits, identified by their
SALI indexes that goes to zero after some time, as discussed
in section 2.1.

4 Conclusion

In this study, we were able to reproduce a mathematical mod-
eling of the gravitational potential of a barred galaxy and, in
order to verify the stability of the orbits within, we applied the
SALI method. We were able to prove the SALI efficiency in
distinguishing regular or chaotic orbits. In fact, this method
offers an easily observable distinction between chaotic and
regular behavior.

We also perceive the LP-VIcode efficiency, which proved
to be extremely competent in the orbits integration and study
of stability with SALI. To make an adjustment in the varia-
tional and motion equations programmed in the LP-VIcode,
we insert an adaptation in the main code to take into account
a rotating system.

Therefore, we conclude that we were successful in cal-
culating these orbits and confirm the SALI method as a new
important tool in the study of stellar orbits stability.
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Caritá et al. Using SALI to distinguish chaotic and regular orbits in barred galaxies with the LP-VIcode 165



Volume 13 (2017) PROGRESS IN PHYSICS Issue 3 (July)

A New Perspective for Kinetic Theory and Heat Capacity
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The currently accepted kinetic theory considers that a gas’ kinetic energy is purely trans-
lational and then applies equipartition/degrees of freedom. In order for accepted theory
to match known empirical finding, numerous exceptions have been proposed. By re-
defining the gas’ kinetic energy as translational plus rotational, an alternative explana-
tion for kinetic theory is obtained, resulting in a theory that is a better fit with empirical
findings. Moreover, exceptions are no longer required to explain known heat capacities.
Other plausible implications are discussed.

1 Introduction

The conceptualization of a gaseous system’s kinematics orig-
inated in the writings of the 19th century greats. In 1875,
Maxwell [1] expressed surprise at the ratio of energies (trans-
lational, rotational and/or vibrational) all being equal. Boltz-
mann’s work on statistical ensembles reinforced the current
acceptance of law of equipartition with a gas’s energy being
equally distributed among all of its degrees of freedom [2–3].
The net result being that the accepted mean energy for each
independent quadratic term being kT/2.

The accepted empirically verified value for the energy of
a /textitN molecule monatomic gas is kT/2 with its isomet-
ric molar heat capacity (Cv) being (3R/2). An implication
is that a monatomic gas only possesses translational energy
[4–5]. The reasoning for this exception is that the radius of a
monatomic gas is so small that its rotational energy remains
negligible, hence its energy contribution is simply ignored.

Mathematically speaking equipartition based kinetic the-
ory states that a molecule with n′′ atoms has 3n′′ degrees of
freedom (f ) [5–6] i.e.:

f = 3n′′. (1)

This leads to the isometric molar heat capacity (Cv) for large
polyatomic molecules:

Cv =
3
2

n′′R. (2)

Interestingly, the theoretical expected heat capacity for N di-
atomic molecules is 7NkT/2. This is the summation of the
following three energies a) three translational degrees, i.e.
3NkT/2. b) three rotational degrees of freedom, however
since the moment of inertia about the internuclear axis is van-
ishing small w.r.t. other moments, then it is excluded, i.e.
NkT . c) Vibrational energy, i.e. NkT . This implies a molar
heat capacity Cv =7NkT/2 = 29.3 J/(mol*K). However, em-
pirical findings indicate that the isometric molar heat capacity
for a diatomic gas is actually 20.8 J/(mol*K), which equates
to 5RT/2 [6]. This discrepancy for diatomic gases certainly
allows one to question the precise validity of accepted kinetic
theory! In 1875 Maxwell noted that since atoms have internal
parts then this discrepancy maybe worse than we believe [7].

Various explanations for equipartition’s failure in describ-
ing heat capacities have been proposed. Boltzmann suggested
that the gases might not be in thermal equilibrium [8]. Planck
[9] followed by Einstein and Stern [10] argued the possibility
of zero-point harmonic oscillator. More recently Dahl [11]
has shown that a zero point oscillator to be illusionary. Lord
Kelvin [12–13] realized that equipartition maybe wrongly de-
rived. The debate was somewhat ended by Einstein claiming
that equipartition’s failure demonstrated the need for quantum
theory [14–15]. Heat capacities of gases have been studied
throughout the 20th century [16–19] with significantly more
complex models being developed [20–21].

It becomes a goal of this paper to clearly show that an
alternative kinetic theory/model exists. A simple theory that
correlates better with empirical findings without relying on
exceptions while correlating with quantum theory.

2 Kinetic theory and heat capacity simplified

Consider wall molecules 1 through 8, in Fig. 1. The total
mean energy along the x-axis of a vibrating wall molecule is

Ex = kT. (3)

Half of a wall molecule’s mean energy would be kinetic en-
ergy, and half would be potential energy. Thus, the mean
kinetic energy along the x-axis, remains

Ex =
kT
2
. (4)

In equilibrium, the mean kinetic energy of a wall molecule, as
defined by equation (4) equals the mean kinetic energy of the
gas molecule along the same x-axis. Herein, the wall in the
y-z plane acts as a massive pump, pumping its mean kinetic
energy along the x-axis onto the much smaller gas molecules.

In equilibrium each gas molecule will have received a
component of kinetic energy along each orthogonal axis. Al-
though there are six possible directions, at any given instant,
a gas molecule can only have components of motion along
three directions, i.e. it cannot be moving along both the pos-
itive and negative x-axis at the same time. Therefore, the
total kinetic energy of the N molecule gas is defined by
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Fig. 1: Ideal monoatomic gas at pressure Pg and temperature Tg

sourrounded by walls at temperature Tw = Tg. Gas molecules have
no vibrational energy.

equation (4) i.e. 3NkT/2. Up to this point we remain in
agreement with accepted theory.

Consider that you hit a tennis ball with a suitable racquet.
If the ball impacts the racquet’s face at a 90 degree angle, then
the ball will have significant translational energy in compar-
ison to any rotational energy. Conversely, if the ball impacts
the racquet at an acute angle, although the same force is im-
parted onto that ball, the ball’s rotational energy can be sig-
nificant in comparison to its translational energy. The point
being, in real life both the translational and rotational energy,
are due to the same impact.

Now reconsider kinetic theory. Understandably, momen-
tum transfer between both the wall’s and gas’ molecules re-
sult in energy exchanges between the massive wall and small
gas molecules. Moreover, the exact nature of the impact will
vary, even though the exchanged mean energy is constant.

Case 1: Imagine that a monatomic gas molecule collides
head on with a wall molecule, e.g. the gas molecule
hitting wall molecule no. 3 in Fig. 1. Herein, the gas
molecule might only exchange translational energy
with the wall, resulting in the gas molecule’s mean ki-
netic energy being purely translational, and defined by
equation (4).

Case 2: Imagine that a monatomic gas molecule strikes wall
molecule no. 1 at an acute angle. The gas molecule
would obtain both rotational and translational energy
from the impact such that the total resultant mean en-
ergy of the gas molecule would be the same as it was
in Case 1, i.e. defined by equation (4).

Case 3: Imagine a rotating and translating monatomic gas
molecule striking the wall. Both the rotational and tran-
slational energies will be passed onto the wall molecu-
le. Since the wall molecule is bound to its neighbors,

Fig. 2: Ideal diatomic gas at pressure Pg and temperature Tg sour-
rounded by walls at temperature Tw = Tg. Gas molecules have vi-
brational energy.

it cannot rotate hence both energies can only result in
vibrational energy of the wall molecules along its three
orthogonal axis.

After numerous wall impacts, our model predicts that an
N molecule monatomic gas will have a total kinetic energy
(translational plus rotational) defined by

EkT (t,r) =
3
2

NkT. (5)

Fig. 2 illustrates a system of diatomic gas molecules in a con-
tainer. The wall molecules still pass the same mean kinetic
energy onto the diatomic gas molecule’s center of mass with
each collision. Therefore the diatomic gas’ kinetic energy is
defined by equation (5). The diatomic gas molecule’s vibra-
tional energy would be related to the absorption and emis-
sion of its surrounding blackbody/thermal radiation. There-
fore, the mean x-axis vibrational energy within a diatomic gas
molecule remains defined by equation (3) and the total mean
energy for a diatomic gas molecule becomes defined by

Etot = EkT (t,r) + Ev =
3
2

kT + kT =
5
2

kT. (6)

Therefore the total energy for an N molecule diatomic gas
becomes

Etot = EkT (t,r) + Ev =
3
2

NkT + NkT =
5
2

NkT. (7)

For an N molecule triatomic gas:

Etot = EkT (t,r) + Ev =
3
2

NkT + 2NkT =
7
2

NkT, (8)

n′′ signifies the polyatomic number. Therefore for N
molecules of n′′-polyatomic gas, the vibrational energy is

Ev = (n′′ − 1)NkT. (9)
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Therefore, the total energy for a polyatomic gas molecule is:

Etot = EkT (t,r) + Ev =
3
2

NkT + (n′′ − 1) NkT

=

(
n′′ +

1
2

)
NkT.

(10)

Dividing both sides by temperature and rewriting in terms of
per mole (N=6.02 × 1023) then equation (10) becomes:

Etot

T
= nk

(
n′′ +

1
2

)
= R

(
n′′ +

1
2

)
. (11)

For most temperature regimes, the heat capacity of gases
remains fairly constant, hence equation (11) can be rewritten
in terms of the isometric molar heat capacity (Cv), i.e.

Cv = R
(
n′′ +

1
2

)
. (12)

The difference between molar isobaric heat capacity (Cp) and
molar isometric heat capacity (Cv) for gases is the ideal gas
constant (R) [see equation (15)]. Therefore, a gas’s isobaric
heat capacity Cp becomes

Cp = R
(
n′′ +

1
2

)
+ R = R

(
n′′ +

3
2

)
. (13)

The adiabatic index is the ratio of heat capacities, i.e. dividing
equation (13) by equation (12) gives the adiabatic index

γ =
Cp

Cv
=

(
n′′ + 3

2

)(
n′′ + 1

2

) . (14)

Table 1 shows the accepted isometric and isobaric mo-
lar heat capacities for various substances for 0 > n′′ > 27.
These values were calculated using data (specific heats) from
an engineering table (Rolle [22]) that is shown in Table 2.
Note: Engineer’s use specific heats (per mass), physicists and
chemists prefer heat capacity (per mole).

In Fig. 3, both our theoretical molar isometric and isobaric
[equations (12) and (13)] heat capacities are plotted against
the number of atoms (n′′) in each molecule. The accepted
empirically determined values for heat capacities versus n′′

(from Table 1) are also plotted. The traditional theoretical
values for molar heat capacities [eq. (2)] are also plotted.

The theory/model proposed herein remains a better fit to
empirical findings for all polyatomic molecules. Importantly,
it does not rely upon the exceptions that plague the tradition-
ally accepted degrees of freedom based kinetic theory.

Interestingly, there is a discrepancy, between our model
and empirical known values for 4 < n′′ < 9. Moreover,
the slope of our theoretical values visually remains close to
the slope of empirically determined values for n′′ > 8. Fur-
thermore, hydrogen peroxide (H2O2, Cv= 37.8, n′′ = 4) and

acetylene (C2H2, n′′ = 4, Cv= 35.7) are linear bent molecules
and good fit, while pyramidal ammonia (NH3, n′′ = 4, Cv =

27.34) is not. Could the gas molecule’s shape influence how
it absorbs surrounding thermal radiation, hence its vibrational
energy?

Table 2 shows the accepted adiabatic index versus our
theoretical adiabatic index for most of the same substances
shown in Table 1. Our theoretical adiabatic index compares
rather well with the accepted empirical based values, espe-
cially for low n′′ < 4 and high n′′ > 11, as is clearly seen
in Fig. 4. Although not 100% perfect, this new theory/model
certainly warrants due consideration by others.

3 Kinetic theory and thermal equilibrium

Kinetic theory holds because the walls act as massive energy
pumps, i.e. gas molecules take on the wall’s energy with ev-
ery gas-wall collision. For sufficiently dilute gases, this re-
mains the dominant method of energy exchange. Mayhew
[23–24] has asserted that inter-gas molecular collisions tend
to obey conservation of momentum, rather than adhere to ki-
netic theory. Therefore, when inter-gas collisions dominate
over gas-wall collisions, then kinetic theory, the ideal gas law,
Avogadro’s hypothesis, Maxwell’s velocities etc. all can start
to lose their precise validity.

It is accepted that there are changes to heat capacity in
and around dissociation temperatures. Firstly, at such high
temperatures, the pressure tends to be high; hence the inter-
gas collisions may dominate. This author believes that this
actually helps explain why kinetic theory falters in polytropic
stars, wherein high-density gases collide in a condensed mat-
ter fashion hence one must use polytropic solutions. Sec-
ondly, at high temperatures a system’s thermal energy density
is no longer proportional to temperature, i.e. a blast furnace’s
thermal energy density is proportional to T 4 [22].

Blackbody radiation describes the radiation within an en-
closure. For an open system and/or none blackbody, the ther-
mal radiation surrounding the gas molecules may be better
to considered. Herein thermal radiation means radiation that
is readily absorbed and radiated by condensed matter and/or
polyatomic gases, resulting in both intramolecular and inter-
molecular vibrations.

For a system of dilute polyatomic gas e.g. Fig. 2, ther-
mal equilibrium requires that all of the following three states
remain related to the same temperature (T):

1. The walls are in thermal equilibrium with the enclosed
blackbody/thermal radiation.

2. The gas’ translational plus rotational energy is in me-
chanical equilibrium with the molecular vibrations of
the walls.

3. The gas’ vibrational energies are in thermal equilib-
rium with the enclosed blackbody/thermal radiation.

Imagine that a system of dilute polyatomic gas is taken
to remote outer space, and that the walls are magically re-
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Table 1: Accepted isometric and isobaric heat capacities versus theoretical i.e. empirical findings versus Eqn. (12), Eqn. (13), as well as
Eqn. (2). Note: Accepted heat capacities were calculated from the engineer’s specific heats in Table 2 (Rolle [22]), exception being H2O2

which was taken from Giguere [19].

n′′ Accepted Eqn. (12) Accepted Eqn. (13) Eqn. (2)
Cv Cv Cp Cp Cv

Substance [J/mol*K] [J/mol*K] [J/mol*K] [J/mol*K] [J/mol*K]
Helium He 1 12.48 12.47 20.80 20.78
Neon Ne 1 12.47 12.47 20.79 20.78
Argon Ar 1 12.46 12.47 20.81 20.78
Xenon Xe 1 12.47 12.47 20.58 20.78
Hydrogen H2 2 20.52 20.78 28.83 29.09
Nitrogen N2 2 20.82 20.78 29.14 29.09
Oxygen O2 2 21.02 20.78 29.34 29.09
Nitric oxide NO 2 21.55 20.78 29.86 29.09
Water vapor H2O 3 25.26 29.09 33.58 37.40 37.40
Carbon dioxide CO2 3 28.83 29.09 37.14 37.40 37.40
Sulfur dioxide SO2 3 31.46 29.09 39.78 37.40 37.40
Hydrogen peroxide H2O2 4 37.4 37.73 46.05 45.71 49.86
Ammonia NH3 4 27.37 37.40 35.70 45.71 49.86
Methane CH4 5 27.4 45.71 35.72 54.0 62.33
Ethylene C2H4 6 35.24 54.02 43.54 62.33 74.79
Ethane C2H6 8 44.35 70.64 52.65 78.95 99.72
Propylene C3H6 9 53.82 78.95 63.92 87.26 112.19
Propane C3H8 11 65.18 95.57 73.51 103.88 137.12
Benzene C6H6 12 73.50 103.88 81.63 112.19 149.58
Isobutene C4H8 12 77.09 103.88 85.68 112.19 149.58
n-Butane C4H10 14 89.10 120.50 97.42 128.81 174.51
Isobutane C4H10 14 88.52 120.50 96.84 128.81 174.51
n-Pentane C5H12 17 111.91 145.43 120.20 153.74 211.91
Isopentane C5H12 17 111.69 145.43 119.99 153.74 211.91
n-Hexane C6H14 20 134.78 170.36 143.06 178.67 249.30
n-Heptane C7H16 23 157.62 195.29 165.94 203.60 286.70
Octane C8H18 26 180.60 220.22 188.83 228.53 324.09

moved and the gas disperses. Spreading at the speed of light
the blackbody/thermal radiation density decreases faster than
the density of slower moving gas molecules. As the radia-
tion density decreases, the rate at which polyatomic gaseous
molecules absorbs blackbody/thermal radiation decreases in
time. Hence their vibrational energy decreases although their
mean velocity remains constant. Now place a thermome-
ter in the expanding wall-less gas, what will it read? Tra-
ditional kinetic theory claims that the temperature will be the
same because the gas molecule’s velocity remains constant
i.e. temperature is only associated with the system’s kinemat-

ics [2–3]. However, without walls the blackbody/thermal ra-
diation decouples from thermal equilibrium i.e. the mean ve-
locity of the gas molecules are associated with one tempera-
ture, but the radiation density is no longer associated with that
temperature. This bodes the question: What is the real tem-
perature? Of course this means accepting that the thermome-
ter not only exchanges kinetic energy with the gas molecules,
but it also exchanges blackbody/thermal radiation with its
surroundings.

The above is another reason that this author hypothesizes
that kinetic theory can falter in systems without walls. The
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Table 2: Engineer’s accepted adiabatic index compared to theoretical: Eqn. (14). Note: Data in first six columns after Rolle [22]. Rolle’s
reference: J.F. Masi, Trans. ASME, 76:1067 (October, 1954): National Source of Standards (U.S.) Circ. 500, Feb. 1952; Selected Values
of Properties of Hydrocarbons and Related Compounds, American Petroleum Institute Research Project 44, Thermodynamic Research
Center, Texas, A&M University, College Station, Texas.

Molar Engineer’s Engineer’s Engineer’s Accepted Theoretical
n′′ mass R Cp Cv adiabatic index (γ)

Substance [g/mol] [J/kg*K)] [kJ/mol*K)] [kJ/mol*K)] index(γ) Eqn. (14)
Helium He 1 4.00 2079 5.196 3.117 1.67 1.67
Neon Ne 1 20.18 412 1.030 0.618 1.67 1.67
Argon Ar 1 39.94 208 0.521 0.312 1.67 1.67
Xenon Xe 1 131.30 63 0.1568 0.095 1.67 1.67
Hydrogen H2 2 2.02 4124 14.302 10.178 1.41 1.4
Nitrogen N2 2 28.02 297 1.040 0.743 1.4 1.4
Oxygen O2 2 32.00 260 0.917 0.657 1.4 1.4
Nitric oxide NO 2 30.01 277 0.995 0.718 1.39 1.4
Water vapor H2O 3 18.02 462 1.864 1.402 1.33 1.29
Carbon dioxide CO2 3 44.01 189 0.844 0.655 1.29 1.29
Sulfur dioxide SO2 3 64.07 130 0.621 0.491 1.26 1.29
Ammonia NH3 4 17.03 488 2.096 1.607 1.30 1.22
Methane CH4 5 16.04 519 2.227 1.708 1.30 1.18
Ethylene C2H4 6 28.05 297 1.552 1.256 1.24 1.15
Ethane C2H6 8 30.07 277 1.751 1.475 1.19 1.12
Propylene C3H6 9 42.08 198 1.519 1.279 1.19 1.11
Propane C3H8 11 44.10 189 1.667 1.478 1.13 1.09
Benzene C6H6 12 78.11 106 1.045 0.939 1.11 1.08
Isobutene C4H8 12 56.11 148 1.527 1.374 1.11 1.08
n-Butane C4H10 14 58.12 143 1.676 1.533 1.09 1.07
Isobutane C4H10 14 58.12 143 1.666 1.523 1.09 1.07
n-Pentane C5H12 17 72.15 115 1.666 1.551 1.07 1.06
Isopentane C5H12 17 72.15 115 1.663 1.548 1.07 1.06
n-Hexane C6H14 20 86.18 96 1.660 1.564 1.06 1.05
n-Heptane C7H16 23 100.20 83 1.656 1.573 1.05 1.04
Octane C8H18 26 114.23 73 1.653 1.581 1.05 1.04

other reason kinetic theory may falter without walls is that
wall-gas interactions no longer exist, hence kinetic theory’s
complete virtues may be limited to systems with walls
[24–25] i.e. experimental systems.

4 Discussion of other implications

This author [24–25] has hypothesized that blackbody/thermal
radiation within a system has a temperature associated with
it. So although the total energy associated with radiation of-
ten is infinitesimally small in comparison to the total energy
associated with the kinematics of matter, the idea that black-

body radiation has a temperature associated with it, should no
longer be ignored. In other words, even a vacuum can have
a temperature, although it has no matter and comparatively
speaking only contains a minute amount of energy.

Pressure is traditionally envisioned as being solely due to
change in translational energy i.e. “every molecule that im-
pinges and rebounds exerts an impulse equal to the difference
in its momenta before and after impact” [pg. 32, 20]. In-
terestingly, the analysis given herein does alter such explana-
tions just because the rotational energy plus the translational
energy of the gas molecules now combine to exert pressure.
Moreover, consider the tennis ball impacting a wall. Ask
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Fig. 3: Theoretical molar heat capacity based on our theoretical equations (12) and (13) versus empir-
ical values, plus the traditional theoretical isometric molar heat capacity plot [based upon degrees of
freedom, equation (2)].

Fig. 4: Theoretical adiabatic index [eq. (14)] versus number of atoms (solid line). Adiabatic index data
points based upon engineering table for gases.

yourself: Are not both the rotational and translational en-
ergy of that ball exchanged with the wall. So why would
a gas molecule behave any differently? Just because wall
molecules are bound i.e. cannot rotate, does not mean that
they don’t exchange rotational energy/momentum with an im-
pacting gas! The gas’ mean translational velocity (mv2/2) can
no longer be simply equated in terms of Boltzmann’s con-
stant (kT/2). This has consequences to fundaments such as
Maxwell’s velocity distributions for gases. In our analysis,
the magnitude of translational energy compared to rotational
energy is not defined beyond that they add up to and equal, the
summation of the walls molecule’s kinetic energies! Since the

gas’ total kinetic energy remains the same, then most of what
is known in quantum theorem still applies with the change
being how a gas’ kinetic energy is expressed.

Consider the hypothesis that rotational energy of a gas is
frozen out at low temperatures [26]. This is like claiming
that gas molecules never impact a wall at acute angles, when
in a cold environment. This author thinks in terms of ther-
mal energy being energy that results in both intermolecular
and intramolecular vibrations within condensed matter. Just
consider the blackbody radiation curve for 3 K, whose peak
is located at wavelength of 1 mm. Compare this to 300 K,
where the radiation curves’ peak occurs in the infrared spec-
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trum, wavelength equals 10 micrometers. Accepting that the
majority of thermal energy is in the infrared then this author
also believes that somewhere between 3 K and 300 K, a sys-
tem’s thermal energy density will no longer proportional to
temperature i.e. probably aroound 100 K. Perhaps it is the
gas’ vibrational energy that is frozen out? Understandably, at
low temperatures the blackbody/thermal radiation within the
system may be such that it does not provide enough thermal
energy (infrared) for measurable gas vibration. However, this
should equally apply to the system’s walls, unless the walls
have more thermal energy relative to the gas i.e. apparatus
considerations? This is conjecture, as remains the current no-
tion that rotational energies are frozen out.

For gases the accepted difference between molar isobaric
heat capacity and molar isometric heat capacity is the ideal
gas constant (R). Accordingly [2–3]:

Cp −Cv = R. (15)

The difference in heat capacities is obviously independent
of the type of gas. This implies that the difference depends
upon the system’s surroundings and not the experimental sys-
tem, nor its contents. This fits this author’s assertion that “the
ideal gas constant is the molar ability of a gas to do work per
degree Kelvin” [27]. This is based upon the realization that
work is required by expanding systems to upwardly displace
our atmosphere’s weight, i.e. an expanding system does such
work, which becomes irreversibly lost into the surrounding
Earth’s atmosphere. The lost work being [24, 28–29]

Wlost = Patm dV. (16)

This does not mean that the atmosphere is always up-
wardly displaced, rather that the energy lost by an expanding
system is defined by equation (17). This lost energy can be
associated with a potential energy increase of the atmosphere,
or a regional pressure increase. Note: A regional pressure in-
crease will result in either a volume increase, or viscous dissi-
pation i.e. heat created = lost work. This requires the accep-
tance that the atmosphere has mass and resides in a gravita-
tional field. It is no different than realizing that an expanding
system at the bottom of an ocean, i.e. a nucleating bubble,
must displace the weight of the ocean plus atmosphere. Ac-
cordingly, any expanding system here on Earth’s surface must
expend energy/work to displace our atmosphere’s weight and
such lost work, is immediately or eventually lost into the sur-
rounding atmosphere. Accepting this then allows one to ques-
tion our understanding of entropy [24, 29].

5 Conclusions

Kinetic theory has been reconstructed with the understand-
ing that a gas’ kinetic energy has both translational and rota-
tional components that are obtained from the wall molecule’s
kinetic energy. Therefore, the gas’ translational plus rota-
tional energies along each of the x, y and z-axis, are added

and equated to the wall molecules’ kinetic energy along the
identical three axes. No knowledge pertaining to the magni-
tudes of the gas’ rotational energy versus translational energy
is claimed. This is then added to the gas’ internal energy e.g.
vibrational energy, in order to determine the gas’ total energy.

The empirically known heat capacity and adiabatic index
for all gases are clearly a better fit to this new theory/model,
when compared to accepted theory. The fit for monatomic
through triatomic gases is exceptional, without any reliance
upon traditionally accepted exceptions! Moreover, our model
treats all polyatomic molecules in the same manner as con-
densed matter.

Seemingly, Lord Kelvin’s assertion that equipartition was
wrongly derived, may have been right after all. Accepting
that the traditional degrees of freedom in equipartition the-
ory may be mathematical conjecture rather than constructive
reasoning will cause some displeasure. Certainly, one could
argue that what is said herein is really just an adjustment to
our understanding. Even so, it will alter how pressure is per-
ceived that being due to the gas molecules’ momenta from
both rotation and translation, which is imparted onto a sur-
face. Ditto for the consideration of a gas’ energy in quantum
theory.

The consequence of a polyatomic gas’ thermal vibrations
being related to its surrounding thermal radiation may alter
our conceptualization of temperature, i.e. a vacuum now has
a temperature. The notion that rotation in cold gases is frozen
out was also questioned. Perhaps it is a case that the thermal
energy density does not remain proportional to temperature,
as T approaches 0, which also is the case for very high tem-
perature gases.

The difference between isobaric and isometric heat capac-
ity is gas independent. This fits well with this author’s asser-
tion that lost work represents the energy lost by an expanding
system into the surrounding atmosphere. Interestingly, for a
mole of gas molecules this lost work can be related to the
ideal gas constant.

To some, the combining of a gas’ rotational and transla-
tional energy may seem like a minor alteration, however the
significance to the various realms of science maybe shatter-
ing. Not only may this help put to rest more than a century of
speculations, it also may alter the way that thermodynamics
is envisioned. If accepted it actually opens the door for a sim-
pler new thermodynamics vested in constructive logic, rather
than mathematical conjecture.

A thanks goes out to Chifu E. Ndikilar for his helpful pre-
liminary comments, as well as both Dmitri Rabounski and
Andreas Ries for their insights in finalizing the paper.

6 Example calculations

1. Table 1 for n′′ = 3; our theoretical values:
[equation (12)]: I.e. Cv = 7

2 R = 7
2 8.31 J/(mol*K)

= 29.09 J/(mol*K).
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[eq. (13)]: I.e. Cp = 9
2 R = 9

2 8.31 J/(mol*K)
= 37.40 J/(mol*K).
For n′′=3, traditional accepted theoretical value is eq-
uation (2): I.e. Cv = 9

2 R = 9
2 8.31 J/(mol*K)

= 37.40 J/(mol*K).
2. Table 2, for n′′ = 3. Accepted adiabatic index (γ) for

carbon dioxide (n′′ = 3) based upon engineering data
[22] is γ = 0.844/0.655 = 1.29. Our theoretical adia-
batic index (γ) is equation (14): I.e.

γ =

9
2
7
2

= 1.29.

Submitted on June 16, 2017
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In this paper we suggest a possible theoretical way to produce negative energy that
is required to allow hyperfast interstellar travels. The term “Exotic Matter” was first
coined by K. Thorne and M. Morris to identify a material endowed with such energy
in their famous traversable space-time wormhole theory. This possibility relies on the
wave-particle dualism theory that was originally predicted by L. de Broglie and later
confirmed by electrons scattering experiments. In some circumstances, an electron in-
teracting with a specific dispersive and refracting medium, has its velocity direction
opposite to that of the phase velocity of its associated wave. However, it is here shown
that a positron placed in the same material exhibits a negative mass. Generalizing the
obtained equations leads to an energy density tensor which is de facto negative. This
tensor can be used to adequately fit in various “shortcut theories” without violating the
energy conditions.

Introduction

Introduction In this paper we show that it is possible to ob-
tain a negative energy provided the associated proper parti-
cle’s mass is variable. The basis for this study starts with
the associated wave that was originally detected on electrons
diffraction experiments [1]. In some circumstances, L. de
Broglie showed that a particular homogeneous refractive and
dispersive material may cause the tunnelling particle to re-
verse its velocity with respect to its wave phase propagat-
ing velocity [2]. In this case, and under the assumption that
the proper mass of the particle is subject to a ultra high fre-
quency vibration synchronized with the wave frequency, it is
formally shown that an anti-particle exhibits a negative mass
(energy). This energy could be extracted to sustain for ex-
ample the space-time wormhole, set forth by K. Thorne and
M. Morris [3, 4]. To be physically viable, it is well known
that it requires a so-called exotic matter endowed with a neg-
ative energy density which violates all energy conditions [5].
However, if the exotic matter threading the inner throat of
the wormhole is likened to the specific dispersive material
wherein circulates a stream of antiparticles, our model does-
not conflict with classical physics restrictions and can be fully
applied.

Notations

In this paper we will use a set of orthonormal vector basis
denoted by {e0, ea}, where the space-time indices are a, b =

0, 1, 2, 3, while the spatial indices are µ, ν = 1, 2, 3. The
space-time signature is {−2}.

1 Proper mass variation

1.1 Phase velocity and group velocity

It is well known that the classical wave with a frequency n

ψ = a(n) exp [2πi(νt − kr)] (1)

propagates along the direction given by the unit vector N.
Here k is the 3-wave vector, kr = φ is the wave spatial phase,
and n is the refractive index of the medium. Equation (1) is a
solution of the wave propagation equation

∆ψ =
1
w2

∂2ψ

c2∂t2 , (1)bis

where w is the wave phase velocity of the wave moving in
a dispersive medium whose refractive index is n(ν) generally
depending of the coordinates, and which is defined by:

1
w

=
n(ν)

c
. (2)

In our study, the medium is assumed to be homogeneous
but it can be anisotropic and ir will depend on the fequency ν.
In this material, the phase φ of the wave is progressing along
the given direction with a separation given by a distance

λ =
w

ν
=

c
nν

(2)bis

called the wavelength. Consider now the superposition of two
stationary waves along the x-axis having each close frequen-
cies ν′ = ν + δν and close velocities w′ = w + (dw/dν)δν, so
that their superposition can be expressed by:

sin 2π
(
νt −

νx
w

)
+ sin 2π

(
ν′t −

ν′x
w′

)
=

= 2 sin 2π
(
νt −

νx
w

)
cos 2π

[
δ
(
ν

2

)
t − x

d
dν

ν

w
δ
ν

2

]
.

