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The Stability of Electron Orbital Shells based on a Model
of the Riemann-Zeta Function

Michael Harney

841 North 700 West Pleasant Grove, Utah 84062, USA
E-mail: Michael.Harney@signaldisplay.com

It is shown that the atomic number Z is prime at the beginning of the each s1, p1, d1,
and f1 energy levels of electrons, with some fluctuation in the actinide and lanthanide
series. The periodic prime number boundary of s1, p1, d1, and f1 is postulated to occur
because of stability of Schrodinger’s wave equation due to a fundamental relationship
with the Riemann-Zeta function.

1 Introduction

It has been known that random matrix theory, and in particu-
lar a Gaussian Unitary Ensemble (GUE), can be used to solve
the eigenvalue states of high-Z nuclei which would otherwise
be computationally impossible. In 1972, Freeman Dyson and
Hugh Montgomery of the University of Michigan realized
that the values in the GUE matrix used in predicting energy
levels of high-Z nuclei where similar to the spacing of ze-
ros in the Riemann-Zeta function [1]. Prior to these discov-
eries, the use of approximation in traditional quantum me-
chanical models was well known and used, such as the Born-
Oppenheimer method [2]. These approaches experienced
problems at high-Z levels where many interacting factors
made approximation difficult. The remaining question as to
why the periodicity of zeros from the Riemann-Zeta function
would match the spacing of energy levels in high-Z nuclei
still remains a mystery, however.

It is the goal of this paper to explain the spacing of en-
ergy levels in electron orbital shells s1, p1, d1, and f1, where
these designations represent the first electron to occupy the s,
p, d and f shells. The first electron in each of these shells is
an important boundary where new electron orbital shells are
created in the atomic structure. The newly created shell is
dependent upon the interaction of many electrons in the pre-
vious orbital shells that are filled much like the many body
problems of gravitational masses. The first electron in each of
the s, p, d and f shells is therefore hypothesized to represent
a prime stability area where a new shell can form within the
many-electron atom without significant perturbation to previ-
ous shells. With enough computational power the interaction
of electrons in any combination of orbital shells can be com-
puted through multiple manipulations of a system of Schrö-
dinger’s equations, but even the present numerical methods
for this approach will use rough approximations due to the
complexity of several non-linear equations and their solutions.

Choudhury and Pitchers [3] have used a configuration-
interaction method of computation for many electron atoms
where Schrödinger’s equation is reduced to a system of lin-

ear homogenous equations. They then argue that the energy
eigenvalues obtained by truncating this linear set of equations
will converge, in the limit, to those of the original system.
They show that this approximation holds true for two-electron
atoms, but they note that variations start occurring for the
three or more electron atom. These approximation methods
are difficult enough for two or three electron atoms but for
many-electron atoms the approximation methods are uncer-
tain and are likely to introduce errors.

It is therefore proposed that the final result of the many-
electron atom be first evaluated from the standpoint of the
Riemann-Zeta function so that a simplifying method of work-
ing back to a valid system of Schrödinger’s equations can
hopefully be obtained. To justify this approach, the atoms
for each of the newly filled s1, p1, d1, and f1 shells are ex-
amined to show a potential relation between the spacing of
the non-trivial zero solutions of the Riemann-Zeta function,
where the argument s in the Zeta function that produces the
zero lies on the critical line of Re[s] = 1

2
.

2 The Riemann-Zeta function

The Riemann-Zeta function takes the form:

� (s) = 1 +
1
2s

+
1
3s

+ � � �+ 1
ns

+ : : : (1)

Where � (s) is an alternating series function in powers of
s as n terms go to infinity. The function � (s) is a single-
valued, complex scalar function of s, much like the single
complex variable of Schrödinger’s wave equation. The addi-
tion of several 	 solutions of Schrödinger’s equation from
many orbital electrons may be effectively modeled by (1),
where additional 1=ns terms in (1) contribute to the overall
probability distribution of n interacting shells.

Hadamard and Vallée Poussin independently proved the
prime number theorem in 1896 by showing that the Riemann-
Zeta function � (s) has no zeros of the form s= 1 + i�, so
that no deeper properties of � (s) are required for the proof of
the prime number theorem. Thus the distribution of primes is
intimately related to � (s).

Michael Harney. The Stability of Electron Orbital Shells based on a Model of The Riemann-Zeta Function 3
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Table 2: Ln(Z) for first s-orbital electron vs. Energy level (n).

3 The Periodic Table

From an analysis of the periodic table it is postulated that
the stability of electronic shells s1, p1, d1, and f1 follow a
larger set of zeros which correlate to prime numbers from the
Riemann-Zeta function.

If one examines the first and second periods of the pe-
riodic table as shown in Table 1, we find that the boundary
of filling the first electron in the s, p, d and f shells of each
quantum level designated as n is a stable zone that is indi-
cated by a prime atomic number Z (the format in Table 1 is
Z: nLevel1).

Where (repeat) indicates a repeat of the shell from a previ-
ous Z number and where the use of the format [Kr].4d10.5s1

shows the previous electronic formula of Krypton with the ad-
ditional filling of the d and s shells so as to show the repeated
s shell with different d-filling electrons. From the above data,
both Z = 57 and Z = 89 begin a sequence of f shells filling
before d shells (Z = 57 is the beginning of the Lanthanide se-
ries and Z = 89 is beginning of the Actinide series). In both
the Lanthanide and Actinide series, the d shells that fill after
the f shells are primes, explaining why only these d shells
(beginning with Z = 71 for Lanthanide and Z = 103 for Ac-
tinide) are filled with primes because they would normally
be f shells in the sequence if we looked strictly at observed
spectroscopic data.

Notice that the prime Z numbers — 1, 3, 5, 11, 13, 19, 29,
31, 37, 41, 43 47, etc. shows one consecutive set of primes
fZ = 3, 5g, skips a prime fZ = 7g then has two more con-
secutive primes fZ = 11, 13g. Note that at Z = 13 where we
have skipped a prime (Z = 7), the ratio of 13= ln(13) is 5.0

Z: Shell

1: 1s1

3: 2s1

5: 2p1

11: 3s1

13: 3p1

19: 4s1

31: 4p1

37: 5s1

41: [Kr].4d4.5s1 (repeat)
43: [Kr].4d6.5s1 (repeat)
47: [Kr].4d10.5s1 (repeat)
57: 5d1

71: 5d1 (repeat)
87: 7s1

89: 6d1

91: 15f1

103: 7p1

Table 1: Prime Atomic Numbers with
respect to s1, p1, d1, and f1 orbitals.

and Z = 13 is the fifth prime Z number with a valid p1 shell.
The sequence then skips one prime fZ = 17g, then has a valid
prime at fZ = 19g and it then skips another prime fZ = 23g,
which follows five consecutive primes fZ=29,31,37,41,43g.
At this point we have skipped Z = 7, 17, and 23 but when
we look at Z = 43, we take the ratio of 43= ln(43) = 11.4 and
note that Z = 43 is the 11th valid Z prime (with three Z num-
bers skipped). There appears to be a similar relationship be-
tween this data and the prime number theorem of n= ln(n),

4 Michael Harney. The Stability of Electron Orbital Shells based on a Model of The Riemann-Zeta Function
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but unlike the traditional prime number theorem where all
primes are included, this data considers only valid Z primes
(where the first shell is filled, s1, p1, d1, f1) with other primes
skipped if they don’t fill the first s, p, d, or f shell. From this
consideration, the linearity of these values is significant to
the periodic table alone. Table 2 shows the first five s-orbital
shells filled (to 5s1) plotted against the Ln(Z) where Z is the
associated atomic number for the valid s1 shell. The num-
ber of valid s1 shells also corresponds to the energy level n
(n= 1 through n= 5 for 1s1 – 5s1). The slope in Table 2 for
just the s-shell is good with a linear relationship toR2 = 0.95.

This sequence is also hypothesized to be similar to the dis-
tribution pattern of primes produced by finding the zeros on
the critical line of the Riemann-Zeta function of (1). Based on
the results of linearity in Table 2 there may be a relationship
between the difference between valid s-shell orbitals (the Z
numbers of skipped shells) versus the total number of shells,
a further indication that Riemann-Zeta function could explain
the prime orbital filling. There is also a similar prime number
correlation for the nuclear energy levels where s, p, d, f and
g shells begin on prime boundaries [4].

4 Conclusions

It is found by examining the Z number related to the s1, p1,
d1, and f1 shells of the periodic table that Z is prime for the
first filling of s, p, d and f orbitals. It is also found that for
shell filling of ns1, the logarithm of the prime number asso-
ciated with Z is linear with respect to energy level n. This
relationship is believed to correlate with the Riemann-Zeta
function, a complex scalar function similar to the complex-
scalar wave function of Schrödinger. The atomic Z primes
that correspond to the s1, p1, d1, and f1 shells is predicted
to follow the distribution of primes that result from the non-
trivial zeros of the Riemann-Zeta function.
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In-Depth Development of Classical Electrodynamics

Yuri N. Keilman
646 3rd Street South East, Valley City, ND 58072, USA

E-mail: yurik6@peoplepc.com

There is hope that a properly developed Classical Electrodynamics (CED) will be able
to play a rôle in a unified field theory explaining electromagnetism, quantum phenom-
ena, and gravitation. There is much work that has to be done in this direction. In this
article we propose a move towards this aim by refining the basic principles of an im-
proved CED. Attention is focused on the reinterpretation of the E-M potential. We use
these basic principles to obtain solutions that explain the interactions between a con-
stant electromagnetic field and a thin layer of material continuum; between a constant
electromagnetic field and a spherical configuration of material continuum (for a charged
elementary particle); between a transverse electromagnetic wave and a material contin-
uum; between a longitudinal aether wave (dummy wave) and a material continuum.

1 Introduction

The development of Classical Electrodynamics in the late
19th and early 20th century ran into serious trouble from
which Classical Electrodynamics was not able to recover (see
R. Feynman’s Lectures on Physics [1]: Volume 2, Chapter
28). According to R. Feynman, this development “ultimately
falls on its face” and “It is interesting, though, that the clas-
sical theory of electromagnetism is an unsatisfactory theory
all by itself. There are difficulties associated with the ideas
of Maxwell’s theory which are not solved by and not directly
associated with quantum mechanics”. Further in the book he
also writes: “To get a consistent picture, we must imagine that
something holds the electron together”, and “the extra non-
electrical forces are also known by the more elegant name,
the Poincare stresses”. He then concludes: “— there have
to be other forces in nature to make a consistent theory of
this kind”. CED was discredited not only by R. Feynman but
also by many other famous physicists. As a result the whole
of theoretical physics came to believe in the impossibility of
explaining the stability of electron charge by classical means,
claiming defect in the classical principles. But this is not true.

We showed earlier [2, 3, 4] and further elaborate here
that there is nothing wrong with the basic classical ideas that
Maxwell’s theory is based upon. It simply needs further de-
velopment. The work [2] opens the way to the natural (with-
out singularities) development of CED. In this work it was
shown that Poincare’s claim in 1906 that the “material” part
of the energy-momentum tensor, “Poincare stresses”, has to
be of a “nonelectromagnetic nature” (see Jackson, [5]) is in-
correct. It was shown that the definite material part is ex-
pressed only through current desity (see formula (9) in [2]),
and given a static solution: Ideal Particle, IP, see (19). The
proper covariance of IP is manifest — the charges actually
hold together and the energy inside an IP comes from the in-
terior electric field (positive energy) and the interior charge
density (negative energy, see formula (22) of [2]). The to-

tal energy inside an IP is zero, which means that the rest
mass (total energy) corresponds to the vacuum energy only.
The contributions to the “inertial mass” (linear momentum
divided by velocity; R. Feynman called it “electromagnetic
mass”) can be calculated by making a Lorentz transformation
and a subsequent integration. The total inertial mass is equal
to the rest mass (which is in compliance with covariance) but
the contributions are different: 4/3 comes from the vacuum
electric field, 2/3 comes from the interior electric field, and
�1 comes from the interior charge density. This is the ex-
planation of the “anomalous factor of 4/3 in the inertia” (first
found in 1881 by J. J. Thomson [5]).

Let us begin with Maxwell’s equations:

ji +
c

4�
F ikjk = 0 ; jkjk = 0 ; (1)

div ~E =
4�
c
j0;

I
S

~E � d~S =
4�
c

Z
V

j0dV ; (1a)

rot ~H =
4�
c
~j +

1
c
@ ~E
@t

;I
�

~H � d~� =
1
c

Z
S

�
4�~j +

@ ~E
@t

�
� d~S ;

(1b)

1
c
@j0

@t
+ div~j = 0 ;

@
c@t

Z
V

j0dV =
I
S

~j � d~S : (1c)

The other half of Maxwell’s equations is

F �ikjk = 0 ; F �ik � 1
2
eiklmFlm ; (2)

div ~H = 0 ;
I
S

~H � d~S = 0 ; (2a)

rot ~E = �1
c
@ ~H
@t

;
I
�

~E � d~� = �1
c

Z
S

@ ~H
@t
� d~S : (2b)
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The equations are given in 4D form, 3D form, and in an
integral form. Equation (1) represents the interaction law be-
tween the electromagnetic field and the current density. Equa-
tion (2) applies only to the electromagnetic field. This whole
system, wherein equation (1c) is not included, is definite for
the 6 unknown components of the electromagnetic field on
the condition that the currents (all the components) are given.
This is the first order PDE system, the characteristics of which
are the wave fronts.

What kind of currents can be given for this system? Not
only can continuous fields of currents be prescribed. A jump
in a current density is a normal situation. We can even go
further and prescribe infinite (but the space integral has to be
finite) current density. But in this case we have to check the
results. In other words, the system allows that the given cur-
rent density can contain Dirac’s delta-functions if none of the
integrals in (1) and (2) goes infinite. But this is not the end.
There exists an energy-momentum tensor that gives us the en-
ergy density in space. The space integral of that density also
has to be finite. Here arises the problem. If we prescribe a
point charge (3D delta-function) then the energy integral will
be infinite. If we prescribe a charged infinitely thin string
(2D delta-function) then the energy will also be infinite. But
if we prescribe an infinitely thin surface with a finite surface
charge density on it (1-d delta-function) then the energy inte-
gral will be finite. It appears that this is the only case that we
can allow. But we have to remember that it is possible that a
disruption surface (where the charge/current density can be
infinite) can be present in our physical system. This kind of
surface allows the electromagnetic field to have a jump across
this surface (this very important fact was ignored in conven-
tional CED — see below). It is also very important to under-
stand that all these delta-functions for the charge distribution
are at our discretion: we can prescribe them or we can “hold
out”. If we choose to prescribe then we are taking on an ad-
ditional responsibility. The major attempt to discredit CED
(to remove any “obstacles” in the way of quantum theory)
was right here. The detractors of CED (including celebrated
names like R. Feynman in the USA and L. D. Landau in Rus-
sia but, remarkably, not A. Einstein) tried to convince us that a
point charge is inherent to CED. With it comes the divergence
of energy and the radiation reaction problem. This problem
is solvable for the extended particle (which has infinite de-
grees of freedom) but is not solvable for the point particle.
This is not an indication that the “classical theory of elec-
tromagnetism is an unsatisfactory theory by itself”. Rather
this means that we should not use the point charge model (or
charged string model). Only a charged closed surface model
is suitable.

We have another serious problem in conventional electro-
dynamics. As we have shown below, the variation procedure
of conventional CED results in the requirement that the elec-
tromagnetic field must be continuous across any disruption
surface. That actually implies the impossibility of a surface

charge/current on a disruption surface. I changed the varia-
tion procedure of CED and arrived at a theory where the elec-
tromagnetic interaction (ultimately represented by Maxwell’s
equation (1)) is the only interaction. The so-called interaction
term in the Lagrangian (Akjk) is abandoned. Also abandoned
is the possibility introducing any other interactions (like the
“strong” or “weak”). I firmly believe that all the experimen-
tal data for elementary particles, quantum phenomena, and
gravitation can be explained starting only with the electro-
magnetic interaction (1).

What is the right expression for the energy-momentum
tensor that corresponds to the system described by (1) and
(2)? The classical principles require that this expression must
be unique. Conventional electrodynamics provides us with
the expression: T ik =�cuiuk dsdt (for a “material” part con-
taining free particles only: see Landau [6], formula 33.5)
that contains density of mass, �, and velocity only. No
charge/current density is included. It seems that the mere
presence of charge/current density has to contribute to the
energy of the system. To correct the situation we took the
simplest possible Lagrangian with charge density:

� = � 1
16�

gabgcdFacFbd � 2�
k2

0c2
gabja jb ; (3)

where k0 is a new constant. No interaction term (like Akjk)
is included.

2 Variation of metrics

Let us find the energy-momentum tensor that corresponds to
the Lagrangian (3). The metric tensor in classical 4-space is
gik = diag [ 1;�1;�1;�1] (we assume c = 1). Let us con-
sider an arbitrary variation of a metric tensor but on the con-
dition that this variation does not introduce any curvature in
space. This variation is:

�gik = �ijk + �kji ; (4)

where �k is an arbitrary but small vector. One has to use the
mathematical apparatus of General Relativity to check that
with the variation (3) the Riemann curvature tensor remains
zero to first order. Assuming that the covariant components
of the physical fields are kept constant (then the contravariant
components will be varied as a result of the variation of the
metric tensor, but we do not use them — see (3) for an ex-
planation) we can calculate the variation of the action. The
variation of the square root of the determinant of the met-
ric tensor is: �

p�g=� 1
2
p�g gik �gik (this result can be

found in textbooks on field theory). The variation of action
becomes:

�S = �
Z �

2
@�
@gik

� �gik
�
�ijkp�g d
 =

= �
Z
Tik �ijk

p�g d
 ;
(5)
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where

Tik = � 1
4�

gabFiaFkb +
1

16�
FabF abgik�

� 4�
k2

0
ji jk +

2�
k2

0
ja jagik :

If our system consists of two regions that are separated
by a closed disruption surface S then the above procedure
has to be applied to each region separately. We can write:
Tik�ijk = (Tik�i)jk � T jkik �i. The 4D volume integrals over
divergence (the first term) can be expressed through 3D hy-
persurface integrals according to the 4D theorem of Gauss.
The integral over some remote closed surface becomes zero
due to the smallness of Tik on infinity (usually assumed). The
integral over a 3D volume at t1 and t2 becomes zero due to
the assumption: �i = 0 at these times. What is left is:

�S = �
Z
T ki �

ijk
p�g d
 =

Z
S

�
T ki out � T ki in

�
�idSk +

+
Z
in

T ki jk �i
p�g d
 +

Z
out

T ki jk �i
p�g d
 :

Since �i are arbitrary small functions (between t1 and t2),
the requirement �S = 0 yields:

T iaja = 0 : (6)

This condition has to be fulfilled for the inside and the
outside regions separately. And the additional requirement
on the disruption surface S,

T iaNa; (6a)

is continuous, where Nk is a normal to the surface.
We have found the unique definition of the energy-

momentum tensor (5). If we want the action to be minimum
with respect to the arbitrary variation of the metric tensor in
flat space then (6) and (6a) should be satisfied. Let us rewrite
the energy-momentum tensor in 3D form:

T 00 =
1

8�
�
E2 +H2�� 2�

k2
0 c2
�
(j0)2 + (~j)2�

T 11 =
1

8�
�
E2 +H2 � 2E2

1 � 2H2
1
��

� 2�
k2

0c2
�
(j0)2 � (~j)2 + 2(j1)2�

T 01 =
1

4�
(E2H3 � E3H2)� 4�

k2
0 c2

j0j1

T 12 = � 1
4�

(E1E2 +H1H2)� 4�
k2

0 c2
j1j2

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
: (5a)

Notice that we have not used Maxwell’s or any other field
equations so far. It should also be noted that for the energy-
momentum tensor (5), (5a) is not defined on the disruption
surface itself, despite the fact that there can be a surface

charge/current on a surface (infinite volume density but finite
surface density).

Going further, we are definitely stating that Maxwell’s
equation (1) is a universal law that should be fulfilled in
all space without exceptions. It defines the interaction be-
tween the electromagnetic field and the field of current
density. This law cannot be subjected to any variation
procedure. Maxwell’s equation (2) we will confirm later as
a result of a variation; see formula (9). Substituting (5) in
(6) and using Maxwell’s equation (1) and the antisymmetry
of Fik, we obtain:

ja
�
k2

0 c
4�

Fai + jaji � jija
�

= 0

j0
�
k2

0 c
4�

~E +rj0 +
1
c
@~j
@t

�
+

+~j �
�
k2

0 c
4�

~H � rot~j
�

= 0

9>>>>>>>=>>>>>>>;
: (7)

This equation has to be fulfilled for the inside and outside
regions separately because (6) is fulfilled separately in these
regions. This is important. It is also important to realize that
while the conservation of charge is fulfilled everywhere, in-
cluding a disruption surface, the disruption surface itself is
exempt from energy-momentum conservation (no surface en-
ergy, no surface tension). This arrangement is in agreement
with the fact that we can integrate a delta-function (charge)
but we cannot integrate its square (would be energy).

3 A new dynamics

Equation (7) we call a Dynamics Equation. It is a nonlin-
ear equation. But it has to be fulfilled inside and outside the
particle separately. This will allow us to reduce it to a linear
equation inside these regions.

Definition: vacuum is a region of space where all the com-
ponents of current density are zero.

Equation (7) is automatically satisfied in vacuum
(Jk = 0). The other possibility (Jk , 0) will be the interior re-
gion of an elementary particle. The boundary between these
regions will be a disruption surface. Inside the particle instead
of (7) we have:

k2
0 c

4�
Fai + jaji � jija = 0

k2
0 c

4�
~E +rj0 +

1
c
@~j
@t

= 0 ;
k2

0 c
4�

~H � rot~j = 0

9>>=>>; : (7a)

All the solutions of equation (7a) are also solutions of the
nonlinear equation (7). At present we know nothing about
the solutions of (7) that do not satisfy (7a). Inside the ele-
mentary particle the dynamics equation (7) or (7a) describes,
as we call it, a Material Continuum. A Material Contin-
uum cannot be divided into a system of material points. The
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Relativistic (or Newtonian) Dynamics Equation of CED, that
describes the behavior of the particle as a whole, completely
disappears inside the elementary particle. There is no mass,
no force, no velocity or acceleration inside the particle. The
field of current density jk defines a kinematic state of the Ma-
terial Continuum. A world line of current jk is not a world
line of a material point. That allows us to deny any causal
connection between the points on this line. In consequence,
jk can be space-like as well as time-like. That is in no contra-
diction with the fact that the boundary of the particle cannot
exceed the speed of light. Equation (7a) is linear and allows
superposition of different solutions. Using (1) we can obtain:

jkjaja � k2
0 j

k = 0; jk + k2
0 j

k = 0

�jk � 1
c2
@2jk

@t2
+ k2

0 j
k = 0

9>=>; : (7b)

By equation (7) we have obtained something very impor-
tant, but we are just on the beginning of a difficult and uncer-
tain journey. Now the current density cannot be prescribed
arbitrarily. Inside the particle it has to satisfy equation (7b).
However, there are no provisions on the surface current den-
sity (if a surface current is different from zero then its density
is necessarily expressed by a delta-function across the disrup-
tion surface).

4 The electromagnetic potential

Now we are going to vary the electromagnetic field Fik in all
the space, including a disruption surface. As usual, the vari-
ation is kept zero at t1 and t2 and also on a remote closed
surface, at infinity. In this case the results of variation will be
in force on the disruption surface itself. Still, we have to write
the variation formulae for each region separately. We claim
that equation (1) cannot be subjected to variation. It is the
preliminary condition before any variation. In our system we
have 10 unknown independent functions (4 functions in Jk
and 6 functions in Fik). These functions already have to sat-
isfy 8 equations: 4 equations in (1) and 4 equations in (7). We
have only 2 degrees of freedom left. We cannot vary Fik by a
straightforward procedure. Let us employ here the Lagrange
method of indefinite factors. Let us introduce a modified La-
grangian:

�0 = � + Aa
�
ja +

1
4�

F jbab
�
; (8)

where Ak are 4 indefinite Lagrange factors. Now we have
2 + 4 = 6 degrees of freedom and we use them to vary Fik.
We have:

�S = �
Z �

@�0
@Fik

�Fik +
@�0
@Fikjl

�Fikjl
�
dV4 =

�
Z (�

@�0
@Fikjl

�Fik
�
jl
+
�
@�0
@Fik

�
�
@�0
@Fikjl

�
l

�
�Fik

)
dV4 = 0:

The first term under integration is divergence and can be
transformed to the hypersurface integral according to Gauss
theorem. Since the variation is arbitrary, the square brackets
term has to be zero in either case. It gives:

Fik = Akji � Aijk : (9)

If V4 is the inside region of the particle from t1 to t2 then
the hypersurface integrals at t1 and t2 will be zero, but the hy-
persurface integral over the closed disruption surface will be

1
4�

Z
dt
I �

Aigkl � Akgil�in �Fik dSl :
If V4 is the outside vacuum then the hypersurface inte-

grals at t1 and t2 will be zero. The hypersurface integral over
the remote closed surface will be zero, but the hypersurface
integral over the disruption surface will be

� 1
4�

Z
dt
I �

Aigkl � Akgil�out �Fik dSl :

These integrals will annihilate if the potential Ak is con-
tinuous across the disruption surface. The continuity of
potential does not preclude the possibility of a surface
charge/current and a jump of electromagnetic field as a con-
sequence.

Claim: The variation procedure of conventional CED re-
sults in the impossibility of a surface charge/current
on a disruption surface. The variation procedure of
conventional CED begins with equation (9) replacing
the electromagnetic field with a potential. It introduces
the interaction term Akjk in the Lagrangian and varies
the potential �Ak. As a result of the least action it
obtains Maxwell’s equation (1). But it can be shown
that the consideration of a disruption surface will pro-
duce the requirement of electromagnetic field continu-
ity. This actually denies the possibility of a single layer
surface charge/current (the double layers are not inter-
esting and they will require the jump of potential and
infinite electromagnetic field). Therefore, the conven-
tional variation procedure is incorrect.

5 The physical meaning of potential

Now we learned that the electromagnetic potential, which
was devoid of a physical meaning, has to be continuous across
all the boundaries of disruption. This is a very important
result. It allows me to reinterpret the physical meaning of
potential. It is true that according to (9) we can add to the
potential a gradient of some arbitrary function and the elec-
tromagnetic field won’t change (gauge invariance). Yes, but
this fact can be given another interpretation: the potential is
unique and it actually contains more information about
physical reality than the electromagnetic field does. To
make the potential mathematically unique, besides initial data

Y. N. Keilman. In-Depth Development of Classical Electrodynamics 9
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and boundary conditions we need only to impose the conser-
vation equation (formerly Lorenz gauge).

Akjk = 0 ; Akjaja =
4�
c
jk; �Ak = �4�

c
jk: (10)

This is true everywhere. Using (1), (7a), and (9) we can
conclude that inside a material continuum the potential has to
satisfy: �

Akjbjb � k2
0A

k
�ji � �Aijbjb � k2

0A
i
�jk

= 0 : (7c)

If the equation:

Akjbjb�k2
0A

k= 0 or �Ak+k2
0A

k = 0 ; (11)

���� @2

c2@t2

is satisfied then (7c) also satisfied. This type of equation is
satisfied by the current density, see (7b). This equation can be
called the “Generalized Helmholtz Equation”. In static con-
ditions (11) coincides with the Helmholtz equation. Equation
(11) differs from the Klein-Gordon equation by the sign be-
fore the square of a constant.

The new interpretation of potential: A0 represents the
aether quantity (positive or negative), the 3-vector ~A repre-
sents the aether current. All together: the potential uniquely
describes the existing physical reality — the aether. In gen-
eral, the interpretation of potential doubles the interpretation
of current.

6 The implications of the re-interpretation of potential

Let us suppose that the potential is equal to a gradient of some
function G, which we call a “dummy generator”:

Ak = gkaGja ; A0 =
1
c
@G
@t

; ~A = �rG

Gjaja = 0 ; �G� 1
c2
@2G
@t2

= 0

9>>=>>; ; (12)

G has to be the solution of a homogeneous wave equation.
However, there are no requirements forG on a disruption sur-
face that we know of at present. But now we won’t say that
G is devoid of a physical meaning (remember the mistake we
made with potential).

What kind of a physical process is described here by the
corresponding potential? There is no electromagnetic field
and the energy-momentum tensor is equal to zero. These are
the “dummy waves” — the longitudinal aether waves. These
waves are physically significant only due to the boundary
conditions on the disruption surfaces, which they affect. If
this is the case, then G can be significant in physical experi-
ment. It can be even unique under the laws (these laws are not
completely clear) of another physical realm (realm of electro-
magnetic potential).

It is difficult to imagine an elementary particle without
some oscillating electromagnetic field inside it. If we assume

that the oscillating field is present inside the particle then
the boundary conditions may require the corresponding os-
cillating electromagnetic field in vacuum that surrounds the
particle. It is easy to show that the energy of this vacuum
electromagnetic field will be infinite. However, it is possible
that in vacuum only waves of the scalar potential take care
of the necessary boundary conditions. Since the potential is
not present in the energy-momentum tensor (5), there won’t
be any energy connected with it. We are free to suggest
that the massive elementary particles are the sources of
these waves. These waves are emitted continuously with an
amplitude (or its square) that is proportional to the mass of
the particle (this proposition seems to be reasonable). These
waves are only outgoing waves. The incoming waves can
only be plane incoherent waves (the spherical incoming co-
herent waves are impossible). We are not considering any
incoming waves at this point.

We now show, by some examples, that the concept of the
material continuum really works.

7 Obtaining solutions

Fortunately, all the equations for finding the solutions are lin-
ear. That allows us to seek a total solution as a superposition
of the particular solutions which satisfy the equations and
the boundary conditions separately. The only unlinear condi-
tion is (6a), which has to be fulfilled only on the disruption
surface. Only the total solution can be used in (6a).

IP2 (Ideal Particle Second): Let us obtain the simplest
static spherically symmetric solution with electric charge and
electric field only. We have:

A0
in = �

�
R0(z)�R0(z1) + bz1

�
0 6 z 6 z1 ; j0 =

k2
0 c

4�
�R0(z)

9>=>; ; (13a)

A0
out = �b

z2
1
z
; z1 6 z <1

b �
q
R2

0(z1) +R2
1(z1) ; z = k0r

9>=>; ; (13b)

Erin = �k0R1(z) ; 0 6 z 6 z1

Erout = �k0 b
z2

1
z2 ; z1 6 z <1

9>=>; ; (13c)

Qtot =
�
k0
z2

1 b ; Qsurf =
�
k0
z2

1
�
b�R1(z1)

�
; (13d)

mc2 =
�2

2k0

��z2
1R0(z1)R1(z1) + z3

1R
2
0(z1) +

+ z3
1R

2
1(z1)

�
=

�2

2k0

�
z1 � sin z1 cos z1

�
;

(13e)
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where R0(z) and R1(z) are spherical Bessel functions. In
general, the electric field has a jump at the boundary of IP2.
The position of the boundary z1 is arbitrary, but only at
z1 =n� (correspond to IP1) the surface charge is zero and
the electric field continuous. The first term in the mass ex-
pression (with the minus sign) corresponds to the energy of
the interior region of the particle. It can be positive or neg-
ative, depending on z1 (at z1 =n� it is zero). The second
and third terms together represent the vacuum energy, which
is positive. The total energy/mass remains positive at all z1.

It was confirmed that IP is an unstable “equilibrium”.
Given a small perturbation it will grow in time. We hope
to find a stable solution among the more complicated solu-
tions than IP. The first idea was to introduce a spin in a static
solutions. Then we tried to introduce the steady-state oscil-
lating solutions. It was confirmed that there exist oscillating
solutions with oscillating potential in vacuum that does not
produce any vacuum E-M field. Then we tried to introduce a
spin that originates from the oscillating solutions. Also we
tried to consider the cylindrically shaped particles that are
moving with the speed of light (close to a photon, see [3]).
All these attempts indicate that the boundary of a particle that
separates the material continuum from vacuum is a key player
in any solution.

8 The mechanism of interaction between a constant
electric field and a static charge (simplified thin layer
model)

The simplest solutions can be obtained in plane symmetry
where all the physical quantities depend only on the third co-
ordinate — z. Let us consider symmetry of the type, vacuum
— material continuum — vacuum. The thin layer of material
continuum from z = 0 to z = a (a is of the order of the size
of elementary particle) will represent a simplified model of an
elementary particle. The boundaries at z = 0 and z = a are
deemed to be enforced by the particle and the whole deficit
of energy or momentum on these boundaries is deemed to go
directly to the particle. Actually, if we have a deficit of en-
ergy or momentum it means that we are missing a particular
solution that brings this deficit to zero, according to (6a).

For further discussion we need to write down the integral
form of the energy-momentum conservation:

@
c@t

Z
V

Tm0dV = �
I
�

Tmqd�q ; (6b)

where V is a 3D volume (which is not moving — it is our
choice), and � is a 3D closed surface around this volume (ob-
viously also not moving). The index m can correspond to any
coordinate, while the index q corresponds only to the terres-
trial coordinates (1, 2, 3). If m = 0 then the left part of (6b)
is the time rate of increase of the energy inside V . T 0q is the
3-dimensional Pointing vector (or the flow of energy through

a square unit per unit of time). Ifm = 3 (in the plane symme-
try only one coordinate is of interest) then the left part of (6b)
is the time rate of increase of the linear momentum of the vol-
ume V (actually it is a force applied to the volume V ). T 3q is
the 3-vector (in general q can be 1, 2, 3; in our case q = 3) of
the flow of linear momentum through a square unit per unit
of time. It is obvious that when static (or in a steady state)
the left part of (6b) must be zero if there is no source/drain of
energy/linear momentum inside the said volume.

Suppose the constant electric field in the first vacuum re-
gion is E. The scalar potential (aether quantity), the electric
field, and the charge density are:

�1 = �Ez + C1 ; E1 = E

�2 = �E
k0

sin k0z + C1 cos k0z

C1 =
4�Q+ E (1� cos k0a)

k0 sin k0a

E2 = E cos k0z + k0C1 sin k0z

� =
k2

0
4�

�2 ; �3 = �(E + 4�Q)(z � a) + C2

C2 =
4�Q cos k0a� E (1� cos k0a)

k0 sin k0a

E3 = E + 4�Q

9>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>;

: (14)

Here the charge density is the solution of (7b) inside the
second region. The potentials are the solutions of (10). All
the physical quantities except � are continuous on the bound-
aries. That means that the jumps of the components of the
energy-momentum tensor will be due to the jumps of the
charge density only. The energy momentum tensor in this
symmetry (and this particular case) is:

T 00 =
1

8�
E2 � 2�

k2
0
�2 = T 11 = T 22

T 03 = 0 ; T 33 = � 1
8�

E2 � 2�
k2

0 c
�2

9>>>=>>>; : (15)

There is no energy flow in this system, but there is a
flow of linear momentum. In the first vacuum region it is:
T 33 =�E2=8�. Then it jumps on the first and on the second
boundaries:

T 33(z = 0+)� T 33(z = 0�) = �k2
0 C2

1
8�

T 33(z = a+)� T 33(z = a�) =
k2

0 C2
2

8�

k2
0 C2

1
8�

� k2
0 C2

2
8�

= Q
�
E +

4�Q
2

�

9>>>>>>>>=>>>>>>>>;
: (16)

After that it is: T 33 =�(E+ 4�Q)2=8�. As we go from
left to right the jump on the first boundary is negative. That
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means that the small volume that includes the first boundary
gets negative outside (we always consider the outside nor-
mal to the closed surface �) flow of linear momentum. That
means that the volume itself, according to expression (6b),
gets the positive rate of linear momentum, which is the force
in the positive direction of the z-axis. The first boundary is
pushed in the positive direction of the z-axis. The second
boundary is also pushed, but in the negative direction of the
z-axis. The difference is exactly equal to the force with which
the field acts on a particle; see (16). We see that electric field
does not act on a charge per se but only on a whole particle
and only through its boundaries. This picture is true only at
t = 0 because the missing particular solution that makes the
appearance of “free” sources and drains most definitely will
depend on time (the particle will begin to accelerate). This is
the actual success of the proposed modification of CED.