The resulting wave displays a wave packet (or beat) that
varies along with the so-called group velocity (v = vµ):

1
vg

=
d
dν

ν

w
. (3)
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The wave mechanics shows that the momentum 3-vector of
an electron of a rest mass m0 (in vacuum) is given by the de
Broglie relation

p = m0v =
h
λ
. (4)

which completes the Einstein relation E = hν.

1.2 The plane wave spinor

Since we deal here with a spin 1/2-fermion, we must intro-
duce the four components wave function ΨA expressed with
the non local 4 × 4 Dirac trace free matrices γa (capital latin
spinor indices are A = B = 1, 2, 3, 0). They display here the
following real components [8]:

γ0 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , γ1 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ,

γ2 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ3 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 .
These matrices are said standard representation as opposed
for example to the Majorana representation. Moreover, they
verify

γaγb + γbγa = −2ηabI (5)

where ηab is the Minkowski tensor and I is the unit matrix.
In what follows, Λ∗ is the complex conjugate of an arbitrary
matrix Λ, TΛ is the transpose of Λ, and Λ̃ is the classical
adjoint of Λ.

Introducing now the Hermitean matrix β = iγ0

β =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 ,
which verifies β2 = I, we derive the important relation

β γa β
−1 = −γ̃a (5)bis

with β and the spinor Ψ, we form the Dirac conjugate [9]

◦Ψ = t Ψ̃ β , (5)ter

where t is the time orientation. or the electron, the Dirac equa-
tion is written as

[W − (m0)elec c] Ψ = 0 , (6)

where W = γa A
B ∂a is the Dirac operator and it is customary

to omit the spinor indices A, B by simply writing γa = γ a
a B

so that this operator becomes γa∂a, or in the slash notation
(Feynman), −∂a. The monochromatic wave associated with the

electron can be approximated to a plane wave spinor without
loss of generality [10]:

ΨA = a (xa) exp 2πi (paxa) , (6)bis

where
paxa = Et − pµxµ. (6)ter

The 4-vector pa is the 4-momentum of the electron . The
spinor “amplitude” a(xa) satisfies the Dirac equation[

γa(pa)elec
]
a = [(m0)elec c] a (7)

where the operator [γa(pa)elec] is here substituted to the Dirac
operator γa∂a. We now re-write (6)bis as

Ψ = a(xa) exp(2πi/h) φ , (7)bis

where the global phase is φ = h[ν − (αx + βy + γz)/λ] t (here
α, β, γ are the direction cosines). The energy and momentum
of the electron located at xa are then related with the wave
phase by:

E = ∂t φ , p = −grad φ . (7)ter

Now, if the electron moves at a velocity v = β c within
a slight variation β, β + δβ, corresponding to the frequency
interval ν, ν + δν, w and ν are functions of β. The wave phase
velocity (in vacuum) can be expressed as w = c2/v = c/β and
since ν = (1/h) m0c2/

√
1 − β2, it is easy to infer that:

vg =
dν
dβ

1
d

dβ
ν
w

= β c = v . (8)

The group velocity vg of the wave packet associated with the
electron of rest mass m0, coincides with its velocity v. The
group velocity is thus also expressed by the Hamiltonian form
vg = ∂E/∂k which corresponds to the particle’s velocity v =

∂E/∂p. Recalling (2) and (2)bis to as 1/w = n(ν)/c, λ =

w/nν, we easily infer the Rayleigh’s formulae [11]:

1
vg

=
1
c
∂nν
∂ν

=
∂
(

1
λ

)
∂ν

. (9)

1.3 Making the electron vibrate

In the framework of the special theory of relativity, the proper
frequency ν0 of a plane monochromatic wave is transformed
as

ν =
ν0√

1 − v2/c2
. (10)

Constraint A: We assume that the electron is subject to an
ultra high stationary vibration having a proper frequen-
cy ν0.

When moving at the velocity v, this frequency is known
to transform according to:

νe = ν0

√
1 − v2/c2 . (11)
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We clearly see that its frequency νe differs from that of its
associated wave denoted here by ν.

If N is the unit vector normal to the associated wave
phase, the electron subject to the frequency ν0 = m0c2/h has
traveled a distance dN during a time interval dt, so that we
may define an electronic phase φe which has changed by:

dφe = hν0

√
(1 − v2/c2) dt = m0c2

√
(1 − v2/c2) dt. (12)

Simultaneously, the corresponding wave phase variation is

dφ = ∂tφdt + ∂NφdN =
(
∂tφ + v grad φ

)
dt (12)bis

and by analogy to the classical formula (7)ter, one may write

p = −grad φ =
m0v√

1 − v2/c2
, E = ∂tφ =

m0c2√
1 − v2/c2

so we find

dφ =

 m0c2√
1 − v2/c2

−
m0v2√

1 − v2/c2

 dt. (13)

Constraint B: We set the following phase synchronization:

dφ = dφe , (14)

which leads to: m0c2√
1 − v2/c2

−
m0v2√

1 − v2/c2

 dt =

=
[
m0c2

√
1 − v2/c2

]
dt .

(15)

Dividing through by dt , we retrieve the famous Planck-Laue
equation

m0c2√
1 − v2/c2

= m0c2
√

1 − v2/c2 +
m0v2√

1 − v2/c2
, (15)bis

which holds provided the proper mass is slightly variable.
(see proof in Appendix A). In the frameworks of our pos-
tulate, the ultra high frequency vibration imparted to the elec-
tron can be viewed as apparently reflecting its stationary mass
variation which is likened to a fluctuation.

From now on, ]m0 will denote the variable rest mass of
the electron so that the Planck-Laue relation becomes:

]E =
]m0c2√

1 − v2/c2
=

= ]m0c2
√

1 − v2/c2 +
]m0v

2√
1 − v2/c2

.

(15)ter

This formulae will be required to determine the explicit form
of the dispersive material which is the key point of our theory.

2 Exotic matter

2.1 Dynamics in a refracting material

Let us first recall the relativistic form of the Doppler formu-
lae:

ν0 =
ν (1 − v/w)√

1 − v2/c2
, (16)

where as before, ν0 is the wave’s frequency in the frame at-
tached to the electron. With the latter equation and taking into
account the classical Planck relation E = hν, we find

E =
E0

√
1 − v2/c2

1 − v/w
. (17)

However, inspection shows that the usual equation

E =
E0√

1 − v2/c2
(18)

holds only if

1 −
v
w

= 1 −
v2

c2 (19)

which implies
w v = c2. (20)

The latter relation is satisfied provided we set

]E =
]m0c2√

1 − v2/c2
, (21)

] p =
]m0v√

1 − v2/c2
. (22)

Constraint C: ]E depends on a specific dispersive and re-
fracting material through which the electron is tunnel-
ling.

Let us define this influence by a function Q(n) where n
is the refractive index of the material. Note: The variation
of the proper mass is independent on Q(n). Equation (21) is
modified to as

]E =
]m0c2√

1 − v2/c2
+ Q(n) (23)

from which Eq. (22) can be expressed as:

] p =
]m0v√

1 − v2/c2
=

v
[
]E − Q(n)

]
c2 . (24)

Now taking into account the Doppler formulae (16), and
the Planck-Laue relation (15)ter, we find

]E −
v2

[
]E − Q(n)

]
c2 = ]E

(
1 −

v
w

)
(25)
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wherefrom is inferred

Q(n) = ]E
(
1 −

c2

w v

)
= hν

(
1 −

c2

w v

)
(26)

and with the Rayleigh formulae (4), we eventually obtain the
explicit form of Q(n):

Q(n) = ]E
[
1 −

n∂(nν)
∂ν

]
. (27)

2.2 Specific dispersive material

Depending on the nature of the dispersive material, thus its
index (n), it is well known that the tunelling electron’s 3-
velocity v can be directed either in the direction of the associ-
ated wave phase velocity w or in the opposite direction. The
electron then moves backward through the specific material.

Let N be the 3-unit vector directed to the wave phase di-
rection (chosen positive) so that the wave number is given by:

k =
Nh
λ
. (28)

By applying the Rayleigh formulae (4) to this particular case
where v is opposite to the wave phase propagation, we have
v < 0. Hence, from Q(n) = ]E (1 − c2/w v), we find

]E − Q(n) =
]Ec2

w v
(29)

which is negative.
Then, with p = ]m0v/

√
1 − v2/c2, we infer from (24):

]m0√
1 − v2/c2

=
]E − Q(n)

c2 . (29)bis

In order to maintain the variable proper mass ]m0 positive
i.e.

]m0 =

√(
1 − v2/c2) ]E

w v
> 0 (30)

we must have necessarily: p = −k.

2.3 Matching the exotic matter definition

Now consider a stream of electrons and positrons placed in
the specific material whose respective associated wave (pos-
itive) direction is given by the same unit vector N (i.e. w >
0). From the Dirac theory, we kwnow that the electron mo-
mentum 3-vector pelec and that of the positron momentum 3-
vector p pos are opposed. (See proof in Appendix B). There-
fore we have here ppos = k, however the dispersive material
yet imposes vpos < 0, hence, we are led to the fundamental
conclusion:

A positron moving at the backward velocity vpos through
the specific dispersive refracting material defined above and

subject to Constraints A, B and C, will exhibit a negative mass
given by:

(]m0)pos =

√
1 − v2

pos/c2
]E
w v

< 0 , (30)bis

where ]E − Q(n) = ]Ec2/vpos w) < 0 in accordance with
Eq. (29).

Let us write the mass (30)bis as:

(]m0)pos =

∫
(]ρ0)pos

√
−g dV, (31)

where (]ρ0)pos is the variable proper density of the positronic
massive flow. The integral is performed over the 3-volume
V delimiting the variable proper mass (]m0)pos boundary. We
then readily infer the familiar form of the energy density ten-
sor in the static case

(]T 0
0 )pos = (]ρ0)pos c2, (32)

which is de facto negative.
So, within the scheme of the wave-particle picture, we

have been able to give a consistent picture of what could be
the united conditions to reach our goal :

The so-called “exotic matter” required to assemble a
space-time distortion can be provided by the negative energy
extracted from a stream of vibrating antifermions interacting
with a specific dispersive refracting material adequately en-
gineered.

3 Concluding remarks

Without going into details of a sound engineering, we have
here only scratched the surface of a basic theory describing
the ability of a system composed of antiparticles to interact
with a specific refracting and dispersive material in order to
exhibit a dynamical negative mass.

Thus, our approach mainly relies on de Broglie’s theory
which has been verified for the electron.

Upon Constraints A, B, and C, we might as well consider
other heavier particles such as the antiproton to produce neg-
ative energy.

Once these conditions are fulfilled, the concept of hyper-
fast interstellar tracel is viable if one can “handle” routinely
antimatter, and envision a sufficient amount of negative en-
ergy density. These orders of magnitude are beyond the scope
of this text.

Without any doubt, some advanced civilizations have al-
ready long mastered the negative energy obtained by this pro-
cess, to achieve superluminal travels as described by space-
time warp drive theories [12–14].

For us, a huge research work is still ahead, but if we have
contributed to open a small door, then the challenge is widely
available for physicists.
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Appendix A: The Planck-Laue relation

The Planck-Laue relation is a relativistic equation which has
been derived when the proper mass is assumed to sligthly
fluctuate. This proper mass is here denoted by ]m0. Under
this circumstance, the relativistic dynamics of ]m0 can now
be extended as follows.

We first write the Lagrange function for an observer who
see the particle moving at he velocity v

L = − ]m0c2
√

1 − v2/c2

so that the least action principle applied to this function is still
expressed by

δ

∫ t1

t0
Ldt = δ

∫ t1

t0
− ]m0c2

√
1 − v2/c2 = 0 .

From this principle the equations of motion

d
dt

(
∂L
∂ẋa

)
=
∂L
∂xa

, ẋa =
dxa

dt
,

are inferred, which lead to

d ]p
dt

= − c2
√

1 − v2/c2 grad ]m0 (A.1)

(since ]m0 is now variable). Hence, by differentiating the rel-
ativistic relation ]E2/c2 = ]p2 + ]m2

0c2, we obtain

d ]E
dt

= c2
√

1 − v2/c2 ∂
]m0

∂t
. (A.2)

Combining (A.1) and (A.2) readily gives

d ]E
dt
− v

d ] p
dt

= c2
√

1 − v2/c2 d ]m0

dt
, (A.3)

where d ]m0/dt = ∂ ]m0/∂t + grad ]m0 is the variation of the
mass in the course of its motion. On the other hand, we have

d (] p · v)
dt

=
v · d ] p

dt
+ ]m0c2 (v/c) d(v/c) dt√

1 − v2/c2
=

= v
d ]p
dt
− ]m0c2 d

dt

(
1 − v2/c2

) (A.4)

i.e.

d
dt

[
]m0c2

√
1 − v2/c2

]
=

= c2
√

1 − v2/c2 d ]m0

dt
+ ]m0c2 d

dt

√
1 − v2/c2

hence (A.3) can be re-written as

d
dt

[
]E − v · ] p− ]m0c2

√
1 − v2/c2

]
= 0 (A.5)

which is satisfied when the particle is at rest, that is: v = 0⇒
]E0 = ]m0c2. Therefore, we must always have:

]E =
]m0c2√
1− v2/c2

= ]m0c2
√

1− v2/c2 +
]m0v2√
1− v2/c2

. (A.6)

It is important to note that this variable (proper) mass,
]m0, is purely intrinsic, i.e. its motion is unaffected.

Equation (A.6) is known as the Planck-Laue formula.

Appendix B: Dirac currents

Let us consider the real Dirac current as

Ja = i ( ◦Ψ γ aΨ ) = (Ja) 1 − (Ja) 2 ,

where

(Ja) 1 = i ◦ΨA γ
aA
B ΨB, (Ja) 2 = i ΨB γaA

B
◦ΨA .

The charge conjugate of Ja is first calculated

[(Ja) 1](C) = i Ψ∗A γ
aA
B Ψ∗B = i t TΨA β

A
B γ

aB
C Ψ∗C

i.e.
[(Ja) 1](C) = i t ΨA TβB

A
TγaC

B
TΨ∗C .

From the antisymmetry of β, and remembering that the γa are
here real, we have

Tγa Tβ = − γ̃a β = β γa

from which we infer

[(Ja) 1](C) = i t ΨA γaB
A β

C
B
◦Ψ̃C = i ΨA γaB

A
◦ΨB

hence, we see that

[(Ja) 1](C) = (Ja) 2

and similarly
[(Ja) 2](C) = (Ja) 1

therefore, we obtain the most important relation:

−(Ja)(C) = Ja (B.1)

The Dirac current orientation is opposed to that of its
Dirac conjugate [15]. The Dirac conjugate ◦Ψ of the plane
wave spinor (6)bis is here:

◦Ψ = ◦a exp−2πi (pa xa) . (B.2)

With the Dirac conjugate spinor amplitude ◦a = a∗ γ0, that is
equivalent to (5)ter, we first set the normalization condition:

◦a a = m0c . (B.3)

Besides, the Dirac equation reads:

(γa pa)◦ a = m0c ◦a . (B.4)
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Due to the property of (γa)2, Equations (7) and (B.4) are both
satisfied for:

(pa)2 = (m0c)2. (B.5)

Multiplying now Equation (7) on the left with ◦a, we obtain
with (B.2) and (B.5)

(◦a γa a) pa = (m0c)2 = (pa)2 (B.6)

from which we infer:

◦a γa a = pa. (B.7)

The Dirac current density vector Ja = ◦Ψ γa Ψ will here yield

Ja = ◦a γa a = pa (B.8)

with
pa = m0c2 + pµ (B.9)

( [16]: compare with formulae (23.6) there).
From the charge conjugate Ψ(C) corresponding to the posi-

tron plane spinor, we define the Dirac current for the positron
(Ja)(C). However, it was shown that (Ja)(C) = −Ja. Therefore,
assuming that (m0)elec = (m0)posit in vacuum, we must then
have

(Jµ)(C) = (pµ)posit = −(pµ)elect . (B.10)

This clearly means that in vacuum, vposit = −velect.

Submitted on May 15, 2017
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Testing 5D Gravity with LIGO for Space Polarization by Scalar Field
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Whether LIGO detectors can directly detect the scalar field dark energy and thus test
the five-dimensional (5D) gravity or not is examined analytically in terms of the author
previously well-developed 5D fully covariant theory of gravitation with a scalar field.
It is shown that an object with some thousand kilograms (e.g. 4700 kg), if electrically
charged up to some ten kilovolts (e.g. 40 kV), can polarize the space or vacuum by
the scalar field dark energy of the charged object and thus be able to extend the optical
path length of a laser beam that travels through one LIGO arm with some hundred
reflections (e.g. 280) by approximately 4 × 10−19 m (or the space-polarization strain
of 10−22), which is the amount of 4 times greater than that to be detected by the LIGO
detectors. Switching on and off the power to the object, we can carry out tests of this
5D gravity by examining whether the converging laser beams become out of phase and
thus the interference pattern varies or not. We can also apply a harmonically varying
voltage with a frequency, e.g. 100 Hz, to charge the object and thus produce a varying
optical length difference in the specific frequency range of LIGO detectors. Therefore,
being added a highly charged sphere into the experimental setup, LIGO, which has
recently detected first ever the gravitational waves from binary black hole mergers, can
directly examine the existence of the scalar field dark energy of 5D gravity in a ground-
base experiment. This study provides a design criterion for this new approach and
experiment of discovering dark energy as well as testing 5D gravity.

1 Introduction

The observed acceleration of the present universe is generally
attributed to the existence of dark energy throughout the uni-
verse [1-2]. A direct detection of the dark energy, whose true
nature remains elusive, has become one of the most impor-
tant issues in the modern astrophysics and cosmology since
the discovery of acceleration of the universe. Two commonly
accepted candidates of dark energy are the cosmological con-
stant and the quintessence. Unlike the cosmological constant,
which Albert Einstein first introduced into his general the-
ory of relativity in order for the universe to be static, the
quintessence is a scalar field Φ that varies throughout space-
time and has been modeled in various theories of gravita-
tion such as the four-dimensional (4D) Brans-Dicke scalar-
tensor gravity [3] and the five-dimensional (5D) Kaluza-Klein
scalar-vector-tensor gravity (shortened by 5D gravity) [4-6].

The scalar field of 5D gravity, which has been recently
related to the Higgs field of 4D particle physics in[7], were
theoretically shown to be capable of polarizing the space or
vacuum [8-9] and thus able to extend the optical path length
of a laser beam that travels through the polarized vacuum.
The vacuum polarization by a scalar field has been studied in
the Schwarzschild spacetime [10] , in a waveguide [11], in
the de Sitter spacetime with the presence of global monopole
[12], and in a homogeneous space with an invariant metric
[13]. Recently, the author, in terms of his 5D fully covariant
theory of gravitation, has quantitatively determined the di-
electric constant of the polarized vacuum in accordance with

the charge-mass ratio of a charged object [14].
In this paper, we will further analytically demonstrate that

the vacuum polarization by the scalar field dark energy of 5D
gravity can increase the relative optical path length (i.e. the
strain) above a factor of 10−22 and therefore can be directly
detected via the extremely accurate LIGO detectors that have
recently detected first ever the gravitational waves from the
binary black hole merger as declared in [15]. We will use
a harmonic voltage to charge the object, which leads to a
varying optical length difference in the frequency range of
the LIGO detection. A positive result of detecting the scalar
field dark energy by LIGO will provide a fundamental test of
5D gravity.

2 5D gravity and vacuum polarization by scalar field
dark energy

2.1 5D gravity with scalar field and field solution

A 5D gravity is a Kaluza-Klein theory that unifies the 4D
Einsteinian general relativity (GR) and Maxwellian electro-
magnetism (EM). Without a scalar field (i.e. Φ = 1), the 5D
unification is trivial because, in the (4+1) split form, it is iden-
tical to GR and EM. With a scalar field, however, a 5D grav-
ity can lead to a sequence of new effects such as the space or
vacuum polarization [8-9, 14], electric redshift [16], gravita-
tional field shielding [17-18], gravitationless black hole [19],
modified neutron star mass-radius relation [20], and so on. A
5D gravity with the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric of the universe modifies the Friedmann equa-
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Fig. 1: Characteristics of 5D gravity with and without a scalar
field dark energy (ΦDE). Without a scalar field (i.e. Φ = 1),
5D gravity just trivially unifies the 4D Einsteinian general relativ-
ity (GR) and Maxwellian electromagnetism (EM). Combining with
the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric of 4D
spacetime, the field equation given in GR derives the Friedmann
equation (FE) that governs the dynamic and development of the
universe. Including the cosmological constant dark energy (ΛDE),
FE explains the acceleration of the universe (ΛAU). With a scalar
field (i.e. Φ > 1), 5D gravity modifies the general relativity (ΦGR)
and electromagnetism (ΦEM) through the scalar field dark energy
(ΦDE). These modifications lead to a sequence of new effects such
as the space or vacuum polarization (SP) and the gravitational field
shielding (GS). Combining with the FLRW metric of 4D spcatime,
ΦGR derives a modified Friedmann equation (ΦFE), which can also
explain the acceleration of the universe (ΦAU) but due to the scalar
field dark energy (ΦDE). The space polarization (SP) or the effect
on light by the ΦDE of 5D gravity can be significant enough for the
accurate LIGO detectors to detect.

tion with a scalar field, which plays the role of dark energy
and explains the acceleration of the universe [21-23]. These
new effects are results of the scalar field that modulates both
gravitational and electromagnetic fields as shown in the (4+1)
split form of the 5D field equation or as seen in the field so-
lutions [14, 24]. Figure 1 shows the characteristics of a 5D
gravity with and without a scalar field dark energy and its
role to the cosmology.

The metric of 5D spactime is usually given by [25]:

ḡαβ =

(
gµν + q2Φ2AµAν qΦ2Aν

qΦ2Aµ Φ2

)
(1)

where α and β are the subscripts for the 5D coordinates, run-
ning through 0 - 4; µ and ν are the subscripts for the 4D coor-
dinates, running through 0 - 3; gµν is the metric of 4D space-
time; Aµ is the standard 4D electromagnetic potential; Φ is
the scalar field, which is an effectively massless 4D scalar;
q is a scale constant defined by q = 2

√
G with G the grav-

itational constant. The fifth dimension is compact [26]. In
isotropic coordinates, the line element ds2 of 4D spacetime
can be represented according to the metric as [27]

ds2 = −gµνdxµdxν

ds2 = −eνdt2 + eλ
(
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
, (2)

where eλ and eν are the metric rr− and tt−components as
functions of the radial distance r. Then, the exact static spher-
ically symmetric solution of gravitational, electromagnetic,
and scalar fields of a charged body is given by [24]

eλ =
(
1 − B2

r2

)2

Ψ−2, (3)

eν = Ψ2Φ−2, (4)

H01 = −H10 = −
Q
r2 e(ν−λ)/2, (5)

Φ2 = a1Ψ
p1 + a2Ψ

p2 , (6)

where the function Ψ is defined by

Ψ =

( r − B
r + B

)C/2B

, (7)

and the seven constants (K, p1, p2, B, C, a1, and a2) are con-
strained by the following five relations:

K = 4(4B2 −C2)C−2, (8)

a1 + a2 = 1, (9)

p1 = 1 +
√

1 + K, (10)

p2 = 1 −
√

1 + K, (11)

Q2 = −a1a2C2(1 + K)G−1. (12)

Here H01 and H10 are non-zero components of the effective
4D electromagnetic field Hµν ≡ ϕ3Fµν with Fµν = ∂νAµ −
∂µAν. At r → ∞, the limits of eλ, eν, and Φ are the unity. The
parameter Q denotes the electric charge. It is obvious that
the above 5D solution of the fields includes two independent
constants.

In a traditional 5D gravity, one usually assumes or hy-
pothetically forms the fifteenth component (T̄ 44) of the 5D
energy-momentum tensor by including an undetermined pa-
rameter called scalar charge S , e.g. T̄ 44 = S ρ as done by
[24] with ρ the density of matter. Since it lacks of any mea-
surement and short of any observational support, the unde-
termined parameter makes all results obtained from the tra-
ditional 5D gravity to be non-decisive and hence non-con-
clusive in comparison with other theories of gravitation, ob-
servations, and experiments. Describing the matter to be also
covariant in the 5D spacetime as the fields are, however, this
author analytically derived the fifteenth component of the 5D
energy-momentum tensor without assuming any unknown
parameter ([14] and references therein such as the early stud-
ies by the author [28-29]),

T̄ 44 =
ρα2

Φ2
√
Φ2 + α2

, (13)
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where α is a non-dimensional constant (or charge-mass ratio)
defined by

α =
Q

2
√

GM
, (14)

with M the mass of matter, and therefore analytically deter-
mined all the constants in the solution as follows

K = 8, p1 = 4, p2 = −2, (15)

a1 = −α2, a2 = 1 + α2, (16)

C =
2GM

3c2
√

1 + α2
, B =

GM

c2
√

3(1 + α2)
. (17)

Here the cgs or Gaussian unit system is adapted. This set of
constants is the simplest and most elegant, because of K = 8
that leads to p1 and p2 to be whole numbers, for the solu-
tion to be non-trivial. Therefore, according to this solution
with the constants obtained, the gravitational, electromag-
netic, and scalar fields of a charged spherically symmetric
object are completely determined from the charge and mass
of the object.

In the Einstein frame, this field solution simply reduces
to the Schwarzschild solution of the Einsteinian general rel-
ativity when matter is neutral and fields are weak [14,17].
This guarantees that the fundamental tests of the Einsteinian
general relativity in the case of weak fields are also the tests
of this 5D gravity. In the case of strong fields, especially
when matter is electrically charged, however, the results ob-
tained from this 5D gravity are significantly different from the
Einsteinian general relativity. These new strong field effects
include the space polarization [8, 14], electric redshift [16],
gravitational field shielding [17-18], and so on. At Φ = 1,
the 5D gravity is trivially equivalent to GR and EM, where
the Reissner-Nordstrom solution determines the standard GR
metric of a charged, massive particle [30-31]. The solution
of this 5D gravity Eq. (3) is obtained at Φ , 1 and thus
cannot be limited to the Reissner-Nordstrom solution for a
charged, massive particle. But when fields are weak and mat-
ter is weakly charged, the effect of the scalar field on both
gravitational and electromagnetic fields are negligible.

2.2 Vacuum polarization by scalar field

In terms of this 5D gravity and the field solution obtained, the
electric field of a charged body can be defined as

E ≡ H10 = −H01 =
Q
r2 e(ν−λ)/2, (18)

and then the dielectric constant (or relative permittivity) ϵr of
the vacuum that is polarized by the scalar field can be deter-
mined by

ϵr ≡
EC

E
= e(λ−ν)/2 =

(
1 − B2

r2

)
ΦΨ−2, (19)

Fig. 2: The relative permittivity ϵr or the electric field ratio EC/E
versus the normalized radial distance r/B for a charged object with
α = 0, 1, 10, 100, 1000, respectively.

where EC = Q/r2 is the Coulomb electric field of the charged
object. To see how significant the space or vacuum polariza-
tion is, we plot, in Figure 2, the relative permittivity ϵr as a
function of the normalized radial distance r/B for a charged
object with five different charge-mass ratios α = 0, 1, 10, 100,
1000.

The result indicates that the electric field of the charged
object asymptotically approaches the Coulomb electric field
(i.e. ϵr → 1), when r is getting larger (r ≫ B) or approaches
infinity. When r becomes small, however, the electric field
significantly deviates from the Coulomb electric field (i.e.
ϵr ≫ 1) due to the vacuum space to be extensively polar-
ized by the strong scalar field. When r tends to B, the rel-
ative permittivity approaches infinity and the electric field
becomes weaker and weaker as compared with the strength
of the Coulomb electric field, especially when the object is
highly charged. In the limit case of ϵr = ∞, the vacuum
space is completely polarized by the extremely strong scalar
field. It should be noted that a big deviation at r ∼ B still
exists even if the object is weakly charged (α ≪ 1) or neu-
tral. The deviation increases as the charge increases. For
instance, at α = 100 and r/B = 103, the electric field is
only 10% of the Coulomb electric field. The electric field
is significantly weakened as compared with the strength of
the Coulomb electric field and the vacuum space is greatly
polarized, especially when the object is highly charged.

Only for a massive, compact and charged object, we can
have a B not to be too small in comparison with its radius
and can see a significant polarization of the vacuum. For
a lab-sized object, the polarization of the vacuum can only
be extremely weak. Figure 3 plots the deviation of the rel-
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Fig. 3: The change of the relative permittivity ϵr − 1 or the change
of relative electric field (Ec − E)/E versus the radial distance r for a
charged object with mass of 1000-kg and charge-mass ratio α = 0,
1, 10, 100, 1000, respectively.

ative permittivity of the vacuum from the unity, ϵr − 1, due
to the polarization as a function of the radial distance r for a
charged object with mass of 1000 kilograms and charge in a
range of α = 0 − 1000. It is seen that, because the fields of a
non-massive object are too weak, the polarization of the vac-
uum by the scalar field dark energy of 5D gravity is very very
small and thus extremely difficult to be detected in laboratory,
except for us to have an extremely accurate detector with an
appropriate approach. In the following section, we will exam-
ine whether the LIGO detectors can detect such small vacuum
polarization or not. The answer as shown in the next section
is positive when the charge-mass ratio of the charged body is
much greater than 1.

3 Can LIGO detect the scalar field dark energy?

In accordance with the relative permittivity determined
above, we can find the refractive index of the vacuum that
is polarized by the scalar field of 5D gravity as,

n ≡ √ϵr = e(λ−ν)/4. (20)

For the non-polarized vaccum, we have n = 1 and ϵr = 1.
Substituting Eqs. (3) and (4) into Eq. (20), we have

n = Φ1/2Ψ−1
(
1 − B2

r2

)1/2

. (21)

In the case of weak fields, we can obtain the change of the
refractive index for the polarized vacuum as,

δn = n − 1 ≃
√

1 + α2 GM
c2r

, (22)

Fig. 4: A schematic diagram for LIGO with a charged object to
detect the scalar field dark energy of 5D gravity. When we place
a highly charged object, whose strong electromagnetic fields are
shielded by a conductor shell that is grounded, nearby one path of
the LIGO laser beams. The space surrounding the charged object
and the vacuum travelled through by the laser beam back and forth
are polarized by the scalar field of the charged object. This polariza-
tion extends the optical path length of the laser beam to be significant
enough for the accurate LIGO to detect the scalar field dark energy.