9 The mechanism of interaction between a constant
electric field and a static spherical charge

Here we will confirm that the thin layer treatment corresponds
to the more accurate but more complicated spherical charge
treatment. Suppose we have a constant electric field E di-
rected along the z-axis in vacuum. Also we have a sphere
of radius r1 that separates the material continuum inside the
sphere, from vacuum. The situation is static at t = 0. The
potential in general has to satisfy the equation Akjk = 0 (10)
everywhere, and equation (7c) inside the material continuum.
This last equation, with 3rd derivatives, has to be satisfied
strictly inside a material continuum and not on the disruption
surface itself (where a single layer of charge/current density
is possible and the charge/current density, jk = c

4�A
k ja
ja , can

be infinite). In vacuum we have

Ak jaja = 0 : (17)

Let us define a “dummy” potential by:

Dkjk = 0 ; Dijk �Dkji = 0 ;

consequently: Dk ja
ja = 0 :

9=; (18)

If we have a solution Ak of (10)+(7c) or a solution of
(10)+(17) then Ak +Dk will also be the solution of the same
equations (it does not matter whether inside the material con-
tinuum or in vacuum).

Now we return to our particular case. The solution of
(18) that we are interested in would be: D0 = const. If there
is no time dependence then (10) is satisfied for any A0 if a
vector potential is zero. Equation (7c) is a Laplace opera-
tor taken from a Helmholtz equation. The solutions of the
Helmholtz equation being considered would be: R0(k0r) and
R1(k0r) cos � where Rn are the spherical Bessel functions.
In vacuum we consider the solutions e=r, (where e is the to-
tal charge), r cos �, and (1=r2) cos �. So, let us consider the

potential

A0
in = �R0 (k0r) +

e
r1
� �R0 (k0r1)

A0
out =

e
r

+ E
�
r3

1
r2 � r

�
cos �

9>>>=>>>; : (19)

It is continuous at r = r1. The corresponding electric
field and charge density will be,

Er in = �k0R1 (k0r)

Er out =
e
r2 + E

�
1 + 2

r3
1
r3

�
cos �

E� in = 0 ; E� out = E
�
r3

1
r3 � 1

�
sin �

� =
�k2

0
4�

R0 (k0r)

9>>>>>>>>>>>=>>>>>>>>>>>;
: (20)

We see that the radial component of the electric field has
a jump while the � component is continuous. The surface
charge density and the total surface charge are:

4�� surf = �Er in(r1) + Er out(r1) =

=
e
r2

1
� �k0R1 (k0r1) + 3E cos �

Qsurf tot = e� �k0 r2
1R1 (k0r1)

9>>>=>>>; : (21)

We see that it does not matter what the relation is be-
tween the constants � and e, the surface of the particle has
a “surface charge polarization” 3E cos �. Only this polariza-
tion will result in the net force on the charge. The polariza-
tion in the volume of the particle can be introduced using the
solution R1(k0r) cos �. But this polarization won’t change
the net force (it can be introduced with any constant factor).
We’ve made the corresponding calculations that support this
statement. We do not present them here, for simplification.

The double radial component of the energy-momentum
tensor will be:

8� T rr = E2
� � E2

r � 16�2

k2
0
�2

8� T rrsurf in = ��2k2
0
�
R2

0(k0r1) +R2
1(k0r1)

�
8� T rrsurf out = �

�
e2

r4
1

+
6e
r2

1
E cos � + 9E2 cos2�

�
T �rsurf in = T �rsurf out = 0

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
: (22)

The force applied to the surface will be normal to the sur-
face and equal to Tsurf in � T rrsurf out. This force is zero if
E = 0. This case corresponds to the true static solution of
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our equations with (6a) satisfied. This solution enforces the
spherical boundary. If E is not zero, then we do not know the
actual solution because (6a) is not satisfied. The actual solu-
tion will be not static. But we can calculate the force at the
moment when E was “turned on”. To get the z component
of this force we have to multiply the expression on cos �. If
we integrate this over the spherical surface then all the terms
except the one with cos � are zero. The result of integration
will be eE. This is exactly the force with which the electric
field E acts on a charge e.

10 The transverse electromagnetic wave

Let us consider that the transverse electromagnetic wave is
coming from the left and encounters the layer of material con-
tinuum. We expect to find the transmitted and reflected waves
as well as the radiation pressure. “Behind” the transverse E-
M wave we find that the transverse aether wave with only an
x component (for x-polarized E-M wave) of the vector poten-
tial (aether current) is different from zero:

1A1 = �+
1 + ��1

�+
1 = F+

1 e
�ikz; ��1 = F�1 eikz

1E1 = �ik � 1A1; 1H2 = �ik � ��+
1 � ��1

�
2A1 = �+

2 + ��2

�+
2 = F+

2 e
�ik0z; ��2 = F�2 eik

0z

k =
!
c
; (k0)2 = k2

0 + k2

2E1 = �ik � 2A1; 2H2 = �ik0 � ��+
2 � ��2

�
j (z; t) =

ck2
0

4�
� 2A1

3A1 = F+
3 e
�ikz

3E1 = �ik � 3A1; 3H2 = �ik � 3A1

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

; (23)

where the prefixes to the fields always denote the number of
the region (we did not attach indexes to the current density j
because it is different from zero only in the second region).
We assume that all the functions depend on t through the fac-
tor exp(i!t). In the first region the given incoming wave F+

1
and some reflected wave F�1 are present. In the second region
two waves are present. They satisfy the equations:

2A100 + k2 � 2A1 = �4�
c
j ;

@
@x
� 2A1 = 0 : (24)

On the boundaries the vector potential (aether current)

and its first derivative have to be continuous. We found that

F�1 = �F+
1

2ik2
0 sin(k0a)
D

F+
3 e�ika = F+

1
4kk0
D

D � (k + k0)2 eik
0a � (k � k0)2 e�ik0a

F+
2 = F+

1
2k (k + k0)

D
eik
0a

F�2 = F+
1

2k (k0 � k)
D

e�ik0a

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
: (25)

Here we found the amplitudes of reflected and transmitted
waves and the amplitudes of both waves in the second region
(only F+

1 is considered to be real and given).
We found previously that the energy-momentum tensor in

a material continuum has the form (one-dimensional symme-
try assumed):

T 00 =
1

8�
�
E2 +H2�� 2�

k2
0 c2

j2

T 33 =
1

8�
�
E2 +H2�+

2�
k2

0 c2
j2

T 11 =
1

8�
��E2 +H2�� 2�

k2
0 c2

j2 = �T 22

T 03 =
1

4�
EH

9>>>>>>>>>>>=>>>>>>>>>>>;
: (26)

Since we use complex numbers — we have to take the real
parts of the physical values, multiply them and then take the
time average. The result will be the real part of the product
of the first complex amplitude on the conjugate of the second
complex amplitude. The result in the second region is:

2�
k2

0 c2
j2 = F+

1
2 k2

0 k2

�jDj2 �
� �k2

0 + 2k2 + k2
0 cos 2k0(a� z)

�
T 00 = �F+

1
2 2k2

�jDj2 �
� �k4

0 cos 2k0(a� z)� k2 (k2
0 + 2k2)

�
T 03 = F+

1
2 4k4k02
�jDj2

T 33 = F+
1

2 2k2k02
�jDj2

�
k2

0 + 2k2�

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

: (27)

The electric and magnetic fields are continuous in this
system. The flow of energy appear to be independent of z
in the second region. It is continuous on the boundaries (see
(26); the currents are not included in T 03). This means that it
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is constant through the whole system. The flow of linear mo-
mentum (T 33) is positive in the first region and then jumps
up on the first boundary due to the jump of the current j. It
means that the surface integral in (6b) is positive and the first
boundary is losing linear momentum. The surface is pulled in
the negative direction of the z-axis. But this pull is less than
another pull due to the jump on the second boundary; this can
be determined from (27). We consider k0a� �

4 , but it will be
true for any k0a different from �. Notice also that at k0a = �
the reflected wave is zero as can be seen from (25). Thus,
the material continuum will experience the force (through its
boundaries) in the positive direction of the z-axis. The nu-
merical value of this force can be calculated from the jumps
and it is equal to the force that we usually calculate from the
linear momentum of incident transmitted and reflected waves.

11 The longitudinal aether (dummy) wave

Let us consider a longitudinal aether wave travelling from the
left, encountering the layer of material continuum. There are
no electromagnetic fields that accompany this wave in vac-
uum. Not so inside the material continuum. We have:

1A0 = �+
1 + ��1

�+
1 = F+

1 e
�ikz; ��1 = F�1 eikz; k =

!
c

1A3 = �+
1 � ��1 ; 2A0 = �+

2 + ��2

�+
2 = F+

2 e
�ik0z; ��2 = F�2 eik

0z

2A3 =
k
k0
�
�+

2 � ��2
�
; (k0)2 = k2

0 + k2

j0 (z; t) =
ck2

0
4�

�
�+

2 + ��2
�

j3 (z; t) =
ck2

0 k
4�k0

�
�+

2 � ��2
�

E3 =
ik2

0
k0
�
�+

2 � ��2
�
; 3A0 = 3A3 = F+

3 e
�ikz

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(28)

where we assume that all the functions depend on t through
the factor exp(i!t). In the first region the given incoming
wave F+

1 and some reflected wave F�1 are present (both are
dummy waves). In the second region two waves are present.
They satisfy the equations:

2A000 + k2 � 2A0 = �4�
c
j0

2A300 + k2 � 2A3 = �4�
c
j3

ik � 2A0 + 2A30 = 0 :

9>>>>>=>>>>>; : (29)

To define all the waves we have to satisfy the conditions

on the boundaries. The scalar potential (aether quantity) and
the vector potential (aether current) should be continuous
across the boundaries. We found that

on z = a : F+
2 e
�ik0a =

k + k0
2k

F+
3 e
�ika

F�2 eik
0a = �k0 � k

2k
F+

3 e
�ika

on z = 0 : F�1 = F+
1

2ik2
0 sin(k0a)
D

F+
3 e
�ika = F+

1
4kk0
D

D � (k + k0)2 eik
0a � (k0 � k)2 e�ik0a

F+
2 = F+

1
2k0(k + k0)

D
eik
0a

F�2 = �F+
1

2k0(k0 � k)
D

e�ik0a

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: (30)

Here we found the amplitudes of reflected and transmitted
waves and the amplitudes of both waves in the second region
(only F+

1 is considered to be real).
From (28) we can calculate the derivatives:

1A00 = �ik � 1A3; 2A00 = � ik02
k
� 2A3

1A30 = �ik � 1A0; 2A30 = �ik � 2A0

9>=>; : (28a)

We see that the aether current (A3) has a continuous de-
rivative while the derivative of aether quantity (A0) has a
jump at the boundaries. This means that there are surface
charges associated with the boundaries.

We notice from (28) that the electric field, charge density,
and current density are different from zero inside the second
region. This means that the material continuum produces a
kind of physical response to the energy-less dummy waves.
We also found previously that the energy-momentum tensor
in a material continuum has the form (one-dimensional sym-
metry assumed),

T 00 =
1

8�
E2 � 2�

k2
0 c2

�
c2�2 + j2�

T 11 = � 1
8�

E2 � 2�
k2

0 c2
�
c2�2 + j2�

T 22 = T 33 =
1

8�
E2 � 2�

k2
0 c2

�
c2�2 � j2�

T 01 = � 4�
k2

0 c2
c�j

9>>>>>>>>>>>>=>>>>>>>>>>>>;
: (31)

To actually calculate a time average of the energy-
momentum tensor we have to take the real parts of the physi-
cal values, multiply them, and then take the time average. The
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result will be the real part of the product of the first complex
amplitude on the conjugate of the second complex amplitude.
The result of calculation is,

T 33 = �(F+
1 )2 2k4

0
�jDj2 (k2

0 + 2k2)

T 03 = �(F+
1 )2 4k2

0 k2k02
�jDj2

T 00 = (F+
1 )2 2k6

0
�jDj2 cos

�
2k0 (a� z)

�

9>>>>>>>>=>>>>>>>>;
: (32)

The first two time averages of the tensor components ap-
pear to be independent of z. The energy density depends on z.
All these tensor components are zero in both vacuum regions.
This means that all of them jump at the boundaries.

On the first boundary the jump of T 33 is negative. It
means that the first boundary will be pushed to the right. On
the second boundary the jump will be positive and the same
by its absolute value (because T 33 is constant inside the sec-
ond region). The second boundary will be pushed in the neg-
ative direction of the z-axis with the same force — we have
equilibrium — no “free” force.

On the first boundary the jump of T 03 is negative. It
means that the first boundary will be getting energy. On the
second boundary the jump will be positive and the same by
its absolute value (because T 03 is constant inside the second
region). The second boundary will be losing the same amount
of energy — no “free” energy.

It appears that the particular solutions that we have carry
energy and momentum from the second boundary to the first,
while the missing particular solution carries them back. If we
imagine that the energy and momentum can be lost on the
way from the sourse to the drain then we get a free linear mo-
mentum directed to the sourse of dummy waves (gravitational
force). Also we get a free energy for heating stars. This un-
conservation proposition can be quite real if we consider that
we obtained the conservation of energy-momentum from the
requirement of minimum action. In the real physical world
the action may has a small jitter around the exact minimum.
Obviously this jitter is very small so that it can revile itself
only on a cosmic scale.

At the present time we hesitate in proceeding further from
these results because the meaning of these results has still to
be clarified.

12 De Broglie’s waves

Let us suppose, in addition (see Section 6), that the frequency
of dummy waves (as well as the intensity) also proportional to
the mass of the particle: ! = mc2=~. The resting particles are
present in abundance in the experimental arrangement itself.
These resting particles can be partially synchronized in some
proximity (the extent of this proximity is not known yet) of

any point inside the experimental device. We can expect some
standing scalar waves of a dummy generator that can be expe-
rienced by the moving particle independently of the direction
of motion. In this case we can explain De Broglie’s waves as
beat frequency waves between the frequency of a resting par-
ticle and the Doppler shifted frequency of a moving particle.
The rôle of the nonlinear device that is necessary to obtain the
beat frequency wave, can be very well played by the boundary
of the particle itself. This will explain “the wave properties of
particles” by purely classical means, as first proposed in 1993
by Milo Wolff [7].

In the foregoing reformulation of conventional classical
electrodynamics, we omitted the interaction term in the La-
grangian/Hamiltonian. Quantum Theory was undermined by
this action. One should note that, historically, after the cre-
ation of quantum theory, there were attempts to legitimize the
electromagnetic potential as a physically measurable value
(see R. Feynman, [1]). Still, it is too early to try to find a
classical basis for quantum theory, but the direction to go is
that of the physical realm of the electromagnetic potential.

13 Conclusion

Probably it is not right to keep the disruption surface devoid
from surface energy and surface tension. To introduce that
correctly we have to consider some surface Lagrange density
and add a surface integral to the action volume integral. That
I hope to see in a future development.
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The elementary electron-positron pair formation process is considered in terms of a
revised quantum electrodynamic theory, with special attention to the conservation of
energy, spin, and electric charge. The theory leads to a wave-packet photon model of
narrow line width and needle-radiation properties, not being available from conven-
tional quantum electrodynamics which is based on Maxwell’s equations. The model
appears to be consistent with the observed pair production process, in which the cre-
ated electron and positron form two rays that start within a very small region and have
original directions along the path of the incoming photon. Conservation of angular mo-
mentum requires the photon to possess a spin, as given by the present theory but not by
the conventional one. The nonzero electric field divergence further gives rise to a local
intrinsic electric charge density within the photon body, whereas there is a vanishing
total charge of the latter. This may explain the observed fact that the photon decays
on account of the impact from an external electric field. Such a behaviour should not
become possible for a photon having zero local electric charge density.

1 Introduction

During the earliest phase of the expanding universe, the lat-
ter is imagined to be radiation-dominated, somewhat later
also including particles such as neutrinos and electron-posi-
tron pairs. In the course of the expansion the “free” states of
highly energetic electromagnetic radiation thus become partly
“condensed” into “bound” states of matter as determined by
Einstein’s energy relation.

The pair formation has for a long time both been stud-
ied experimentally [1] and been subject to theoretical analysis
[2]. When a high-energy photon passes the field of an atomic
nucleus or that of an electron, it becomes converted into an
electron and a positron. The orbits of these created particles
form two rays which start within a very small volume and
have original directions along the path of the incoming pho-
ton.

In this paper an attempt is made to understand the ele-
mentary electron-positron pair formation process in terms of
a revised quantum electrodynamic theory and its application
to a wave-packet model of the individual photon [3, 4, 5, 6].
The basic properties of the latter will be described in Sec-
tion 2, the intrinsic electric charge distribution of the model
in Section 3, the conservation laws of pair formation in Sec-
tion 4, some questions on the vacuum state in Section 5, and
the conclusions are finally presented in Section 6.

2 A photon model of revised quantum electrodyn-
amics

The detailed deductions of the photon model have been re-
ported elsewhere [3, 4, 5, 6] and will only be summarized
here. The corresponding revised Lorentz and gauge invari-
ant theory represents an extended version which aims beyond

Maxwell’s equations. Here the electric charge density and
the related electric field divergence are nonzero in the vac-
uum state, as supported by the quantum mechanical vacuum
fluctuations and the related zero-point energy. The resulting
wave equation of the electric field E then has the form�

@2

@t2
� c2r2

�
E +

�
c2r+ C

@
@t

�
(div E) = 0 ; (1)

which includes the effect of a space-charge current density
j = "0(div E)C that arises in addition to the displacement
current "0@E=@t. The velocity C has a modulus equal to the
velocity c of light, as expressed by C2 = c2. The induction
law still has the form

curl E = �@B
@t

(2)

with B standing for the magnetic field strength.
The photon model to be discussed here is limited to ax-

isymmetric normal modes in a cylindrical frame (r; '; z)
where @=@' = 0. A form of the velocity vector

C = c (0; cos�; sin�) (3)

is chosen under the condition 0< j cos�j� 1, such as not to
get into conflict with the Michelson-Morley experiments, i.e.
by having phase and group velocities which only differ by
a very small amount from c. The field components can be
expressed in terms of a generating function

G0 �G = Ez + (cot�)E' ; G = R(�) ei(�!t+kz); (4)

where G0 is an amplitude factor, �= r=r0 with r0 as a char-
acteristic radial distance of the spatial profile, and ! and k
standing for the frequency and wave number of a normal
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mode. Such modes are superimposed to form a wave-packet
having the spectral amplitude

Ak =
�
k
k2

0

�
exp

��z2
0(k � k0)2� ; (5)

where k0 and �0 = 2�
k0

= c
�0

are the main wave number and
wave length, and 2z0 represents the effective axial length of
the packet. According to experimental observations, the
packet must have a narrow line width, as expressed by
k0z0� 1. The spectral averages of the field components in
the case j cos�j � 1 are then

�Er = �iE0R5 ; (6)

�E' = E0(k0r0)(sin�)(cos�)R3 ; (7)

�Ez = E0(k0r0)(cos�)2R4 (8)

and

�Br = �1
c

1
sin�

�E' ; (9)

�B' =
1
c

(sin�) �Er ; (10)

�Bz =
1
c

(cos�)
R8

R5
�Er : (11)

Here

R3 = �2D�R ; R4 = R�R3 ; R5 =
d
d�

(R�R3) ; (12)

R8 =
�
d
d�

+
1
�

�
R3 ; D� =

d2

d�2 +
1
�
d
d�

(13)

and

E0 = e0 �f ; e0 =
g0
p
�

k2
0r0z0

; G0 = g0(cos�)2; (14)

�f =
�
cos(k0�z) + i sin(k0�z)

�
exp
�
�
�

�z
2z0

�2 �
; (15)

where �z = z � c(sin�)t.
Choosing the part of the normalized generating function

G which is symmetric with respect to the axial centre �z = 0
of the moving wave packet, the components ( �E'; �Ez; �Br) be-
come symmetric and the components ( �Er; �B'; �Bz) antisym-
metric with respect to the same centre. Then the integrated
electric charge and magnetic moment vanish.

The equivalent total mass defined by the electromagnetic
field energy and the energy relation by Einstein becomes on
the other hand

m � 2�
"0

c2
r2

0Wme2
0

Z +1

�1
f2 d�z ; (16)

Wm =
Z
�R2

5 d� ;

where expression (15) has to be replaced by the reduced func-
tion

f =
�
sin(k0�z)

�
exp
�
�
�

�z
2z0

�2 �
(17)

due to the symmetry condition on G with respect to �z = 0.
Finally the integrated angular momentum is obtained from
the Poynting vector, as given by

s � �2�"0

Z +1

�1

Z
r2 �Er �Bz drd�z =

= 2�
"0

c
(cos�)r3

0 Ws e2
0

Z +1

�1
f2 d�z ; (18)

Ws = �
Z
�2R5R8 d� :

Even if the integrated (total) electric charge of the photon
body as a whole vanishes, there is on account of the nonzero
electric field divergence a local nonzero electric charge den-
sity

�� = e0f
"0

r0

1
�
d
d�

(�R5) : (19)

Due to the factor sin(k0�z) this density oscillates rapidly
in space as one proceeds along the axial direction. Thus the
electric charge distribution consists of two equally large pos-
itive and negative oscillating contributions of total electric
charge, being mixed up within the volume of the wave packet.

To proceed further the form of the radial function R(�)
has now to be specified. Since the experiments clearly reveal
the pair formation to take place within a small region of space,
the incoming photon should have a strongly limited extension
in its radial (transverse) direction, thus having the character of
“needle radiation”. Therefore the analysis is concentrated on
the earlier treated case of a function R which is divergent at
� = 0, having the form

R(�) = ��e�� ;  > 0 : (20)

In the radial integrals of equations (16) and (18) the dom-
inant terms then result in R8 � �R5 and

Wm =
Z 1
�m

�R2
5 d� =

1
2
5��2

m ; (21)

Ws =
Z 1
�s

�2R2
5 d� =

1
2
5��2+1

s ; (22)

where �m� 1 and �s� 1 are small nonzero radii at the ori-
gin �= 0. To compensate for the divergence of Wm and Ws
when �m and �s approach zero, we now introduce the shrink-
ing parameters

r0 = cr � " ; g0 = cg � "� ; (23)

where cr and cg are positive constants and the dimensionless
smallness parameter " is defined by 0<"� 1. From relations
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(14)–(18), (21)–(23), the energy relation mc2 =h�0, and the
quantum condition of the angular momentum, the result be-
comes

m = �2 "0

c2
5
�

1
k2

0z0

�2

c2g
"2�

�2
m
Jm =

h
�0c

; (24)

s = �2 "0

c
5
�

1
k2

0z0

�2

c2gcr(cos�)
"2�+1

�2�1
s

Jm =
h
2�

(25)

with

Jm =
Z +1

�1
f2 d�z � z0

p
2� : (26)

Here we are free to choose � =  � 1 which leads to

�s � �m = " : (27)

The lower limits �m, and �s of the integrals (21) and (22)
then decrease linearly with " and with the radius r0. This
forms a “similar” set of geometrical configurations, having a
common shape which is independent of �m, �s, and " in the
range of small ".

Taking r̂ = r0 as an effective radius of the configuration
(20), combination of relations (23)–(25) finally yields a pho-
ton diameter

2r̂ =
"�0

�j cos�j (28)

being independent of . Thus the individual photon model
becomes strongly needle-shaped when " 6 j cos�j.

It should be observed that the photon spin of expression
(25) disappears when div E vanishes and the basic relations
reduce to Maxwell’s equations. This is also the case under
more general conditions, due to the behaviour of the Poynt-
ing vector and to the requirement of a finite integrated field
energy [3, 4, 5, 6].

3 The intrinsic electric charge distribution

We now turn to the intrinsic electric charge distribution within
the photon wave-packet volume, representing an important
but somewhat speculative part of the present analysis. It con-
cerns the detailed process by which the photon configuration
and its charge distribution are broken up to form a pair of par-
ticles of opposite electric polarity. Even if electric charges
can arise and disappear in the vacuum state due to the quan-
tum mechanical fluctuations, it may be justified as a first step
to investigate whether the total intrinsic photon charge of one
polarity can become sufficient as compared to the electric
charges of the electron and positron.

With the present strongly oscillating charge density in
space, the total intrinsic charge of either polarity can be esti-
mated with good approximation from equations (17) and (19).
This charge appears only within half of the axial extension of
the packet, and its average value differs by the factor 2

� from

the local peak value of its sinusoidal variation. From equation
(19) this intrinsic charge is thus given by

q =
z0

�

Z 1
�q

2�r
��
f
dr = 2

p
�z0"03 1

k2
0z0

cg
"�

�q
; (29)

where the last factor becomes equal to unity when � =  and
the limit �q = " for a similar set of geometrical configura-
tions. Relations (29) and (24) then yield

q2 =
8
�3 "0c2z0m =

8
�3 "0 ch

z0

�0
�

� 45�10�38 
z0

�0

(30)

and
q
e
� 4.2

�
 z0

�0

�1=2
: (31)

With a large  and a small line width leading to �0 � z0,
the total intrinsic charge thus substantially exceeds the charge
of the created particle pair. However, the question remains
how much of the intrinsic charge becomes available during
the disintegration process of the photon.

A much smaller charge would become available in a
somewhat artificial situation where the density distribution
of charge is perturbed by a 90 degrees phaseshift of the si-
nusoidal factor in expression (17). This would add a factor
2 exp

��4�2(z0=�0)2� to the middle and right-hand mem-
bers of equation (30), and makes q & e only for extremely
large values of  and for moderately narrow line widths.

4 Conservation laws of pair formation

There are three conservation laws to be taken into account in
the pair formation process. The first concerns the total energy.
Here we limit ourselves to the marginal case where the kinetic
energy of the created particles can be neglected as compared
to the equivalent energy of their rest masses. Conservation of
the total energy is then expressed by

mc2 =
hc
�0

= 2mec2: (32)

Combination with equation (28) yields an effective pho-
ton diameter

2r̂ =
"h

2�mec j cos�j : (33)

With " 6 j cos�j we have 2r̂ 6 3.9�10�13 m being equal
to the Compton wavelength and representing a clearly devel-
oped form of needle radiation.

The second conservation law concerns the preservation
of angular momentum. It is satisfied by the spin h

2� of the
photon in the capacity of a boson particle, as given by ex-
pression (25). This angular momentum becomes equal to the
sum of the spin h

4� of the created electron and positron be-
ing fermions. In principle, the angular momenta of the two
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created particles could also become antiparallel and the spin
of the photon zero, but such a situation would contradict all
other experience about the photon spin.

The third conservation law deals with the preservation of
the electric charge. This condition is clearly satisfied by the
vanishing integrated photon charge, and by the opposite po-
larities of the created particles. In a more detailed picture
where the photon disintegrates into the charged particles, it
could also be conceived as a splitting process of the positive
and negative parts of the intrinsic electric charge distributions
of the photon.

Magnetic moment conservation is satisfied by having par-
allel angular momenta and opposite charges of the electron
and positron, and by a vanishing magnetic moment of the
photon [5, 6].

5 Associated questions of the vacuum state concept

The main new feature of the revised quantum electrodynami-
cal theory of Section 2 is the introduction of a nonzero electric
field divergence in the vacuum, as supported by the existence
of quantum mechanical fluctuations. In this theory the values
of the dielectric constant and the magnetic permeability of the
conventional empty-space vacuum have been adopted. This
is because no electrically polarized and magnetized atoms or
molecules are assumed to be present, and that the vacuum
fluctuations as well as superimposed regular phenomena such
as waves take place in a background of empty space.

As in a review by Gross [7], the point could further be
made that a “vacuum polarization” screens the point-charge-
like electron in such a way that its effective electrostatic force
vanishes at large distances. There is, however, experimen-
tal evidence for such a screening not to become important at
the scale of the electron and photon models treated here. In
the vacuum the electron is thus seen to be subject to scatter-
ing processes due to its full electrostatic field, and an elec-
trically charged macroscopic object is also associated with
such a measurable field. This would be consistent with a sit-
uation where the vacuum fluctuations either are small or es-
sentially independent as compared to an external disturbance,
and where their positive contributions to the local electric
charge largely cancel their negative ones.

To these arguments in favour of the empty-space values
of the dielectric constant and the magnetic permeability two
additional points can also be added. The first is due to the
Heisenberg uncertainty relation which implies that the vac-
uum fluctuations appear spontaneously during short time in-
tervals and independently of each other. They can therefore
hardly have a screening effect such as that due to Debye in
a quasi-neutral plasma. The second point is based on the
fact that static measurements of the dielectric constant and the
magnetic permeability result in values the product of which
becomes equal to the inverted square of the measured velocity
of light.

6 Conclusions

The basis of the conservation laws in Section 4 is rather ob-
vious, but it nevertheless becomes nontrivial when a compar-
ison is made between conventional quantum electrodynamics
based on Maxwell’s equations on one hand and the present
revised theory on the other. Thereby the following points
should be observed:

• The needle-like radiation of the present photon model
is necessary for understanding the observed creation
of an electron-positron pair which forms two rays that
start within a small region, and which have original di-
rections along the path of the incoming photon. Such
needle radiation does not come out of conventional the-
ory [3, 4, 5, 6];

• The present revised theory leads to a nonzero spin of
the photon, not being available from conventional
quantum electrodynamics based on Maxwell’s equa-
tions; [3, 4, 5, 6]. The present model is thus consis-
tent with a photon as a boson which decays into two
fermions;

• The nonzero divergence of the electric field in the pre-
sent theory allows for a local nonzero electric charge
density, even if the photon has a vanishing net charge.
This may indicate how the intrinsic electric photon
charges can form two charged particles of opposite po-
larity when the photon structure becomes disintegrated.
Such a process is supported by the experimental fact
that the photon decays into two charged particles
through the impact of the electric field from an atomic
nucleus or from an electron. This could hardly oc-
cur if the photon body would become electrically neu-
tral at any point within its volume. Apart from such a
scenario, the electromagnetic field configuration of the
photon may also be broken up by nonlinear interaction
with a strong external electric field;

• The present approach to the pair formation process has
some similarity with the breaking of the stability of
vacuum by a strong external electric field, as being in-
vestigated by Fradkin et al. [8].
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We show how Ricci flow is related to quantum theory via Fisher information and the
quantum potential.

1 Introduction

In [9, 13, 14] we indicated some relations between Weyl ge-
ometry and the quantum potential, between conformal gen-
eral relativity (GR) and Dirac-Weyl theory, and between Ricci
flow and the quantum potential. We would now like to de-
velop this a little further. First we consider simple Ricci flow
as in [35, 49]. Thus from [35] we take the Perelman entropy
functional as (1A) F(g; f) =

R
M (jrf j2 + R) exp(�f)dV

(restricted to f such that
R
M exp(�f)dV = 1) and a Nash

(or differential) entropy via (1B) N(u) =
R
M u log(u)dV

where u = exp(�f) (M is a compact Riemannian manifold
without boundary). One writes dV =

p
det(g)

Q
dxi and

shows that if g ! g + sh (g; h 2 M = Riem(M)) then
(1C) @s det(g)js=0 = gijhij det(g) = (Trgh) det(g). This
comes from a matrix formula of the following form
(1D) @s det(A+ B)js=0 = (A�1 : B) det(A) where A�1 :
B = aijbji = aijbij for symmetricB (aij comes fromA�1).
If one has Ricci flow (1E) @sg=�2Ric (i.e. @sgij =�2Rij)
then, considering h � �2Ric, one arrives at (1F) @sdV =
=�RdV whereR=gijRij (more general Ricci flow involves
(1G) @tgik =�2(Rik +rirk�)). We use now t and s in-
terchangeably and suppose @tg=�2Ric with u= exp(�f)
satisfying ��u= 0 where ��=�@t�� +R. ThenR
M exp(�f)dV = 1 is preserved since (1H) @t

R
M udV =

=
R
M (@su � Ru)dV = � RM �udV = 0 and, after some

integration by parts,

@tN =
Z
M

�
@tu(log(u) + 1)dV + u log(u)@tdV

�
=

=
Z
M

(jrf j2 +R)e�fdV = F:
(1.1)

In particular for R > 0, N is monotone as befits an en-
tropy. We note also that ��u = 0 is equivalent to (1I) @tf =
=��f + jrf j2 �R.

It was also noted in [49] that F is a Fisher information
functional (cf. [8, 10, 24, 25]) and we showed in [13] that
for a given 3-D manifold M and a Weyl-Schrödinger picture
of quantum evolution based on [42, 43] (cf. also [4, 5, 6, 8,
9, 10, 11, 12, 16, 17, 51]) one can express F in terms of a
quantum potential Q in the form (1J) F � �

R
M QPdV +

+�
R
M j~�j2PdV where ~� is a Weyl vector and P is a prob-

ability distribution associated with a quantum mass density
�̂ � j j2. There will be a corresponding Schrödinger

equation (SE) in a Weyl space as in [10, 13] provided there
is a phase S (for  = j j exp(iS=~)) satisfying (1K)
(1=m)div(PrS) = �P � RP (arising from @t�̂ � ��̂ =
=�(1=m)div(�̂rS) and @t�̂+ ��̂�R�̂ = 0 with �̂�P �
�u� j j2). In the present work we show that there can ex-
ist solutions S of (1K) and this establishes a connection be-
tween Ricci flow and quantum theory (via Fisher informa-
tion and the quantum potential). Another aspect is to look
at a relativistic situation with conformal perturbations of a
4-D semi-Riemannian metric g based on a quantum poten-
tial (defined via a quantum mass). Indeed in a simple minded
way we could perhaps think of a conformal transformation
ĝab = 
2gab (in 4-D) where following [14] we can imag-
ine ourselves immersed in conformal general relativity (GR)
with metric ĝ and (1L) exp(Q) � M2=m2 = 
2 = �̂�1

with � � M where � is a Dirac field and Q a quantum po-
tential Q � (~2=m2c2)(�g

p�)=p�) with � � j 2j refer-
ring to a quantum matter density. The theme here (as de-
veloped in [14]) is that Weyl-Dirac action with Dirac field �
leads to � � M and is equivalent to conformal GR (cf. also
[8, 10, 36, 45, 46, 47] and see [28] for ideas on Ricci flow
gravity).

REMARK 1.1. For completeness we recall (cf. [10, 50])
for LG = (1=2�)

p�g R
�L =

1
2�

�
Rab � 1

2
gabR

� p�g �gab +

+
1

2�
gab
p�g �Rab :

(1.2)

The last term can be converted to a boundary integral
if certain derivatives of gab are fixed there. Next following
[7, 9, 14, 27, 38, 39, 40] the Einstein frame GR action has the
form

SGR =
Z
d4x
p�g (R� �(r )2 + 16�LM ) (1.3)

(cf. [7]) whose conformal form (conformal GR) is

ŜGR =
Z
d4x

p�ĝ e� �
�
�
R̂�

�
�� 3

2

�
(r̂ )2 + 16�e� LM

�
= (1.4)

=
Z
d4x
p�g

�
�̂R̂�

�
�� 3

2

�
(r̂�̂)2

�̂
+16��̂2LM

�
;
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where ĝab=
2gab, 
2 = exp( )=�; and �̂= exp(� )=
=��1. If we omit the matter Lagrangians, and set �= 3

2 ��,
(1.4) becomes for ĝab ! gab

~S =
Z
d4x
p�g e� �R+ �(r )2�: (1.5)

In this form on a 3-D manifold M we have exactly the
situation treated in [10, 13] with an associated SE in Weyl
space based on (1K). �

2 Solution of (1K)

Consider now (1K) (1=m)div(PrS) = �P �RP for P �
� �̂ � j j2 and

R
P
pjgjd3x = 1 (in 3-D we will use

here
pjgj for

p�g). One knows that div(PrS) =P�S+
+rP � rS and

� =
1pjgj @m�pjgjr �; r = gmn@n Z

M
divV

pjgj d3x =
Z
@M

V � ds

9>>>=>>>; (2.1)

(cf. [10]). Recall also
R
P
pjgj d3x = 1 and

Q � � ~2

8m

��rP
P

�2

� 2
�

�P
P

��
<Q> =

Z
PQd3x

9>>>=>>>; : (2.2)

Now in 1-D an analogous equation to (1K) would be
(3A) (PS0)0=P 0�RP =F with solution determined via

PS0 = P 0 �
Z
RP + c)

) S0 = @x log(P )� 1
P

Z
RP + cP�1 )

) S = log(P )�
Z

1
P

Z
RP + c

Z
P�1 + k ; (2.3)

which suggests that solutions of (1K) do in fact exist in gen-
eral. We approach the general case in Sobolev spaces à la [1,
2, 15, 22]. The volume element is defined via � =

pjgjdx1^
� � � ^ dxn (where n = 3 for our purposes) and � : ^pM !
^n�pM is defined via

(��)�p+1����n =
1
p!
��1����n ��1����p

(�; �) =
1
p!
��1����p ��1����p

9>>=>>; ; (2.4)

�1 = �; ��� = (�1)p(n�p)�; �� = 1; � ^ (��) = (�; �)�.
One writes now<�; �> =

R
M (�; �)� and, for (
; �) a local

chart we have (2A)
R
M fdV =

R
�(
)(

pjgjf) � ��1Q dxi

(� R
M f

pjgjQ dxi). Then one has (2B) <d�; >=
=<�; �> for � 2 ^pM and  2 ^p+1M where the codif-
ferential � on p-forms is defined via (2C) � = (�1)p ��1 d�.
Then �2 = d2 = 0 and � = d� + �d so that �f = �df =
= �r�r�f . Indeed for � 2 ^pM

(��)�1;��� ;�p�1 = �r�;�1;��� ;�p�1 (2.5)

with �f = 0 (� : ^pM ! ^p�1M ). Then in particular
(2D) <��; �>=<�d�; �>=<d�; d�>=

R
M r��r���.