When α ≫ 1, δn is about linearly increasing with α. Then,
the change of the optical path length of the polarized space or
vacuum can be obtained by the following path line integration

δl =
∫

C
δn ds. (23)

To quantitatively estimate the polarization, we consider a
metal (e.g. copper) sphere with radius R = 0.5 m. From the
mass density of copper ρ = 9 × 103 kg/m3, we can find the
mass of the sphere to be M = 4πρR3/3 ∼ 4.7 × 103 kg. Now,
if the sphere is electrically charged up to V = 105 V, we can
also calculate the charge Q and charge-mass ratio α of the
sphere as Q = 4πϵ0RV ∼ 5.6 × 10−6C = 1.7 × 104 esu and
α ∼ 7, respectively. Then, from Eq. (22), we can find the
change of the refractive index in the space surrounding the
charged sphere to be δn = 1.2 × 10−23. Here, we have chosen
as an example the radial distance to be 4 radii of the object,
i.e. r = 2 m. This result indicates that the scalar field of the
charged object can extend the optical path length relatively by
∼ 1.2 × 10−23 m for each meter, which is significant enough
for the accurate LIGO detectors to detect.

Now, we suggest to place this charged object into the
LIGO system nearby the middle of the path of one of the two
perpendicular arms or laser beams (Figure 4). Then, the vari-
ation of the optical path length due to the space polarization
by the scalar field dark energy can be estimated by,

∆L = (N + 1)
∫ L/2

−L/2
δn ds
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∆L =
(N + 1)

√
1 + α2 GM
c2 ln

L +
√

L2 + 4d2

−L +
√

L2 + 4d2
, (24)

where N is the number of reflections of the laser beam, L is
the geometric length of the arm, d is the minimum distance
from the center of the charged object to the laser beam, and
s is the coordinate of position to be integrated along the path
from −L/2 to L/2. For the LIGO working parameters, we can
choose N = 280 and L = 4 km. The distance can be chosen
again as 4 radii of the charged object, i.e. d = 2 m. Then,
we can obtain that the optical length of the 4 km path of the
LIGO laser beam with 280 times reflections is increased due
to the space polarization by ∆L ∼ 10−18 m, about the amount
of one order higher than that being detectable by LIGO. Sim-
ilarly to the gravitational-wave strain defined in [15], we can
define a strain for the space polarization by scalar field, h, as
the change of the optical length dividing by the length of the
LIGO arm L,

h ≡ ∆L
L
≃ 2(N + 1)

√
1 + α2 GM

c2L
ln

L
d
. (25)

Here, we have approximate the expression or Eq. (24) by
considering d ≪ L. For α ≫ 1, we have that the strain is
proportional to the charge Q but independent of the mass M.

h ≃ (N + 1)
√

G Q
c2L

ln
L
d
∝ Q. (26)

Here, the cgs units are adapted since we have used Eq. (14).
To see the charge dependence, we plot in Figure 5 the in-

crease of the optical path length as a function of the voltage of
the charged object. The result indicates that the extension of
the optical path length remains a constant as the mass is fixed
when the object is weakly charged (V < 500 V) and linearly
increases with the voltage when the object is highly charged.
For instance, when V = 40 kV, the charged object can cause
the optical path length of one laser beam in a LIGO arm with
280 times reflections to extend up to about ∆L ∼ 4 × 10−19

m (or the strain h ∼ 10−22), which is the amount of 4 times
greater than that to be detectable by the LIGO detectors [15].
For LIGO to detect the scalar field dark energy or to test the
5D gravity, we can switch on and off the power to the object
and check whether the converging laser beams become out of
phase and thus the interference pattern varies or not. In ad-
dition, to have a timely varying optical length difference in a
specific range of 20-2000 Hz that LIGO can measure, we con-
sider a harmonically varying voltage or power to charge the
sphere, V(t) = V0 sin(2π f t), with V0 = 105 V and f = 100
Hz. Figure 6 plots the the varying optical length change be-
tween two laser beams as a function of time. Therefore, the
accurate LIGO detectors that have recently detected first ever
the gravitational waves from a binary black hole merger are
capable to be detectors and testers for the scalar field dark en-
ergy of 5D gravity. This study provides a creative approach
for LIGO to detect the vacuum polarization by the scalar field

Fig. 5: Space polarization by the scalar field dark energy of 5D grav-
ity. The increase of the optical path length of a laser beam in one
LIGO arm that is polarized by a charged object is plotted as a func-
tion of the voltage applied to the object. In the case of the object to
be only weakly charged (V < 500 V), the extension of the optical
path length remains a constant as the mass is fixed. When the object
is highly charged, however, the optical path length linearly increases
with the voltage. At V = 40 kV, the charged object can extend the
optical path length of one laser beam in a LIGO arm with 280 times
reflections up to about ∆L ∼ 4 × 10−19 m (or the strain h ∼ 10−22),
about one order higher than that to be detected by LIGO.

of 5D gravity, a candidate of dark energy that drives the uni-
verse in its accelerating expansion. It should be noted that
this paper only focuses on the variation in optical length due
to the vacuum polarization by the scalar field. To include the
variation in optical length due to other fields, we need com-
pute it based on the full solution of all fields. This leaves for
future study.

4 Discussions and conclusions

LIGO uses the interference pattern where the beams combine
to determine if the optical length down the two laser arms is
changing. Possible physical causes for the change of the op-
tical length down the two laser beams can be various sources
such as seismic disturbances, gravitational waves from binary
black hole mergers, space polarizations by scalar field, and
so on. When a gravitational wave passes through the interfer-
ometer, the spacetime in the local area is altered, disturbed,
and curved. This results in an effective change in the optical
length of one or both of the laser beams, which is estimated
by ∆L(t) = h(t)L, where h(t) is the gravitational-wave strain
amplitude projected onto the detector [15]. The advanced
LIGO detectors can have sensitive responses to a strain of
h(t) ∼ 10−21 −10−23. This change of the optical length causes
the light currently very slightly out of phase with the incom-
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Fig. 6: The optical length difference between the two laser beams is
plotted as a function of time when a 100-Hz harmonically varying
voltage is applied to charge the sphere. LIGO detectors that have
detected the gravitational waves from binary black hole mergers can
measure the varying optical length change.

ing light and thus varies the interference pattern. The effective
optical length change due to the spacetime disturbances and
distortions by the passing of gravitational waves is calculated
from the solution of the deviating geodesics equation with a
gravitational wave from a binary black hole merger. For the
space polarization by scalar field, as analyzed in this paper,
we calculate the change of the optical length in accordance
with the solution of the deviating index refraction. Seismic
disturbances can also result in the converging laser beams be-
ing out of phase.

As a consequence, we have in terms of a 5D gravity found
that a some-thousand-kilogram (e.g., 4700 kg) sphere electri-
cally charged to some ten kilovolts (e.g. 40 kV) can polarize
the vacuum by its scalar field dark energy and thus extend the
optical path length of a laser beam that travels through one
LIGO arm with some hundred (e.g. 280) reflections by ap-
proximately 4 × 10−19 m (or the strain of h ∼ 10−22), which
is the amount of 4 times greater than that to be detected by
the LIGO detectors. Switching on and off the power to the
object allows to check whether the LIGO detectors can de-
tect the scalar field dark energy and thus test the 5D gravity
or not. For a harmonic voltage with frequency, e.g. 100 Hz,
we have a varying optical length difference between the two
laser beams in the frequency range of the LIGO detection.
Therefore, being added a highly charged sphere into the ex-
perimental setup, LIGO, which has recently detected first ever
the gravitational waves from the binary black hole merger,
may directly discover first ever the scalar field dark energy of
5D gravity. This study also provides a design criterion for a

new approach and experiment of discovering dark energy.
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Scale-Invariant Models of Natural Oscillations in Chain Systems and Their
Cosmological Significance

Hartmut Müller
E-mail: hm@interscalar.com

In this paper we review scale-invariant models of natural oscillations in chain systems of
harmonic quantum oscillators and derive measurable consequences. Basic model claims
are verified in terms of fundamental particles, the cosmic microwave background and
the solar system. The cosmological significance of some model statements is discussed.

Introduction

In the last 40 years many studies [1] were published which
show that scale invariance (scaling) is a widely distributed
phenomenon discovered in high energy physics [2–4], seis-
mology [5,6], biology [7–9] and stochastic processes of vari-
ous nature [10].

As a property of power laws, scale invariance can be gen-
erated by very different mechanisms. The origin of power law
relations and efforts to observe and validate them is a topic of
research in many fields of science. However, the universal-
ity of scaling may have a mathematical origin that does not
depend on the actual mechanism of manifestation.

In [11] we have shown that scale invariance is a funda-
mental property of natural oscillations in chain systems of
similar harmonic oscillators. In [12] we applied this model
on chain systems of harmonic quantum oscillators. In the
case of a chain of protons as fundamental oscillators, particle
rest masses coincide with the eigenstates of the system. This
is valid not only for hadrons, but for mesons and leptons as
well. Because of scale invariance, chains of electrons produce
similar sets of natural frequencies.

In [13] Andreas Ries has shown that the complete descrip-
tion of elementary particle masses by the model of oscilla-
tions in chain systems is only possible if considering both,
chains of protons and electrons. Furthermore, in [14] he was
able to show that this model allows the prediction of the most
abundant isotope for a given chemical element.

The core claims of scale-invariant models do not depend
on the selection of the fundamental oscillator. Therefore, the
rest mass of the fundamental oscillator can be even smaller
than the electron mass. Consequently, all elementary parti-
cles can be interpreted as eigenstates in a chain system of
harmonic quantum oscillators, in which the rest mass of each
single oscillator goes to zero. This is how the transition of
massless to massive states can be explained [15].

In [16] we have shown that scale-invariant models of nat-
ural oscillations in chain systems of protons also describe the
mass distribution of large celestial bodies in the solar system.

The intention of this article is an adjustment of the basic
claims of our model and an additional verification on funda-
mental particles, the cosmic microwave background and the

solar system. Furthermore, we discuss the cosmological sig-
nificance of some model claims.

1 Methods

Kyril Dombrowski [17] mentioned that oscillating systems
– having the peculiarity to change their own parameters be-
cause of interactions inside the systems – have a tendency to
reach a stable state where the individual oscillator frequen-
cies are interrelated by specific numbers – namely minima of
the rational number density on the number line.

Viktor and Maria Panchelyuga [18] showed that reso-
nance phenomena appear more easily if they belong to max-
ima in the distribution of rational numbers, while maxima in
the distribution of irrational numbers correspond with a high
stability of the system, minimal interaction between parts of
the system and minimal interaction with the surroundings.

In [11] we have shown that in the case of harmonic os-
cillations in chain systems, the set of natural frequencies is
isomorphic to a discrete set of natural logarithms whose val-
ues are rational numbers.

Each real number (rational or irrational) has a biunique
representation as a simple continued fraction. In addition, any
rational number can be represented as a finite continued frac-
tion and any finite continued fraction represents a rational
number [19].

Consequently, the set of natural frequencies of a chain
system of harmonic oscillators corresponds with a set of finite
continued fractions F , which are natural logarithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer
numbers: n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the
set and the number k ∈N of layers are finite. In the canonical
form, the numerator z is equal 1.

However, by means of the Euler equivalent transforma-
tion [20] every continued fraction with partial numerators
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z, 1 can be changed into a continued fraction in the canonical
form with z= 1.

Therefore, we will call the set F of finite continued frac-
tions (1) with z= 1 the “Fundamental Fractal” of natural fre-
quencies in chain systems of harmonic oscillators.

For rational exponents the natural exponential function is
transcendental [21]. Therefore, F is a set of transcenden-
tal numbers that is isomorphic to the set of rational numbers
represented by finite continued fractions. The function of iso-
morphism is the natural logarithm.

It seems that this transcendence and consequently the ir-
rationality of F provides the high stability of the oscillating
chain system because it avoids resonance interaction between
the elements of the system.

2 Projections of the Fundamental Fractal

All elements of the continued fractions F are integers and
can therefore be represented as unique products of prime fac-
tors. Consequently, we can distinguish classes of finite con-
tinued fractions (classes of rational numbers) in dependency
on the divisibility of the numerators and denominators by
prime numbers, as we have shown in [11]. Based on this,
different projections of F can be studied.

Figure 1 demonstrates the formation of the canonical pro-
jection (z= 1). Each vertical line represents a rational number
that is the logarithm of a natural frequency of a chain system
of harmonic oscillators.

Fig. 1: The formation of the canonical projection (z= 1) of the F
on the first layer k= 1 (natural logarithmic representation).

The distribution density increases hyperbolically with
|n j1|. In the range 1< |n j1|< 2 the distribution density is min-
imum. Figure 2 shows that for finite continued fractions (1),
ranges of high distribution density (nodes) arise near recipro-
cal integers 1, 1/2, 1/3, 1/4, . . . which are the attractor points
of the distribution.

All the denominators of the continued fractions F are
(positive and negative) integers. Therefore, the canonical pro-
jection is logarithmically symmetric, as figures 3 and 4 show.

Fig. 2: The canonical projection of the F in the range 0⩽ |n j0|⩽ 1
for k= 2 (natural logarithmic representation).

Fig. 3: The canonical projection of the F in the range 1⩽ |n j1|<∞
for k= 2 (natural logarithmic representation).

Fig. 4: The canonical projection of the F in the range −2⩽ S ⩽ 2
for k= 2 (natural logarithmic representation).

In the following we investigate continued fractions (1)
which meet the Markov [22] convergence condition |n|⩾|z|+1.

Figure 5 illustrates different projections generated by con-
tinued fractions (1) with denominators divisible by 2, 3, 4, . . .
and the corresponding numerators z= 1, 2, 3, . . .

Fig. 5: Different projections generated by continued fractions (1)
with denominators divisible by 2, 3, 4, . . . and corresponding numer-
ators z= 1, 2, 3, . . . .

Figure 5 shows the nodes on the first layer j= 1 and also
the borders of the node ranges, so the gaps are clearly visible.
The borders of the gaps are determined by the alternating con-
tinued fractions [z, 0; z+ 1,− z− 1, z+ 1,− z− 1, . . . ]= 1 and
[z, 0; z− 1,− z+ 1, z− 1,− z+ 1, . . . ]=− 1, for z⩾ 1.

Denominators that are divisible by 3 with z= 2 build the
class of continued fractions (1) that generates the projection
with the smallest gaps. These gaps remain empty even if the
number of layers k increases infinitely.

In the 2/3-projection, free links n j0 of the continued frac-
tions (1) that are divisible by 3 designate the main nodes, de-
nominators divisible by 3 designate subnodes while all the
other denominators designate the borders of gaps (see Fig-
ure 6 and 7).
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Fig. 6: The 2/3-projection of (1) with z= 2, divisible by 3 |n j0|= 3l, (l= 0, 1, 2, . . . ) and denominators divisible by 3 |n jk |= 3d, (d = 1, 2, . . . )
in the range of −4⩽F ⩽ 4).

Fig. 7: The same 2/3-projection like in fig. 6, but in the range of −1⩽F ⩽ 1.

In [23] we have shown that in the 2/3-projection, ranges
of gaps are connected with stochastic properties of natural
oscillations in chain systems of protons. In the current paper
we apply the canonical projection only.

3 Harmonic Scaling

Based on (1), we can now calculate the complete set ω jk of
natural angular frequencies of a chain system of similar har-
monic oscillators, if the fundamental frequency ω00 or any
other natural frequency of the set ω jk is known:

ω jk = ω00 exp (F ) . (2)

Here and in the following, F is considered in its canonical
projection with z= 1. The natural angular oscillation period τ
is defined as the reciprocal of the angular frequency:

τ jk = 1/ω jk . (3)

The complete set of natural angular scale oscillation periods:

τ jk = τ00 exp (F ) . (4)

In [12] we have shown that our model (1) can be applied also
in the case of natural oscillations in chain systems of har-
monic quantum oscillators where the oscillation energy E de-
pends only on the frequency (ℏ being the Planck constant):

E jk = ℏω jk . (5)

Consequently, the natural frequency set and the correspond-
ing set of natural energies are isomorphic, so that chain sys-
tems of harmonic quantum oscillators generate discrete expo-
nential energy series:

E jk = E00 exp (F ) , (6)

where E00 = ℏω00 is the fundamental energy. Because of the
mass-energy equivalence,

m jk = E jk/c2 (7)

the set of natural energies and the corresponding set of natu-
ral masses are isomorphic, so that chain systems of harmonic

quantum oscillators generate discrete exponential series of
masses:

m jk = m00 exp (F ) , (8)

where m00 =ω00 · ℏ/c2 is the fundamental mass.
Finally, the set of natural frequencies corresponds to an

isomorphic set of natural wavelengths (c being the speed of
light in vacuum),

λ jk = c/ω jk (9)
so that chain systems of harmonic quantum oscillators gener-
ate discrete exponential series of natural wavelengths:

λ jk = λ00 exp (F ) , (10)

where λ00 = c/ω00 is the fundamental wavelength.
As a consequence of (3) and (9), the set of natural wave-

lengths and the set of natural oscillation periods in chain sys-
tems of harmonic quantum oscillators coincide with an iso-
morphic set of natural velocities:

v jk = λ jk/τ jk . (11)

Therefore, chain systems of harmonic quantum oscillators
generate discrete exponential series of natural velocities as
well:

v jk = v00 exp (F ) , (12)

where the fundamental velocity v00 = c is the speed of light in
a vacuum.

In relation to the anticipated harmonic exponential series
of wavelengths, velocities, energies and masses as a conse-
quence of harmonic oscillations in chain systems, we propose
the term “harmonic scaling”.

The natural exponential function of a real argument x is
the unique nontrivial function that is its own derivative

d
dx

ex = ex

and therefore its own anti-derivative as well. Because of the
self-similarity of the natural exponential function regarding
its derivatives, any real number, being the result of a mea-
surement, can be thought of as a natural logarithm or as the
logarithm of a logarithm. Therefore, harmonic scaling is not
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limited to exponentiation, but can be extended to tetration,
pentation and other hyperoperations as well. In this case we
will use the term “hyperscaling”.

4 Harmonic Scaling of Fundamental Particles

In [12] we have shown that physical properties of fundamen-
tal particles, for example the proton-to-electron mass ratio or
the vector boson-to-electron mass ratio, can be derived from
eigenstates in chain systems of harmonic quantum oscillators.

In fact, the natural logarithm of the proton/neutron to elec-
tron mass ratio is close to [7; 2] and the logarithm of the
W/Z-boson to proton mass ratio is near [4; 2], so we can as-
sume the equation:

ln (mwz/mpn) = ln (mpn/me) − 3 .

Consequently, the logarithm of the W/Z-boson to electron
mass ratio is 4 1

2 + 7 1
2 = 12:

ln (mwz/me)= 12 ,

where me, mpn, mwz, are the electron, proton/neutron and
W/Z-boson rest masses. As table 1 shows, fundamental parti-
cle rest mass ratios correspond to attractor nodes of F . Here
and in the following we consider the continued fractions (1) in
the canonical form, with the numerator z= 1 and write them
in square brackets.

Table 1: Fundamental particle rest masses and the corresponding
attractor nodes of F , with the electron mass as fundamental. Data
taken from Particle Data Group.

particle particle rest mass m, MeV/c2 F ln(m/me) ln(m/me)−F
H-
boson

125090± 240 [12;2] 12.408 -0.092

Z-
boson

91187.6± 2.1 [12;∞] 12.092 0.092

W-
boson

80385± 15 [12;∞] 11.966 -0.034

neutron 939.565379± 0.000021 [7;2] 7.517 0.017
proton 938.272046± 0.000021 [7;2] 7.515 0.015
electron 0.510998928± 0.000000011 [0;∞] 0.000 0.000

As table 1 shows, the logarithms of fundamental particle
mass ratios are close to integer or half values that are rational
numbers with the smallest possible numerators and denomi-
nators.

However, the natural logarithm of the W/Z-boson to
proton mass ratio is not exactly 4.5, but between 11.966−
− 7.515= 4.451 and 12.092− 7.515= 4.577 that approxi-
mates exp (3/2)= 4.4817. Thus, the properties of fundamen-
tal particle masses (table 1) also support our model of hyper-
scaling.

5 Fundamental Metrology and Planck Units

The electron and the proton are exceptionally stable and
therefore accessible anywhere in the universe. Their lifespan
tops everything that is measurable, exceeding 1029 years for

protons and 1028 years for electrons [24]. In the framework of
the standard theory of particle physics, the electron is stable
because it is the least massive particle with non-zero elec-
tric charge. Its decay would violate charge conservation [25].
The proton is stable, because it is the lightest baryon and the
baryon number is conserved as well. Therefore, the proton-
to-electron mass ratio can be understood as a fundamental
physical constant.

These unique properties of electrons and protons predes-
tinate their physical characteristics as fundamental units. Ta-
ble 2 shows the basic set of electron and proton units that can
be considered as a fundamental metrology (c is the speed of
light in a vacuum, ℏ is the Planck constant, kB is the Boltz-
mann constant).

Table 2: The basic set of physical properties of the electron and pro-
ton. Data taken from Particle Data Group. Frequencies, oscillation
periods, temperatures and the proton wavelength are calculated.

property electron proton

mass m 9.10938356(11) · 10−31 kg 1.672621898(21) · 10−27 kg
energy E =mc2 0.5109989461(31) MeV 938.2720813(58) MeV
angular frequency
ω= E/ℏ

7.76344071 · 1020 Hz 1.42548624 · 1024 Hz

oscillation period
τ= 1/ω

1.28808867 · 10−21s 7.01515 · 10−25 s

wavelength
λ= c/ω

3.8615926764(18) · 10−13 m 2.1030891 · 10−16 m

temperature
T =mc2/kB

5.9298 · 109 K 1.08881 · 1013 m

In [15] we have shown that the Planck scale corresponds
to a main attractor node of F and consequently, Planck units
[26] are completely compatible with the fundamental metrol-
ogy (tab. 2).

Originally proposed in 1899 by Max Planck, these units
are also known as natural units, because the origin of their
definition comes only from properties of nature and not from
any human construct.

Max Planck wrote [27] that these units, “regardless of any
particular bodies or substances, retain their importance for all
times and for all cultures, including alien and non-human, and
can therefore be called natural units of measurement”. Planck
units are based only on the properties of space-time.

In fact, the logarithm of the Planck-to-proton mass ration
is near the node [44;∞] of the F :

ln
(

mPlanck

mproton

)
= ln

(
2.17647 · 10−8

1.6726219 · 10−27

)
= 44.012. (13)

This fact does not only support our model (1), but allows us
to derive the proton rest mass from the fundamental physical
constants c, ℏ, G:

mproton = exp(−44)(ℏc/G)1/2 . (14)

In 1899, Max Planck noted that with his discovery of the
quantum of action, sufficient fundamental constants were now
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Fig. 8: The correspondence between electron-calibrated attractor nodes [m j0] and proton-calibrated attractor nodes [n j0] of F in its canon-
ical projection.

Fig. 9: The correspondence of electron-calibrated subnodes [m j0; m j1] to proton-calibrated subnodes [n j0; n j1] on the first layer of F in the
canonical projection.

Fig. 10: The correspondence of the electron-calibrated F (above) to the proton-calibrated F (below) in the 2/3-projection.

known to define universal units for length, time, mass, and
temperature.

This equation (14) may well be of cosmological signif-
icance, because it means that the values of proton and the
electron rest masses are equally fundamental properties of
space-time as are the speed of light, the Planck constant and
the gravitational constant.

6 Cosmic Microwave Background

CMB data is critical to cosmology since any proposed model
of the universe must explain this radiation. Within our model,
the CMB can be understood as an eigenstate in a chain system
of oscillating protons, because the black body temperature of
the CMB corresponds to the main attractor node [−29;∞] of
the F calibrated on the proton temperature (table 2):

ln
(

TCMB

Tproton

)
= ln

(
2.726 K

1.08881 · 1013 K

)
= −29.016. (15)

7 Global Scaling

We hypothesise that harmonic scaling is a global pheno-
menon and continues in all scales, following the fundamen-
tal fractal (1) that is calibrated by this fundamental metrol-
ogy (table 2). This hypothesis we have called ‘Global Scal-
ing’ [23].

8 Calibration of the Fundamental Fractal

Table 1 shows that the natural logarithm of the proton-to-
electron mass ratio is approximately 7.5 and consequently,
the F calibrated on the proton will be shifted by 7.5 logarith-
mic units relative to the F calibrated on the electron. Figure 8
demonstrates this situation in the canonical projection.

As a consequence, all integer logarithms (n j1 =∞) of the
proton F correspond to half logarithms (m j1 =± 2) of the
electron F and vice versa. In addition, the Diophantine equa-
tion (18) describes the correspondence of proton-calibrated
subnodes [n j0; n j1] with electron-calibrated subnodes [m j0;
m j1] on the first layer k= 1 of F :

1
n j1
+

1
m j1
=

1
2
. (16)

Only three pairs (n j1, m j1) of integers are solutions to this
equation: (4, 4), (3, 6) and (6, 3). Figure 9 demonstrates this
correspondence.

In fact, if a process property corresponds to a half loga-
rithm (m j1 = ± 2) of the electron calibrated F it also corre-
sponds to an integer logarithm (n j1 = ∞) of the proton cali-
brated F . Consequently, we must treat half logarithms and
integer logarithms with equal (highest) priority. Furthermore,
subnodes that satisfy the equation (16) are of high signifi-
cance because the subnodes m j1=±3, m j1=±4 and m j1=±6
of the electron F coincide with the subnodes n j1=±6, n j1=±4
and n j1 =± 3 of the proton F . It is likely that this correspon-
dence amplifies the attractor effect of these subnodes.

As figure 10 shows, in the 2/3-projection, the electron-
based F (above) fills the empty intervals 3l + 1 ⩽ S ⩽ 3l + 2
(l = 0, 1, 2, . . . ) in the proton-based F (below). Furthermore,
in the intervals 3l+ 1/2⩽ S ⩽ 3l+ 1 (l= 0, 1, 2, . . . ) the pro-
ton F overlaps with the electron F . In the 2/3-projection,
the subnodes [2, n j0; 3,−6] and [2, n j0;−3, 6] in the logarith-
mic center of the overlapping area are the only nodes that are
common to both the proton-based and electron-based F .

In [23] we have applied the 2/3-projection on the Solar
system. In the following, we will test our hypothesis of global
scaling on the Solar system applying the canonical projection.
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9 Applying Global Scaling on the Solar System

In 2010 we have shown [16] that the masses of large celes-
tial bodies in the Solar system continue the scale-invariant
sequence of fundamental particle rest masses (see table 1),
corresponding with main attractor nodes of the fundamental
fractal (1).

If we consider the Solar system as still evolving – at least
in terms of small body collisions and matter exchanges with
neighbouring systems – the expected attractor effect of nodes
suggests applying F for the prediction of evolutionary trends.

Yet, the existence of stable orbits and large celestial bod-
ies with stable rotation periods suggests testing our hypothe-
sis of global scaling on the Solar system. Let us begin with
the most noticeable examples.

The Sun

The current amount of the Solar mass supports our hypothesis
of global scaling, because it corresponds to a main attractor
node of the electron-calibrated F (8). In fact, the natural log-
arithm of the Sun-to-electron mass ratio is close to an integer
number:

ln
(

MSun

melectron

)
= ln

(
1.9884 · 1030 kg

9.10938356 · 10−31 kg

)
= 138.936.

Also, the Solar radius corresponds to a main attractor node of
the electron F (10):

ln
(

RSun

λelectron

)
= ln

(
6.96407 · 108 m

3.8615926764 · 10−13 m

)
= 48.945.

The Solar sidereal rotation period is in between τmin = 24.5
days at the equator and τmax = 34.4 days at the poles. The
canonical projection of the electron F (4) shows that the
Solar rotation period varies between the main attractor node
[63;∞] and its nearest significant subnode [63;−3]:

ln
(
τmax

τelectron

)
= ln

(
34.4 · 86164 s

1.28808867 · 10−21 s

)
= 63.003 ,

ln
(
τmin

τelectron

)
= ln

(
24.5 · 86164 s

1.28808867 · 10−21 s

)
= 62.664 .

Jupiter

Let’s start with Jupiter’s body mass:

ln
(

MJupiter

melectron

)
= ln

(
1.8986 · 1027 kg

9.10938356 · 10−31 kg

)
= 131.981

we can see that the Jupiter body mass corresponds to the main
attractor node [132; ∞] of the electron F (8) and within our
model, the body mass of Jupiter MJupiter can be calculated
from the Solar Mass MSun, by simply dividing it seven times
by the Euler number e= 2.71828 . . . :

MJupiter =
MSun

exp (7)
. (17)

Jupiter’s body radius corresponds to the significant subnode
[47;−3] of the electronF (10):

ln
(

RJupiter

λelectron

)
= ln

(
7.1492 · 107 m

3.8615926764 · 10−13 m

)
= 46.668 .

The sidereal rotation period of Jupiter is 9.925 hours and cor-
responds with the main attractor node [66;∞] of the proton
F (4):

ln
(
τJupiter

τproton

)
= ln

(
9.925 · 3600 s

7.01515 · 10−25 s

)
= 66.100 .

In contrast to rotation as angular movement, the location of a
celestial body in the Solar system in orbital movement
changes permanently. Furthermore, in the case of non-zero
eccentricity, the angular velocity of orbital movement is not
constant. Therefore, we expect that the orbital periods coin-
cide with attractor nodes of the F (4) with the electron oscil-
lation period 2πτe as the fundamental. For example, Jupiter’s
orbital period of 4332.59 days fulfils the conditions of global
scaling very precisely:

ln
(

TJupiter

2πτelectron

)
= ln

(
4332.59 · 86164 s

8.0932998 · 10−21 s

)
= 66.001.

When the logarithm of the sidereal rotation period of Jupiter
slows down to [66;∞], the orbital-to-rotation period ratio of
Jupiter can be described by the equation:

TJupiter

τJupiter
= 2π

τelectron

τproton
. (18)

The orbital velocity of Jupiter is between vmin = 12.44 and
vmax=13.72 km/s. This velocity clearly approximates the main
attractor node [−10;∞] of the F calibrated on the speed of
light (12):

ln
(
vmax

c

)
= ln

(
13720 m/s

299792458 m/s

)
= −9.992,

ln
(
vmin

c

)
= ln

(
12440 m/s

299792458 m/s

)
= −10.090.

Consequently, the orbital distance of Jupiter between Peri-
helion= 4.95029 and Aphelion= 5.45492 astronomical units
approximates the main attractor node [56;∞] of the electron-
calibrated F (10):

ln
(

AJupiter

λelectron

)
= ln

(
5.45492 · 149597870700 m

3.8615926764 · 10−13 m

)
= 56.011,

ln
(

PJupiter

λelectron

)
= ln

(
4.95029 · 149597870700 m

3.8615926764 · 10−13 m

)
= 55.914.