Now to deal with weak solutions of an equation in diver-
gence form look at an operator (2E) Au = �r(aru) �
(�1=

pjgj) @m(
pjgj agmnrnu) = �rm(armu) so that

for � 2 D(M)Z
M
Au�dV = �

Z �rm(agmnrnu)
�
�dV =

=
Z
agmnrnurm�dV =

Z
armurm�dV:

(2.6)

Here one imagines M to be a complete Riemannian man-
ifold with Soblev spaces H1

0 (M) � H1(M) (see [1, 3, 15,
26, 29, 48]). The notation in [1] is different and we think
of H1(M) as the space of L2 functions u on M with ru 2
L2 and H1

0 means the completion of D(M) in the H1 norm
kuk2 =

R
M [juj2 + jruj2]dV . Following [29] we can also

assume @M = ; with M connected for all M under con-
sideration. Then let H = H1(M) be our Hilbert space and
consider the operator A(S) = �(1=m)r(PrS) with

B(S; ) =
1
m

Z
P rmSrm dV (2.7)

for S; 2H1
0 =H1. Then A(S) =RP ��P =F becomes

(2F) B(S; ) =<F; >=
R
F  dV and one has (2G)

jB(S; )j6 c kSkH k kH and jB(S; S)j= R P (rS)2 dV .
Now P > 0 with

R
PdV = 1 but to use the Lax-Milgram the-

ory we need here jB(S; S)j > �kSk2H (H = H1). In this
direction one recalls that in Euclidean space for  2 H1

0 (R3)
there follows (2H) k k2L2 6 c kr k2L2 (Friedrich’s inequal-
ity — cf. [48]) which would imply k k2H 6 (c+ 1)kr k2L2 .
However such Sobolev and Poincaré-Sobolev inequalities be-
come more complicated on manifolds and (2H) is in no way
automatic (cf. [1, 29, 48]). However we have some recourse
here to the definition of P, namely P = exp(�f), which ba-
sically is a conformal factor and P > 0 unless f!1. One
heuristic situation would then be to assume (2I) 0<�6P (x)
on M (and since

R
exp(�f)dV = 1 with dV =

pjgjQ3
1 dx

i

we must then have �
R
dV 6 1 or vol(M) =

R
M dV 6 (1=�)).

Then from (2G) we have (2J) jB(S; S)j > �k(rS)2k and for
any �> 0 it follows: jB(S; S)j+�kSk2L2 > min(�; �)kSk2H1 .
This means via Lax-Milgram that the equation

A(S)+�S = � 1
m
r(PrS)+�S = F = RP��P (2.8)
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has a unique weak solution S 2H1(M) for any �> 0
(assuming F 2L2(M)). Equivalently (2K) � 1

m [P�S+
+ (rP )(rS)] + �S = F has a unique weak solution S 2
H1(M). This is close but we cannot put � = 0. A differ-
ent approach following from remarks in [29], pp. 56–57 (cor-
rected in [30], p. 248), leads to an heuristic weak solution of
(1K). Thus from a result of Yau [53] if M is a complete sim-
ply connected 3-D differential manifold with sectional curva-
ture K < 0 one has for u 2 D(M)Z

M
j jdV 6 (2

p�K)�1
Z
M
jr jdV )

)
Z
M
j j2dV 6 c

Z
M
jr j2dV: (2.9)

Hence (2H) holds and one has k k2H1 6 (1 + c)kr k2.
Morever if M is bounded and simply connected with a rea-
sonable boundary @M (e.g. weakly convex) one expects (2L)R
M j j2dV 6 c

R
M jr j2dV for  2 D(M) (cf. [41]). In ei-

ther case (2M) jB(S; S)j > �k(rS)2k > (c+ 1)�1�kSk2H1
0

and this leads via Lax-Milgram again to a sample result

THEOREM 2.1 Let M be a bounded and simply connected
3-D differential manifold with a reasonable boundary @M .
Then there exists a unique weak solution of (1K) in H1

0 (M).

REMARK 2.1. One must keep in mind here that the metric
is changing under the Ricci flow and assume that estimates
involving e.g. K are considered over some time interval. �

REMARK 2.2. There is an extensive literature concern-
ing eigenvalue bounds on Riemannian manifolds and we cite
a few such results. Here I1(M)� inf
(A(@
)=V (
))
where 
 runs over (connected) open subsets of M with com-
pact closure and smooth boundary (cf. [18, 19]). Yau’s re-
sult is I1(M) > 2

p�K (with equality for the 3-D hyper-
bolic space) and Cheeger’s result involves follows jr�kL2 >
> (1=2)I1(M)k�kL2 >

p�Kk�kL2 . There are many other
results where e.g. �1 > c (vol(M))�2 for M a compact 3-D
hyperbolic manifold of finite volume (see [21, 34, 44] for
this and variations). There are also estimates for the first
eigenvalue along a Ricci flow in [33, 37] and estimates of
the form �1 > 3K for closed 3-D manifolds with Ricci cur-
vature R > 2K (K > 0) in [32, 33]. In fact Ling obtains
�1 > K + (�2= ~d2) where ~d is the diameter of the largest in-
terior ball in nodal domains of the first eigenfunction. There
are also estimates �1 > (�2=d2) (d = diam(M); R > 0) in
[31, 52, 54] and the papers of Ling give an excellent survey
of results, new and old, including estimates of a similar kind
for the first Dirichlet and Neumann eigenvalues. �
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The conformability of angular observales (angular momentum and azimuthal angle)
with the mathematical rules of quantum mechanics is a question which still rouses de-
bates. It is valued negatively within the existing approaches which are restricted by two
amendable presumptions. If the respective presumptions are removed one can obtain a
general approach in which the mentioned question is valued positively.

1 Introduction

In the last decades the pair of angular observables Lz –' (an-
gular momentum — azimuthal angle) was and still is regarded
as being unconformable to the accepted mathematical rules
of Quantum Mechanics (QM) (see [1–24]). The unconfor-
mity is identified with the fact that , in some cases of circular
motions, for the respective pair the Robertson-Schrödinger
uncertainty relation (RSUR) is not directly applicable. That
fact roused many debates and motivated various approaches
planned to elucidate in an acceptable manner the missing con-
formability. But so far such an elucidation was not ratified
(or admited unanimously) in the scientific literature.

A minute inspection of the things shows that in the main
all the alluded approaches have a restricted character due to
the presumptions (P):

P1 : Consideration of RSUR as a twofold reference element
by: (i) proscription of its direct Lz –' descendant, and
(ii) substitution of the respective descendant with some
RSUR-mimic relations;

P2 : Discussion only of the systems with sharp circular ro-
tations (SCR).

But the mentioned presumptions are amendable because they
conflict with the following facts (F):

F1 : Mathematically, the RSUR is only a secondary piece,
of limited validity, resulting from a generally valid ele-
ment represented by a Cauchy Schwarz formula (CSF)
(see down Section 4);

F2 : From a natural physical viewpoint the Lz –' pair must
be considered in connection not only with SCR but also
with any orbital (spatial) motions (e.g. with the non-
circular rotations (NCR), presented below in Section
3).

The above facts suggest that for the Lz –' problem ought
to search new approaches, by removing the mentioned pre-
mises P1 and P2. As we know until now such approaches
were not promoted in the publications from the main stream
of scientific literature. In this paper we propose a possible

general approach of the mentioned kind, able to ensure a nat-
ural conformability of the Lz –' pair with the prime mathe-
matical rules of QM.

For distiguinshing our proposal from the alluded restrict-
ed approaches, in the next Section we present briefly the re-
spective approaches, including their main assertions and a
set of unavoidable shortcomings which trouble them destruc-
tively. Then, in Section 3, we disclose the existence of two
examples of NCR which are in discordance with the same
approaches.

The alluded shorcomings and discordances reenforce the
interest for new and differently oriented approaches of the
Lz –' problem. Such an approach, of general perspective,
is argued and detailed below in our Section 4. We end the
paper in Section 5 with some associate conclusions.

2 Briefly on the restricted approaches

Certainly, for the history of the Lz –' problem, the first ref-
erence element was the Robertson Schrödinger uncertainty
relation (RSUR) introduced [25, 26] within the mathematical
formalism of QM. In terms of usual notations from QM the
RSUR is written as

� A �� B >
1
2

����DhÂ; B̂iE ���� ; (1)

where � A and h(: : : )i signify the standard deviation of
the observable A respectively the mean value of (: : : ) in the
state described by the wave function  , while

h
Â; B̂

i
denote

the commutator of the operators Â and B̂ (for more details
about the notations and validity regarding the RSUR 1, see
the next Section).

The attempts for application of RSUR (1) to the case with
A = Lz and B = ', i.e. to the Lz –' pair, evidenced the
folloving intriguing facts.

On the one hand, according to the usual procedures of
QM [27], the observables Lz and ' should be described by
the conjugated operators

L̂z = �i~ @
@'

; '̂ = '� (2)
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respectively by the commutation relationh
L̂z; '̂

i
= �i~ : (3)

So for the alluded pair the RSUR (1) requires for its direct
descendant the relation

� Lz �� ' >
~

2
: (4)

On the other hand this last relation is explicitly inappli-
cable in cases of angular states regarding the systems with
sharp circular rotations (SCR). The respective inapplicability
is pointed out here bellow.

As examples with SCR can be quoted : (i) a particle
(bead) on a circle, (ii) a 1D (or fixedaxis) rotator and (iii) non-
degenerate spatial rotations. One finds examples of systems
with spatial rotations in the cases of a particle on a sphere,
of 2D or 3D rotators and of an electron in a hydrogen atom
respectively. The mentioned rotations are considered as non-
degenerate if all the specific (orbital) quantum numbers have
well-defined (unique) values. The alluded SRC states are de-
scribed by the following wave functions taken in a ' — rep-
resentation

 m(') = (2�)� 1
2 eim' (5)

with the stipulations ' 2 [0; 2�) andm = 0;�1;�2; : : : The
respective stipulations are required by the following
facts. Firstly, in cases of SRC the angle ' is a ordinary po-
lar coordinate which must satistfy the corresponding math-
ematical rules regarding the range of definition [28]. Sec-
ondly, from a physical perspective, in the same cases the wave
function  (') is enforced to have the property  (0) =
=  (2� � 0) : = lim

'!2��0
 (').

For the alluded SRC one finds

� Lz = 0; � ' =
�p
3
: (6)

But these expressions for � Lz and � ' are incompat-
ible with relation (4).

For avoiding the mentioned incompatibility many publi-
cations promoted the conception that in the case of Lz –'
pair the RSUR (1) and the associated procedures of QM do
not work correctly. Consequently it was accredited the idea
that formula (4) must be proscribed and replaced by adjusted
� Lz �� ' relations planned to mime the RSUR (1). So,
along the years, a lot of such mimic relations were proposed.
In the main the respective relations can be expressed in one
of the following forms:

� Lz �� '
a (� ')

> ~
���hb (')i 

��� ; (7)

� Lz �� f(') > ~
���hg(')i 

��� ; (8)

(� Lz)
2 + ~2 (� u('))2 > ~2 hv(')i2 ; (9)

� Lz �� ' >
~

2
j1� 2� j (2� � 0)jj : (10)

In (7)–(9) by a; b; f; g; u and v are denoted various ad-
justing functions ( of � ' or of '), introduced in literature
by means of some circumstantial (and more or less fictitious)
considerations.

Among the relations (7)–(10) of some popularity
is (8) with f(') = sin' (or = cos') respectively g(') =
= [L̂z; f('̂)]. But, generally speaking, none of the respec-
tive relations is agreed unanimously as a suitable model able
to substitute formula (4).

A minute examination of the facts shows that, in essence,
the relations (7)–(10) are troubled by shortcomings revealed
in the following remarks (R):
R1 : The relation (10) is correct from the usual perspective

of QM (see formulas 18 and 25 in the next Secion).
But the respective relation evidently does not mime the
RSUR (1) presumed as standard within the mentioned
restricted approaches of Lz –' problem;

R2 : Each replica from the classes depicted by (7)–(10) were
planned to harmonize in a mimic fashion with the same
presumed reference element represented by RSUR (1).
But, in spite of such plannings, regarded comparatively,
the respective replicas are not mutually equivalent;

R3 : Due to the absolutely circumstantial considerations by
which they are introduced, the relations (7)–(9) are in
fact ad hoc formulas without any direct descendence
from general mathematics of QM. Consequently the re-
spective relations ought to be appeciated by taking into
account sentences such are:
“In . . . science, ad hoc often means the addition of
corollary hypotheses or adjustment to a . . . scientific
theory to save the theory from being falsified by com-
pensating for anomalies not anticipated by the theory
in its unmodified form. . . . Scientists are often suspi-
cious or skeptical of theories that rely on . . . ad hoc
adjustments” [29].
Then, if one wants to preserve the mathematical for-
malism of QM as a unitary theory, as it is accreditated
in our days, the relations (7)–(9) must be regarded as
unconvincing and inconvenient (or even prejudicial) el-
ements;

R4 : In fact in relations (7)–(9) the angle ' is substituted
more or less factitiously with the adjusting functions
a; b; f; g; v or u. Then in fact , from a natural perspec-
tive of physics, such substitutions, and consequently
the respective relations, are only mathematical arti-
facts. But, in physics, the mathematical artifacts bur-
den the scientific discussions by additions of extrane-
ous entities (concepts, assertions, reasonings, formu-
las) which are not associated with a true information
regarding the real world. Then, for a good efficiency
of the discussions, the alluded additions ought to be
evaluated by taking into account the principle of par-
simony: “Entities should not be multiplied unneces-
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sarily” (known also [30, 31] as the “Ockham’s Razor”
slogan). Through such an evaluation the relations
(7)–(9) appear as unnecessary exercises which do not
give real and useful contributions for the elucidation of
the Lz –' problem.

In our opinion the facts revealed in this Section offer a
minimal but sufficient base for concluding that as regards the
Lz –' problem the approaches restricted around the premises
P1 and P2 are unable to offer true and natural solutions.

3 The discordant examples with non-circular rotations

The discussions presented in the previous Section regard the
situation of the Lz –' pair in relation with the mentioned
SCR. But here is the place to note that the same pair must
be considered also in connection with other orbital (spatial)
motions which differ from SCR. Such motions are the non-
circular rotations (NCR) . As examples of NCR we mention
the quantum torsion pendulum (QTP) respectively the degen-
erate spatial rotations of the systems mentioned in the pre-
vious Section (i.e. a particle on a sphere, 2D or 3D rotators
and an electron in a hydrogen atom). A rotation (motion) is
degenerate if the energy of the system is well-specified while
the non-energetic quantum numbers (here of orbital nature)
take all permitted values.

From the class of NCR let us firstly refer to the case of
a QTP which in fact is a simple quantum oscillator. Indeed
a QTP which oscillates around the z-axis is characterized by
the Hamiltonian

Ĥ =
1
2I
L̂2
z +

1
2
J!2'2: (11)

Note that in this expression ' denotes the azimuthal an-
gle whose range of definition is the interval (�1;1). In the
same exppression appears L̂z as the z-component of angu-
lar momentum operator defined also by (2). The other sym-
bols J and ! in (11) represent the QTP momentum of in-
ertia respectively the frequency of torsional oscillations. The
Schrödinger equation associated to the Hamiltonian (11)
shows that the QTP have eigenstates described by the wave
functions

 n(') = n(�)/ exp
�
��2

2

�
Hn(�) ; �='

r
J!
~
; (12)

where n= 0; 1; 2; 3; : : : signifies the oscillation quantum
number and Hn(�) stand for Hermite polinomials of �. The
eigenstates described by (12) have energies En = ~!(n+ 1

2 ).
In the states (12) for the observables Lzand ' associated with
the operators (2) one obtains the expressions

� Lz =

s
~J!

�
n+

1
2

�
; � '=

s
~

J!

�
n+

1
2

�
; (13)

which are completely similar with the corresponding ones for
the x� p pair of a rectiliniar oscillator [27]. With the expres-

sions (13) for � Lz and � ' one finds that in the case of
QTP the Lz –' pair satisfies the proscribed formula (4).

From the same class of NCR let us now refer to a degener-
ate state of a particle on a sphere or of a 2D rotator. In such a
state the energy is E= ~2 l (l+ 1)=2J where the orbital num-
ber l has a well-defined value (J = moment of inertia). In
the same state the magnetic number m can take all the val-
ues�l;�l+1; : : : ;�1; 0; 1; : : : ; l�1; l. Then the mentioned
state is described by a wave function of the form

 l(�; ') =
lX

m=�l
cm Ylm(�; ') : (14)

Here � and ' denote polar respectively azimuthal angles
( � 2 [0; �]; ' 2 [0; 2�)), Ylm (�; ') are the spherical func-
tions and cm represent complex coefficients which satisfy the
normalization condition

Pl
m=�l jcmj2 = 1. With the expres-

sions (2) for the operators L̂z and '̂ in a state described by
(14) one obtains

(� Lz)
2 =

lX
m=�l

jcmj2 ~2m2 �
"

lX
m=�l

jcmj2 ~m
#2

; (15)

(� ')2 =
lX

m=�l

lX
r=�l

c�m cr
�
Ylm; '2 Ylr

��
�
"

lX
m=�l

lX
r=�l

c�m cr (Ylm; 'Ylr)

#2

; (16)

where (f; g) is the scalar product of the functions f and g.
By means of the expressions (15) and (16) one finds that

in the case of alluded NCR described by the wave functions
(14) it is possible for the proscribed formula (4) to be satis-
fied. Such a possibility is conditioned by the concrete values
of the coefficients cm.

Now is the place for the following remark

R5 : As regards the Lz –' problem, due to the here revealed
aspects, the NCR examples exceed the bounds of the
presumptions P1 and P2 of usual restricted approaches.
That is why the mentioned problem requires new ap-
proaches of general nature if it is possible.

4 A possible general appoach and some remarks associ-
ated with it.

A general approach of the Lz –' problem, able to avoid the
shortcomings and discordances revealed in the previous two
Sections, must be done by starting from the prime mathemat-
ical rules of QM. Such an approach is possible to be obtained
as follows. Let us appeal to the usual concepts and notations
of QM. We consider a quantum system whose state (of orbital
nature) and two observables Aj (j = 1; 2) are described by
the wave function  respectively by the operators Âj . As usu-
ally with (f; g) we denote the scalar product of the functions

Spiridon Dumitru. A Possible General Approach Regarding the Conformability of Angular Observables 27



Volume 1 PROGRESS IN PHYSICS January, 2008

f and g . In relation with the mentioned state, the quantities

Aj
�
 =

�
 ; Âj 

�
and � Âj = Âj � 
Âj� represent the

mean (expected) value respectively the deviation-operator of
the observable Aj regarded as a random variable. Then, by
taking A1 = A and A2 = B, for the two observables can be
written the following Cauchy-Schwarz relation:�
� Â ; � Â 

��
� B̂ ; � B̂ 

�
>
����� Â ; � B ����2: (17)

For an observable Aj regarded as a random variable the

quantity � Aj =
�
� Âj ; � Âj 

�1=2
represents its stan-

dard deviation. From (17) it results directly that the standard
deviations � A and � B of the observablesA andB satisfy
the relation

� A �� B >
����� Â ; � B ���� ; (18)

which can be called Cauchy-Schwarz formula (CSF). Note
that CSF (18) (as well as the relation (17) is always valid,
i.e. for all observables, systems and states. Add here the
important observation that the CSF (18) implies the restricted
RSUR (1) only in the cases when the two operators Â = Â1
and B̂ = Â2 satisfy the conditions�
Âj ; Âk 

�
=
�
 ; ÂjÂk 

�
; j = 1; 2; k = 1; 2 : (19)

Indeed in such cases one can write the relation�
� Â ; � B̂ 

�
=

=
1
2

�
 ;
�
� Â � � B̂ + � B̂ � � Â

�
 
��

� i
2

�
 ; i

h
Â; B̂

i
 
�
; (20)

where the two terms from the right hand side are purely real
and imaginary quantities respectively. Therefore in the men-
tioned cases from (18) one finds

� A �� B >
1
2

���
�Â; B̂�� ��� : (21)

i.e. the well known RSUR (1). The above general framing of
RSUR (1)/(21) shows that for the here investigated question
of Lz –' pair it is important to examine the fulfilment of the
conditions (19) in each of the considered cases. In this sense
the following remarks are of direct interest.

R6 : In the cases described by the wave functions (5) for
Lz –' pair one finds�

L̂z m; '̂ m
�

=
�
 m; L̂z'̂ m

�
+ i~ ; (22)

i.e. a clear violation in respect with the conditions (19);
R7 : In the cases associated with the wave functions (12) and

(14) for Lz –' pair one obtains�
L̂z n; '̂ n

�
=
�
 n; L̂z'̂ n

�
; (23)

�
L̂z l; '̂ l

�
=
�
 l; L̂z'̂ l

�
+

+ i~

(
1+2 Im

"
lX

m=�l

lX
r=�l

c�m cr ~m (Ylm; '̂Ylr)

#)
; (24)

(where Im [�] denotes the imaginary part of �);

R8 : For any wave function  (') with ' 2 [0; 2�) and
 (2� � 0) =  (0) it is generally true the formula����� L̂z  ; � '̂  ���� > ~2 j1� 2� j (2� � 0)jj ; (25)

which together with CSF (18) confirms relation (10).

The things mentioned above in this Section justify the follow-
ing remarks

R9 : The CSF (18) is an ab origine element in respect with
the RSUR (1)/(21). Moreover, (18) is always valid, in-
dependently if the conditions (19) are fulfilled or not;

R10 : The usual RSUR (1)/(21) are valid only in the circum-
stances strictly delimited by the conditions (19) and
they are false in all other situations;

R11 : Due to the relations (22) in the cases described by the
wave functions (5) the conditions (19) are not fulfilled.
Consequently in such cases the restricted RSUR
(1)/(21) are essentially inapplicable for the pairs
Lz –'. However one can see that in the respective
cases, mathematically, the CSF (18) remains valid as
a trivial equality 0 = 0;

R12 : In the cases of NCR described by (12) the Lz –' pair
satisfies the conditions (19) (mainly due to the rela-
tion (23). Therefore in the respective cases the RSUR
(1)/(21) are valid for Lz and ';

R13 : The fulfilment of the conditions (19) by the Lz –' pair
for the NCR associated with (14) depends on the an-
nulment of the second term in the right hand side from
(24) (i.e. on the values of the coefficients cm). Ad-
equately, in such a case, the correctness of the corre-
sponding RSUR (1)/(21) shows the same dependence;

R14 : The result (25) points out the fact that the adjusted re-
lation (10) is only a secondary piece derivable fom the
generally valid CSF (18);

R15 : The mimic relations (7)–(9) regard the cases with SCR
described by the wave functions (5) when ' plays the
role of polar coordinate. But for such a role [28] in or-
der to be a unique (univocal) variable 'must be defined
naturally only in the range [0; 2�). The same range
is considered in practice for the normalization of the
wave functions (5). Therefore, in the cases under dis-
cussion the derivative with respect to ' refers to the
mentioned range. Particularly for the extremities of the
interval [0; 2�) it has to operate with backward respec-
tively forward derivatives. So in the alluded SCR cases
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the relations (2) and (3) act well, with a natural correct-
ness. The same correctness is shown by the respective
relations in connection with the NCR described by the
wave functions (12) or (14). In fact, from a more gen-
eral perspective, the relations (2) and (3) regard the QM
operators L̂z and '̂. Therefore they must have unique
forms — i.e. expressions which do not depend on the
particularities of the considered situations (e.g. sys-
tems with SCR or with NCR);

R16 : The troubles of RSUR (1) regarding Lz –' pair are di-
rectly connected with the conditions (19). Then it is
strange that in almost all the QM literature the respec-
tive conditions are not taken into account adequately.
The reason seems to be related with the nowadays dom-
inant Dirac’s <braj and jket> notations. In the re-
spective notations the terms from the both sides of (19)
have a unique representation namely <  jÂj Âkj >.
The respective uniqueness can entail confusion (unjus-
tified supposition) that the conditions (19) are always
fulfiled. It is interesting to note that systematic inves-
tigations on the confusions/surprises generated by the
Dirac’s notations were started only recently [32]. Prob-
ably that further efforts on the line of such investiga-
tions will bring a new light on the conditions (19) as
well as on other QM questions.

The ensemble of things presented above in this Section ap-
points a possible general approach for the discussed Lz –'
problem and answer to a number of questions associated with
the respective problem. Some significant aspects of the re-
spective approach are noted in the next Section.

5 Conclusions

The facts and arguments discussed in the previous Sections
guide to the following conclusions (C):
C1 : For the Lz –' pair the relations (2)–(3) are always vi-

able in respect with the general CSF (18). That is why,
from the QM perspective, for a correct description of
questions regarding the respective pair, it is not at all
necessary to resort to the mimetic formulas (7)–(10).
Eventually the respective formulas can be accounted as
ingenious execises of pure mathematical facture. An
adequate description of the mentioned kind can be
given by taking CSF (18) and associated QM proce-
dures as basic elements;

C2 : In respect with the conjugated observables Lz and '
the RSUR (1)/(21) is not adequate for the role of refer-
ence element for normality . For such a role the CSF
(18) is the most suitable. In some cases of interest
the respective CSF degenerates in the trivial equality
0 = 0;

C3 : In reality the usual procedures of QM, illustrated above
by the relations (2), (3), (17) and (18), work well and

without anomalies in all situations regarding the Lz –
' pair. Consequently with regard to the conceptual as
well as practical interests of science the mimic relations
like (7)–(9) appear as useless inventions.

Now we wish to add the following observations (O):

O1 : Mathematically the relation (17) is generalisable in the
form

det
h�
� Âj ; � Âk 

�i
> 0 (26)

where det [�jk] denotes the determinant with elements
�jk and j = 1; 2; : : : ; r; k = 1; 2; : : : ; r with r > 2.
Such a form results from the fact that the quantities�
� Âj ; � Âk 

�
constitute the elements of a Hermi-

tian and non-negatively defined matrix. Newertheless,
comparatively with (17), the generalisation (26) does
not bring supplementary and inedited features regard-
ing the conformability of observables Lz –' with the
mathematical rules of QM;

O2 : We consider [34, 42] that the above considerations
about the problem of Lz –' pair can be of some non-
trivial interest for a possible revised approach of the
similar problem of the pairN–� (number-phase) which
is also a subject of controversies in recent publications
(see [4, 11, 12, 13, 35, 36, 37, 38, 39] and References
therein);

O3 : Note that we have limited this paper only to mathe-
matical aspects associated with the RSUR (1), without
incursions in debates about the interpretations of the
respective RSUR. Some opinions about those interpre-
tations and connected questions are given in [40, 41,
42]. But the subject is delicate and probably that it will
rouse further debates.
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In this work, we attempt at constructing a comprehensive four-dimensional unified field
theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in
which the gravitational, electromagnetic, and material spin fields are unified as intrinsic
geometric objects of the space-time manifold S4 via the connection, with the general-
ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the
geometrized electromagnetic interaction.

1 Introduction

In our previous work [1], we developed a semi-classical con-
formal theory of quantum gravity and electromagnetism in
which both gravity and electromagnetism were successfully
unified and linked to each other through an “external” quan-
tum space-time deformation on the fundamental Planck scale.
Herein we wish to further explore the geometrization of the
electromagnetic field in [1] which was achieved by linking
the electromagnetic field strength to the torsion tensor built
by means of a conformal mapping in the evolution (configu-
ration) space. In so doing, we shall in general disregard the
conformal mapping used in [1] and consider an arbitrary, very
general torsion field expressible as a linear combination of the
electromagnetic and material spin fields.

Herein we shall find that the completely geometrized
Yang-Mills field of standard model elementary particle phys-
ics, which roughly corresponds to the electromagnetic, weak,
and strong nuclear interactions, has a more general form than
that given in the so-called rigid, local isospace.

We shall not simply describe our theory in terms of a La-
grangian functional due to our unease with the Lagrangian ap-
proach (despite its versatility) as a truly fundamental physical
approach towards unification. While the meaning of a partic-
ular energy functional (to be extremized) is clear in Newto-
nian physics, in present-day space-time physics the choice of
a Lagrangian functional often appears to be non-unique (as it
may be concocted arbitrarily) and hence devoid of straight-
forward, intuitive physical meaning. We shall instead, as in
our previous works [1–3], build the edifice of our unified field
theory by carefully determining the explicit form of the con-
nection.

2 The determination of the explicit form of the connec-
tion for the unification of the gravitational, electro-
magnetic, and material spin fields

We shall work in an affine-metric space-time manifold S4
(with coordinates x�) endowed with both curvature and tor-
sion. As usual, if we denote the symmetric, non-singular, fun-

damental metric tensor of S4 by g, then g��g�� = ���, where
� is the Kronecker delta. The world-line s is then given by the
quadratic differential form ds2 = g��dx�dxv . (The Einstein
summation convention employed throughout this work.)

As in [1], for reasons that will be clear later, we define the
electromagnetic field tensor F via the torsion tensor of space-
time (the anti-symmetric part of the connection �) as follows:

F�� = 2
mc2

e
��[��]u� ;

wherem is the mass (of the electron), c is the speed of light in
vacuum, and e is the electric charge, and where u� = dx�

ds are
the components of the tangent world-velocity vector whose
magnitude is unity. Solving for the torsion tensor, we may
write, under very general conditions,

��[��] =
e

2mc2
F��u� + S��� ;

where the components of the third-rank material spin (chi-
rality) tensor 3S are herein given via the second-rank anti-
symmetric tensor 2S as follows:

S��� = S��u� � S��u� :
As can be seen, it is necessary that we specify the follow-

ing orthogonality condition:

S��u� = 0 ;
such that

S���u� = 0 :

We note that 3S may be taken as the intrinsic angular mo-
mentum tensor for microscopic physical objects which may
be seen as the points in the space-time continuum itself. This
way, 3S may be regarded as a microspin tensor describing the
internal rotation of the space-time points themselves [2]. Al-
ternatively, 3S may be taken as being “purely material” (en-
tirely non-electromagnetic).

The covariant derivative of an arbitrary tensor field T is
given via the asymmetric connection � by

r�T��:::��::: = @�T��:::��::: + ����T
��:::
��::: + ����T

��:::
��::: + � � � �

� ����T
��:::
��::: � ����T

��:::
��::: � : : : ;
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where @� = @
@x� . Then, as usual, the metricity condition

r�g�� = 0, or, equivalently, @� g�� = ���� + ���� (where
���� = g������), gives us the relation

���� =
1
2
g�� (@� g�� � @�g�� + @�g��) + ��[��]�

� g�� �g����[��] + g����[��]

�
:

Hence we obtain, for the connection of our unified field
theory, the following explicit form:

���� =
1
2
g�� (@� g�� � @�g�� + @�g��) +

+
e

2mc2
�
F��u� � F ��u� � F��u��+

+ S��� � g�� (S��� + S���) ;

where

��
�� =

1
2
g�� (@� g�� � @�g�� + @�g��)

are the components of the usual symmetric Levi-Civita con-
nection, and where

K�
�� =

e
2mc2

�
F��u� � F��u� � F ��u��+ S����

� g�� (S��� + S���)

are the components of the contorsion tensor in our unified
field theory.

The above expression for the connection can actually be
written alternatively in a somewhat simpler form as follows:

���� =
1
2
g�� (@� g�� � @�g�� + @�g��) +

+
e

2mc2
�
F��u� � F��u� � F��u��+ 2S��u� :

At this point, we see that the geometric structure of our
space-time continuum is also determined by the electromag-
netic field tensor as well as the material spin tensor, in addi-
tion to the gravitational (metrical) field.

As a consequence, we obtain the following relations
(where the round brackets on indices, in contrast to the square
ones, indicate symmetrization):

��(��) = ��
�� � e

2mc2
�
F��u� +F��u�

�
+S��u� +S��u�;

'� = K�
�� = 2��[��] =

e
mc2

F��u�:

We also have

� = ���� = ��
�� +

e
mc2

F��u�;

in addition to the usual relation

���� = ��
�� = @�

�
ln
p

det (g)
�
:

At this point, we may note that the spin vector ' is always
orthogonal to the world-velocity vector as

'�u� = 0 :

In terms of the four-potentialA, if we take the electromag-
netic field tensor to be a pure curl as follows:

F�� = @�A� � @�A� = �r�A� � �r�A� ;
where �r represents the covariant derivative with respect to
the symmetric Levi-Civita connection alone, then we have the
following general identities:

@�F��+@�F��+@�F�� = �r�F��+ �r�F��+ �r�F�� = 0;

r�F�� +r�F�� +r�F�� =

= �2
�

��[��]F�� + ��[��]F�� + +��[��]F��
�
:

The electromagnetic current density vector is then
given by

J� = � c
4�
r�F�� :

Its fully covariant divergence is then given by

r�J� = � c
4�
r����[��]F

��� :
If we further take J� = �emu�, where �em represents the

electromagnetic charge density (taking into account the pos-
sibility of a magnetic charge), we see immediately that our
electromagnetic current is conserved if and only if �r�J� = 0,
as follows

r�J� = @�J� + ����J
� =

= �r�J� +
e

mc2
F��J�u� = �r�J�:

In other words, for the electromagnetic current density to
be conserved in our theory, the following conditions must be
satisfied (for an arbitrary scalar field �):

J� = � c
4�

��[��]F
��;

��[��] = ���@��� ��� @�� :

These relations are reminiscent of those in [1]. Note that
we have made use of the relation (r�r� �r�r�) � =
= 2��[��]r��.

Now, corresponding to our desired conservation law for
electromagnetic currents, we can alternatively express the
connection as

���� = ��
�� + 2

�
g��g��@��� ��� @��

�
:

Contracting the above relation, we obtain the simple re-
lation ���� = ��

��� 6@��. On the other hand, we also have
the relation ���� = ��

�� + e
mc2 F��u

�. Hence we see that �
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is a constant of motion as

@�� = � e
6mc2

F��u� ;

d�
ds

= 0 :

These two conditions uniquely determine the conserva-
tion of electromagnetic currents in our theory.

Furthermore, not allowing for external forces, the geo-
desic equation of motion in S4, namely,

Du�

Ds
= u� r�u� = 0 ;

must hold in S4 in order for the gravitational, electromag-
netic, and material spin fields to be genuine intrinsic geomet-
ric objects that uniquely and completely build the structure of
the space-time continuum.

Recalling the relation ��(��) = ��
�� � e

2mc2
�
F��u� +

+F��u�
�

+S��u� +S��u�, we obtain the equation of mo-
tion

du�

ds
+ ��

��u
�u� =

e
mc2

F��u
� ;

which is none other than the equation of motion for a charged
particle moving in a gravitational field. This simply means
that our relation F�� = 2mc

2

e ��[��]u� does indeed indicate a
valid geometrization of the electromagnetic field.

In the case of conserved electromagnetic currents,
we have

du�

ds
+ ��

��u
�u� = �6 g��@��:

3 The field equations of the unified field theory

The (intrinsic) curvature tensor R of S4 is of course given by
the usual relation

(r�r� �r�r�) V� = R����V� � 2��[��]r�V�;
where V is an arbitrary vector field. For an arbitrary tensor
field T , we have the more general relation

(r�r� �r�r�) T��:::��::: = R����T
��:::
��::: +R����T

��:::
��::: +

+ : : :�R����T ��:::��::: �R����T��:::��::: � : : :�2��[��]r�T��:::��::: :

Of course,

R���� = @����� � @����� + �������� � �������� :

If we define the following contractions:

R�� = R���� ;

R = R�� ;

then, as usual,

R���� = C���� +
1
2

(g��R�� + g��R�� � g��R�� �
�g��R��) +

1
6

(g��g�� � g��g��)R ;

where C is the Weyl tensor. Note that the generalized Ricci
tensor (given by its components R��) is generally asym-
metric.

Let us denote the usual Riemann-Christoffel curvature
tensor by �R, i.e.,

�R���� = @���
�� � @���

�� + ��
����

�� ���
����

�� :

The symmetric Ricci tensor and the Ricci scalar are then
given respectively by �R�� = �R���� and �R= �R��.