By the way, the masses of Jupiter’s largest moons fulfil the
condition of global scaling as well. For example, the body
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mass of Ganymede fits perfectly with the main node [115;∞]
of the proton F (8):

ln
(

MGanymede

mproton

)
= ln

(
1.4819 · 1023 kg

1.672621 · 10−27 kg

)
= 115.009.

On the other hand, the body mass of Io corresponds with the
significant subnode [114; 2]:

ln
(

MIo

mproton

)
= ln

(
8.9319 · 1022 kg

1.672621 · 10−27 kg

)
= 114.502.

Venus

The morning star is another impressive example of global
scaling. Like the Sun or Jupiter, the body mass of Venus cor-
responds to a main attractor node of the electron F (8):

ln
(

MVenus

melectron

)
= ln

(
4.8675 · 1024 kg

9.10938356 · 10−31 kg

)
= 126.015.

Although the rotation of Venus is reverse, its rotation pe-
riod of 5816.66728 hours fits perfectly with the main attractor
node [65;∞] of the electron calibrated F (4):

ln
(
τVenus

τelectron

)
= ln

(
5816.66728 · 3600 s
1.28808867 · 10−21 s

)
= 64.958.

The sidereal orbital period of Venus of 224.701 days fulfils
the condition of global scaling as well:

ln
(

TVenus

2πτelectron

)
= ln

(
224.701 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 63.042.

The orbital velocity of Venus (vmin = 34.79 and vmax =

= 35.26 km/s) corresponds well to the main attractor node
[−9;∞] of the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
35260 m/s

299792458 m/s

)
= −9.048,

ln
(
vmin

c

)
= ln

(
34790 m/s

299792458 m/s

)
= −9.062.

The orbital distance of Venus (Perihelion=0.71844 and Aphe-
lion= 0.728213 astronomical units) corresponds precisely to
the main attractor node [54;∞] of the electron calibrated
F (10):

ln
(

AVenus

λelectron

)
= ln

(
0.728213 · 149597870700 m

3.8615926764 · 10−13 m

)
= 53.997,

ln
(

PVenus

λelectron

)
= ln

(
0.718440 · 149597870700 m

3.8615926764 · 10−13 m

)
= 53.984.

The current body radius of Venus corresponds with the sub-
node [44; 5] of the electron F (10):

ln
(

RVenus

λelectron

)
= ln

(
6.053 · 106 m

3.8615926764 · 10−13 m

)
= 44.199.

However, its vicinity to the significant subnode [44; 4] gives
reason to expect that Venus is still growing.

Mars

Again, the body mass of Mars corresponds to a main attractor
node of the electron F (8):

ln
(

MMars

melectron

)
= ln

(
6.4171 · 1023 kg

9.10938356 · 10−31 kg

)
= 123.989.

The sidereal rotation period of Mars is 24.62278 hours and
coincides perfectly to the main node [67;∞] of the proton
F (4):

ln
(
τMars

τproton

)
= ln

(
24.62278 · 3600 s
7.01515 · 10−25 s

)
= 67.008.

The orbital velocity of Mars is between 21.97 and 26.50 km/s,
approximating the subnode [−9;−2] of the speed of light cal-
ibrated F (12):

ln
(
vmax

c

)
= ln

(
26500 m/s

299792458 m/s

)
= −9.334,

ln
(
vmin

c

)
= ln

(
21970 m/s

299792458 m/s

)
= −9.521.

In addition, the orbital period of Mars 686.971 days meets
precisely the condition of global scaling:

ln
(

TMars

2πτelectron

)
= ln

(
686.971 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 65.997.

The orbital distance of Mars (Perihelion= 1.3814 and Aphe-
lion= 1.6660 astronomical units) approximates the signifi-
cant subnode [55;−4] of the electron F (10):

ln
(

AMars

λelectron

)
= ln

(
1.6660 · 149597870700 m
3.8615926764 · 10−13 m

)
= 54.825,

ln
(

PMars

λelectron

)
= ln

(
1.3814 · 149597870700 m
3.8615926764 · 10−13 m

)
= 54.637.

The current body radius of Mars is close to the significant
subnode [44;−3] of the F (10):

ln
(

RMars

λelectron

)
= ln

(
3.396 · 106 m

3.8615926764 · 10−13 m

)
= 43.621.

It is therefore likely that Mars, too, is still growing. From this
point of view, the large Martian canyon (Valles Marineris) can
be interpreted as a sign of crustal swelling [28].

Earth

The current mass of the Earth corresponds to the significant
subnode [126; 4] of the electron F (8):

ln
(

MEarth

melectron

)
= ln

(
5.97237 · 1024 kg

9.10938356 · 10−31 kg

)
= 126.220.

Hence, we can expect that the Earth is slightly increasing its
mass.
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The body radius of the Earth approximates precisely the
significant subnode [44; 4] of the electron F (10):

ln
(

REarth equator

λelectron

)
= ln

(
6.378 · 103 m

3.8615926764 · 10−13 m

)
= 44.251,

ln
(

REarth pole

λelectron

)
= ln

(
6.357 · 103 m

3.8615926764 · 10−13 m

)
= 44.248.

The sidereal rotation period of the Earth is 23.93444 hours
and is located very close to the main node [67;∞] in the pro-
ton F (4):

ln
(
τEarth

τproton

)
= ln

(
23.93444 · 3600 s
7.01515 · 10−25 s

)
= 66.980,

Therefore, we can expect that the rotation period of the Earth
is also slightly increasing. Empirical studies [29] confirm the
correlation between body mass and rotation period.

Earth’s orbital period of 365.256363 days is close to the
main attractor node [71] of the proton-based F (4):

ln
(

TEarth

2πτproton

)
= ln

(
365.256363 · 86164 s
2π · 7.01515 · 10−25 s

)
= 71.043.

Earth’s orbital velocity is between vmin = 29.29 and vmax =

= 30.29 km/s, approximating the significant subnode [−9; 4]
of the speed of light-based F (12):

ln
(
vmax

c

)
= ln

(
30290 m/s

299792458 m/s

)
= −9.200,

ln
(
vmin

c

)
= ln

(
29290 m/s

299792458 m/s

)
= −9.234,

The orbital distance of the Earth (Perihelion = 0.9832687 and
Aphelion = 1.01673 astronomical units) corresponds to the
significant subnode [54; 3] of the electron-based F (10):

ln
(

AEarth

λelectron

)
= ln

(
1.0167300 · 149597870700 m

3.8615926764 · 10−13 m

)
= 54.331,

ln
(

PEarth

λelectron

)
= ln

(
0.9832687 · 149597870700 m

3.8615926764 · 10−13 m

)
= 54.297.

Mercury

Mercury’s body mass is close to the significant subnode
[123; 3] of the electron F (8):

ln
(

MMercury

melectron

)
= ln

(
3.3011 · 1023 kg

9.10938356 · 10−31 kg

)
= 123.324.

Its body radius is close to the significant subnode [43; 3] of
the electron F (10):

ln
(

RMercury

λelectron

)
= ln

(
2.44 · 103 m

3.8615926764 · 10−13 m

)
= 43.290.

So we can expect that Mercury is slightly increasing its mass
and size. The sidereal rotation period of Mercury is 1407.5
hours and corresponds to the main attractor node [71;∞] of
the proton F (4):

ln
(
τMercury

τproton

)
= ln

(
1407.5 · 3600 s

7.01515 · 10−25 s

)
= 71.054.

The sidereal orbital period of Mercury of 87.9691 days is
close to the main attractor node [62;∞] of the electron F (4):

ln
(

TMercury

2πτelectron

)
= ln

(
87.9691 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 62.104.

The orbital velocity of Mercury oscillates between the main
attractor node [−9;∞] and the significant subnode [−9; 2] of
the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
58980 m/s

299792458 m/s

)
= −8.534,

ln
(
vmin

c

)
= ln

(
38860 m/s

299792458 m/s

)
= −8.951.

Mercury’s Aphelion corresponds to the main attractor node
[61;∞] of the proton calibrated F (10):

ln
(

AMercury

λproton

)
= ln

(
0.466697 · 149597870700 m

2.1030891 · 10−16 m

)
= 61.067.

Saturn

Saturn’s body mass is close to the significant subnode [131;
−4] of the electron calibrated F (8),

ln
(

MSaturn

melectron

)
= ln

(
5.6836 · 1023 kg

9.10938356 · 10−31 kg

)
= 130.776

so we suspect that Saturn is actually losing mass and that its
ring system is part of the loss process.

The sidereal rotation period of Saturn is 10.55 hours and
corresponds to the significant subnode [59;−3] of the electron
F (4):

ln
(
τSaturn

τelectron

)
= ln

(
10.55 · 3600 s

1.28808867 · 10−21 s

)
= 58.646.

Therefore, we may expect that Saturn is slightly slowing
down its rotation. The orbital period of Saturn of 10759.22
days corresponds to the main attractor node [67;∞] of the
electron F (4):

ln
(

TSaturn

2πτelectron

)
= ln

(
10759.22 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 66.911.

Therefore, we may predict that Saturn is slightly increasing
its orbit.
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The current orbital velocity of Saturn is between 9.09 and
10.18 km/s, approximating the significant subnode [−10; 3]
of the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
10180 m/s

299792458 m/s

)
= −10.290,

ln
(
vmin

c

)
= ln

(
9090 m/s

299792458 m/s

)
= −10.404.

The orbital distance of Saturn is between Perihelion= 9.024
and Aphelion=10.086 astronomical units, oscillating between
the significant subnodes [57;−2] and [57;−3] of the electron
F (10):

ln
(

ASaturn

λelectron

)
= ln

(
10.086 · 149597870700 m
3.8615926764 · 10−13 m

)
= 56.625,

ln
(

PSaturn

λelectron

)
= ln

(
9.024 · 149597870700 m
3.8615926764 · 10−13 m

)
= 56.514.

Saturn’s equatorial body radius is very close to the significant
subnode [46; 2] of the electron F (10):

ln
(

RSaturn

λelectron

)
= ln

(
6.0268 · 107 m

3.8615926764 · 10−13 m

)
= 46.497

and consequently, to the main attractor node [54;∞] of the
proton F (10) as well:

ln
(

RSaturn

λproton

)
= ln

(
6.0268 · 107 m

2.1030891 · 10−16 m

)
= 54.012.

Furthermore, Titan’s body mass is near the main node [115;
∞] of the proton F (8):

ln
(

MTitan

mproton

)
= ln

(
1.3452 · 1023 kg

1.672621 · 10−27 kg

)
= 114.912.

Uranus

To reach the nearby main attractor node [129;∞] of the elec-
tron-based F (8), Uranus must increase its body mass by ap-
prox. 1/10 logarithmic units:

ln
(

MUranus

melectron

)
= ln

(
8.681 · 1025 kg

9.10938356 · 10−31 kg

)
= 128.897.

The orbital period of Uranus of 30688.5 days corresponds to
the main attractor node [68;∞] of the electron-based F (4):

ln
(

TUranus

2πτelectron

)
= ln

(
30688.5 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 67.959,

Like Neptune, the body radius of Uranus is close to the sig-
nificant subnode [46;−3] of the electron F (10):

ln
(

RUranus

λelectron

)
= ln

(
2.5559 · 107 m

3.8615926764 · 10−13 m

)
= 45.639.

We may therefore expect that Uranus, like Neptune, is slightly
swelling.

The orbital distance of Uranus (Perihelion= 18.33 and
Aphelion= 20.11 astronomical units) approximates the sig-
nificant subnode [57; 4] of the electron F (10):

ln
(

AUranus

λelectron

)
= ln

(
20.11 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.315,

ln
(

PUranus

λelectron

)
= ln

(
18.33 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.223.

The orbital velocity of Uranus is between 6.49 and 7.11 km/s,
approximating the significant subnode [−11; 3] of the speed
of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
7110 m/s

299792458 m/s

)
= −10.741,

ln
(
vmin

c

)
= ln

(
6490 m/s

299792458 m/s

)
= −10.649.

The sidereal rotation period of Uranus is 17.24 hours and
corresponds to the significant subnode [67;−3] of the proton
F (4):

ln
(
τUranus

τproton

)
= ln

(
17.24 · 3600 s

7.01515 · 10−25 s

)
= 66.652.

Therefore,we can expect that Uranus is slightly slowing
down its rotation.

Neptune

Neptune’s body mass corresponds to the main attractor node
[129;∞] of the electron calibrated F (8):

ln
(

MNeptune

melectron

)
= ln

(
1.0243 · 1026 kg

9.10938356 · 10−31 kg

)
= 129.062.

The sidereal rotation period of Neptune is 16.11 hours and
coincides perfectly with the main attractor node [59;∞] of
the electron-calibrated F (4):

ln
(
τNeptune

τelectron

)
= ln

(
16.11 · 3600 s

1.28808867 · 10−21 s

)
= 59.069.

The orbital velocity of Neptune is between 5.37 and 5.50
km/s, close to the main node [−11;∞] of the speed of light
calibrated F (12):

ln
(
vmax

c

)
= ln

(
5500 m/s

299792458 m/s

)
= −10.930,

ln
(
vmin

c

)
= ln

(
5370 m/s

299792458 m/s

)
= −10.906.
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Neptune’s current orbital distance (Perihelion= 29.81 and
Aphelion= 30.33 astronomical units) corresponds to the sig-
nificant subnode [58;−4] of the electron-calibrated F (10):

ln
(

ANeptune

λelectron

)
= ln

(
30.33 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.726,

ln
(

PNeptune

λelectron

)
= ln

(
29.81 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.709.

Because of the assumed attractor effect of the main node
[−11;∞] of the F (12), we can expect that the logarithm of
Neptune’s orbital velocity should decrease by nearly 1/10. At
the same time, the logarithm of Neptune’s orbital distance
should increase by almost 1/20 due to the attractor effect of
the significant subnode [58;−4] of the F (10). This trend
forecast agrees with the Kepler laws: for circular Solar or-
bits, the orbital velocity of a planet changes with the square
root of its orbital distance.

In addition, Neptune’s orbital period of 60182 days is
close to the significant subnode [69;−3] of the electron F (4):

ln
(

TNeptune

2πτelectron

)
= ln

(
60182 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 68.632.

This value supports our trend estimation that Neptune’s orbit
is slightly growing.

The current body radius of Neptune is close to the signif-
icant subnode [46;−3] of F (10):

ln
(

RNeptune

λelectron

)
= ln

(
2.4764 · 107 m

3.8615926764 · 10−13 m

)
= 45.607.

And so, we can expect that Neptune is still swelling.

Pluto

Although Pluto is no longer considered a planet, its body
mass corresponds well with the main attractor node [120;∞]
of the electron F (8):

ln
(

MPluto

melectron

)
= ln

(
1.305 · 1022 kg

9.10938356 · 10−31 kg

)
= 120.094.

The orbital period of Pluto of 90560 days corresponds to the
main attractor node [69;∞] of the electron F (4):

ln
(

TPluto

2πτelectron

)
= ln

(
90560 · 86164 s

2π · 1.28808867 · 10−21 s

)
= 69.044.

The sidereal rotation period of Pluto is 152.87496 hours and
corresponds to the significant subnode [61; 3] of the electron-
calibrated F (4):

ln
(
τPluto

τelectron

)
= ln

(
152.87496 · 3600 s

1.28808867 · 10−21 s

)
= 61.319.

Therefore, we can expect that Pluto is slightly slowing down
in its rotation.

The orbital velocity of Pluto oscillates between 3.71 and
6.10 km/s, approximating the main attractor node [−11;∞] of
the speed of light calibrated F (12):

ln
(
vmax

c

)
= ln

(
6100 m/s

299792458 m/s

)
= −10.803,

ln
(
vmin

c

)
= ln

(
3710 m/s

299792458 m/s

)
= −11.300.

The orbital distance of Pluto (Perihelion= 29.656 and Aphe-
lion= 49.319 astronomical units) approximates the main at-
tractor node [58;∞] of the electron-calibrated F (10):

ln
(

APluto

λelectron

)
= ln

(
49.319 · 149597870700 m
3.8615926764 · 10−13 m

)
= 58.212,

ln
(

PPluto

λelectron

)
= ln

(
29.656 · 149597870700 m
3.8615926764 · 10−13 m

)
= 57.704.

The body radius of Pluto 1187± 7 km is close to the signifi-
cant subnode [42; 2] of the electron-calibrated F (10),

ln
(

RPluto

λelectron

)
= ln

(
1187 · 106 m

3.8615926764 · 10−13 m

)
= 42.570,

which is also close to the main attractor node [50;∞] of the
proton-calibrated F (10):

ln
(

RPluto

λproton

)
= ln

(
1187 · 106 m

2.1030891 · 10−16 m

)
= 50.085.

Hence, we can expect that Pluto is slightly shrinking. This
prognosis matches with new findings of surface-atmosphere
interactions and mass wasting processes [30] on Pluto.

By the way, also Charon’s body mass fits with the main
node [118;∞] of the electron F (8):

ln
(

MCharon

melectron

)
= ln

(
1.587 · 1021 kg

9.10938356 · 10−31 kg

)
= 117.944.

In conclusion, table 3 gives an overview of the current posi-
tions in the electron calibrated F (4), (8), (10), and (12) of the
Sun and the planets (including Pluto) regarding their masses,
sizes, rotation, orbital distances, periods and velocities.

Table 3 shows that our model (1) allows to see a connec-
tion between the stability of the Solar system and the stability
of electron and proton. Jupiter, Neptune, Venus and Pluto oc-
cupy mostly main attractor nodes of the electron calibrated
fundamental fractal F and therefore they can be understood
as electron determined factors of stability in the Solar sys-
tem. It is interesting that also the Sun occupies main nodes
of the electron F . Considering the coincidence of half log-
arithms in the electron F with integer logarithms (main at-
tractor nodes) of the proton F , the stability of Earth’s rota-
tion and orbit seems connected with the stability of the pro-
ton. Furthermore, Earth’s mass and radius occupy the subn-
ode n1 = 4 that is maximum distant from any main attractor
node of the F . This position could be connected with some
optimum of flexibility, if we consider the main nodes as is-
lands of stability.
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Table 3: The current positions in the electron calibrated F (4), (8),
(10) and (12) of the largest bodies regarding their masses, sizes, ro-
tation, orbital distances, periods and velocities. In the cases of large
eccentricity∗, the logarithmically average position is indicated.

celestial
body

mass in
F (8)

radius in
F (10)

rotation
period
inF (4)

orbital
period in
inF (4)

orbital
distance
inF (10)

orbital
velocity
inF (12)

Sun [139;∞] [49;∞] [63;∞]
Jupiter [132;∞] [47; −3] [58; 2] [66;∞] [56;∞] [−10; ∞]
Saturn [131;−4] [46; 2] [59; −3] [67;∞] [56; 2] [−10; −3]
Neptune [129;∞] [46; -3] [59; ∞] [69; −3] [58; −4] [−11; ∞]
Uranus [129;∞] [46; -3] [59; 6] [68;∞] [57; 4] [−11; 3]
Earth [126; 4] [44; 4] [59; 2] [63; 2] [54; 3] [−9; −4]
Venus [126;∞] [44; 4] [65;∞] [63;∞] [54;∞] [-9;∞]
Mars [124;∞] [44; −3] [59; 2] [64; 6] [55; −4] [−9; −2]
Mercury [123; 3] [43; 3] [63; 2] [62; 6] [53; 3]∗ [−9; 3]∗

Pluto [120;∞] [42; 2] [61; 3] [69;∞] [58;∞]∗ [−11;∞]∗

Resume

Properties of fundamental particles, for example the proton-
to-electron mass ratio or the vector boson-to-electron mass
ratio (table 1), support our scale-invariant model (1) of eigen-
states in chain systems of harmonic quantum oscillators and
have allowed us to derive the proton rest mass from funda-
mental physical constants (14). In addition, the cosmic mi-
crowave background can be interpreted as an eigenstate of a
chain system of oscillating protons (15).

In our scale-invariant model, physical properties of ce-
lestial bodies such as mass, size, rotation and orbital period
can be understood as macroscopic quantized eigenstates of
chain systems of oscillating protons and electrons. This un-
derstanding can be applied to evolutionary trend prognosis of
the Solar system but may be of cosmological significance as
well. Conceivably, the observable exponential expansion of
the universe is a consequence of the scale-invariance of the
fundamental fractal (1).
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Notes on Extended Lorentz Transformations for Superluminal Reference Frames

Yaroslav I. Grushka
Institute of Mathematics NAS of Ukraine. 3, Tereschenkivska st., Kyiv, 01601, Ukraine. E-mail: grushka@imath.kiev.ua

The present paper is devoted to the analysis of different versions of extended Lorentz
transformations, proposed for reference frames moving with the velocity, greater then
the velocity of light. In particular we point out some errors of individual authors in this
field.

This work is connected with the theory of tachyon move-
ment. Research in this direction were initiated in the pa-
pers [1, 2] more than 50 years ago. Then, in the papers of
E. Recami, V. Olkhovsky and R. Goldoni [3–5], the extended
Lorentz transformations for reference frames, moving with
the velocity, greater then the velocity of light c were pro-
posed. Latter the above extended Lorentz transformations
were rediscovered in [6, 7]. The ideas of E. Recami, V. Olk-
hovsky and R. Goldoni are still relevant in our time. In par-
ticular B. Cox and J. Hill published in [7] a new and elegant
way to deduce the formulas of E. Recami, V. Olkhovsky and
R. Goldoni’s extended Lorentz transformations. Also in pa-
per [8] the extended Lorentz transformations are obtained for
the case, where the space of geometrical coordinates may be
any real Hilbert space of any dimension, including infinity.
Application of the E. Recami, V. Olkhovsky and R. Goldoni’s
extended Lorentz transformations to the problem of spinless
tachyon localization can be found in [9].

In the paper [10] author tries to obtain several variants
of new extended superluminal Lorentz transformations, dif-
ferent from transforms obtained by E. Recami, V. Olkhovsky
and R. Goldoni. It should be emphasized, that the paper [10],
together with incorrect statements, contains also valuable new
results. For example, nonlinear extended Lorentz transforma-
tions, proposed in [10], may be applied in the theory of kine-
matic changeable sets [11] for construction some interesting
examples or counterexamples. Now we focus on errors, com-
mitted by the author of [10].

At first view, the coordinate transformations (3)–(4) and
(9)–(10) from [10] look like as new. But, actually, the for-
mulas (3)–(4) and (9)–(10) from [10] are some, not quite cor-
rect, representations for well-known classical Lorentz trans-
formations. Hence, these transformations can not be coor-
dinate transformations for reference frames moving with the
superluminal velocity.

For example, let us analyze in details the transformations
(3)–(4) from [10] for the case of one space dimension:

x′ = γ(v) (x − v f (v)t) (a)

t′ = γ(v)
(
t − v f (v)x

c2

)
, (b)

where (x, t) are the space-time coordinates of any point in the
fixed reference frame l and (x′, t′) are the space-time coordi-
nates of this point in the moving frame l′.

According to [10], the function f (v) may be any real func-
tion, satisfying the following conditions:

1. f (v) > 0, v ∈ R and f (0) = 1;
2. f (v) is even (that is f (−v) = f (v), v ∈ R);

The multiplier γ(v) in (a)–(b) is connected with the
function f by the formula,

γ(v) =
(
1 − v

2 f 2(v)
c2

)−1/2

.

Thus, the following condition must be satisfied:
3. The transformations (a)–(b) are defined for such values
v ∈ R, for which the inequality |v| f (v) < c is performed.

In the paper [10], the parameter v is treated as the ve-
locity of the moving reference frame l′. Thus, to in-
clude the subluminal diapason into the set of “allowed
velocities”, we may apply following condition:

4. v f (v) < c for 0 < v < c.

Note, that the condition 4 is not strictly necessary, and in
the analysis of the transformations (a)–(b) we take into ac-
count only the conditions 1–3.

According to the paper [10], the parameter v in transfor-
mations (a)–(b) is the velocity of the moving reference frame
l′. But now we are going to prove that the last statement is
not true. For this purpose we calculate the inverse transform
to (a)–(b), by means of solving the system (a)–(b) relatively
the variables (x, t):

x = γ(v)
(
x′ + v f (v)t′

)
(c)

t = γ(v)
(
t′ +
v f (v)x′

c2

)
. (d)

The origin of the moving reference frame l′ at any fixed time
point τ has the coordinates (0, τ) in the frame l′, and, ac-
cording to the transformations (c)–(d), it has the coordinates
(γ(v)v f (v)τ, γ(v)τ) in the frame l. Consequently, the origin of
the moving frame l′ will overpass the distance γ(v)v f (v)τ dur-
ing the time interval

[
0, γ(v)τ

]
(where we select any τ , 0).

Hence, the velocity u of the moving reference frame l′ is equal
to the following value:

u =
γ(v)v f (v)τ
γ(v)τ

= v f (v),
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which is not v. Thus, the parameter v in (a)–(b) is expressed
via the actual velocity u of the reference frame l′ by means of
the formula, v = u

f (v) . And the substitution of the value u
f (v)

instead of v into transformations (a)–(b) leads to the classical
Lorentz transformations.

Hence, we have seen, that the formulas (a)–(b) (or the
formulas (3)–(4) from [10]) are one of the representations
for classical Lorentz transformations, and the actual veloc-
ity u = v f (v) of the moving reference frame, according to the
condition 3, can not exceed the velocity of light.

Also, it should be noted, that the transformations (a)–(b)
(or (3)–(4) from [10]) are preserving the Lorentz-Minkowski
pseudo-metric:

Mc (t, x) = x2 − c2t2

in the Minkowski space-time over real axis x ∈ R. But any bi-
jective linear operator in the Minkowski space-time, preserv-
ing the Lorentz-Minkowski pseudo-metric, belongs to the gen-
eral Lorentz group [12], and it can not be coordinate trans-
form for superluminal reference frame.

The coordinate transformations (9)–(10) from [10], ac-
cording to the author requirements, also are preserving the
Lorentz-Minkowski pseudo-metric in the Minkowski space-
time over R3. Therefore they also can not be coordinate
transformations for superluminal reference frames. And they
can be analyzed in details by a similar way as the transforma-
tions (3)–(4) from [10].

Submitted on July 25, 2017
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In this paper, we revisit the question of relativistic mass to clarify the meaning of this
concept within special relativity, and consider time dilation and length contraction in
more detail. We see that “length contraction” is a misnomer and that it should really
be named “space contraction” to avoid confusion, and demonstrate the complementary
nature of time dilation and space contraction. We see that relativistic mass is dependent
on the difference in velocity v between an object’s proper frame of reference that is at
rest with the object and the frame of reference from which it is observed. We show that
the inertial mass of a body is its proper mass while the relativistic mass m∗ is in effect
an effective mass. We find that relativistic mass results from dealing with dynamic
equations in local time t in a frame of reference moving with respect to the object of
interest, instead of the invariant proper time τ in the frame of reference at rest with the
object. The results obtained are in agreement with the Elastodynamics of the Spacetime
Continuum.

1 Introduction

The concept of relativistic mass has been a part of special rel-
ativistic physics since it was first introduced by Einstein [1,2]
and explored by the early relativists (see for example [3, 4]).
Other terminology is also used for relativistic mass, repre-
senting the users’ perspective on the concept. For example,
Aharoni [5] refers to it as the “relative mass”, while Dixon [6]
refers to it as “apparent mass”. Oas [7] and Okun [10] pro-
vide good overviews on the development of the historical use
of the concept of relativistic mass. Oas [8] has prepared a bib-
liography of published works where the concept is used and
where it is ignored.

There is no consensus in the physics community on the
validity and use of the concept of relativistic mass. Some
consider relativistic mass to represent an actual increase in
the inertial mass of a body [12]. However, there have been
objections raised against this interpretation (see Taylor and
Wheeler [14], Okun [9–11], Oas [7]). The situation seems to
arise from confusion on the meaning of the special relativistic
dynamics equations. In this paper, we revisit the question of
relativistic mass to clarify the meaning of this concept within
special relativity, in light of the Elastodynamics of the Space-
time Continuum (STCED) [18, 19].

2 Relativistic mass depends on the frame of reference

The relativistic mass m∗ is given by

m∗ = γm0 , (1)

where

γ =
1(

1 − β2)1/2 , (2)

β = v/c and m0 is the rest-mass or proper mass which is an
invariant. Some authors [11] suggest that rest-mass should be

denoted as m as this is the real measure of inertial mass. The
relativistic mass of an object corresponds to the total energy
of an object (invariant proper mass plus kinetic energy). The
first point to note is that the relativistic mass is the same as the
proper mass in the frame of reference at rest with the object,
i.e. m∗ = m0 for v = 0. In any other frame of reference in mo-
tion with velocity v with respect to the object, the relativistic
mass will depend on v according to (1).

For example, when the relativistic mass of a cosmic ray
particle is measured† in an earth lab, it depends on the speed
of the particle measured with respect to the earth lab. Simi-
larly for a particle in a particle accelerator, where its speed is
measured with respect to the earth lab. The relativistic mass
of the cosmic ray particle measured from say a space station
in orbit around the earth or a spaceship in transit in space
would depend on the speed of the particle measured with re-
spect to the space station or the spaceship respectively.

We thus see that relativistic mass is an effect similar to
length contraction and time dilation in that it is dependent on
the difference in velocity v between the object’s frame of ref-
erence and the frame of reference from which it is measured.
Observers in different moving frames will measure different
relativistic masses of an object as there is no absolute frame
of reference with respect to which an object’s speed can be
measured.

3 Time dilation and space contraction

To further understand this conclusion, we need to look into
time dilation and length contraction in more detail. These
special relativistic concepts are often misunderstood by phys-
icists. Many consider these changes to be actual physical
changes, taking the Lorentz-Fitzgerald contraction and the
time dilation effect to be real.

†what is measured is the energy of the particle, not its mass.
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For example, John Bell in [15] relates the problem of the
thread tied between two spaceships and whether the thread
will break at relativistic speeds due to length contraction. He
insists that it will – he relates how “[a] distinguished ex-
perimental physicist refused to accept that the thread would
break, and regarded my assertion, that indeed it would, as
a personal misinterpretation of special relativity”. Bell ap-
pealed to the CERN Theory Division for arbitration, and was
dismayed that a clear consensus agreed that the thread would
not break, as indeed is correct. As the number of special rel-
ativistic “paradoxes” attest, many physicists, scientists and
engineers have similar misunderstandings, not clearly under-
standing the concepts.

This situation arises due to not realizing that v is the dif-
ference in velocity between an object’s frame of reference and
the frame of reference from which it is measured, not an ab-
solute velocity, as discussed in the previous section 2. In a
nutshell, time dilation and length contraction are apparent ef-
fects. In the frame of reference at rest with an object that is
moving at relativistic speeds with respect to another frame of
reference, there is no length contraction or time dilation.