Furthermore, we obtain the following decomposition:

R���� = �R����+ �r�K�
��� �r�K�

��+K�
��K

�
���K�

��K
�
�� :

Hence, recalling that '� =K�
�� = 2��[��], we obtain

R�� = �R�� + �r�K�
�� �K�

��K
�
�� � �r�'� + 2K�

��'� ;

R = �R� 2 �r�'� � '�'� �K���K��� :
We then obtain the following generalized Bianchi identi-

ties:

R���� +R���� +R���� = �2(@���[��] + @���[��]+

+ @���[��] + ������[��] + ������[��] + ������[��]) ;

r�R���� +r�R���� +r�R���� = 2
�

��[��]R���� +

+ ��[��]R���� + ��[��]R����
�
;

r�
�
R�� � 1

2
g��R

�
= 2g����[��]R

�
� + ��[��]R

���
� ;

in addition to the standard Bianchi identities

�R���� + �R���� + �R���� = 0 ;

�r� �R���� + �r� �R���� + �r� �R���� = 0 ;

�r�
�

�R�� � 1
2
g�� �R

�
= 0 :

(See [2–4] for instance.)
Furthermore, we can now obtain the following explicit

expression for the curvature tensor R:

R���� = @���
�� � @���

�� + ��
����

�� ���
����

�� +

+
e

2mc2
n

(@�F�� � @�F��) u� +
�
@�F �� � @�F ��� u� +

+ u�@�F
�
� � u�@�F �� + F��@�u� � F��@�u� +

+ F ��@�u� � F ��@�u� + (@�u� � @�u�)F �� +

+ (F ��u� � F ��u� � F ��u�) ��
�� + (F��u� � F ��u� �

� F ��u�
�

��
�� � �F��u� � F ��u� � F ��u����

���
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� (F��u� � F ��u� � F ��u�) ��
�� +

e
2mc2

(F��F�� �
� F��F��) u�u� +

e
2mc2

�
F��F �� � F��F ��� u�u� +

+
e

2mc2
(F��F �� � F��F ��) u�u� +

e
2mc2

�
F ��F�� �

� F ��F��) u�u� +
e

2mc2
�
F��F �� � F��F ��� u�u� +

+
e

2mc2
F ��F��u�u

� +
e

2mc2
F ��F

�
�u�u� �

� e
2mc2

F ��F��u�u
� � e

2mc2
F ��F

�
�u�u� +

+
e

2mc2
�
F��F �� � F��F ���o+ 
���� ;

where the tensor 
 consists of the remaining terms containing
the material spin tensor 2S (or 3S).

Now, keeping in mind that ��(��)= ��
��� e

2mc2
�
F��u�+

+F��u�
�

+S��u� +S��u� and also � = ���� = ��
�� +

+ e
mc2 F��u

�, and decomposing the components of the gen-
eralized Ricci tensor as R�� =R(��) +R[��], we see that

R(��) = @���(��) � 1
2

(@�� + @��) + ��(��)��
� 1

2
�
�������� + ��������

�
;

R[��] = @���[��] � 1
2

(@�� � @��) + ��[��]��
� 1

2
�
�������� � ��������

�
:

In particular, we note that

R[��] = @���[��] � 1
2

(@�� � @��) + ��[��]��
� 1

2
�
�������� � ��������

�
=

= @���[��] + ������[��] + ������[��] � ������[��] +

+
1
2

(@�� � @��) = r���[��] +
1
2

(@�� � @��) :

Hence we obtain the relation

R[��] =
e

2mc2

�
F��r�u� +

DF��
Ds

�
+r�S���+

+
1
2

(@�� � @��) ;

where DF��
Ds =u�r�F�� . More explicitly, we can write

R[��] =
e

2mc2

�
F��r�u� +

DF��
Ds

+ (@�F���
� @�F��) u� + F��@�u� � F��@�u��+r�S��� :

It is therefore seen that, in general, the special identity

@�R[��] + @�R[��] + @�R[��] = 0

holds only when r�u� = 0, DF��Ds = 0, andr� S��� = 0.
We are now in a position to generalize Einstein’s field

equation in the standard theory of general relativity. The
usual Einstein’s field equation is of course given by

�G�� = �R�� � 1
2
g�� �R = kT�� ;

�r� �G�� = 0 ;

where �G is the symmetric Einstein tensor, T is the energy-
momentum tensor, and k= � 8�G

c4 is Einstein’s coupling
constant in terms of the Newtonian gravitational constant G.
Taking c= 1 for convenience, in the absence of pressure, tra-
ditionally we write

�G�� = k
�
�mu�u� +

1
4�

�
F��F

�� � 1
4
g��F��F ��

��
;

where �m is the material density and where the second term
on the right-hand-side of the equation is widely regarded as
representing the electromagnetic energy-momentum tensor.

Now, with the generalized Bianchi identity for the
electromagnetic field, i.e., r�F�� +r�F�� +r�F�� =
=�2

�
��[��]F�� + ��[��]F�� + ��[��]F��

�
, at hand, and as-

suming the “isochoric” condition D�m
Ds =� �mr�u� = 0

(�m , 0), we obtain

r� �G�� = kg��
�

��[��]F�� + ��[��]F�� + ��[��]F��
�
F ��:

In other words,

r� �G�� = k
�

2g����[��]F��F
�� � 1

4�
F��J

�
�
:

This is our first generalization of the standard Einstein’s
field equation, following the traditional ad hoc way of arbi-
trarily adding the electromagnetic contribution to the purely
material part of the energy-momentum tensor.

Now, more generally and more naturally, using the
generalized Bianchi identity r� �R�� � 1

2 g
��R

�
=

= 2g����[��]R
�
� + ��[��]R

���
�, we can obtain the following

fundamental relation:

r�
�
R��� 1

2
g��R

�
=

e
mc2

�
F �
� R

�
�+

1
2
F��R

���
�

�
u�+

+ 2S �
�� R

�� + S���R
���

� :

Alternatively, we can also write this as

r�
�
R��� 1

2
g��R

�
=

e
mc2

�
F �
� R

�
�+

1
2
F��R

���
�

�
u�+

+ S��R��u� � S��u�R���� +
�
S��R

�� � S��R����� u� :
Now, as a special consideration, let � be the “area” of a

three-dimensional space-like hypersurface representing mat-
ter in S4. Then, if we make the following traditional choice
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for the third-rank material spin tensor 3S:

S��� =
$

�

�m
�
x�T�� � x�T��� d� ;

where now T is the total asymmetric energy-momentum ten-
sor in our theory, we see that, in the presence of matter, the
condition S��� = 0 implies that

T [��] = �1
2
�
x�r�T�� � x�r�T��� :

In this special case, we obtain the simplified expression

r�
�
R��� 1

2
g��R

�
=

e
mc2

�
F �
� R

�
� +

1
2
F��R

���
�

�
u�:

If we further assume that the sectional curvature 	 = 1
12R

of S4 is everywhere constant in a space-time region where
the electromagnetic field (and hence the torsion) is absent, we
may consider writing R���� = 	 (g��g�� � g��g��) such
that S4 is conformally flat (C���� = 0), and hence R�� =
= 3	g�� and R[��] = 0. In this case, we are left with the
simple expression

r�
�
R�� � 1

2
g��R

�
= � eR

6mc2
F��u

� :

This is equivalent to the equation of motion

du�

ds
+ ��

��u
�u� = � 6

R
r�
�
R�� � 1

2
g��R

�
:

4 The minimal Lagrangian density of the theory

Using the general results from the preceding section, we ob-
tain

R = �R+
e2

4m2c4
F��F�� � e2

m2c4
F��F�� u

�u��
� 2e
mc2

�r�f� + 2S��S�� �K�(��)K�(��) ;

for the curvature scalar of S4. Here f� =F��u� can be said
to be the components of the so-called Lorentz force.

Furthermore, we see that

K�(��)K�(��) =
e2

m2c4
F��F�� + 2S��S���

� 2e
mc2

F��S�� � e2

2m2c4
F��F��u

�u� :

Hence we obtain

R = �R� e2

2m2c4
F��F�� � 2e

mc2
� �r�f� + F��S��

��
� e2

2m2c4
F��F�� u

�u� :

The last two terms on the right-hand-side of the expres-
sion can then be grouped into a single scalar source as fol-

lows:

� = � 2e
mc2

� �r�f� + F��S��
�� e2

2m2c4
F��F��u

�u� :

Assuming that � accounts for both the total (material-
electromagnetic) charge density as well as the total energy
density, our unified field theory may be described by the fol-
lowing action integral (where the L=R

p
det (g) is the min-

imal Lagrangian density):

I =
&

R
p

det (g) d4x =

=
& �

�R� e2

2m2c4
F��F�� + �

�p
det (g) d4x :

In this minimal fashion, gravity (described by �R) appears
as an emergent phenomenon whose intrinsic nature is of elec-
tromagnetic and purely material origin since, in our theory,
the electromagnetic and material spin fields are nothing but
components of a single torsion field.

5 The non-Abelian Yang-Mills gauge field as a sub-
torsion field in S4

In S4, let there exist a space-like three-dimensional hypersur-
face �3, with local coordinates Xi (Latin indices shall run
from 1 to 3). From the point of view of projective differential
geometry alone, we may say that �3i s embedded (immersed)
in S4. Then, the tetrad linking the embedded space �3 to the
enveloping space-time S4 is readily given by

!i� =
@Xi

@x�
; !�i =

�
!i�
��1

=
@x�

@Xi :

Furthermore, let N be a unit vector normal to the hyper-
surface �3. We may write the parametric equation of the hy-
persurface �3 as H (x�; d) = 0, where d is constant. Hence

N� =
g��@� Hp

g�� (@�H)(@�H)
;

N�N� = 1 :

In terms of the axial unit vectors a, b, and c spanning the
hypersurface �3, we may write

N� =
"����a� b�c�

"����N�a� b�c�
;

where "���� are the components of the completely anti-
symmetric four-dimensional Levi-Civita permutation tensor
density.

Now, the tetrad satisfies the following projective relations:

!i�N
� = 0 ; !i�!

�
k = �ik ;

!�i !
i
� = ��� �N�N� :
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If we denote the local metric tensor of �3 by h, we obtain
the following relations:

hik = !�i !
�
k g�� ;

g�� = !i�!
k
� hik +N�N� :

Furthermore, in the hypersurface �3, let us set ri =
=!�i r� and @i = @

@ Xi =!�i @�. Then we have the follow-
ing fundamental expressions:

r�!i� = Zik!
k
�N� = @�!i� � !i����� + �ikl!

k
�!

l
� ;

rk!�i = ZikN� = @k!
�
i � !�p �pik + ����!

�
i !

�
k ;

!�i r�!k� = 0 ;

riN� = �Zki!�k ;
where Z is the extrinsic curvature tensor of the hypersurface
�3, which is generally asymmetric in our theory.

The connection of the hypersurface �3 is linked to that of
the space-time S4 via

�pik = !p�@k!
�
i + !p�����!

�
i !

�
k :

After some algebra, we obtain

���� = !�i @�!
i
� + !�p �pik!

i
�!

k
� +N�@�N�+

+N�Zik!i�!
k
� �N�Zik!�i !k� :

The fundamental geometric relations describing our em-
bedding theory are then given by the following expressions
(see [4] for instance):

Rijkl = ZikZjl � ZilZjk +R����!
�
i !

�
j !

�
k!

�
l � !�i ��jkl;

rlZik�rkZil=�R����N�!�i !
�
k!

�
l �2�p[kl]Zip+N

���ikl ;

��ijk = (@k@j � @j@k) !�i + !�i ����
�
@k!

�
j � @j!�k� :

Actually, these relations are just manifestations of the fol-
lowing single expression:

(rkrj �rjrk) !�i = Rpijk!
�
p �R����!�i !�j !�k�

� 2�p[jk]ZipN
� + ��ijk :

We may note that �p[ik] and

Rijkl = @k�ijl � @l �ijk + �pjl�
i
pk � �pjk�ipl

are the components of the torsion tensor and the intrinsic cur-
vature tensor of the hypersurface �3, respectively.

Now, let us observe that

@�!i� � @�!i� = 2
�
!i���[��] � �i[kl]!

k
�!

l
� + Zik!

k
[� N�]

�
:

Hence letting
F i�� = 2!i���[��] ;

we arrive at the expression

F i�� = @�!i� � @�!i� + 2�i[kl]!
k
�!

l
� + 2Zik!

k
[�N �] :

In addition, we also see that

�i[kl] =
1
2
!�k !

�
l F

i
�� � 1

2
!�k !

�
l
�
@�!i� � @�!i�� :

Now, with respect to the local coordinate transformation
given by Xi =Xi � �XA� in �3, let us invoke the following
Cartan-Lie algebra:

[ei ; ek] = ei 
 ek � ek 
 ei = Cpikep ;

Cikl = hipC
p
kl = �2�i[kl] = � iĝ 2ikl ;

where ei = eAi
@

@ �XA are the elements of the basis vector span-
ning �3, Cpik are the spin coefficients, i=

p�1, ĝ is a cou-
pling constant, and 2ikl =pdet (h)"ikl (where "ikl are
the components of the completely anti-symmetric three-
dimensional Levi-Civita permutation tensor density).

Hence we obtain

F i�� = @�!i� � @�!i� + iĝ 2ikl !k�!l� + 2Zik!
k
[�N �] :

At this point, our key insight is to define the gauge field
potential as the tetrad itself, i.e.,

Bi� = !i� :

Hence, at last, we arrive at the following important ex-
pression:

F i�� = @�Bi� � @�Bi� + iĝ 2ikl Bk�Bl� + 2ZikB
k
[�N �] :

Clearly, F i�� are the components of the generalized Yang-
Mills gauge field strength. To show this, consider the hyper-
surface E3 of rigid frames (where the metric tensor is strictly
constant) which is a reduction (or, in a way, local infinitesi-
mal representation) of the more general hypersurface �3. We
shall call this an “isospace”. In it, we have

hik = �ik ;

det (h) = 1 ;

�ikl = �ikl = �i[kl] � �l[ik] � �k[il] =
1
2
iĝ"ikl ;

Zik = 0 :

Hence we arrive at the familiar expression

Fi�� = @�B�i � @�B�i + iĝ"iklB�kB�l :

In other words, setting ~F�� =Fi�� ei and ~B� =B�iei, we
obtain

~F�� = @� ~B� � @� ~B� �
h
~B� ; ~B�

i
:

Finally, let us define the gauge field potential of the sec-
ond kind via

!�ik = "ikpBp� ;
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such that
Bi� =

1
2
"ikl!�kl :

Let us then define the gauge field strength of the second
kind via

Rik�� = 2ikp F p�� ;
such that

F p�� =
1
2
2pik Rik�� :

Hence we obtain the general expression

Rik�� = iĝ
p

det (h)
�
@�!�ik � @�!�ik+

+
1p

det (h)
(!�ip!�kp � !�kp!�ip)

�
+

+
p

det (h) "ikpZprB
r
[�N �] :

We may regard the object given by this expression as the
curvature of the local gauge spin connection of the hypersur-
face �3.

Again, if we refer this to the isospace E3 instead of
the more general hypersurface �3, we arrive at the familiar
relation

Rik�� = iĝ (@�!�ik � @�!�ik + !�ip!�kp � !�kp!�ip) :

6 Conclusion

We have just completed our program of building the struc-
ture of a unified field theory in which gravity, electromag-
netism, material spin, and the non-Abelian Yang-Mills gauge
field (which is also capable of describing the weak force in
the standard model particle physics) are all geometrized only
in four dimensions. As we have seen, we have also general-
ized the expression for the Yang-Mills gauge field strength.

In our theory, the (generalized) Yang-Mills gauge field
strength is linked to the electromagnetic field tensor via the
relation

F�� = 2
mc2

e
��[��]u� =

mc2

e
F i��ui ;

where ui =!i�u�. This enables us to express the connection
in terms of the Yang-Mills gauge field strength instead of the
electromagnetic field tensor as follows:

���� =
1
2
g�� (@� g�� � @�g�� + @�g��) +

1
2
ui
�
F i�� u

� �
� F i��u� � F i��u��+ S��� � g�� (S��� + S���) ;

i.e., the Yang-Mills gauge field is nothing but a sub-torsion
field in the space-time manifold S4.

The results which we have obtained in this work may sub-
sequently be quantized simply by following the method given
in our previous work [1] since, in a sense, the present work
is but a further in-depth classical consideration of the fun-
damental method of geometrization outlined in the previous
theory.
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In the present article we argue that it is possible to write down Schrödinger represen-
tation of Navier-Stokes equation via Riccati equation. The proposed approach, while
differs appreciably from other method such as what is proposed by R. M. Kiehn, has an
advantage, i.e. it enables us extend further to quaternionic and biquaternionic version
of Navier-Stokes equation, for instance via Kravchenko’s and Gibbon’s route. Further
observation is of course recommended in order to refute or verify this proposition.

1 Introduction

In recent years there were some attempts in literature to find
out Schrödinger-like representation of Navier-Stokes equa-
tion using various approaches, for instance by R. M. Kiehn
[1, 2]. Deriving exact mapping between Schrödinger equa-
tion and Navier-Stokes equation has clear advantage, because
Schrodinger equation has known solutions, while exact solu-
tion of Navier-Stokes equation completely remains an open
problem in mathematical-physics. Considering wide applica-
tions of Navier-Stokes equation, including for climatic mod-
elling and prediction (albeit in simplified form called “geos-
trophic flow” [9]), one can expect that simpler expression of
Navier-Stokes equation will be found useful.

In this article we presented an alternative route to de-
rive Schrödinger representation of Navier-Stokes equation via
Riccati equation. The proposed approach, while differs ap-
preciably from other method such as what is proposed by
R. M. Kiehn [1], has an advantage, i.e. it enables us to extend
further to quaternionic and biquaternionic version of Navier-
Stokes equation, in particular via Kravchenko’s [3] and Gib-
bon’s route [4, 5]. An alternative method to describe quater-
nionic representation in fluid dynamics has been presented
by Sprössig [6]. Nonetheless, further observation is of course
recommended in order to refute or verify this proposition.

2 From Navier-Stokes equation to Schrödinger equation
via Riccati

Recently, Argentini [8] argues that it is possible to write down
ODE form of 2D steady Navier-Stokes equations, and it will
lead to second order equation of Riccati type.