The proper time in the frame of reference at rest with the
object is the physical time, and the length of the object in
the frame of reference at rest with the object is the physical
length – there is no time dilation or length contraction. These
are observed in other frames of reference moving with respect
to that object and are only apparent dilations or contractions
perceived in those frames only. Indeed, observers in frames
of reference moving at different speeds with respect to the
object of interest will see different time dilations and length
contractions. These cannot all be correct – hence time dilation
and length contraction are apparent, not real.

This can be demonstrated to be the case from physical
considerations, and in so doing, we clarify further the na-
ture of length contraction. Petkov [13] provides graphically a
physical explanation of time dilation and length contraction,
based on Minkowski’s 1908 paper [16] where the latter first
introduced the concept of a four-dimensional spacetime and
the description of particles in that spacetime as worldlines.
Worldlines of particles at rest are vertical straight lines in a
space−ct diagram, while particles moving at a constant ve-
locity v are oblique lines and accelerated particles are curved
lines.

The basic physical reason for these effects can be seen
from the special relativistic line element (using x to represent
the direction of propagation and c = 1)

dτ2 = dt2 − dx2 . (3)

One sees that for a particle at rest, the vertical straight line in
a space−ct diagram is equivalent to

dτ2 = dt2 , (4)

which is the only case where the time t is equivalent to the
proper time τ (in the object’s frame of reference). In all other

cases, in particular for the oblique line in the case of con-
stant velocity v, (3) applies and there is a mixing of space x
and time t, resulting in the perceived special relativistic ef-
fects observed in a frame of reference moving at speed v with
respect to the object of interest.

Loedel diagrams [17], a variation on space−ct diagrams
allowing to display the Lorentz transformation graphically,
are used to demonstrate graphically length contraction, time
dilation and other special relativistic effects in problems that
involve two frames of reference. Figs. 1 and 2, adapted from
Petkov’s Figs. 4.18 [12, p. 86], and 4.20 [12, p. 91] respec-
tively, and Sartori’s Fig. 5.15 [17, p. 160], provide a graphical
view of the physical explanation of time dilation and length
contraction respectively.

From Fig. 1, we see that ∆t′ > ∆t as expected – the mov-
ing observer sees time interval ∆t′ of the observed object to
be dilated, while the observed object’s time interval ∆t is ac-
tually the physical proper time interval ∆τ. From Fig. 2, we
see that space distance measurements, i.e. space intervals,
∆x′ < ∆x as expected – the moving observer sees space inter-
val ∆x′ of the observed object to be contracted, while the ob-
served object’s space interval ∆x is actually the proper space
interval.

This provides a physical explanation for length contrac-
tion as a manifestation of the reality of a particle’s extended
worldline, where the cross-section measured by an observer
moving relative to it (i.e. at an oblique line in the space−ct
diagram), creates the difference in perceived length between
a body in its rest frame and a frame in movement, as seen in

Fig. 1: Physical explanation of time dilation in a Loedel space−ct
diagram
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Fig. 2: Physical explanation of length contraction in a Loedel
space−ct diagram

Fig. 2. It is important to understand that space itself is per-
ceived to be contracted, not just objects in space. As seen in
STCED [18], objects are not independent of spacetime, but
are themselves deformations of spacetime, and are as such
perceived to be contracted as space itself is. In actual prac-
tice, this phenomenon should be called space contraction, to
avoid confusion, and demonstrate the complementary nature
of time dilation and space contraction.

Thus we see that apparent time dilation and space contrac-
tion are perfectly valid physical results of Special Relativity,
and there is nothing anomalous about them. Proper consider-
ation of these phenomena eliminates the so-called paradoxes
of Special Relativity as demonstrated by various authors, see
for example [12, 14, 17]. We now explore the question of rel-
ativistic mass, which we first considered in section 2, in light
of these considerations.

4 Relativistic mass as an effective mass

In this section, we show that the inertial mass of a body is
its proper mass while the relativistic mass m∗ is in effect an
effective mass or, as Dixon [6] refers to it, an apparent mass.
An effective mass is often introduced in dynamic equations in
various fields of physics. An effective mass is not an actual
mass – it represents a quantity of energy that behaves in dy-
namic equations similar to a mass. Using the effective mass,
we can write the energy E as the sum of the proper mass and
the kinetic energy K of the body, which is typically written as

E = m∗c2 = m0 c2 + K (5)

to give
K = (γ − 1) m0 c2 . (6)

In reality, the energy relation in special relativity is qua-
dratic, given by

E2 = m2
0 c4 + p2c2 , (7)

where p is the momentum. Making use of the effective mass
(1) allows us to obtain a linear expression from (7), starting
from

m∗2c4 = γ2m2
0 c4 = m2

0 c4 + p2c2 , (8)

which becomes
pc =

√
γ2 − 1 m0 c2 (9)

or
pc = βγm0 c2 =

v

c
γm0 c2 =

v

c
E . (10)

Then
p = m∗v . (11)

As [12, p. 112] shows, the γ factor corresponds to the deri-
vative of time with respect to proper time, i.e.

dt
dτ
=

1(
1 − β2)1/2 = γ , (12)

such that the velocity with respect to the proper time, u, is
given by

u = γv . (13)

Hence using (13) in (11) yields the correct special relativistic
relation

p = m0 u , (14)

which again shows that m∗ in (11) is an effective mass when
dealing with dynamic equations in the local time t instead of
the invariant proper time τ. It is easy to see that differentiating
(14) with respect to proper time results in a force law that
obeys Newton’s law with the proper mass acting as the inertial
mass.

Hence we find that relativistic mass results from dealing
with mass in local time t in a frame of reference moving with
respect to the object of interest, instead of the invariant proper
time τ in the frame of reference at rest with the object, and,
from that perspective, is an effect similar to space contraction
and time dilation seen in section 3. We see that the rest-mass
m0 should really be referred to as the proper mass, to avoid
any confusion about the invariant mass of a body.

Relativistic mass is not apparent as time dilation and spa-
ce contraction are, but rather is a measure of energy that de-
pends on the relative speed v between two frames of refer-
ence, and is not an intrinsic property of an object as there is
no absolute frame of reference to measure an object’s speed
against. The relativistic mass energy m∗c2 is actually the total
energy of an object (proper mass plus kinetic energy) mea-
sured with respect to a given frame of reference and is not
a mass per se as mass is a relativistic invariant, i.e. a four-
dimensional scalar, while energy is the fourth component of
a four-vector.
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5 Relativistic mass and STCED

In STCED, the proper mass corresponds to the invariant lon-
gitudinal volume dilatation given by [19, p. 32]

ρc2 = 4κ0 ε (15)

which is equivalent to the inertial mass. The constant κ0 is
the spacetime bulk modulus and ε is the spacetime volume
dilatation. Clearly, the longitudinal volume dilatation does
not increase with velocity as it is an invariant. The result (14)
is as expected from STCED.

For a spacetime volume element, the apparent space con-
traction in the direction of motion will be cancelled out by
the apparent time dilation, i.e. the γ factors will cancel out.
Thus the volume dilatation ε and the proper mass density ρ of
(15) remain unchanged from the perspective of all frames of
reference.

The only quantity that is impacted by the observer’s frame
of reference is the kinetic energy K or alternatively the quan-
tity pc. In the frame of reference at rest with the object (which
we can call the proper frame of reference), the kinetic energy
K = 0 as seen from (6), while pc = 0 as seen from (9). The
relativistic mass of an object is an effective mass defined to
correspond to the total energy of an object (invariant proper
mass plus kinetic energy) as observed from the perspective of
another frame of reference. It does not represent an increase
in the proper mass of an object, which as we have seen in
section 4, corresponds to the inertial mass of the object.

6 Discussion and conclusion

In this paper, we have revisited the question of relativistic
mass to clarify the meaning of this concept within special
relativity. We have also considered time dilation and length
contraction in more detail to help clarify the concept of rel-
ativistic mass. We have seen that “length contraction” is a
misnomer and that it should really be named “space contrac-
tion” to avoid confusion, and demonstrate the complementary
nature of time dilation and space contraction.

We have seen that relativistic mass is dependent on the
difference in velocity v between an object’s proper frame of
reference that is at rest with the object and the frame of ref-
erence from which it is observed. We showed that the iner-
tial mass of a body is its proper mass while the relativistic
mass m∗ is in effect an effective mass. We showed that rel-
ativistic mass results from dealing with dynamic equations
in local time t in a frame of reference moving with respect
to the object of interest, instead of the invariant proper time
τ in the frame of reference at rest with the object. The re-
sults obtained are in agreement with the Elastodynamics of
the Spacetime Continuum.
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In this paper we apply scale-invariant models of natural oscillations in chain systems of
harmonic quantum oscillators to search for additional planets in the Solar System and
discuss the heuristic significance of those models in terms of our hypothesis of global
scaling.

Introduction

In the last 8 years the heuristic significance of scale invari-
ance (scaling) was demonstrated in various fields of physical
research. In [1] we have shown that scale invariance is a fun-
damental property of natural oscillations in chain systems of
similar harmonic oscillators. In [2] we applied this model
on chain systems of harmonic quantum oscillators and could
show that particle rest masses coincide with the eigenstates of
the system. This is valid not only for hadrons, but for mesons
and leptons as well. Andreas Ries [3] demonstrated that this
model allows for the prediction of the most abundant isotope
of a given chemical element. The interpretation of the Planck
mass as eigenstate in a chain system of oscillating protons
has allowed us to derive the proton rest mass from fundamen-
tal physical constants [4]. There we have proposed a new in-
terpretation of the cosmic microwave background as a stable
eigenstate of a chain system of oscillating protons.

Scale-invariant models of natural oscillations in chain
systems of protons also give a good description of the mass
distribution of large celestial bodies in the Solar System [5].
Physical properties of celestial bodies such as mass, size, ro-
tation and orbital period can be understood as macroscopic
quantized eigenstates of chain systems of oscillating protons
and electrons [4]. This understanding can be applied to an
evolutionary trend prognosis of the Solar System but may be
of cosmological significance as well.

In this paper we apply our hypothesis of global scaling [4]
to the search for additional planets in the Solar System.

Methods

In [1] we have shown that the set of natural frequencies of a
chain system of harmonic oscillators coincides with a set of
finite continued fractions F , which are natural logarithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the

fundamental frequency of the set. The denominators are in-
teger numbers: n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N
of the set and the number k ∈N of layers are finite. In the
canonical form, the numerator z is equal 1.

Any finite continued fraction represents a rational num-
ber [6]. Therefore, all frequencies ω jk in (1) are irrational, be-
cause for rational exponents the natural exponential function
is transcendental [7]. This circumstance presumably provides
for the high stability of the oscillating chain system because
it avoids resonance interaction between the elements of the
system [8].

In the case of harmonic quantum oscillators, the contin-
ued fraction (1) defines not only a fractal set of natural angu-
lar frequencies ω jk and oscillation periods τ jk = 1/ω jk of the
chain system, but also fractal sets of natural energies
E jk = ℏ ·ω jk and masses m jk = E jk/c2 which correspond with
the eigenstates of the system. For this reason, we have called
the continued fraction (1) the “fundamental fractal” of eigen-
states in chain systems of harmonic quantum oscillators [4].

The electron and the proton are exceptionally stable quan-
tum oscillators and therefore the proton-to-electron rest mass
ratio can be understood as a fundamental physical constant.

We hypothesize the cosmological significance of scale in-
variance based on the fundamental fractal F (1) that is cali-
brated by the physical characteristics of the electron and the
proton. This hypothesis we have called ‘global scaling’ [9].

Results

In [4] we have shown that the masses of the largest bodies in
the Solar System correlate with main attractor nodes of the
F (1), supporting our hypothesis of global scaling as forming
factor of the Solar System.

For example, the natural logarithm of the Sun-to-electron
mass ratio is close to an integer number:

ln (MSun/melectron) =

= ln(1.9884 · 1030kg/9.10938356 · 10−31kg) = 138.936

This is also valid for Jupiter’s body mass:

ln
(
MJupiter/melectron

)
=

= ln(1.8986 · 1027kg/9.10938356 · 10−31kg) = 131.981
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Fig. 1: The mass distribution of planets, heaviest planetoids and moons along the electron-calibrated fundamental fractal F (1). The nodes
[130], [128], [127], [125], [123] and [121] are vacant.

Fig. 2: This copy of fig. 1 shows the mass ranges of hypothetical planetoids, planets and gas giants which could occupy the vacant nodes
[130], [128], [127], [125], [123] and [121] of the electron-calibrated fundamental fractal F (1).

And for Venus as well:

ln (MVenus/melectron) =

= ln(4.8675) · 1024kg/9.10938356 · 10−31kg) = 126.015

Table 1 gives an overview of the body masses of the planets
and heaviest planetoids and their positions in the fundamental
fractal F (1).
The electron rest mass me = 9.10938356 · 10−31 kg [10].

Table 1 shows that the body masses of Jupiter, Neptune,
Uranus, Venus, Mars, Pluto, Charon and Haumea coincide
with main attractor nodes (integer logarithms) of the electron-
calibrated F (1). This also applies to the Sun. Figure 1 shows
the mass distribution of planets, heaviest planetoids and
moons along the electron-calibrated fundamental fractal
F (1). The nodes [130], [128], [127], [125], [123], [121] are
vacant.

The vacant nodes [121] and [123] indicate that in the mass
ranges of 2 to 4 · 1022 kg and in the range of 2 to 3 · 1023 kg
there should be planetoids still to be discovered. Furthermore,
we may expect new planets in the range of 1 to 2 · 1024 kg.
The probability of new gas giants in the Solar System is also
very high, because of the wide vacant mass ranges of 1 to

5 · 1025 kg and of 2 to 3 · 1026 kg. Figure 2 shows the distri-
bution of these hypothetical bodies on the fundamental frac-
tal F (1).

Conclusion

The discovery of new gas giants, planets and planetoids with
the properties predicted above would be an important con-
firmation of our hypothesis of global scaling as a forming
factor of the Solar System. Already in 2010 [5] we calcu-
lated the masses of some of these hypothetical bodies and in
2015 [11, 12] we estimated their orbital elements.

Our calculations correspond well with the hypothesis of
Batygin and Brown [13] about a new gas giant called “planet
9” and with the hypothesis of Volk and Malhotra [14] about
an unknown Mars-to-Earth mass “planet 10” beyond Pluto.

Based on the vacancies in the fundamental fractal F (1),
we hypothesize the existence of at least two unknown giant
planets (see fig. 2). It is likely that they are gas giants. How-
ever, this conclusion cannot be made based on the estimation
of their masses only, but requires an additional estimation of
their radii, which should correspond with vacant positions in
the fundamental fractal F (1) that is calibrated by the proton
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Table 1: The logarithms of the body-to-electron mass ratio for the
Sun, the planets, the heaviest planetoids (P) and the corresponding
positions in the fundamental fractal F (1).

celestial body body mass m, kg ln (m/me) F
Sun 1.9884 ·1030 138.936 [139;∞]

Jupiter 1.8986 ·1027 131.981 [132;∞]

Saturn 5.6836 ·1026 130.776 [131; -4]

Neptune 1.0243 ·1026 129.062 [129;∞]

Uranus 8.681 ·1025 128.897 [129;∞]

Earth 5.97237 ·1024 126.220 [126; 4]

Venus 4.8675 ·1024 126.015 [126;∞]

Mars 6.4171 ·1023 123.989 [124;∞]

Mercury 3.3011 ·1023 123.324 [123; 3]

Eris (P) 1.67 ·1022 120.341 [120; 3]

Pluto (P) 1.305 ·1022 120.094 [120;∞]

Haumea (P) 4.006 ·1021 118.913 [119;∞]

Charon (P) 1.587 ·1021 117.944 [118;∞]

and electron wavelengths.
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LETTERS TO PROGRESS IN PHYSICS

Discovered “Angel Particle”, which is Both Matter and Antimatter,
as a New Experimental Proof of Unmatter
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E-mails: smarand@unm.edu, rabounski@ptep-online.com

“Angel particle” bearing properties of both particles and anti-particles, which was re-
cently discovered by the Stanford team of experimental physicists, is usually associated
with Majorana fermions (predicted in 1937 by Ettore Majorana). In this message we
point out that particles bearing properties of both matter and anti-matter were as well
predicted without any connexion with particle physics, but on the basis of pure mathe-
matics, namely — neutrosophic logic which is a generalization of fuzzy and intuition-
istic fuzzy logics in mathematics.

Recently, a group of experimental physicists conducted
by Prof. Shoucheng Zhang, in Stanford University, claimed
about discovery of the particles that bear properties of both
particles and anti-particles. The press-release [1] was issued
on July 20, one day before the official publication [2].

Shoucheng Zhang told [1, 2] that the idea itself rose up
from Ettore Majorana who in 1937 suggested that within the
class of fermions a particle may exist which bear properties
of particle and anti-particle in the same time. Such hypothetic
particles are now know as “Majorana fermions”.

In their experiment, the Stanford team used the following
experimental setup. Two stacked films — the top film made
of superconductor and the bottom film made of magnetic in-
sulator — were stored together in a cooled down vacuum box.
And an electrical current was sent through this “sandwich”.
Using a magnet mounted over the stackled films, the speed of
the electrons in the film was able to be modifying. Varying
the magnet’s properties, the experimentalists registered Ma-
jorana particles which appeared in pairs in the electron flow
but deviated from the electrons (so they were able to be reg-
istered separately). The experimentalists referred to the sup-
posed new particle as “Angel particle” (meaning that, as well
as angels are neither male nor female, the supposed particle
is neither matter nor anti-matter).

Shoucheng Zhang also declared the importance of this
discovery because, he thinks, the particles bearing properties
of matter and anti-matter in the same time shows a fantastic
perspective for computer industry and machinery.

In this background, we should note that particles bearing
properties of matter and anti-matter were as well theoretically
predicted being non-connected with particle physics, but only
on the basis of pure mathematics. This is a series of works
[3–8] based on neutrosophic logic (one of the multi-valued
modern logics, a part of mathematics) authored by Florentin
Smarandache.

So, following the neutrosophic logics, “between an entity
<A> and its opposite <AntiA> there exist intermediate en-

tities <NeutA> which are neither <A> nor <AntiA> [. . .]
Thus, between “matter” and “antimatter” there must exist so-
mething which is neither matter nor antimatter, let’s call it
UNMATTER” [3]. Expanding this theory, a new type of mat-
ter — “unmatter” — was predicted.

Now, this theoretical study based on pure mathematics,
elucidates that was discovered by the Stanford team conduct-
ed by Shoucheng Zhang. This fact shows that not only par-
ticle physics but also pure mathematics can make essential
predictions that may change the wirld of science and tech-
niques.

Submitted on September 18, 2017
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Vacuum Polarization by Scalar Field of Bose-Einstein Condensates
and Experimental Design with Laser Interferences
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In a five-dimensional gravitational theory (or 5D gravity), a scalar field is usually in-
cluded to couple with the gravitational and electromagnetic fields, which are directly
originated from or generated by the mass and electric charge of matter, respectively.
Theoretical analyses have shown that the scalar field of 5D gravity can polarize the
space (or vacuum) and shield gravity (or flatten spacetime), especially when the object
that generates the fields is extremely compact, massive, and/or highly charged. Re-
cently, the scalar field of 5D gravity has been directly connected to the Higgs field of
4D particle physics, so that it dramatically relates to the Ginzburg-Landau scalar field of
Bose-Einstein condensates associated with superconductors and/or superfluids. There-
fore, the scalar field effect on the properties of light and the weight of objects may be
detectable in a laboratory of low temperature physics. In this study, we first analyze
the index of refraction of the space or vacuum that is polarized by scalar field. We then
explore approaches of detection and design experiments to test the space polarization
or the effect of scalar field on light as well as the equivalence or connection between the
scalar field of 5D gravity and that of 4D particle physics.

1 Introduction

In contrast to the vector field of electromagnetism and the ten-
sor field of gravitation, a scalar field is a field that has no di-
rection. Up to now, many physical phenomena are explained
with the physics of scalar fields such as the cosmic inflation
[1-2], dark matter [3-4], dark energy [5-6], particle mass gen-
eration [7-9], particle creation [10], gravitational field shield-
ing [11-12], space or vacuum polarization [13-15], and so
on. In the particle physics, the Higgs field, which generates
masses of particles such as leptons and bosons, is a scalar
field associated with particles of spin zero. In the 5D gravity,
the gravitational and electromagnetic fields are coupled with
a scalar field. Theoretical analyses have shown that the scalar
field of 5D gravity can polarize the space or vacuum [13-15]
and shield the gravity or flatten the spacetime [11-12,16-17],
especially when the object of the fields is extremely compact,
massive, and/or highly charged.

The scalar field of the 5D gravity has a direct relation or
connection to the Higgs scalar field of the 4D particle physics
[18]. The Higgs boson or Higgs particle is an elementary
particle initially theorized in 1964 [7-9] and tentatively dis-
covered to exist by the Large Hadron Collider at CERN [19].
This tentative discovery confirmed the existence of the Higgs
scalar field, which led to the Nobel Prize of physics in 2013
to be awarded to Peter W. Higgs and Francois Englert. The
Higgs mechanism is a process for particles to gain masses
from the interaction with the Higgs scalar field. It describes
the superconductivity of vacuum according to the Ginzburg-
Landau model of the Bose-Einstein condensates.

Therefore, the scalar field of the 5D gravity can be con-
sidered as a type of Higgs scalar field of 4D particle physics.

The latter can be considered as a type of Ginzburg-Landau
scalar field of the Bose-Einstein condensates [20-21]. Then,
that the scalar field of the 5D gravity can shield the gravita-
tional field (or flatten the spacetime) and polarize the space or
vacuum must imply that the Ginzburg-Landau scalar field of
superconductors and superfluids in the state of Bose-Einstein
condensates can also shield the gravitational field (or flatten
the spacetime) and polarize the space or vacuum.

In fact, the experiment conducted about two decades ago
had indeed shown that a rotating type-II ceramic supercon-
ductor disk at low temperature could have a moderate (∼2 −
3%) shielding effect against the Earth gravitational field [22].
The experiment conducted later for a static testing with the
shielding effect of ∼0.4% [23]. Recently, we have explained
these measurements as the gravitational field shielding [12]
by the Ginzburg-Landau scalar field of Bose–Einstein con-
densates associated with the type II ceramic superconductor
disk according to the 5D fully covariant gravity developed by
Zhang [11,15,24].

In this paper, we will focus on the vacuum polarization
by scalar field and its testing. We will explore some possi-
ble approaches and further design viable experiment setups
to test the space or vacuum polarization by the scalar field
(i.e. the effect of scalar field on light). We will, at first, ap-
ply the fully covariant 5D gravity with a scalar field that was
developed by Zhang [11,15] and references therein to formu-
late the index of refraction in the vacuum that is polarized by
the scalar field of this 5D gravity. Then, we will employ the
Ginzburg-Landau scalar field generated by the Bose-Einstein
condensates of superconductors and superfluids to replace or
add the scalar field of the 5D gravity. Finally, we will design
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an experiment setup of laser light interferences that may de-
tect the vacuum polarization by the Ginzburg-Landau scalar
field and thus test Zhang’s theory of vacuum polarization by
scalar field as well as Wesson’s equivalence and connection
between the scalar field of 5D gravity and the scalar field of
4D particle physics.

2 Index of refraction of the vacuum polarized by the
scalar field

According to the 5D fully covariant gravity with a scalar field
[15] and references therein, we can determine the index of
refraction of the vacuum that is polarized by the scalar field
as

n ≡ √ϵr = Φ3/2 exp
(
λ − ν

4

)
. (1)

Here, Φ is the scalar field and the functions, eλ and eν, are the
rr− and tt−components of the 4D spacetime metric. Both the
scalar field and the metric components are completely deter-
mined according to the exact field solution obtained by Zhang
[15] and references therein without any unknown parameter.

For objects in labs and the Earth itself, the fields of 5D
gravity are weak, so that we can approximately representΦ ∼
1 + δΦ, eλ ∼ 1, and eν ∼ 1. Then, the index of refraction in
the vacuum that is polarized by scalar fields reduces to

n = 1 +
3
2

∑
δΦ = 1 +

3
2

(
δΦ5D + δΦGL

)
. (2)

Here, Σ refers to the summation of contributions from all
kinds of scalar fields, including the scalar fields of the 5D
gravity from the Earth and any other charged objects and the
Ginzburg-Landau scalar fields of the 4D particle physics from
the Bose-Einstein condensates associated with superconduc-
tors and superfluids.

According to Zhang’s fully covariant 5D gravity [15] and
references therein such as [11,24], the scalar field of a char-
ged object with charge Q and mass M is given by,

δΦ5D =
2GM(1 + 3α2)

3
√

1 + α2c2

1
r
, (3)

where
α =

Q

2
√

GM
(4)

is a constant in cgs units, G is the gravitational constant, c
is the light speed in free space, and r is the radial distance
from the object. Considering an object with mass of 600 kg
and charge of 0.01 C, we have α ∼ 105 and δΦ5D ∼ 10−19 at
1 m radial distance. For Earth, we have α ∼ 0 and δΦ5D ∼
5 × 10−10 on the surface. Therefore, via Earth or a charged
object in labs, the scalar field of the 5D gravity is negligi-
bly weak, i.e. δΦ5D ∼ 0, and the effect on the vacuum po-
larization may be extremely difficult to detect. A new study
by Zhang [25] has theoretically shown that the space or vac-
uum polarization by the scalar field of 5D gravity generated

Fig. 1: The change for the index of refraction of the vacuum (n − 1)
versus the temperature of the superconductor (T ). The vacuum
is polarized by the Ginzburg-Landau scalar field of Bose-Einstein
condensates associated with a type II superconductor whose tran-
sition temperature is Tc = 92 K. Three lines correspond to three
cases for the ratio of the two phenomenological constants to be
a0/b = 10−8, 10−7, 10−6 K, respectively.

by a highly charged object may be directly detected by the
extremely accurate Laser Interferometer Gravitational-Wave
Observatory (LIGO), which has recently detected first ever
the gravitational waves from a binary black hole merger as
claimed in [26].

The Ginzburg-Landau scalar field of Bose-Einstein con-
densates associated with superconductors and superfluids can
be expressed as [20-21,27],

δΦGL =

√
−a0

b
(T − Tc) , (5)

where a0 and b are the phenomenological constants, T is the
temperature, and Tc is the transition temperature. A type II
superconductor, if its Ginzburg-Landau scalar field can pro-
duce a few percent (e.g. 2 − 3%) weight loss for a sample as
experimentally shown by [22-23], can also polarize the vac-
uum by increasing the index of refraction about a detectable
percentage. For a quantitative study, we plot in Fig. 1 the
index of refraction in the vacuum that is polarized by the
Ginzburg-Landau scalar field of Bose-Einstein condensates
associated with a type II superconductor as a function of the
temperature of the superconductor. In this plot, we have cho-
sen the values Tc = 92 K and a0/b = 10−8, 10−7, 10−6 K−1 as
done in [12].

It is seen that due to the polarization the index of refrac-
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tion of the vacuum can be increased by ∼0.1 − 1% for the
ratio of the phenomenological constants to be in a range of
a0/b = 10−8 − 10−6 K−1, which could lead to ∼2− 3% weight
loss for a sample as shown in [12]. This significant increase
of the index of refraction should be detectable in an optical
experiment. In the following section, we design an experi-
ment to test this scalar field effect on light or space polariza-
tion here predicted according to Zhang’s 5D fully covariant
gravity and Wesson’s scalar field equivalence or connection
between the 5D gravity and the 4D particle physics. Super-
fluids, though the transition temperature is lower but if the
ratio of phenomenological constants is higher, can also gen-
erate a significant scalar field to polarize the vacuum.

3 Experimental design and prediction

A laser light beam that has passed through a spatial filter can
be separated into two beams by a beam separator. These two
laser light beams once reflected by two mirrors into the same
region will interfere. If the difference of their optical dis-
tances travelled by the two beams is a factor of a whole num-
ber of the light wavelength, the interference is constructive
otherwise the interference is destructive. A bright and dark
pattern of interference is formed in the interference region.
Now, if one of the two laser light beams passes through the
space or vacuum that is polarized by scalar fields, then the in-
terference pattern will be changed. This is because the space
polarization lengthens the optical length of the path of the
light beam.

The interference pattern will change from bright to dark
or dark to bright, if the extra optical distance traveled for the
beam that has passed through the space or vacuum polarized
by scalar fields is given by

(n − 1) D =
(
m +

1
2

)
λ , (6)

where n is the index of refraction of the space or vacuum that
is polarized by the scalar field and its relation to the scalar
field is given by (1) or (2); D is the dimension of the object
that produces the scalar field; m + 1 is the number of shifting
the interference pattern from bright to dark (only one shift
from bright to dark if m = 0); and λ is the wavelength of the
laser light. The interference pattern does not change, if the
extra optical distance is a whole number of the light wave-
length, i.e. (n − 1) D = mλ.

To polarize the space or vacuum that one of the two laser
light beams travels through, we can place or put an electri-
cally charged object, a type II ceramic superconductor disk,
or a superfluid torus near the path of the beam (Fig. 2). Of
course, we can put all of them together to enhance the total
scalar field. Two superconductor disks can also double the
effect. In these cases, the parameter D in (6) can be roughly
estimated as the diameter of the charged object, superconduc-
tor disk, or superfluid torus.

Fig. 2: A schematic diagram for the experimental setup to test the
vacuum polarization by scalar field. A laser light that passes a spa-
tial filter can be separated into two beams by a beam separator. The
two beams once reflected by two mirrors into the same region will
interfere and produce a bright-dark interference pattern. When the
space or vacuum for the path of one beam is polarized by the scalar
field generated by charged objects, superconductor disks, and/or su-
perfluid toruses, the interference pattern will be varied or shifted.
Therefore, the detection of any variation or shifting of the inter-
ference pattern will test the theory for the vacuum polarization by
scalar field and the equivalence or connection for the scalar fields of
5D gravity and 4D particle physics.

As pointed out above, since it is not enough compact,
massive, and/or highly charged, an object in labs cannot gen-
erate a significant scalar field to polarize the space or vac-
uum up to a detectable level, but except for LIGO [25-26].
The extra optical distance that a charged object can produce
is (n−1) D = 3/2 δΦ5DD ∼ 10−19, which is too small in com-
parison with the wavelength of light. Therefore, a charged
object cannot lead to a measurable shifting of the interfer-
ence pattern. The scalar field of 5D gravity due to the Earth
can neither vary the interference pattern, because it evenly
affects both the beams of laser light.

To see how significant for a type II ceramic supercon-
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Fig. 3: The number of shifting the interference pattern from bright
to dark, m, versus the ratio of the phenomenological constants, a0/b.
The temperature and transition temperature of the conductor are cho-
sen as = 70 K and Tc = 92 K, respectvely.

ductor disk to vary the interference pattern, we plot in Fig. 3
the number of shift, m, as a function of the ratio of the phe-
nomenological constants, a0/b, according to (6) with (2) and
(5). Here, we have chosen D = 0.11 m, Tc = 92 K, and
T = 70 K according to the previous laboratory experiment
[22] and analytical study [12]. The wavelength is chosen as a
blue light with λ ∼ 5 × 10−5 m. It is seen that the Ginzburg-
Landau scalar field of Bose-Einstein condensates associated
with a type II ceramic superconductor disk can lead to a sig-
nificant shifting of the interference pattern. This varying of
interference pattern is detectable only needing the ratio of the
phenomenological constants to be greater than about 10−10

K−1. Therefore, the effect of scalar field on light (or the
space polarization) should be much more easily detected than
the effect of scalar field on weight (or the gravitational field
shielding).

4 Discussions and conclusions

We have investigated the vacuum polarization by the Ginz-
burg-Landau scalar field of Bose-Einstein condensates asso-
ciated with superconductors and superfluids. First, we have
formulated the index of refraction of the vacuum that is polar-
ized by the scalar field according to Zhang’s 5D fully covari-
ant gravity and Wesson’s equivalence or connection of scalar
fields between 5D gravity and 4D particle physics. Then, we
have designed an experimental setup with laser light interfer-
ences to detect the effect of scalar field on light and hence

the vacuum polarization by the Ginzburg-Landau scalar field.
Via this study, we have seen that the Ginzburg-Landau scalar
field of Bose-Einstein condensates associated with a type II
ceramic superconductor disk can cause a significant and thus
detectable shifting of the laser light interference pattern. The
ratio of the phenomenological constants can be much smaller
than that for a detectable weight loss of a sample. Therefore,
we have provided a possible approach and experimental setup
for detecting the effect of scalar field on light in labs. In fu-
ture, we will implement the design to conduct the experiment
and perform the testing.
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In this paper, we consider the question of the impact of acceleration in special relativity.
Some physicists claim that acceleration does not matter in special relativity based on
the Clock Hypothesis. We find that the experimental support of the Clock Hypothesis
usually provided by the Mössbauer spectroscopy experiment of Kündig [5] and the
muon experiment of Bailey et al [2] is questionable at best. We consider the case for
the impact of acceleration in special relativity and derive an expression for the time
dilation in an accelerated frame of reference, based on the equivalence principle of
general relativity. We also derive an expression for space contraction in an accelerated
frame of reference. We note that the presence of acceleration in a frame of reference
provides a means of determining the motion of that frame of reference as acceleration
can be easily detected compared to constant velocity which cannot. We discuss the
“twin paradox” of special relativity and note that this is not truly a special relativity
problem for there is no way to avoid acceleration. We note that because of time dilation
in accelerated frames of reference, the astronaut will age less than its earth-bound twin,
but only during periods of acceleration.

1 Introduction

In a recent paper [1], we showed that time dilation and space
contraction in inertial reference frames, that is unaccelerated
reference frames moving at a constant velocity, are apparent
effects perceived in a frame of reference moving with respect
to an object of interest. The real physical time and length are
in the frame of reference at rest with the object, and in that
frame, there is no time dilation or space contraction as v = 0
(and acceleration a = 0). This is seen clearly in Fig. 1 where
a time dilation is perceived in the frame of reference moving
at speed v with respect to the object of interest (∆t′), while
there is no dilation in the object’s frame of reference (∆t).

This result would seem to be at odds with the often quoted
experimental tests of special relativity confirming time dila-
tion and length contraction. But if we consider, for example,
Bailey et al’s muon experiment [2], we find that there is no
contradiction with the experimental observations: a perceived
time dilation is observed in the Earth’s laboratory frame of
reference while the muon, in its frame of reference has no
time dilation – note that no measurements were carried out in
the muon’s frame of reference in the Bailey experiment.

Careful examination of experimental tests of special rel-
ativity also often reveals the presence of acceleration in the
experiments, contrary to the conditions under which special
relativity applies. The question of how to deal with accel-
eration in special relativity underlies many of the analytical
and experimental conundrums encountered in the theory and
is investigated in more details in this paper.

2 Measuring the impact of acceleration in special
relativity

The theory of special relativity applies to unaccelerated (con-
stant velocity) frames of reference, known as inertial frames

of reference, in a four-dimensional Minkowski spacetime [3],
of which the three-dimensional Euclidean space is a subspa-
ce. When the Lorentz-Fitzgerald contraction was first intro-
duced, it was considered to be a real physical effect in Eu-
clidean space to account for the null results of the Michelson-
Morley experiment. Einstein derived length contraction and
time dilation as effects originating in special relativity. These
depend on the velocity of the frame of reference with respect
to which an object is being observed, not the object’s velocity

Fig. 1: Physical explanation of time dilation in a Loedel space−ct
diagram
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which can only be relative to another frame of reference, as
there is no absolute frame of reference against which to mea-
sure the object’s velocity. Indeed, if time dilation and length
contraction were real effects in special relativity, this would
be equivalent to saying that there is an absolute frame of ref-
erence against which it is possible to measure an object’s ve-
locity, contrary to the theory.

Increasingly, special relativity has been applied to accel-
erated frames of reference for which the theory does not ap-
ply. Some physicists claim that acceleration does not matter
in special relativity and that it has no impact on its results, but
there are many indications that this is not the case. The Clock
Hypothesis (or Postulate) is used to justify the use of acceler-
ated frames in special relativity: “when a clock is accelerated,
the effect of motion on the rate of the clock is no more than
that associated with its instantaneous velocity – the accelera-
tion adds nothing” [4, p. 9], and further postulates that if the
Clock Hypothesis applies to a clock, “ then the clock’s proper
time will be proportional to the Minkowski distance along its
worldline” [4, p. 95] as required.

Two experimental confirmations of the Clock Hypothe-
sis are usually given. The postulate is claimed to have been
shown to be true for accelerations of ∼1016g in a Mössbauer
spectroscopy experiment by Kündig [5] and of ∼1018g in Bai-
ley et al’s muon experiment [2], which uses rotational mo-
tion of particles to generate the acceleration – one obtains the
quoted acceleration for a particle velocity close to the speed
of light. However, a close examination of these experiments
shows that they don’t quite provide the experimental confir-
mation they are purported to give.

Kholmetskii et al [6] reviewed and corrected the process-
ing of Kündig’s experimental data and obtained an appre-
ciable difference of the relative energy shift ∆E/E between
emission and absorption resonant lines from the predicted rel-
ativistic time dilation ∆E/E = −v2/2c2 (to order c−2), where
v is the tangential velocity of the resonant radiation absorber.
Writing the relative energy shift as ∆E/E = −k v2/c2, they
found that k = 0.596 ± 0.006 instead of k = 0.5 as pre-
dicted by special relativity and Kündig’s original reported re-
sult of k = 0.5003 ± 0.006. They then performed a similar
Mössbauer spectroscopy experiment [7] with two absorbers
with a substantially different isomer shift to be able to cor-
rect the Mössbauer data for vibrations in the rotor system
at various rotational frequencies. They obtained a value of
k = 0.68 ± 0.03, a value similar to 2/3. Since then Kholmet-
skii and others [8–12] have performed additional experimen-
tal and theoretical work to try to explain the difference, but the
issue remains unresolved at this time, and is a clear indication
that acceleration is not compatible with special relativity.

In their experiment of the measurement of the lifetime
of positive and negative muons in a circular orbit, Bailey et
al [2] obtained lifetimes of high-speed muons which they then
reduced to a mean proper lifetime at rest, assuming that spe-
cial relativity holds in their accelerated muon experimental

setup. This experiment was carried out at CERN’s second
Muon Storage Ring (MSR) [13, 14] which stores relativistic
muons in a ring in a uniform magnetic field. The MSR was
specifically designed to carry out muon (g−2) precession ex-
periments (g is the Landé g-factor) with muons of momentum
3.094 GeV/c corresponding to a γ-factor of 29.3 (effective
relativistic mass [1]), so that the electrons emitted from muon
decay in the lab frame were very nearly parallel to the muon
momentum. The decay times of the emitted electrons were
measured in shower counters inside the ring to a high preci-
sion, and the muon lifetimes in the laboratory frame were cal-
culated by fitting the experimental decay electron time spec-
trum to a six-parameter exponential decay modulated by the
muon spin precession frequency, using the maximum likeli-
hood method – one of the six parameters is the muon rela-
tivistic lifetime.

It is important to note that the decay electrons would be
ejected at the instantaneous velocity of the muon (0.9994c
from the γ = 29.3 factor) tangential to the muon’s orbit. Thus
the ejected electron moves at the constant velocity of ejec-
tion to the shower counter and acceleration does not play a
role. Even though the muons are accelerated, the detected
electrons are not, and the experiment is not a test of the Clock
Hypothesis under acceleration as claimed. There is thus no
way of knowing the impact of acceleration from the experi-
mental results as acceleration is non-existent in the detection
and measurement process.

It should also be noted that Hafele et al [17] in their time
dilation “twin paradox” experiment applied a correction for
centripetal acceleration to their experimental results. in addi-
tion to a gravitational time dilation correction, to obtain re-
sults in agreement with Lorentz time dilation. The effect of
acceleration cannot be disregarded in that experiment. This
will be considered in more details in section 4. We thus
find that the experimental support of the Clock Hypothesis
is questionable at best.

3 The case for the impact of acceleration in special
relativity

Having determined that there is little experimental support for
the validity of the Clock Hypothesis in accelerated frames of
reference in special relativity, we consider the case for the im-
pact of acceleration in special relativity. Einstein developed
general relativity to deal with accelerated frames of reference
– if acceleration can be used in special relativity, why bother
to develop a more general theory of relativity? Inspection
of an accelerated worldline in a Minkowski space-ct diagram
shows that indeed there is no basis for the Clock Hypothe-
sis, as seen in Fig. 2. The accelerated worldline suffers an
increasing rate of time dilation, somewhat like gravitational
time dilation where increasing height in the gravitational po-
tential results in increasing time dilation.

This brings to mind Einstein’s equivalence principle in-
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troduced in the analysis of accelerated frames of reference in
general relativity. The simplest formulation of this principle
states that on a local scale, the physical effects of a gravi-
tational field are indistinguishable from the physical effects
of an accelerated frame of reference [15] (i.e. an acceler-
ated frame of reference is locally equivalent to a gravitational
field). Hence, as displayed graphically for the accelerated
worldline in the Minkowski space-ct diagram of Fig. 2, an ac-
celerated frame of reference undergoes time dilation similar
to gravitational time dilation [15]. Indeed, assuming that ac-
celeration has no impact in special relativity cannot be correct
as it violates the equivalence principle of general relativity.

We explore the connection between gravitational time di-
lation and the time dilation in an accelerated frame of refer-
ence in greater details. Gravitational time dilation can be de-
rived starting from the Schwarzschild metric with signature
(+ - - -) [16, p. 40]

c2dτ2 =

(
1 − 2GM

rc2

)
c2dt2 −

(
1 − 2GM

rc2

)−1

dr2−

− r2
(
dθ2 + sin2 θ dφ2

)
,

(1)

where τ is the proper time, (r, θ, φ, t) are the spherical polar
coordinates including time, G is the gravitational constant, M
is the mass of the earth and c is the speed of light in vacuo.
The gravitational time dilation is obtained from the dt2 term
to give

∆t =
(
1 − 2GM

rc2

)− 1
2

∆t0 , (2)

where ∆t0 is the undilated (proper) time interval and ∆t is the
dilated time interval in the earth’s gravitational field. This can

Fig. 2: Physical explanation of an accelerated worldline in a
Minkowski space−ct diagram

be rewritten as

∆t =
(
1 − 2GMr

r2c2

)− 1
2

∆t0 , (3)

where the term GM/r2 is an acceleration a equal to g for r =
R, the earth’s radius, and finally

∆t =
(
1 − 2ar

c2

)− 1
2

∆t0 . (4)

By the equivalence principle, this is also the time dilation in
an accelerated frame of reference. For small accelerations,
using the first few terms of the Taylor expansion, this time
dilation expression can be written as

∆t ≃
(
1 +

ar
c2

)
∆t0 . (5)

The impact of acceleration on time dilation for small acceler-
ation will usually be small due to the c−2 dependency.

We note in particular the expressions for centripetal ac-
celeration a = v2/r in the case of circular motion

∆t =
(
1 − 2v2

c2

)− 1
2

∆t0 , (6)

which becomes for small accelerations, again using the first
few terms of the Taylor expansion,

∆t ≃
(
1 +
v2

c2

)
∆t0 . (7)

In this case, the impact can be significant, of the same order
as the relativistic Lorentz time dilation. Hence there is no
doubt that accelerated frames of reference also undergo time
dilation compared to unaccelerated (inertial) frames of refer-
ence.

4 The consequences of acceleration in special relativity

The presence of acceleration in a frame of reference provides
a means of determining the motion of that frame of reference
as acceleration can be easily detected compared to constant
velocity which cannot. Whereas in an inertial frame of refer-
ence there is no way of determining one’s velocity, this limi-
tation disappears in accelerated frames of reference.

Physical time dilation due to acceleration is a reality, as
is physical space contraction, which, from (1), is seen to have
the inverse of the functional form of (4), to give the accelera-
tion space contraction relation

∆x =
(
1 − 2ar

c2

) 1
2

∆x0 (8)

which for small accelerations, using the first few terms of the
Taylor expansion, becomes

∆x ≃
(
1 − ar

c2

)
∆x0 . (9)
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Till now, we have not discussed the so-called “twin para-
dox” of special relativity. This is not truly a paradox for there
is no way to avoid acceleration in the problem and it is thus
not a special relativity problem. Assume that by some miracle
we have twins moving at constant velocity with respect to one
another from departure to return with no acceleration and that
they are able to compare their age. It is important to notice
that in their inertial frames of reference, both proper times dτ,
the one in the frame of reference at rest with the earth, and the
one in the frame of reference at rest with the spaceship, are
equal to the physical time in both the frame of reference at
rest with the earth and the frame of reference at rest with the
spaceship. From the earth, it looks like the spaceship’s time is
dilated, and from the spaceship, it looks like the earth’s time
is dilated. It doesn’t matter as the time dilation in one loca-
tion as seen from the other location is apparent as seen in [1].
When the spaceship comes back to earth, the twins would see
that indeed they have the same age.

The problem can be recast in a simpler fashion. Suppose
instead of the earth and a spaceship, we have two spaceships
moving at constant relativistic speed with respect to one an-
other from start to finish with no acceleration, and that the
twins are able to compare their age at the start and the fin-
ish. One spaceship moves slowly because of engine prob-
lems, while the other moves at relativistic speeds. The reso-
lution would be as described in the previous paragraph: the
twins would see that indeed they have the same age at the
finish.

The complication in this problem is that forces have to be
applied to accelerate the spaceship, then decelerate it to turn
around, accelerate it again and finally decelerate it when it
comes back to the earth. The problem then needs to be treated
using accelerated frames of reference for those periods on the
spaceship. As we have seen in section 3, because of time di-
lation in accelerated frames of reference, the astronaut will
age less than its earth-bound twin, but only during periods
of acceleration. During periods of unaccelerated constant ve-
locity travel, there will be no differential aging between the
twins. However, the earth-bound twin is itself in an acceler-
ated frame of reference the whole time, so its time will also
be dilated. The details of who is older and younger will de-
pend on the details of the acceleration periods, with the earth-
bound twin’s time dilation depending on (2) and (6), and the
spaceship-bound twin’s time dilation depending on (4).

Comparing how these findings line up with the results of
Hafele’s circumglobal experiment [17, 18], it is important to
note that Hafele’s experiment was done the whole time in a
non-inertial accelerated frame of reference. Its results were
corrected for gravitational time dilation and centripetal ac-
celeration time dilation, the latter correction clearly showing
that acceleration has an impact on special relativity. The cen-
tripetal acceleration time dilation correction used by Hafele et
al [17] is similar to (6). One side effect of the experiment be-
ing conducted in gravitational and accelerated frames of ref-

erence is that it was possible to determine their motion, con-
trary to special relativity. The Lorentz time dilation would
then become a real effect in this purported test of the “twin
paradox”. There was no symmetry in the relative motions that
would have seen the plane stationary and the earth moving
given that gravitational and centripetal accelerations clearly
showed who was moving and at what velocity.

5 Discussion and conclusion

In this paper, we have considered the question of the impact
of acceleration in special relativity. Some physicists claim
that acceleration does not matter in special relativity – this
view is part of the Clock Hypothesis which is used to justify
the use of accelerated frames in special relativity. We have
found that the experimental support of the Clock Hypothesis
usually provided by the Mössbauer spectroscopy experiment
of Kündig [5] and the muon experiment of Bailey et al [2] is
questionable at best.

We have considered the case for the impact of accelera-
tion in special relativity and have derived an expression for
the time dilation in an accelerated frame of reference, based
on the equivalence principle of general relativity. We have
also derived an expression for space contraction in an accel-
erated frame of reference.

As a consequence, we have noted that the presence of ac-
celeration in a frame of reference provides a means of deter-
mining the motion of that frame of reference as acceleration
can be easily detected compared to constant velocity which
cannot – whereas in an inertial frame of reference there is no
way of determining one’s velocity, this limitation disappears
in accelerated frames of reference.

We have discussed the “twin paradox” of special relativ-
ity and have noted that this is not truly a paradox for there is
no way to avoid acceleration in the problem and it is thus not
a special relativity problem. We have noted that because of
time dilation in accelerated frames of reference, the astronaut
will age less than its earth-bound twin, but only during pe-
riods of acceleration, while during periods of unaccelerated
constant velocity travel, there will be no differential aging be-
tween the twins. However, as the earth-bound twin is itself in
an accelerated frame of reference the whole time, the details
of who is older and who is younger will depend on the details
of the acceleration periods of both twins. Finally we have re-
viewed how these findings line up with the results of Hafele’s
circumglobal experiment [17, 18] and find no contradiction.
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Using the recently developed mathematical apparatus of the theory of universal kine-
matic sets, we prove that the hypothesis of the existence of material objects and inertial
reference frames moving with superluminal velocities in the general case does not lead
to the violation of the principle of causality, that is, to a possibility of the returning to the
own past. This result is obtained as the corollary of the abstract theorem on irreversibil-
ity, which gives the sufficient condition of time irreversibility for universal kinematic
sets.

1 Introduction

Subject of constructing the theory of super-light movement,
had been posed in the papers [1, 2] more than 50 years ago.
Despite the fact that on today tachyons (ie objects moving at
a velocity greater than the velocity of light) are not experi-
mentally detected, this subject remains being actual.

It is well known that among physicists it is popular the be-
lief that the hypothesis of the existence of tachyons leads to
temporal paradoxes, connected with the possibility of chang-
ing the own past. Conditions of appearing these time para-
doxes were carefully analyzed in [3]. It should be noted, that
in [3] superluminal motion is allowed only for particles or
signals whereas superluminal motion for reference frames is
forbidden. This fact does not give the possibility to bind the
own time with tachyon particle, and, therefore to determine
real direction of motion of the particle. In the paper [4] for
tachyon particles the own reference frames are axiomatically
introduced only for the case of one space dimension. Such
approach allows to determine real direction of motion of the
tachyon particle by more correct way, and so to obtain more
precise results.

In particular, in the paper [4] it was shown, that the hy-
pothesis of existence of material objects, moving with the
velocity, greater than the velocity of light, does not lead to
formal possibility of returning to the own past in general.
Meanwhile in the papers of E. Recami, V. Olkhovsky and
R. Goldoni [5–7], and and later in the papers of S. Medvedev
[8] as well as J. Hill and B. Cox [9] the generalized Lorentz
transforms for superluminal reference frames are deduced
in the case of three-dimension space of geometric variables.
In the paper [10] it was proven, that the above generalized
Lorentz transforms may be easy introduced for the more gen-
eral case of arbitrary (in particular infinity) dimension of the
space of geometric variables.

Further, in [11], using theory of kinematic changeable
sets, on the basis of the transformations [10], the mathemat-
ically strict models of kinematics, allowing the superluminal
motion for particles as well as for inertial reference frames,
had been constructed. Thus, the tachyon kinematics in the
sense of E.Recami, V. Olkhovsky and R. Goldoni are surely

mathematically strict objects. But, these kinematics are im-
possible to analyze on the subject of time irreversibility (that
is on existence the formal possibility of returning to the own
past), using the results of the paper [4], because in [4] com-
plete, multidimensional superluminal reference frames are
missing.

Moreover, it can be proved, that the axiom “AxSameFu-
ture” from [4, subsection 2.1] for these tachyon kinematics is
not satisfied. The paper [12] 1 is based on more general math-
ematical apparatus in comparison with the paper [4], namely
on mathematical apparatus of the theory of kinematic change-
able sets. In [12] the strict definitions of time reversibility
and time irreversibility for universal kinematics were given,
moreover in this paper it was proven, that all tachyon kine-
matics, constructed in the paper [11], are time reversible in
principle. In connection with the last fact the following ques-
tion arises:

Is it possible to build the certainly time-irreversible uni-
versal kinematics, which allows for reference frames moving
with any speed other than the speed of light, using the gen-
eralized Lorentz-Poincare transformations in terms of E. Re-
cami, V. Olkhovsky and R. Goldoni?

In the present paper we prove the abstract theorem on
non-returning for universal kinematics and, using this theo-
rem, we give the positive answer on the last question.

For further understanding of this paper the main concepts
and denotation system of the theories of changeable sets,
kinematic sets and universal kinematics, are needed. These
theories were developed in [11, 13–17]. Some of these pa-
pers were published in Ukrainian. That is why, for the con-
venience of readers, main results of these papers were “con-
verted” into English and collected in the preprint [18], where
one can find the most complete and detailed explanation of
these theories. Hence, we refer to [18] all readers who are
not familiar with the essential concepts. So, during citation
of needed main results we sometimes will give the dual refer-
ence of these results (in one of the papers [11, 13–17] as well
as in [18]).

1 Note, that main results of the paper [12] were announced in [19].
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2 Elementary-time states and changeable systems of
universal kinematics

Definition 1. Let F be any universal kinematics 1, l ∈
Lk (F ) be any reference frame of F and ω ∈ Bs(l) be any
elementary-time state in the reference frame l. The set

ω{l,F } = {(m, ⟨!m← l⟩ω) |m ∈ Lk (F )}

(where (x, y) is the ordered pair, composed of x and y) is
called by elementary-time state of the universal kinematics
F , generated by ω in the reference frame l.

Remark 1. In the case, where the universal kinematics F is
known in advance, we use the abbreviated denotation ω{l} in-
stead of the denotation ω{l,F }.

Assertion 1. Let F be any universal kinematics and l,m ∈
Lk (F ). Then for arbitrary elementary-time states ω ∈ Bs(l)
and ω1 ∈ Bs(m) the following assertions are equivalent:

1) ω{l} = ω{m}1 ; 2) ω1 = ⟨!m← l⟩ω.

Proof. 1. First, we prove, that statement 2) leads to the state-
ment 1). Consider any ω ∈ Bs(l) and ω1 ∈ Bs(m) such that
ω1 = ⟨!m← l⟩ω. Applying Definition 1 and [18, Property
1.12.1(3)] 2, we deduce

ω{m}1 = {(p, ⟨! p←m⟩ω1) | p ∈ Lk (F )} =
= {(p, ⟨! p←m⟩ ⟨!m← l⟩ω) | p ∈ Lk (F )} =
= {(p, ⟨! p← l⟩ω) | p ∈ Lk (F )} = ω{l}.

2. Inversely, suppose, that ω ∈ Bs(l), ω1 ∈ Bs(m) and
ω{l} = ω{m}1 . Then, by Definition 1, we have

{(p, ⟨! p← l⟩ω) | p ∈ Lk (F )} =
= {(p, ⟨! p←m⟩ω1) | p ∈ Lk (F )} . (1)

According to [18, Property 1.12.1(1)], we have, ⟨! l← l⟩ω =
ω. Hence, in accordance with (1), for element (l, ω) =
(l, ⟨! l← l⟩ω) ∈ {(p, ⟨! p← l⟩ω) | p ∈ Lk (F )} we obtain the
correlation, (l, ω) ∈ {(p, ⟨! p←m⟩ω1) | p ∈ Lk (F )}. There-
fore, there exists the reference frame p0 ∈ Lk (F ) such that
(l, ω) = (p0, ⟨! p0←m⟩ω1). Hence we deduce l = p0, as
well ω = ⟨! p0←m⟩ω1 = ⟨! l←m⟩ω1. So, based on [18,
Properties 1.12.1(1,3)], we conclude, ω1 = ⟨!m←m⟩ω1 =

⟨!m← l⟩ ⟨! l←m⟩ω1 = ⟨!m← l⟩ω. □

The next corollary follows from Assertion 1.

Corollary 1. Let F be any universal kinematics. Then for
every l,m ∈ Lk (F ) and ω ∈ Bs(l) the following equality
holds:

ω{l} = (⟨!m← l⟩ω){m} .
1 Definition of universal kinematics can be found in [11, page 89] or [18,

page 156].
2 Reference to Property 1.12.1(3) means reference to the item 3 from the

group of properties “Properties 1.12.1”.

Assertion 2. Let F be any universal kinematics. Then the
set

Bs [l,F ] =
{
ω{l,F } | ω ∈ Bs(l)

}
(2)

does not depend of the reference frame l ∈ Lk (F ) (ie ∀l,m ∈
Lk (F ) Bs [l,F ] = Bs [m,F ]).

Proof. Consider arbitrary l,m ∈ Lk (F ). Using Corollary 1,
we have

Bs [l,F ] =
{
ω{l} | ω ∈ Bs(l)

}
=

=
{
(⟨!m← l⟩ω){m} | ω ∈ Bs(l)

}
.

Hence, according to [18, Corollary 1.12.6], we obtain

Bs [l,F ] =
{
(⟨!m← l⟩ω){m} | ω ∈ Bs(l)

}
=

=
{
ω{m}1 | ω1 ∈ Bs(m)

}
= Bs [m,F ] . □

Definition 2. Let F be any universal kinematics.

1. The set Bs(F ) = Bs [l,F ] (∀ l ∈ Lk (F )) is called by
the set of all elementary-time states of F .

2. Any subset Â ⊆ Bs(F ) is called by the (common)
changeable system of the universal kinematics F .

Assertion 3. Let F be any universal kinematics and l ∈
Lk (F ) be any reference frame of F . Then for every ele-
ment ω̂ ∈ Bs(F ) only one element ω0 ∈ Bs(l) exists such, that
ω̂ = ω{l}0 .

Proof. Consider any l ∈ Lk (F ) and ω̂ ∈ Bs(F ). By Defini-
tion 2 and Assertion 2 (formula (2)), we have

Bs(F ) = Bs [l,F ] =
{
ω{l} | ω ∈ Bs(l)

}
.

So, since ω̂ ∈ Bs(F ), the element ω0 ∈ Bs(l) must exist such
that the following equality is performed:

ω̂ = ω{l}0 . (3)

Let us prove that such element ω0 is unique. Assume that
ω̂ = ω{l}1 , where ω1 ∈ Bs(l). Then, from the equality (3) we
deduce, ω{l}0 = ω

{l}
1 . Hence, according to Assertion 1 and [18,

Property 1.12.1(1)], we obtain, ω1 = ⟨! l← l⟩ω0 = ω0. □

Definition 3. Let F be any universal kinematics, ω̂ ∈ Bs(F )
be any elementary-time state of F and l ∈ Lk (F ) be any
reference frame of F . Elementary-time state ω ∈ Bs(l) is
named by image of elementary-time state ω̂ in the reference
frame l if and only if ω̂ = ω{l}.

In accordance with Assertion 3, every elementary-time
state ω̂ ∈ Bs(F ) always has only one image in any reference
frame l ∈ Lk (F ). Image of elementary-time state ω̂ ∈ Bs(F )
in the reference frame l ∈ Lk (Z) will be denoted via ω̂{l,F }
(in the cases, where the universal kinematics F is known in
advance, we use the abbreviated denotation ω̂{l}).
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Thus, according to Definition 3, for arbitrary ω̂ ∈ Bs(F )
the following equality holds:(

ω̂{l}
){l}
= ω̂. (4)

From the other hand, if for any reference frame l ∈ Lk (F )
and any fixed elementary-time state ω ∈ Bs(l), we denote
ω̂ := ω{l}, then by Definition 3, we will receive, ω = ω̂{l}.
Therefore we have:(

ω{l}
)
{l}
= ω (∀l ∈ Lk (F ) ∀ω ∈ Bs(l)) . (5)

From equalities (4) and (5) we deduce the following
corollary:

Corollary 2. Let F be any universal kinematics and l ∈
Lk (F ) be any reference frame of F . Then:

1. The mapping (·){l} is bijection from Bs(l) onto Bs(F ).
2. The mapping (·){l} is bijection from Bs(F ) onto Bs(l).
3. The mapping (·){l} is inverse to the mapping (·){l}.

Assertion 4. Let F be any universal kinematics and l,m ∈
Lk (F ) be any reference frames F . Then the following state-
ments are performed:

1. For every ω̂ ∈ Bs(F ) the equality ω̂{m} = ⟨!m← l⟩ ω̂{l}
holds.

2. For each ω ∈ Bs(l) the equality
(
ω{l}

)
{m}
= ⟨!m← l⟩ω

is true.

Proof. 1) Chose any ω̂ ∈ Bs(F ). Applying Corollary 1 to the
elementary-time state ω̂{l} ∈ Bs(l) and using equality (4), we
obtain (⟨!m← l⟩ ω̂{l}){m} = (

ω̂{l}
){l}
= ω̂.

Thence, using equality (5), we have

ω̂{m} =
((⟨!m← l⟩ ω̂{l}){m}){m} = ⟨!m← l⟩ ω̂{l}.

2) Consider any ω ∈ Bs(l). Applying Corollary 1 as well
as equality (5), we deliver(

ω{l}
)
{m}
=

(
(⟨!m← l⟩ω){m}

)
{m}
= ⟨!m← l⟩ω. □

Let F be any universal kinematics. The set Â{l,F } ={
ω̂{l,F } | ω̂ ∈ Â

}
is called image of changeable system Â ⊆

Bs(F ) in the reference frame l ∈ Lk (F ).
Any changeable system A ⊆ Bs(l) in the reference frame

l ∈ Lk (F ) always generates the (common) changeable sys-
tem A{l,F } :=

{
ω{l,F } | ω ∈ A

}
⊆ Bs(F ).

Remark 2. In the cases, where universal kinematics F is
known in advance, we use the abbreviated denotations Â{l}
and A{l} instead of Â{l,F } and A{l,F } (correspondingly).

Applying equalities (4) and (5), we obtain the equalities:(
Â{l}

){l}
= Â and

(
A{l}

)
{l}
= A

(for arbitrary universal kinematics F , reference frame l ∈
Lk (F ) and changeable systems Â ⊆ Bs(F ) as well A ⊆
Bs(l)).

3 Chain paths of universal kinematics and definition of
time irreversibility

Definition 4. Let F be any universal kinematics. Change-
able system Â ⊆ Bs(F ) is called piecewise chain change-
able system if and only if there exist the sequences of change-
able systems Â1, · · · , Ân ⊆ Bs(F ) and reference frames
l1, · · · , ln ∈ Lk (F ) (n ∈ N) satisfying the following condi-
tions:

(a)
(
Âk

)
{lk}
∈ Ll (lk)

(
∀k ∈ 1, n

)
, 1 where definition of

set Ll (lk) = Ll ((lk )̂ ) can be found in [18, pages
63, 88, 156];

(b)
∪n

k=1 Âk = Â,

and, moreover, in the case n ≥ 2 the following additional
conditions are satisfied:

(c) Âk ∩ Âk+1 , ∅
(
∀k ∈ 1, n − 1

)
;

(d) For each k ∈ 1, n − 1 and arbitrary ω1 ∈
(
Âk \ Âk+1

)
{lk}

,

ω2 ∈
(
Âk ∩ Âk+1

)
{lk}

the inequality tm (ω1) <lk tm (ω2)
holds.

(e) For every k ∈ 2, n and arbitrary ω1 ∈
(
Âk−1 ∩ Âk

)
{lk}

,

ω2 ∈
(
Âk \ Âk−1

)
{lk}

the inequality tm (ω1) <lk tm (ω2)
is performed.

In this case the ordered composition A =(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
will be named by the chain

path of universal kinematics F .

Definition 5. Let F be any universal kinematics.

(a) Changeable system A ⊆ Bs(l) is refereed to as
geometrically-stationary in the reference frame l ∈
Lk (F ) if and only if A ∈ Ll(l) and for arbitrary
ω1, ω2 ∈ A the equality bs

(
Q⟨l⟩ (ω1)

)
= bs

(
Q⟨l⟩ (ω2)

)
holds.

(b) The set of all geometrically-stationary changeable sys-
tems in the reference frame l is denoted via Lg(l,F ). In
the cases, where the universal kinematics F is known
in advance, we use the abbreviated denotation Lg(l).

(c) The chain path A =
(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
in F (n ∈

N) is called by piecewise geometrically-stationary if
and only if ∀k ∈ 1, n

(
Âk

)
{lk}
∈ Lg (lk).

From the physical point of view piecewise geometrically-
stationary chain path may be interpreted as process of “va-
grancy” of observer (or some material particle or signal),
which moves by means of “jumping” from previous reference
frame to the next frame with a finite number of times.

Definition 6. Let F be any universal kinematics and let A =(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
be arbitrary chain path in F .

1 Further we denote via m, n (m, n ∈ N, m ≤ n) the set m, n = {m, · · · , n}.
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1. Element ω̂s ∈ Bs(F ) is called by start element of the
path A , if and only if ω̂s ∈ Â1 and for every ω̂ ∈ Â1
the inequality tm

(
(ω̂s){l1}

)
≤l1 tm

(
ω̂{l1}

)
is performed.

2. Element ω̂ f ∈ Bs(F ) is called by final element of the
path A , if and only if ω̂ f ∈ Ân and for every ω̂ ∈ Ân

the inequality tm
(
ω̂{ln}

) ≤ln tm
((
ω̂ f

)
{ln}

)
holds.

3. The chain path A , which owns (at least one) start
element and (at least one) final element, is called by
closed.

Assertion 5. Any chain path A of arbitrary universal kine-
maticsF can not have more, than one start element and more,
than one final element.

Proof. (a) Let ω̂s, ω̂x be two start elements of the chain
path A =

(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
. Then, by Definition

6, we have ω̂s, ω̂x ∈ Â1, tm
(
(ω̂s){l1}

)
≤l1 tm

(
(ω̂x){l1}

)
and

tm
(
(ω̂x){l1}

)
≤l1 tm

(
(ω̂s){l1}

)
. Therefore we get

tm
(
(ω̂s){l1}

)
= tm

(
(ω̂x){l1}

)
. (6)

Since ω̂s, ω̂x ∈ Â1, then (ω̂s){l1} , (ω̂x){l1} ∈
(
Â1

)
{l1}

, where,
in accordance with Definition 4 (subitem (a)), we have,(
Â1

)
{l1}
∈ Ll (l1). That is, according to [18, Assertion 1.7.5

(item 1)],
(
Â1

)
{l1}

is a function from Tm (l1) into Bs (l1). So,
using equality ω = (tm (ω) , bs (ω)) (ω ∈ Bs (l1)) as well as
formula (6), we obtain

bs
(
(ω̂s){l1}

)
=

(
Â1

)
{l1}

(
tm

(
(ω̂s){l1}

))
=

=
(
Â1

)
{l1}

(
tm

(
(ω̂x){l1}

))
= bs

(
(ω̂x){l1}

)
.

Using the last equality and equality (6), we deduce, (ω̂s){l1} =(
tm

(
(ω̂s){l1}

)
, bs

(
(ω̂s){l1}

))
=

(
tm

(
(ω̂x){l1}

)
, bs

(
(ω̂x){l1}

))
=

(ω̂x){l1}. Hence, according to formula (4), we deliver ω̂s =(
(ω̂s){l1}

){l1}
=

(
(ω̂x){l1}

){l1}
= ω̂x.

(c) Similarly it can be proven that the chain path A can
not have more, than one final element. □

Further the start element of the chain path A of the uni-
versal kinematics F will be denoted via po (A ,F ), or via
po (A ). The final element of the chain path A will be de-
noted via ki (A ,F ), or via ki (A ). Where the denotations
po (A ) and ki (A ) are used in the cases when they do not
cause misunderstanding. Thus, for every closed chain path
A both start and final elements (po (A ) and ki (A )) always
exist.

Definition 7. Closed chain path A of universal kinemat-
ics F is refereed to as geometrically-cyclic in the refer-
ence frame l ∈ Lk (F ) if and only if bs

(
Q⟨l⟩

(
po (A ){l}

))
=

bs
(
Q⟨l⟩

(
ki (A ){l}

))
.

Definition 8. Universal kinematics F is called time irre-
versible if and only if for every reference frame l ∈ Lk (F )
and for each chain path A , geometrically-cyclic in the frame
l and piecewise geometrically-stationary in F , it is performed
the inequality tm

(
po (A ){l}

)
≤l tm

(
ki (A ){l}

)
.

Universal kinematics F is called time reversible if and
only if it is not time irreversible.

The physical sense of time irreversibility notion is that in
time irreversible kinematics there is not any process or object
which returns to the begin of the own path at the past, moving
by means of “jumping” from previous reference frame to the
next frame. So, there are not temporal paradoxes in these
kinematics.

4 Direction of time between reference frames of univer-
sal kinematics

For formulation main theorem we need some notions, con-
nected with direction of time between reference frames.

Definition 9. Let F be any universal kinematics.
1. We say that reference frame m ∈ Lk (F ) is time-

nonnegative relatively the reference frame l ∈ Lk (F )
(in the universal kinematics F ) (denotation is m ⇑F
l) if and only if for arbitrary w1,w2 ∈ Mk (l) such
that bs (w1) = bs (w2) and tm (w1) ≤l tm (w2)
it is performed the inequality, tm ([m← l] w1) ≤m
tm ([m← l] w2).

2. We say that reference frame m ∈ Lk (F ) is time-
positive in F relatively the reference frame l ∈ Lk (F )
(denotation is m ⇑+F l) if and only if for arbitrary
w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2) and
tm (w1) <l tm (w2) it is performed the inequality,
tm ([m← l] w1) <m tm ([m← l] w2).

3. We say that reference frame m ∈ Lk (F ) is time-
nonpositive in F relatively the reference frame l ∈
Lk (F ) (denotation is m ⇓F l) if and only if for ar-
bitrary w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2)
and tm (w1) ≤l tm (w2) it is performed the inequality,
tm ([m← l] w1) ≥m tm ([m← l] w2).

4. We say that reference frame m ∈ Lk (F ) is time-
negative in F relatively the reference frame l ∈ Lk (F )
(denotation is m ⇓−F l) if and only if for arbitrary
w1,w2 ∈ Mk (l) such that bs (w1) = bs (w2) and
tm (w1) <l tm (w2) it is performed the inequality,
tm ([m← l] w1) >m tm ([m← l] w2).

5. The universal kinematics F is named by weakly time-
positive if and only if there exist at least one reference
frame l0 ∈ Lk (F ) such that the correlation l0 ⇑+F l
holds for every reference frame l ∈ Lk (F ).

Remark 3. Apart from weak time-positivity we can introduce
other, more strong, form of time-positivity. We say that uni-
versal kinematics F is time-positive if and only if for arbi-
trary reference frames l,m ∈ Lk (F ) the correlation l ⇑+F m
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holds. It is not hard to prove that every kinematics of kind
F = UP (H,B, c) (connected with classical special relativity
and introduced in [11] and [18, Section 24]) is time-positive.

Assertion 6. For arbitrary reference frames l,m ∈ Lk (F )
of any universal kinematics F the following statements are
performed.

1) If m ⇑+F l, then m ⇑F l.
2) If m ⇓−F l, then m ⇓F l.

Proof. 1) Indeed, let l,m ∈ Lk (F ) and m ⇑+F l. Then
for every w1,w2 ∈ Mk (l) such, that bs (w1) = bs (w2) and
tm (w1) ≤l tm (w2), we deduce the following:

(a) In the case tm (w1) <l tm (w2), by Definition 9, item
2, we get, tm ([m← l] w1) <m tm ([m← l] w2).

(b) In the case tm (w1) = tm (w2), we have w1 =

(tm (w1) , bs (w1)) = (tm (w2) , bs (w2)) = w2, and so
tm ([m← l] w1) = tm ([m← l] w2).

2) Second item of this Assertion can be proven similarly.
□

5 Theorem of Non-Returning

Theorem 1. Any weakly time-positive universal kinematics
F is time irreversible.

To prove Theorem 1 we need a few auxiliary assertions.

Assertion 7. Let Â ⊆ Bs(F ) be changeable system of univer-
sal kinematics F such, that Â{l0} ∈ Lg (l0) for some reference
frame l0 ∈ Lk (F ). Let l ∈ Lk (F ) be reference frame, satis-
fying condition l ⇑F l0.

Then for arbitrary ω̂1, ω̂2 ∈ Â the inequality
tm

(
(ω̂1){l0}

)
≤l0 tm

(
(ω̂2){l0}

)
assures the the inequality

tm
(
(ω̂1){l}

)
≤l tm

(
(ω̂2){l}

)
.

Proof. Suppose that, under conditions of the assertion, we
have ω̂1, ω̂2 ∈ Â and tm

(
(ω̂1){l0}

)
≤l0 tm

(
(ω̂2){l0}

)
. Accord-

ing to Definition of Minkowski coordinates (see [11, formula
(2)] or [18, formula (2.3)]), we have tm (ω) = tm

(
Q⟨l0⟩(ω)

)
(∀ω ∈ Bs (l0)). So, we get

tm
(
Q⟨l0⟩

(
(ω̂1){l0}

))
≤l0 tm

(
Q⟨l0⟩

(
(ω̂2){l0}

))
. (7)

Since (ω̂1){l0} , (ω̂2){l0} ∈ Â{l0} (where Â{l0} ∈ Lg (l0)) then, by
Definition 5 (items (a),(b)), we have

bs
(
Q⟨l0⟩

(
(ω̂1){l0}

))
= bs

(
Q⟨l0⟩

(
(ω̂2){l0}

))
. (8)

Taking into account that l ⇑F l0 and using Definition 9 (item
1) as well as formulas (7), (8), we get the inequality:

tm
(
[l← l0] Q⟨l0⟩

(
(ω̂1){l0}

))
≤l tm

(
[l← l0] Q⟨l0⟩

(
(ω̂2){l0}

))
.

Thence, using [18, formula (3.2)], we obtain

tm
(
Q⟨l⟩

(
⟨! l← l0⟩ (ω̂1){l0}

))
≤l

≤l tm
(
Q⟨l⟩

(
⟨! l← l0⟩ (ω̂2){l0}

))
.

Applying the last inequality as well as Assertion 4, we deduce
the inequality:

tm
(
Q⟨l⟩

(
(ω̂1){l}

))
≤l tm

(
Q⟨l⟩

(
(ω̂2){l}

))
. (9)

According to Definition of Minkowski coordinates (see [11,
formula (2)] or [18, formula (2.3)]), for every ω ∈ Bs(l) we
have the equality tm

(
Q⟨l⟩(ω)

)
= tm (ω). That is why from the

inequality (9) it follows the desired inequality tm
(
(ω̂1){l}

)
≤l

tm
(
(ω̂2){l}

)
. □

Assertion 8. Let, A =
(
Â,

(
Â1, l1

)
, · · · ,

(
Â n, l n

))
(n ∈ N)

be closed, piecewise geometrically-stationary chain path of
universal kinematics F and l ∈ Lk (F ) be reference frame
such that l ⇑F l i for every i ∈ 1, n. Then for arbitrary ω̂ ∈ Â
the following inequality holds:

tm
(
po (A ){l}

)
≤l tm

(
ω̂{l}

) ≤l tm
(
ki (A ){l}

)
. (10)

Proof. Let F be universal kinematics and A =(
Â,

(
Â1, l1

)
, · · · ,

(
Â n, l n

))
(n ∈ N) be closed, piecewise

geometrically-stationary chain path of F . Let, l ∈ Lk (F ) be
reference frame such that l ⇑F l i (∀ i ∈ 1, n).

1) First we prove that for any ω̂ ∈ Â it holds the inequal-
ity:

tm
(
po (A ){l}

)
≤l tm

(
ω̂{l}

)
. (11)

By Definition 4 (item (b)), Â =
∪n

k=1 Âk. So, it is sufficient to
prove the inequality (11) for the cases ω̂ ∈ Âk (k ∈ 1, n).

1.a) First we prove the inequality (11) for ω̂ ∈ Â1. Ac-
cording to Definition 6 (item 1), for ω̂ ∈ Â1 we obtain that
po (A ) ∈ Â1 and

tm
(
po (A ){l1}

)
≤l1 tm

(
ω̂{l1}

)
. (12)

According to the above, we have ω̂ ∈ Â1 and po (A ) ∈ Â1.
Moreover, by Definition 5 (item (c)), we get,

(
Â1

)
{l1}
∈

Lg (l1). By conditions of Assertion, we have, l ⇑F l1. So,
in accordance with Assertion 7, the correlation (12) stipulates
the inequality tm

(
po (A ){l}

)
≤l tm

(
ω̂{l}

)
. Hence, in the case

ω̂ ∈ Â1, the inequality (11) has been proven. Moreover, the
last inequality has been proven for all ω̂ ∈ Â in the case n = 1.
So, further we consider, that n > 1.

1.b) Assume, that inequality (11) is performed for all
ω̂ ∈ Âk−1, where k ∈ 2, n. And, let us prove, that then this
inequality is true for each ω̂ ∈ Âk.

In the case ω̂ ∈ Âk ∩ Âk−1 the inequality (11) is true in
accordance with inductive hypothesis. Hence, it remains to
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prove the last inequality for every ω̂ ∈ Âk \ Âk−1. According
to item (c) of Definition 4, we have Âk ∩ Âk−1 , ∅. Hence, at
least one element η̂ ∈ Âk ∩ Âk−1 exists. Since,

η̂ ∈ Âk ∩ Âk−1 and ω̂ ∈ Âk \ Âk−1, (13)

then we get η̂{lk} ∈
(
Âk ∩ Âk−1

)
{lk}

, ω̂{lk} ∈
(
Âk \ Âk−1

)
{lk}

.
Therefore, according to item (e) of Definition 4, we deliver

tm
(
η̂{lk}

) ≤lk tm
(
ω̂{lk}

)
. (14)

According to (13), we have η̂, ω̂ ∈ Âk, where, by item (c) of
Definition 5,

(
Âk

)
{lk}
∈ Lg (lk). Since l ⇑F lk, then taking into

account inequality (14) and Assertion 7 we deduce

tm
(
η̂{l}

) ≤l tm
(
ω̂{l}

)
. (15)

According to (13), we have η̂ ∈ Âk−1. So, by inductive hy-
pothesis, we deliver

tm
(
po (A ){l}

)
≤l tm

(
η̂{l}

)
. (16)

Inequalities (15) and (16) assure inequality (11).
Thus, by Principle of mathematical induction, inequality

(11) is true for arbitrary ω̂ ∈ ∪n
k=1 Âk = Â.

2) Now we are aiming to prove, that for any ω̂ ∈ Â it
holds the inequality:

tm
(
ω̂{l}

) ≤l tm
(
ki (A ){l}

)
. (17)

2.a) First we prove the inequality (17) for ω ∈ Ân. Ac-
cording to Definition 6 (item 2), for ω̂ ∈ Ân we obtain that
ki (A ) ∈ Ân and

tm
(
ω̂{ln}

) ≤ln tm
(
ki (A ){ln}

)
. (18)

According to the above, we have ω̂ ∈ Ân and ki (A ) ∈ Ân.
Moreover, by Definition 5 (item (c)), we get

(
Ân

)
{ln}
∈ Lg (ln).

By conditions of Assertion, we have l ⇑F ln. So, in accor-
dance with Assertion 7, the correlation (18) stipulates the in-
equality (17). Hence, in the case ω̂ ∈ Ân, the inequality (17) is
proven. Moreover, the last inequality is proven for all ω̂ ∈ Â
in the case n = 1. So, further we consider, that n > 1.

2.b) Assume, that inequality (17) is performed for all ω̂ ∈
Âk+1, where k ∈ 1, n − 1. And, let us prove, that then this
inequality is true for each ω̂ ∈ Âk.

In the case ω ∈ Âk ∩ Âk+1 the inequality (17) is true in
accordance with inductive hypothesis. Hence, it remains to
prove the last inequality for every ω̂ ∈ Âk \ Âk+1. According
to item (c) of Definition 4, we have Âk ∩ Âk+1 , ∅. Hence, at
least one element η̂ ∈ Âk ∩ Âk+1 exists. Taking into account
that

η̂ ∈ Âk ∩ Âk+1 and ω̂ ∈ Âk \ Âk+1, (19)

we get η̂{lk} ∈
(
Âk ∩ Âk+1

)
{lk}

, ω̂{lk} ∈
(
Âk \ Âk+1

)
{lk}

. There-
fore, according to item (d) of Definition 4, we deliver

tm
(
ω̂{lk}

) ≤lk tm
(
η̂{lk}

)
. (20)

According to (19), we have η̂, ω̂ ∈ Âk, where
(
Âk

)
{lk}
∈ Lg (lk)

by item (c) of Definition 5. Since l ⇑F lk then, taking into
account inequality (20) and Assertion 7, we deduce

tm
(
ω̂{l}

) ≤l tm
(
η̂{l}

)
. (21)

According to (19), we have η̂ ∈ Âk+1. So, by inductive hy-
pothesis, we deliver

tm
(
η̂{l}

) ≤l tm
(
ki (A ){l}

)
. (22)

Inequalities (21) and (22) assure inequality (17). Thus,
by Principle of mathematical induction, inequality (17) is true
for arbitrary ω̂ ∈ ∪n

k=1 Âk = Â.

Inequality (10) follows from (11) and (17). □

Proof of Theorem 1. LetF be weakly time-positive universal
kinematics. Then, by Definition 9, there exists the reference
frame l0 ∈ Lk (F ) such that

∀m ∈ Lk (F ) l0 ⇑+F m . (23)

Let A =
(
Â,

(
Â1, l1

)
, · · · ,

(
Ân, ln

))
(n ∈ N) be piecewise

geometrically-stationary chain path in F and, moreover, A
is geometrically-cyclic relatively some reference frame l ∈
Lk (F ). By Definition 7, A is closed chain path. According
to Assertion 6, correlation (23) leads to the correlation l0 ⇑F
lk (∀k ∈ 1, n). Hence, applying Assertion 8, we ensure

tm
(
po (A ){l0}

)
≤l0 tm

(
ki (A ){l0}

)
. (24)

Assume, that tm
(
ki (A ){l}

)
<l tm

(
po (A ){l}

)
. Then, by Defi-

nition of Minkowski coordinates (see [11, formula (2)] or [18,
formula (2.3)]), we obtain

tm
(
Q⟨l⟩

(
ki (A ){l}

))
<l tm

(
Q⟨l⟩

(
po (A ){l}

))
. (25)

Since the path A is geometrically-cyclic relatively the refer-
ence frame l, then, by Definition 7, we have

bs
(
Q⟨l⟩

(
po (A ){l}

))
= bs

(
Q⟨l⟩

(
ki (A ){l}

))
. (26)

Since (in accordance with (23)) l0 ⇑+F l, then, by Definition
9 (item 2), from the correlations (25), and (26), we get the
inequality:

tm
(
[l0← l] Q⟨l⟩

(
ki (A ){l}

))
<l0

<l0 tm
(
[l0← l] Q⟨l⟩

(
po (A ){l}

))
.
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Thence, using [18, formula (3.2)] , we deduce the inequality:

tm
(
Q⟨l0⟩

(
⟨! l0← l⟩ ki (A ){l}

))
<l0

<l0 tm
(
Q⟨l0⟩

(
⟨! l0← l⟩ po (A ){l}

))
.

Taking into account Assertion 4, the last inequality
can be reduced to the form, tm

(
Q⟨l0⟩

(
ki (A ){l0}

))
<l0

tm
(
Q⟨l0⟩

(
po (A ){l0}

))
, and, by Definition of Minkowski co-

ordinates (see [11, formula (2)] or [18, formula (2.3)])), we
assure

tm
(
ki (A ){l0}

)
<l0 tm

(
po (A ){l0}

)
.

But, the last inequality contradicts to the correlation
(24). Therefore, hypothesis affirming, that tm

(
ki (A ){l}

)
<l

tm
(
po (A ){l}

)
is false. Consequently we have

tm
(
po (A ){l}

)
≤l tm

(
ki (A ){l}

)
. (27)

Thus, for each reference frame l ∈ Lk (F ) and for each
chain path A , geometrically-cyclic in the frame l and piece-
wise geometrically-stationary in F , it holds the inequality
(27). So, by Definition 8, kinematics F is time irreversible,
which must be proved. □

6 Certainly time irreversibility. Strengthened version of
theorem of non-returning

Recall, that in the papers [17, Definition 6], [18, Definition
3.25.2] the notion of equivalence of universal kinematics rel-
atively coordinate transform had been introduced. According
to these papers, we denote equivalent relatively coordinate
transform kinematics F1 and F2 via F1 [≡]F2.

Definition 10. We say that universal kinematics F is cer-
tainly time irreversible if and only if arbitrary universal kine-
matics F1 such, that F [≡]F1 is time irreversible. In the op-
posite case we will say that universal kinematics F is condi-
tionally time reversible.

Since, according to [17, Assertion 3] (see also [18, Asser-
tion 3.25.1]), for each universal kinematicsF it is fulfilled the
correlation F [≡]F , then we receive the following Corollary
from Definition 10:

Corollary 3. Any certainly time irreversible universal kine-
matics F is time irreversible.

The physical sense of certain time irreversibility notion is
that in certainly time irreversible kinematics temporal para-
doxes are impossible basically, that is there is not potential
possibility to affect the own past by means of “traveling” and
“jumping” between reference frames. Whereas, in time ir-
reversible, but conditionally time reversible kinematics such
potential possibility exists, but it is not realized in the scenario
of evolution, acting in this kinematics.

Assertion 9. Let universal kinematics F be weakly time-
positive. Then every universal kinematics F1 such that
F1 [≡]F is weakly time-positive also.

Proof. Let F be weakly time-positive universal kinematics
and F1 [≡]F . Recall, that in [18, Definition 3.27.3] for every
reference frame m ∈ Lk (F ) it was introduced the reference
frame m ⇂F1 , related with m in the universal kinematics F1:

m ⇂F1 := lkind(m) (F1) . (28)

Since kinematics F is weakly time-positive then, by Defini-
tion 9, the reference frame l0 ∈ Lk (F ) exists such that for
each reference frame l ∈ Lk (F ) the correlation l0 ⇑+F l holds.
Denote:

l
(1)
0 := l0 ⇂F1 .

Let us consider any reference frame l(1) ∈ Lk (F1). Denote:
l := l(1) ⇂F ∈ Lk (F ). Then, according to [18, Properties
3.27.1] and formula (28), we have

l
(1) = l ⇂F1= lkind(l) (F1) .

Hence, taking into account [18, Definition 3.25.2 (item 2)],
formula (28) and [18, Property 3.25.1(1)], we get

Mk
(
l

(1)
0 ;F1

)
= Mk

(
lkind(l0) (F1) ;F1

)
=

= Mk
(
lkind(l0) (F ) ;F )

= Mk (l0;F ) ;

Mk
(
l
(1);F1

)
= Mk (l;F ) . (29)

Similarly applying [18, Definition 3.25.2 (item 2)] we ensure
the equalities:

Tm
(
l

(1)
0

)
= Tm (l0) ; Tm

(
l
(1)

)
= Tm (l) (30)

(where (in accordance with [18, Subsection 6.3]) Tm(m) =
(Tm (m) ,≤m) (∀m ∈ Lk (F ) ∪ Lk (F1))). Moreover, ac-
cording to [18, Property 3.25.1(1) and Definition 3.25.2
(item 3)], we obtain

[l0← l, F ] =
[
lkind(l0) (F )← lkind(l) (F ) , F ]

=

=
[
lkind(l0) (F1)← lkind(l) (F1) , F1

]
=

=
[
l0 ⇂F1 ← l ⇂F1 , F1

]
=

[
l

(1)
0 ← l

(1), F1

]
. (31)

Taking into account (29), let us consider any ele-
ments w1,w2 ∈ Mk

(
l(1);F1

)
= Mk (l;F ) such

that bs (w1) = bs (w2) and tm (w1) <l(1) tm (w2).
Then, in accordance with (30), we obtain the inequal-
ity tm (w1) <l tm (w2). Since (as it was mentioned be-
fore) l0 ⇑+F l, then, by Definition 9 (item 2), we ob-
tain the inequality tm ([l0← l, F ] w1) <l0 tm ([l0← l, F ] w2).
Thence, using (31) and (30), we ensure the inequality,
tm

([
l
(1)
0 ← l(1), F1

]
w1

)
<
l
(1)
0

tm
([
l
(1)
0 ← l(1), F1

]
w2

)
. By Def-

inition 9 (item 2), taking into account the arbitrariness of
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choice elements w1,w2 ∈ Mk
(
l(1);F1

)
such, that bs (w1) =

bs (w2) and tm (w1) <l(1) tm (w2), we obtain the correlation
l
(1)
0 ⇑+F1

l(1) (for every reference frame l(1) ∈ Lk (F1)). Hence,
by Definition 9, kinematics F1 is weakly time-positive. □

Applying Assertion 9 as well as Theorem 1, we obtain
the following (strengthened) variant of Theorem of Non-
Returning:

Theorem 2. Any weakly time-positive universal kinematics
F is certainly time irreversible.

7 Example of certainly time irreversible tachyon
kinematics

In this section we build the certainly time-irreversible uni-
versal kinematics, which allows for reference frames moving
with any speed other than the speed of light, using the gen-
eralized Lorentz-Poincare transformations in terms of E. Re-
cami, V. Olkhovsky and R. Goldoni.

Let (H, ∥·∥ , ⟨·, ·⟩) be a Hilbert space over the real field
such, that dim (H) ≥ 1, where dim (H) is dimension of the
space H. Emphasize, that the condition dim(H) ≥ 1 should
be interpreted in a way that the space H may be infinite-
dimensional. Let L (H) be the space of (homogeneous) lin-
ear continuous operators over the space H. Denote by L× (H)
the space of all operators of affine transformations over the
space H, that is L× (H) =

{
A[a] | A ∈ L (H) , a ∈ H}, where

A[a]x = Ax + a, x ∈ H. The Minkowski space over the
Hilbert space H is defined as the Hilbert space M (H) =
R × H = {(t, x) | t ∈ R, x ∈ H}, equipped by the inner product
and norm: ⟨w1,w2⟩ = ⟨w1,w2⟩M(H) = t1t2 + ⟨x1, x2⟩, ∥w1∥ =
∥w1∥M(H) =

(
t2
1 + ∥x1∥2

)1/2
(where wi = (ti, xi) ∈ M (H) ,

i ∈ {1, 2}) ( [10, 18]). In the spaceM (H) we select the next
subspaces: H0 := {(t, 0) | t ∈ R}, H1 := {(0, x) | x ∈ H} with 0
being zero vector. Then,M (H) = H0⊕H1,where ⊕means the
orthogonal sum of subspaces. Denote: e0 := (1, 0) ∈ M (H).
Introduce the orthogonal projectors on the subspaces H1 and
H0:

Xw = (0, x) ∈ H1; T̂w = (t, 0) = T (w) e0 ∈ H0,

where T (w) = t (w = (t, x) ∈ M (H)) .

Let B1 (H1) be the unit sphere in the space H1 (B1 (H1) =
{x ∈ H1 | ∥x∥ = 1}). Any vector n ∈ B1 (H1) generates the fol-
lowing orthogonal projectors, acting inM (H):

X1 [n] w = ⟨n,w⟩n (w ∈ M (H));
X⊥1 [n] = X − X1 [n] .

Recall, that an operator U ∈ L (H) is referred to as unitary on
H, if and only if ∃U−1 ∈ L (H) and ∀ x ∈ H ∥Ux∥ = ∥x∥. Let
U (H1) be the set of all unitary operators over the space H1.

Fix some real number c such, that 0 < c < ∞. Denote:

PT
∓
fin (H, c) :=Wλ,c [s,n, J; a]

∣∣∣∣∣∣∣∣∣∣∣
λ ∈ [0,∞) \ {c},
s = sign (c − λ),
J ∈ U (H1) , n ∈ B1 (H1) ,
a ∈ M (H)

 , (32)

where Wλ,c [s,n, J; a] ∈ L× (M (H)) (λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1), n ∈ B1 (H1), a ∈ M (H)) are operators
of generalized Lorentz-Poincare Transformations in the sense
of E. Recami, V. Olkhovsky and R. Goldoni, introduced in
[10, 11, 18]:

Wλ,c [s,n, J; a]w =Wλ,c [s,n, J] (w + a), where

Wλ,c [s,n, J]w =

(
sT (w) − λc2 ⟨n,w⟩

)
√∣∣∣1 − λ2

c2

∣∣∣ e0+

+ J

λT (w) − s ⟨n,w⟩√∣∣∣1 − λ2

c2

∣∣∣ n + X⊥1 [n] w

 . (33)

According to [18, 20], every operator of kind Wλ,c [s,n, J; a]
belongs to Pk (H), where Pk (H) is the set of all operators
S ∈ L× (M (H)), which have the continuous inverse operator
S−1 ∈ L× (M (H)). Using results of the papers [18, 20], we
can calculate the operators, inverse to the operators of kind
Wλ,c [s,n, J] and Wλ,c [s, n, J; a].

Lemma 1. For arbitrary c ∈ (0,∞), λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1) and n ∈ B1 (H1) the following equality
holds:(

Wλ,c [s,n, J]
)−1
=

=Wλ,c

[
s sign (c − λ), sign (c − λ)Jn, J−1

]
. (34)

Proof. Consider arbitrary 0 < c < ∞, λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1) and n ∈ B1 (H1). According to [10, page
143] or [18, formula (2.86)], operator Wλ,c [s,n, J] may be
represented in the form:

Wλ,c [s,n, J] = Uθ,c [s,n, J] , (35)

where

θ =
1 − λc√∣∣∣1 − λ2

c2

∣∣∣
(
λ = c

1 − θ |θ|
1 + θ |θ|

)
, −1 ≤ θ ≤ 1.

Hence, according to [20, Corollary 5.1] or [18, Corollary
2.18.3], we obtain, that

(
Wλ,c [s,n, J]

)−1 ∈ L (M (H)), and
moreover:(

Wλ,c [s,n, J]
)−1
=

(
Uθ,c [s,n, J]

)−1
=

= Uθs,c

[
sθ, sθJn, J−1

]
, (36)

where sθ = S(s, θ) =

1, s, θ > 0
−1, s < 0 or θ < 0.
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In the case s = 1 we have, sθ = sign θ = sign
 1− λc√∣∣∣∣1− λ2c2

∣∣∣∣
 =

sign (c−λ). Hence, in this case, using (36) and (35), we obtain(
Wλ,c [s,n, J]

)−1
= Uθ,c

[
sθ, sθJn, J−1

]
=

=Wλ,c

[
sθ, sθJn, J−1

]
=

=Wλ,c

[
sign (c − λ), sign (c − λ)Jn, J−1

]
(s = 1). (37)

Now we consider the case s = −1 (θs = θ−1). Applying
(36) and [18, formula (2.90)], in this case we deduce(

Wλ,c [s,n, J]
)−1
= Uθ−1,c

[
sθ, sθJn, J−1

]
=

= Uθ,c
[
sθsign θ,−sθ

(
sign θ

)
Jn, J−1

]
=

= Uθ,c
[
−sign θ,

(
sign θ

)
Jn, J−1

]
=

= Uθ,c
[
−sign (c − λ), sign (c − λ)Jn, J−1

]
=

=Wλ,c

[
−sign (c − λ), sign (c − λ)Jn, J−1

]
(s = −1). (38)

Taking into account (37) and (38) in the both cases we obtain
(34). □

Using Lemma 1, we obtain the following corollary.

Corollary 4. For arbitrary c ∈ (0,∞), λ ∈ [0,∞) \ {c}, s ∈
{−1, 1}, J ∈ U (H1), n ∈ B1 (H1) and a ∈ M (H) the following
equality is fulfilled:(

Wλ,c [s,n, J; a]
)−1 w =

=Wλ,c

[
s sign (c − λ), sign (c − λ)Jn, J−1

]
w − a

(w ∈ M (H)) .

Let B be any base changeable set such, that Bs(B) ⊆ H
and Tm(B) = (R,≤), where ≤ is the standard order in the field
of real numbers R. Denote:

UPT
∓
fin (H,B, c) := Ku

(
PT

∓
fin (H, c) ,B; H

)
, (39)

where the denotation Ku (·, ·; ·) is introduced in [11], [18,
page 166]. From [18, Assertion 2.17.5] it follows, that in the
case dim (H) = 3 universal kinematics UPT∓fin (H,B, c) may
be considered as tachyon extension of kinematics of classical
special relativity, which allows for reference frames moving
with arbitrary speed other than the speed of light.

According to [18, Property 3.23.1(1)], the set
Lk

(
UPT∓fin (H,B, c)

)
of all reference frames of univer-

sal kinematics UPT∓fin (H,B, c), defined by (39), can be
represented in the form:

Lk
(
UPT

∓
fin (H,B, c)

)
=

=
{
(U,U [B,Tm(B)]) | U ∈ PT∓fin (H, c)

}
=

=
{
(U,U [B]) | U ∈ PT∓fin (H, c)

}
. (40)

In accordance with [18, Corollary 2.19.5], subclass of opera-
tors

P+ (H, c) =

=

Wλ,c [s,n, J; a]

∣∣∣∣∣∣∣∣
λ ∈ [0, c), s = 1,
J ∈ U (H1) ,
n ∈ B1 (H1) , a ∈ M (H)

 ⊆
⊆ PT∓fin (H, c)

is group of operators over the space M (H). So, the iden-
tity operator IM(H)w = w (∀w ∈ M (H)) belongs to the class
PT

∓
fin (H, c). Hence, in accordance with (40), we may define

the following reference frame:

l0,B : =
(
IM(H), IM(H) [B]

)
=

=
(
IM(H),B

) ∈ Lk
(
UPT

∓
fin (H,B, c)

)
(41)

(recall, that, according to [18, Remark 1.11.3], IM(H) [B] =
B).

Lemma 2. For each reference frame l ∈
Lk

(
UPT∓fin (H,B, c)

)
the following correlation holds:

l0,B ⇑+UPT∓fin(H,B,c) l.

Proof. Consider any reference frame l ∈
Lk (UPT∓ (H,B, c)). According to (40) and (32), frame l can
be represented in the form:

l = (U,U [B]) , where (42)
U =Wλ,c

[
sign (c − λ),n, J; a

]
, (43)

0 ≤ λ < +∞, λ , c,

n ∈ B1 (H1) , J ∈ U (H1) , a ∈ M (H) .

Applying [18, Properties 3.23.1(3,4,7)] as well (42), (43),
(41) and Corollary 4 we obtain

Tm (l) = Tm
(
l0,B

)
= Tm(B) = (R,≤) ; (44)

Mk (l) = Mk
(
l0,B

)
= Tm(B) × H =

= R × H =M (H) ;[
l0,B← l

]
w = IM(H)U−1w =

=
(
Wλ,c

[
sign (c − λ), n, J; a

])−1 w =

=Wλ,c

[(
sign (c − λ))2 , sign (c − λ)Jn, J−1

]
w − a =

=Wλ,c

[
1, sign (c − λ)Jn, J−1

]
w − a (45)

(w ∈ Mk (l) =M (H)) .

Now we consider any w1,w2 ∈ Mk (l) =M (H) such that
bs (w1) = bs (w2) and tm (w1) <l tm (w2). According to (44),
inequality tm (w1) <l tm (w2) is equivalent to the inequality
tm (w1) < tm (w2). From the equality bs (w1) = bs (w2) it
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follows that

X (w2 − w1) =
= X (tm (w2) − tm (w1) , bs (w2) − bs (w1)) =

= (0, bs (w2) − bs (w1)) = 0.

Thence, using (45) and (33) we deduce

tm
([
l0,B← l

]
w2

) − tm
([
l0,B← l

]
w1

)
=

= tm
([
l0,B← l

]
w2 −

[
l0,B← l

]
w1

)
=

= tm
(
Wλ,c

[
1, sign (c − λ)Jn, J−1

]
w2−

−Wλ,c

[
1, sign (c − λ)Jn, J−1

]
w1

)
=

= tm
(
Wλ,c

[
1, sign (c − λ)Jn, J−1

]
(w2 − w1)

)
=

= T
(
Wλ,c

[
1, sign (c − λ)Jn, J−1

]
(w2 − w1)

)
=

=
T (w2 − w1) − λc2

⟨
sign (c − λ)Jn,w2 − w1

⟩√∣∣∣1 − λ2

c2

∣∣∣ =

=
T (w2 − w1) − λc2

⟨
sign (c − λ)XJn,w2 − w1

⟩√∣∣∣1 − λ2

c2

∣∣∣ =

=
T (w2 − w1) − λc2

⟨
sign (c − λ)Jn,X (w2 − w1)

⟩√∣∣∣1 − λ2

c2

∣∣∣ =

=
T (w2 − w1)√∣∣∣1 − λ2

c2

∣∣∣ = T
(w2) − T (w1)√∣∣∣1 − λ2

c2

∣∣∣ > 0

Therefore, tm
([
l0,B← l

]
w1

)
< tm

([
l0,B← l

]
w2

)
, ie, accord-

ing to (44), we have, tm
([
l0,B← l

]
w1

)
<l0,B tm

([
l0,B← l

]
w2

)
.

Thus, for arbitrary w1,w2 ∈ Mk (l) = M (H) such, that
bs (w1) = bs (w2) and tm (w1) <l tm (w2) it is true the in-
equality tm

([
l0,B← l

]
w1

)
<l0,B tm

([
l0,B← l

]
w2

)
. And, tak-

ing into account Definition 9 (item 2), we have seen, that
l0,B ⇑+UPT∓fin(H,B,c) l. □

Corollary 5. Every universal kinematics of kind
UPT∓fin (H,B, c) (0 < c < ∞) is certainly time irreversible.

Proof. According to Lemma 2 and Definition 9 (item 5),
kinematics of kind UPT∓fin (H,B, c) (0 < c < ∞) is
weakly time-positive. Hence, by Theorem 2, kinematics
UPT∓fin (H,B, c) is certainly time irreversible. □

Remark 4. Kinematics of kind UPT∓fin (H,B, c) (0 < c < ∞)
is weakly time-positive, but it is not time-positive. Similarly
to Lemma 2 it can be proved, that for any (superluminal) ref-
erence frame of kind:

l = (U,U [B]) ∈ Lk
(
UPT

∓
fin (H,B, c)

)
, where

U =Wλ,c
[
sign (c − λ),n, J; a

]
=Wλ,c [−1,n, J; a] ,

c < λ < +∞, n ∈ B1 (H1) , J ∈ U (H1) , a ∈ M (H)

the correlation l ⇓−
UPT∓fin(H,B,c) l0,B is true despite the fact that

l0,B ⇑+UPT∓fin(H,B,c) l (according to Lemma 2).

Remark 5. It is easy to see that the binary relation ⇑+F is re-
flexive on the set Lk (F ) of all reference frames of arbitrary
universal kinematics F . From Remark 4 it follows that in
the general case this relation is not symmetric. Using the re-
sults of [10, Section 7, paragraph 4] it can be proven that this
relation is not transitive in the general case.

8 On the physical interpretation of main result

The aim of this section is to explain main Theorem 2 in the
physical language. We can imagine, that any universal kine-
matics F is some abstract “world”, which not necessarily co-
incides with the our. In every such “world” F there exists
the fixed for this “world” set of reference frames Lk (F ). We
reach the agreement that for any reference frame l ∈ Lk (F )
the arrows of the clock, fixed in the frame l are rotating clock-
wise relatively the frame l. We say, that the reference frame
m ∈ Lk (F ) is time-positive relatively the reference frame
l ∈ Lk (F ) (ie m ⇑+F l) if and only if the observer in the ref-
erence frame m (fixed relatively m) observes that the arrows
of the clock, fixed in the frame l are rotating clockwise in the
frame m as well (cf. Definition 9, item 2). We abandon the
physical question, how can the observer in m “see” the clock,
fixed in the other frame l. From the mathematical point of
view, the possibility of observation the clock, attached to an-
other reference frame, is guaranteed by existence of univer-
sal coordinate transform between every two reference frames
(see definition of universal kinematics in [11,18]). According
to Remark 5, the binary relation ⇑+F always is reflexive, but,
in the general case, it is not symmetric and is not transitive on
the set Lk (F ) of all reference frames of the “world” F .

We also suppose, that in the “world” F the interframe
voyagers can exist. Such voyagers may move from one refer-
ence frame to the another frame, passing near them (similarly
as, standing near the tram track, we can jump into the tram,
passing near us).

From the physical point of view Theorem 2 asserts, that
if in the “world” F there exists at least one reference frame
l0 ∈ Lk (F ), which is time-positive relatively the every frame
l ∈ Lk (F ), then in this “world” the temporal paradoxes,
connected with the possibility of the returning to the own
past are impossible. This means, that any interframe voy-
ager, starting in some reference frame l in some fixed point x
can not finish its travel in the frame l and in the point x at the
past time.

9 Conclusions

1. According to Corollary 5, kinematics of kind
UPT∓fin (H,B, c) (in the case dim (H) = 3) gives the
example of certainly time-irreversible tachyon exten-
sion of kinematics of classical special relativity, which
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allows for reference frames moving with arbitrary ve-
locity other than the velocity of light. Thus, the main
conclusion of Theorem 2 is the following:
In the general case the hypothesis of existence of mate-
rial objects and inertial reference frames, moving with
the velocity, greater than the velocity of light, does not
lead to temporal paradoxes, connected with existence
of formal possibility of returning to the own past.

2. In [9] authors have deduced two variants of generalized
superluminal Lorentz transforms for the case, when
two inertial frames are moving along the common x-
axis:

t′ =
t − vxc2√(
v
c

)2 − 1
, x′ =

x − vt√(
v
c

)2 − 1
,
y′ = y,

z′ = z,
(46)

where v ∈ R, |v| > c (see [9, formula (3.16)]) and:

t′ =
−t + vxc2√(
v
c

)2 − 1
, x′ =

−x + vt√(
v
c

)2 − 1
,
y′ = y,

z′ = z
(47)

(see [9, formula (3.18)]). Transforms (46) are partic-
ular cases of the transforms of kind (33) for the case,
where dim (H) = 3, λ > c and s = 1, whereas trans-
forms (47) belong to the transforms of kind (33) for
the case, where dim (H) = 3, λ > c and s = −1.
If we chose in (33) the value s = 1 for subluminal
as well as superluminal diapason, we obtain the class
of operators PT+ (H, c), defined in [13, 18] and based
on this class of operators universal kinematics of kind
UPT (H,B, c). According to results, announced in [19]
and published in [12], this kinematics is conditionally
time reversible 1. But, if we chose in (33) the value
s = 1 for subluminal diapason and value s = −1 for
superluminal diapason, we reach the class of operators
PT

∓
fin (H, c), defined in (32) and based on this class of

operators universal kinematics of kind UPT∓fin (H,B, c).
According to Corollary 5, kinematics UPT∓fin (H,B, c)
is certainly time irreversible. Thus we can formulate
the following conclusion, concerning two variants of
superluminal Lorentz transforms, deduced in [9]:
From the standpoint of time-irreversibility, transforms
(47) or [9, formula (3.18)] are more suitable for repre-
sentation of the tachyon continuation of Einstein’s spe-
cial theory of relativity than (46) or [9, formula (3.16)].

Main results of this paper had been announced in [19].

Received on September 19, 2017
1 In fact, class of operators PT+ (H, c) contains apart from operators of

kind (33) (with s = 1) also operators, corresponding tachyon inertial refer-
ence frames with infinite velocities. However, using results of the paper [12],
it is not hard to deduce that the “subkinematics” of kinematics UPT (H,B, c),
which includes only all reference frames from UPT (H,B, c) with finite ve-
locities, also is conditionally time reversible.
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Chain Systems of Harmonic Quantum Oscillators as a Fractal Model of Matter
and Global Scaling in Biophysics

Hartmut Müller
E-mail: hm@interscalar.com

In this paper we introduce chain systems of harmonic quantum oscillators as a fractal
model of matter and apply it to the analysis of frequency ranges of cyclical biological
processes. The heuristic significance of global scaling in biophysics and medicine is
discussed.

Introduction

Normal matter is formed by nucleons and electrons because
they are exceptionally stable. Their lifespan tops everything
that is measurable, exceeding 1029 years for the proton and
1028 years for the electron [1]. The proton-to-electron mass
ratio is approximately 1836, so that the mass contribution
of the proton to normal matter is very high, for example in
the hydrogen atom (protium) it is 1− 1/1836≈ 99.95 percent.
Consequently, the mass contribution of the electron is only
0.05 percent. In heavier atoms which contain neutrons, the
electron contribution to atomic mass is even smaller.

In addition, protons and neutrons have similar rest masses
(the difference being only 0.14 percent) which allows us to
interpret the proton and the neutron as similar quantum oscil-
lators with regard to their rest masses. the framework of the
standard particle model [2], protons and neutrons are baryons,
with the proton connecting to a lower quantum energy level
and a much more stable state than the neutron.

Therefore, in [3] we have introduced a fractal model of
matter as a chain system of oscillating protons. In [4] we have
shown that scale invariance is a fundamental property of this
model. As a consequence of this scale invariance, chain sys-
tems of oscillating electrons produce similar series of eigen-
states so that the proton model mass can be derived from the
electron rest mass and vice versa. Furthermore, the interpre-
tation of the Planck mass as an eigenstate in a chain system
of oscillating protons has allowed us to derive the proton rest
mass from fundamental physical constants [5].

Scale-invariant models of natural oscillations in chain
systems of protons also provide a good description of the
mass distribution of large celestial bodies in the Solar Sys-
tem [6]. Physical properties of celestial bodies such as mass,
size, rotation and orbital period can be understood as macro-
scopic quantized eigenstates in chain systems of oscillating
protons and electrons [7]. This understanding can be applied
to an evolutionary trend prognosis of the Solar System but
may be of cosmological significance as well. In [8] we have
calculated the model masses of unknown planets in the Solar
System.

In this paper we apply our fractal model of matter as a
chain system of oscillating protons and our hypothesis of glo-

bal scaling [7] to the domain of biophysics, especially to the
analysis of frequency ranges of cyclical biological processes.

Methods

In [4] we have shown that the set of natural frequencies of a
chain system of harmonic oscillators coincides with a set of
finite continued fractions F , which are natural logarithms:

ln (ω jk/ω00)= n j0 +
z

n j1 +
z

n j2 + . . .
+

z
n jk

=

= [z, n j0; n j1, n j2, . . . , n jk]=F ,

(1)

where ω jk is the set of angular frequencies and ω00 is the fun-
damental frequency of the set. The denominators are integer:
n j0, n j1, n j2, . . . , n jk ∈Z, the cardinality j ∈N of the set and the
number k ∈N of layers are finite. In the canonical form, the
numerator z is equal 1.

Any finite continued fraction represents a rational num-
ber [9]. Therefore, all frequencies ω jk in (1) are irrational,
because for rational exponents the natural exponential func-
tion is transcendental [10]. This circumstance presumably
provides for the high stability of the oscillating chain system
because it avoids resonance interaction between the elements
of the system [11].

In the case of harmonic quantum oscillators, the contin-
ued fraction (1) defines not only a fractal set of natural angu-
lar frequencies ω jk and oscillation periods τ jk = 1/ω jk of the
chain system, but also fractal sets of natural energies
E jk = ℏ ·ω jk and masses m jk = E jk/c2 which correspond with
the eigenstates of the system. For this reason, we have called
the continued fraction (1) the “fundamental fractal” of eigen-
states in chain systems of harmonic quantum oscillators [4].

We hypothesize the scale invariance based on the funda-
mental fractal F (1) , calibrated by the properties of the pro-
ton and electron, is a universal characteristic of matter. This
hypothesis we have called ‘global scaling’ [7].

In order to test global scaling on frequencies of cycli-
cal biological processes we must calculate the natural log-
arithm of the process-to-proton frequency ratio. The pro-
ton angular frequency is ωp =mpc2/ℏ= 1.425486 · 1024 Hz,
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Table 1: Frequency ranges of some cyclical biological processes and the corresponding attractor nodes of the fundamental fractal F (1),
with the proton frequency ωp = 1.425486 · 1024 Hz as fundamental.

cyclic process of human physiology frequency range ω, Hz ln (ω /ω p) F
adult relaxed breathing [13] 0.22..0.27 −57.13.. − 56.94 [−57;∞]
adult relaxed heart rate [14] 0.83..1.5 −55.80.. − 55.21 [−55;−2]
brain activity delta 0.15..3 −57.52.. − 54.52 [−57;−2]..[−54;−2]
brain activity theta [12] 3..8 −54.52.. − 53.53 [−54;−2]..[−54; 2]
brain activity alpha 8..13 −53.53.. − 53.06 [−53;−2]..[−53;∞]
brain activity beta 14..34 −52.97.. − 52.06 [−53;∞]..[−52;∞]
brain activity gamma 35..250 −52.05.. − 50.10 [−52;∞]..[−50;∞]
muscle vibration [15] 22..24 −52.53.. − 52.44 [−52;−2]
flicker fusion threshold [16] 60..120 −51.52.. − 50.83 [−51;−2]..[−51;∞]
newborn baby cry [17] 400..500 −49.62.. − 49.41 [−49;−2]
threshold of hearing [18, 19] 1900..2100 −40.55.. − 40.45 [−40;−2]

Fig. 1: Distribution (logarithmic representation) of frequency ranges (positive numbers) of human brain wave activity and other cyclical bi-
ological processes in the canonical projection of the fundamental fractal F (1) with the proton angular frequency ωp = 1.42548624 · 1024 Hz
as fundamental. Negative numbers are logarithms and denote attractor nodes. Data taken from table 1.

where mp = 1.672621 · 10−27 kg [1] is the proton rest mass, ℏ
is the Planck constant, c is the speed of light in vacuum. In
the canonical form (z= 1), nodes of the fundamental fractal
F (1) concur with integer and half logarithms.

For example, the frequency range of the theta electrical
brain activity (theta waves, oscillatory pattern in electroen-
cephalographic signals) is between 3 and 8 Hz [12] and the
natural logarithm of the theta-to-proton frequency ratio is be-
tween [−54;−2] and [−54; 2] approximating the main node
[54;∞] of the proton calibrated fundamental fractal F (1):

ln
(
ωmax theta

ωproton

)
= ln

(
8 Hz

1.425486 · 1024 Hz

)
= −53.53,

ln
(
ωmin theta

ωproton

)
= ln

(
3 Hz

1.425486 · 1024 Hz

)
= −54.52.

Results

Table 1 shows the logarithms of frequency ranges of some
cyclical biological processes and the corresponding attractor
nodes (integer and half logarithms) of the fundamental fractal
F (1).

Figure 1 shows the distribution (in logarithmic represen-
tation) of frequency ranges of brain wave activity and

other cyclical processes of human physiology in the funda-
mental fractal F (1) with the proton angular frequency
ωp = 1.42548624 · 1024 Hz as fundamental. Negative num-
bers are logarithms and denote attractor nodes. Positive num-
bers are frequencies, given in cycles per minute within the
delta-range, and given in Hz within the theta, alpha, beta and
gamma ranges.

Although the analyzed processes are of very high com-
plexity, figure 1 shows that the frequency ranges of electrical
brain activity (oscillatory patterns in electroencephalographic
signals) and of other cyclical biological processes correspond
with attractor nodes of the fundamental fractal F (1). This
fact supports our hypothesis of global scaling.

Conclusion

Frequency ranges of electrical brain activity and of some
other cyclical biological processes coincide well with the pro-
ton calibrated fundamental fractal F (1) which would indi-
cate that these cycles may have a subatomic origin. It should
also be considered that the frequency ranges of electrical
brain activity are common to most mammalian species [20,
21].

The accordance of the brain wave frequency ranges with
the proton calibrated fundamental fractal F (1) not only sup-
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ports our hypothesis of global scaling, but also suggests an
understanding of the biological organism as an oscillating
chain system. This view could be of medical significance as
well.

Scale invariance as a property of biological processes is
well studied [22, 23] and it is not an exclusive characteristic
of adult physiology. For example, the heart rate and the res-
piratory cycle of the fetus are related in the same way as in
the adult [24]. Perhaps even the Weber-Fechner law – “in-
tensity of sensation is proportional to the logarithm of stim-
ulation” [25] – can be understood as a consequence of scale
invariance in chain systems of cyclical biological processes.

Furthermore, global scaling suggests that the electrical
brain activity continues beyond the known gamma range, be-
cause higher frequency processes like voice and hearing have
to be brain-controlled as well. It is likely that traditional
methods of electroencephalographic signal analysis are un-
able to separate high frequency patterns because of their very
low amplitude. However, global scaling allows us to calcu-
late the frequency ranges of such ultra-gamma activity (for
which we propose the name “epsilon”). The frequency ranges
of this very dynamic “epsilon” activity should be between
ωp exp(−50)= 275 Hz and ωp exp(−49)= 747 Hz.
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A Comment on “Can the One-way Speed of Light be Used for Detection
of Violations of the Relativity Principle?”
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E-mail: jcatania1@verizon.net

I show in this Letter that Spavieri et. al.’s clock transport delay calculations are incor-
rectly determined because of a sign error. Thus, the results of Roland De Witte (1991)
should be considered significant.

1 Details

Assume for simplicity that what Spavieri et. al. [1] mean by
u(t) is, a velocity of constant magnitude u, with a varying
direction, yielding a total effective absolute velocity V ≃ v +
u(t). Spavieri et. al.’s Equation (5) is reproduced here for
convenience,

δτ ≃ dt
γV
− dt
γv
≃ (v2 − V2) dt

2c2 = −v · u(t) dt
c2 . (S5)

Notice that Equation (6),

∆τ = − 1
c2

∫ B

A
v · u(t) dt = − L

c2 v (cos θA − cos θB) (S6)

is supposedly the integral of (5). Referring to Fig. 1 in [1] the
projection of u(t) on v is −u · cos (π/2 − θ) = −u · sin θ and
| u(t) |= Lω = L · dθ

dt giving,

∆τ = − 1
c2

∫ B

A
v · u(t) dt = − L

c2 v

∫ B

A
− sin θ · dθ

dt
dt =

= − L
c2 v (cos θB − cos θA). (C1)

Thus, Spavieri et. al. does not correctly calculate ∆τ, a
quantity which they call clock transport delay (CTD). A sim-
ple sign check on δτ in (S5) and ∆τ in (S6) shows they aren’t
the same. | V | < | v | thus (S5) is positive, whereas since
−[cos 0 − cos (0 − dθ)] is negtive, (S6) is negative. Replacing
(C1) with (S6), the signs now agree.

2 Comments

The De Witte effect is given by,

tOB − tOA =
L
c2 v (cos θB − cos θA) (C2)

and shows a decreasing effect as θ increases or decreases from
its alignment with v (which we take as θ = 0). Eqs. (C1) and
(S5) show an increasing effect, whereas (S6), which is ev-
identally a harmonized version of (S5), shows a decreasing
effect. So (S6), which supports Spavieri et. al.’s thesis, that
the De Witte Effect is merely due to slow clock transport, is

incorrect due to a sign error. The result is that if Spavieri et.
al. is to be taken seriously the effect measured by De Witte
will be due to twice what is derived in [1, 2, 4], which deriva-
tions do not ignore Fresnel drag. For instance Spavieri et. al’s
Equation (4) would be modified to,

t̄OA − t̄OB = ∆τ +
L
c2 v (cos θA − cos θB) =

=
2L
c2 v (cos θA − cos θB). (C3)

It must be noted at this point that Spavieri et. al. cites [5]
(ref. 16 at the end of §3 in [1]) in which they claim that CTD is
equivalent to Einstein Synchronization (ES). Unfortunately,
the derivation in [5] §2 is riddled with error. For example
Eq. (2) should be t = h

w
instead of t = h

∆w
and Eq. (6) should

be t1 =
γh
c−v instead of t1 = h

c−v . Thus, CTD and ES agree
in [5] up to second order only after a harmonization.

3 Comments on synchronization

The discussion in [1] on clock transport time delay would
seem to be completely spurious. An Einstein clock synchro-
nization (ES) performed from O to A will guarantee synchro-
nization throughout rotation about O. Such a vacuum syn-
chronization will give the same result no matter whether the
clock is at A, B or any other point as long as the labora-
tory frame path length is the same. This is guaranteed by
the constant propagation velocity of light in the ether and the
Lorentz transformation (LT), as shown by Maxwell’s luminif-
erous ether theory and confirmed by two-way speed of light
measurements in vacuo. Thus, Einstein’s ’On the Electro-
dynamics of Moving Bodies’ is based on ether theoretical
dogma, as any treatment needs to be in order to be predic-
tive.

Consider the case where the lab frame is moving at ve-
locity v wrt the ether and the dielectric rod in this frame is
rotating at constant velocity u. By ES any clock at rest wrt
O can be synchronized to O and all such clocks at distance
L wrt O have the same synchronization. Any clock at ve-
locity u and distance L wrt O has the same synchronization
wrt O. Therefore, if A is synchronized with O it will remain
synchronized.
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According to [1] the CTD, due to time dilation as clock A
moves slowly due to Earth’s rotation, can be calculated from
[1] using,

1
γ0
− 1
γ0
= 0. (C6)

since in the frame of the rotating clocks they have no relative
velocity wrt each other. They do have relative velocity wrt
each other in the ether frame but that leads to (C1) and (C3)
instead of (S6). Since no measurements are made from the
ether frame but are made from the frame of the atomic clocks
we must refer synchronization to this frame, as LT teaches
that the two synchronizations aren’t the same. LT also guar-
antees that the time dilation effects of CTD are the same for
the signal propagation time on De Witte’s cable as they are
for the measuring clocks, negating relative effect between the
two.

Alternatively, since the CTD of A wrt to O equals, by
symmetry the CTD of O wrt A, they must cancel. This is an
example of The Clock Paradox and ensures that no dissyn-
chronization will occur between O and A, as opposed to what
is taught in [1].

One might also ask, How do we ascribe CTD as the cause
of De Witte’s effect in the vacuum case when there is no
De Witte Effect in the vacuum? Too, in De Witte’s Exper-
iment [3] when the North-South signal and the South-North
signal are subtracted any biases or dissynchronizations would
cancel. Additionally, if De Witte’s results could be ascribed
to clock transport delay it would still obtain that a measure-
ment of velocity wrt the ether had been made in contradiction
to SR canon.

4 Closing comments

Using the sidereal rotation period of Earth,

ω ≃ 2π
86164.1

s−1 ≃ 7.3 · 10−5 s−1 (C4)

and,

dt =
L
c
= 5 · 10−6 s; u(t) = Lω ≃ 0.11 m/s (C5)

from (C2) and [3] the absolute motion velocity is,

v =

(
14 · 10−9

) (
9 · 1016

) (
cos 0 − cos π2

)
1500

= 8.4 · 105 m/s.

[As an aside, this absolute motion velocity of 840 km/s is
larger than those stated in [3] for the De Witte Experiment,
larger than Earth’s velocity wrt the Cosmic Microwave Back-
ground and larger than most author’s estimates. Also, since
the declinations of De Witte’s cable and the absolute motion
vector of Earth wrt vacuum are estimated to be as much as
about 25◦ apart we should expect a velocity from 840-930
km/s. Note that this result is stated with some reservation
(see below).]

Some have expressed the belief [1, 4] that Fresnel drag
may not be acting in certain cases where a refractive mate-
rial is known to be present. Fresnel drag is a dogmatic phe-
nomenon equivalent to the LT with excellent experimental
confirmation. It shouldn’t be possible to turn physics on or off
like a light switch, it is always present with refractive materi-
als but the effect is not always correctly anticipated formally.
In fact according to detailed calculations by the author, De
Witte cannot be explained by a predictive ether-based formal-
ism (Michelson-Lorentz formalism) with a final transforma-
tion to the lab frame. Such calculations, be they for one-way,
two-way, with or without refractive media, always return re-
sults which speak of no unusual effects. Thus the Roland De
Witte Effect remains a mystery.

Submitted on October 4, 2017
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