Let � the density, � the dynamic viscosity, and f the body
force per unit volume of fluid. Then the Navier-Stokes equa-
tion for the steady flow is [8]:

� (v � rv) = �rp+ � � f + � ��v : (1)

After some necessary steps, he arrives to an ODE version
of 2D Navier-Stokes equations along a streamline [8, p. 5] as

follows:
u1 � _u1 = f1 � _q

�
+ v � _u1 ; (2)

where v = �
� is the kinematic viscosity. He [8, p. 5] also finds

a general exact solution of equation (2) in Riccati form, which
can be rewritten as follows:

_u1 � � � u2
1 + � = 0 ; (3)

where:

� =
1
2v
; � = �1

v

�
_q
�
� f1

�
s� c

v
: (4)

Interestingly, Kravchenko [3, p. 2] has argued that there
is neat link between Schrödinger equation and Riccati equa-
tion via simple substitution. Consider a 1-dimensional static
Schrödinger equation:

�u+ v � u = 0 (5)

and the associated Riccati equation:

_y + y2 = �v : (6)

Then it is clear that equation (6) is related to (7) by the
inverted substitution [3]:

y =
_u
u
: (7)

Therefore, one can expect to use the same method (8) to
write down the Schrödinger representation of Navier-Stokes
equation. First, we rewrite equation (3) in similar form of
equation (7):

_y1 � � � y2
1 + � = 0 : (8)

By using substitution (8), then we get the Schrödinger
equation for this Riccati equation (9):

�u� �� � u = 0 ; (9)

where variable � and � are the same with (4). This Schrö-
dinger representation of Navier-Stokes equation is remark-
ably simple and it also has advantage that now it is possible
to generalize it further to quaternionic (ODE) Navier-Stokes
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equation via quaternionic Schrödinger equation, for instance
using the method described by Gibbon et al. [4, 5].

3 An extension to biquaternionic Navier-Stokes equa-
tion via biquaternion differential operator

In our preceding paper [10, 12], we use this definition for
biquaternion differential operator:

} = rq + irq =
�
�i @

@t
+ e1

@
@x

+ e2
@
@y

+ e3
@
@z

�
+

+ i
�
�i @

@T
+ e1

@
@X

+ e2
@
@Y

+ e3
@
@Z

�
; (10)

where e1, e2, e3 are quaternion imaginary units obeying
(with ordinary quaternion symbols: e1 = i, e2 = j, e3 = k):
i2 = j2 = k2 =�1, ij=�ji= k, jk=�kj= i, ki=�ik= j
and quaternion Nabla operator is defined as [13]:

rq = �i @
@t

+ e1
@
@x

+ e2
@
@y

+ e3
@
@z

: (11)

(Note that (11) and (12) include partial time-differentiation.)
Now it is possible to use the same method described above

[10, 12] to generalize the Schrödinger representation of
Navier-Stokes (10) to the biquaternionic Schrödinger equa-
tion, as follows.

In order to generalize equation (10) to quaternion version
of Navier-Stokes equations (QNSE), we use first quaternion
Nabla operator (12), and by noticing that � � rr, we get:�

rq �rq +
@2

@t2

�
u� �� � u = 0 : (12)

We note that the multiplying factor �� in (13) plays sim-
ilar role just like V (x)�E factor in the standard Schrödinger
equation [12]:

� ~2

2m

�
rq �rq +

@2

@t2

�
u+

�
V (x)� E�u = 0 : (13)

Note: we shall introduce the second term in order to “neu-
tralize” the partial time-differentiation of rq �rq operator.

To get biquaternion form of equation (13) we can use our
definition in equation (11) rather than (12), so we get [12]:�

}�}+
@2

@t2
� i @2

@T 2

�
u� �� � u = 0 : (14)

This is an alternative version of biquaternionic Schrö-
dinger representation of Navier-Stokes equations. Numerical
solution of the new Navier-Stokes-Schrödinger equation (15)
can be performed in the same way with [12] using Maxima
software package [7], therefore it will not be discussed here.

We also note here that the route to quaternionize Schrö-
dinger equation here is rather different from what is described
by Gibbon et al. [4, 5], where the Schrödinger-equivalent to
Euler fluid equation is described as [5, p. 4]:

D2w
Dt2

� (rQ)w = 0 (15)

and its quaternion representation is [5, p. 9]:

D2w
Dt2

� qb 
 w = 0 (16)

with Riccati relation is given by:

Dq
a

Dt+ qa 
 qa = qb (17)

Nonetheless, further observation is of course recommended
in order to refute or verify this proposition (15).
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In the preceding article we argue that biquaternionic extension of Klein-Gordon equa-
tion has solution containing imaginary part, which differs appreciably from known so-
lution of KGE. In the present article we present numerical /computer solution of ra-
dial biquaternionic KGE (radialBQKGE); which differs appreciably from conventional
Yukawa potential. Further observation is of course recommended in order to refute or
verify this proposition.

1 Introduction

In the preceding article [1] we argue that biquaternionic ex-
tension of Klein-Gordon equation has solution containing
imaginary part, which differs appreciably from known solu-
tion of KGE. In the present article we presented here for the
first time a numerical/computer solution of radial biquater-
nionic KGE (radialBQKGE); which differs appreciably from
conventional Yukawa potential.

This biquaternionic effect may be useful in particular to
explore new effects in the context of low-energy reaction
(LENR) [2]. Nonetheless, further observation is of course
recommended in order to refute or verify this proposition.

2 Radial biquaternionic KGE (radial BQKGE)

In our preceding paper [1], we argue that it is possible to
write biquaternionic extension of Klein-Gordon equation
as follows:��

@2

@t2
�r2

�
+ i
�
@2

@t2
�r2

��
'(x; t) =

= �m2 '(x; t) ;
(1)

or this equation can be rewritten as:�}�}+m2�'(x; t) = 0; (2)

provided we use this definition:

} = rq + irq =
�
�i @

@t
+ e1

@
@x

+ e2
@
@y

+ e3
@
@z

�
+

+ i
�
�i @

@T
+ e1

@
@X

+ e2
@
@Y

+ e3
@
@Z

�
; (3)

where e1, e2, e3 are quaternion imaginary units obeying
(with ordinary quaternion symbols: e1 = i, e2 = j, e3 = k):

i2 = j2 = k2 = �1 ; ij = �ji = k ;
jk = �kj = i ; ki = �ik = j :

(4)

and quaternion Nabla operator is defined as [1]:

rq = �i @
@t

+ e1
@
@x

+ e2
@
@y

+ e3
@
@z

: (5)

(Note that (3) and (4) included partial time-differentiation.)
In the meantime, the standard Klein-Gordon equation

usually reads [3, 4]:�
@2

@t2
�r2

�
'(x; t) = �m2'(x; t) : (6)

Now we can introduce polar coordinates by using the
following transformation:

r =
1
r2

@
@r

�
r2 @
@r

�
� `2

r2 : (7)

Therefore, by substituting (6) into (5), the radial Klein-
Gordon equation reads — by neglecting partial-time differen-
tiation — as follows [3, 5]:�

1
r2

@
@r

�
r2 @
@r

�
� `(`+ 1)

r2 +m2
�
'(x; t) = 0 ; (8)

and for ` = 0, then we get [5]:�
1
r2

@
@r

�
r2 @
@r

�
+m2

�
'(x; t) = 0 : (9)

The same method can be applied to equation (2) for radial
biquaternionic KGE (BQKGE), which for the 1-dimensional
situation, one gets instead of (7):�

@
@r

�
@
@r

�
� i @

@r

�
@
@r

�
+m2

�
'(x; t) = 0 : (10)

In the next Section we will discuss numerical/computer
solution of equation (9) and compare it with standard solu-
tion of equation (8) using Maxima software package [6]. It
can be shown that equation (9) yields potential which differs
appreciably from standard Yukawa potential. For clarity, all
solutions were computed in 1-D only.
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3 Numerical solution of radial biquaternionic Klein-
Gordon equation

Numerical solution of the standard radial Klein-Gordon equa-
tion (8) is given by:

(%i1) diff(y,t,2)-’diff(y,r,2)+mˆ2*y;

(%o1) m2 � y � d2
d2xy

(%i2) ode2 (%o1, y , r);

(%o2) y = %k1 �% exp(mr) + %k2 �% exp(�mr) (11)

In the meantime, numerical solution of equation (9) for
radial biquaternionic KGE (BQKGE), is given by:

(%i3) diff(y,t,2)- (%i+1)*’diff(y,r,2)+mˆ2*y;

(%o3) m2 � y � (i+ 1) d2
d2ry

(%i4) ode2 (%o3, y , r);

(%o4) y = %k1 � sin
� jmjrp�%i�1

�
+ %k2 � cos

� jmjrp�%i�1

�
(12)

Therefore, we conclude that numerical solution of radial
biquaternionic extension of Klein-Gordon equation yields
different result compared to the solution of standard Klein-
Gordon equation; and it differs appreciably from the well-
known Yukawa potential [3, 7]:

u(r) = �g2

r
e�mr: (13)

Meanwhile, Comay puts forth argument that the Yukawa
lagrangian density has theoretical inconsistency within
itself [3].

Interestingly one can find argument that biquaternion
Klein-Gordon equation is nothing more than quadratic form
of (modified) Dirac equation [8], therefore BQKGE describ-
ed herein, i.e. equation (12), can be considered as a plausible
solution to the problem described in [3]. For other numerical
solutions to KGE, see for instance [4].

Nonetheless, we recommend further observation [9] in or-
der to refute or verify this proposition of new type of potential
derived from biquaternion Klein-Gordon equation.
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The spin polarization and the corresponding tunneling magnetoresistance (TMR) for
a hybrid ferromagnetic/superconductor junction are calculated. The results show that
these parameters are strongly depends on the exchange field energy and the bias voltage.
The dependence of the polarization on the angle of precession is due to the spin flip
through tunneling process. Our results could be interpreted as due to spin imbalance
of carriers resulting in suppression of gap energy of the superconductor. The present
investigation is valuable for manufacturing magnetic recording devices and nonvolatile
memories which imply a very high spin coherent transport for such junction.

1 Introduction

Spintronics and spin-based quantum information processing
explore the possibility to add new functionality to today’s
electronic devices by exploiting the electron spin in addition
to its charge [1]. Spin-polarized tunneling plays an important
role in the spin dependent transport of magnetic nanostruc-
tures [2]. The spin-polarized electrons injected from ferro-
magnetic materials into nonmagnetic one such as supercon-
ductor, semiconductor create a non equilibrium spin polar-
ization in such nonmagnetic materials [3, 4, 5].

Ferromagnetic-superconductor hybrid systems are an at-
tractive subject research because of the competition between
the spin asymmetry characteristic of a ferromagnet and the
correlations induced by superconductivity [1, 2, 6]. At low
energies electronic transport in mesoscopic ferromagnet-
superconductor hybrid systems is determined by Andreev-
reflection [7]. Superconducting materials are powerful probe
for the spin polarization of the current injected from ferro-
magnetic material [8, 9, 10]. Superconductors are useful for
exploring how the injected spin-polarized quasiparticles are
transported. In this case the relaxation time can be measured
precisely in the superconducting state where thermal noise
effects are small.

The present paper, spin-polarized transport through fer-
romagnetic/superconductor/ferromagnetic double junction is
investigated. This investigation will show how Andreev-
reflection processes are sensitive to the exchange field energy
in the ferromagnetic leads.

2 The model

A mesoscopic device is modeled as superconductor
sandwiched between two ferromagnetic leads via double tun-
nel barriers. The thickness of the superconductor is smaller
than the spin diffusion length and the magnetization of the
ferromagnetic leads are aligned either parallel or antiparal-

lel. The spin polarization of the conduction electrons due to
Andreev reflection at ferromagnetic/superconductor interface
could be determined through the following equation as:

P =
�"(E)� �#(E)
�"(E) + �#(E)

; (1)

where �"(E) and �#(E) are the tunneling probabilities of con-
duction electrons with up-spin and down-spin respectively.
Since the present device is described by the following
Bogoliubov-deGennes (BdG) equation [11]: 

H0 � hex(z)� �(z)
��(z) �H0 � �hex(z)

!
 = E ; (2)

where H0 is the single particle Hamiltonian and it is expressed
as:

H0 = � ~2

2m
r2 � "nl ; (3)

in which the energy, "nl, is expressed of the Fermi velocity
vF , Fermi-momentum PF , the magnetic field B as [12]:

"nl = �(�g + kF D sin �)�BB�
� �v2

F P
2
F (1� sin �)2 + �2�1=2: (4)

In Eq. (4), �=�1/2 for spin-up and spin down respec-
tively, �B is the Bohr magneton, g is the g-factor for electrons
and � is the precession angle.

The interface between left ferromagnetic/superconductor
and superconductor/right ferromagnetic leads are located at
z = �L=2 and z = L=2 respectively. The parameter hex(z)
represents the exchange field and is given by [13]:

hex =

8><>:
h0 z � �L=2
0 �L=2 � z � L=2
�h0 z � L=2

9>=>; ; (5)

where +h0 and �h0 represents the exchange fields for paral-
lel and anti-parallel alignments respectively, the parameter
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�(z) is the superconducting gap:

�(z) =

(
0 z � �L=2; L=2 � z
� �L=2 � z � L=2

)
: (6)

The temperature dependence of the superconducting gap
is given by [14]:

� = �0 tanh
�

1.74

r
Tc
T
� 1

�
; (7)

where �0 is the superconducting gap at T = 0 and Tc is the
superconducting critical temperature. Now, in order to get the
tunneling probability �"#(E) for both up-spin and down-spin
electrons by solving the Bogoliubov-deGennes Eqn. (2) as:
The eigenfunction in the left ferromagnetic lead (z < �L=2)
is given by:

 FM1
�;nl (r) =

��
1
0

�
eiP

+
�;nl(z+

L
2 ) +

+ a�;nl
�

0
1

�
eiP

�
�;nl(z+

L
2 ) +

+ b�;nl
�

1
0

�
e�P

+
�;nl(z+

L
2 )
�
Snl(x; y) :

(8)

In the superconductor (�L=2<z <L=2), the eigenfunc-
tion is given by:

 SC�;nl(r) =
�
��;nl

�
u0
�0

�
eik

+
nl(z+

L
2 ) +

+ ��;nl
�
�0
u0

�
e�ik�nl(z+L

2 ) +

+ ��;nl
�
u0
�0

�
e�ik+

nl(z�L2 ) +

+ ��;nl
�
u0
�0

�
eik
�
nl(z�L2 )

�
Snl(x; y) :

(9)

And the eigenfunction in the right ferromagnetic lead
(L=2 < z) is given by:

 FM2
�;nl (r) =

�
C�;nl

�
1
0

�
eiq

+
�;nl(z�L2 ) +

+ d�;nl
�

0
1

�
e�iq

�
�;nl(z�L2 )

�
Snl(x; y) :

(10)

Since the device is rectangular, the eigenfunction in the
transverse (x&y) directions with channels n; l is given by;

Snl(x; y) = sin
�n�x
W

�
sin
� l�y
W

�
; (11)

where W is the width of the junction.
The wave numbers in the Eqs. (8), (9), (10) are given by:

P��;nl =
r

2m
~2 (�F � E � �hex) ; (12)

k��;nl =
r

2m
~2 (�F �=)� "nl) ; (13)

q��;nl =
r

2m
~2 (�F � E � �hex � "nl) ; (14)

where==
p
E2��2, and the energy "nl is given by Eq. (4).

For the coherence factors of electron and holes u0 and �0 are
related as [11]:

u2
0 = 1� �2

0 =
1
2

�
1 +

p
E2 ��2

E

�
: (15)

The coefficients in Eqs. (8), (9), (10) are determined by
applying the boundary conditions at the interfaces and the
matching conditions are:

 FM1
�;nl

�
z = �L

2

�
=  SC�;nl

�
z = �L

2

�
 SC�;nl

�
z =

L
2

�
=  FM2

�;nl

�
z =

L
2

�
9>>>=>>>; ; (16)

d SC�;nl
dz

�����
z=�L2
� d FM !

�;nl

dz

�����
z=�L2

=
2mV
~2  FM1

�;nl

�
z = �L

2

�
; (17)

d FM2
�;nl

dz

�����
z=L

2

� d SC!
�;nl

dz

�����
z=L

2

=
2mV
~2  FM2

�;nl

�
z =

L
2

�
: (18)

Eqs. (14), (15), (16) are solved numerically [15] for the
tunneling probabilities corresponding to up-spin and down-
spin for the tunneled electrons. The corresponding polariza-
tion, P , Eq. (1) is determined at different parameters V , �,
which will be discussed in the next section.

3 Results and discussion

Numerical calculations are performed for the present device,
in which the superconductor is Nb and the ferromagnetic
leads are of any one of ferromagnetic materials. The features
of the present results are:

Fig. 1 shows the dependence of the polarization, P , on
the bias voltage, V , at different parameters B, E, h and T .
From the figure, the polarization has a peak at the value of V
near the value of the energy gap �0 for the present supercon-
ductor (Nb) (�0 = 1.5 meV) [16]. But for higher values of
V , the polarization, P , decreases. As shown from Fig. 1a, the
polarization does not change with the magnetic field, B, due
to the Zeeman-energy. Some authors [17] observed the effect
of magnetic field of values greater than 1 T, in this case the
superconductivity will be destroyed (for Nb, Bc = 0.19 T).

Now in order to observe the effect of the spin precession
on the value of the polarization, P , this can be shown from
Fig. 2. The dependence of the polarization, P , on the angle
of precession, �, is strongly varies with the variation of the
magnetic field, temperature, exchange field and the energy of
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Fig. 1: The dependence of the polarization, P , on the bias voltage, V , at different B, E, h and T .

Fig. 2: The dependence of the polarization, P , on the angle of precession at different B, E, h and T .
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Fig. 3: The variation of the TMR with the energy of the tunneled electrons at different parameters B, T , h and �.

the tunneled electrons. As shown from Fig. 2, the value of
P is minimum at certain values of � also P is maximum at
another values of �. This trend of the polarization with the
angle of the precession is due to the flip of the electron spin
when tunneling through the junction.

In order to investigate the spin injection tunneling through
such hybrid magnetic system, we calculated the tunnel
magnetoresistance (TMR) which is related to the polariza-
tion as [18]:

TMR =
P 2

1� P 2 + �s
; (19)

where �s is the relaxation parameter and is given by [18]:

�s =
e2N(0)RTAL

�s
; (20)

where N(0) is the normal-state density of electrons calcu-
lated for both up-spin and down-spin distribution function
f�(E), which is expressed as [18]:

f�(E) � f0(E)�
�
@f0

@E

�
� �� ; (21)

where �=�1 for both up and down spin of the electrons, ��
is the shift of the chemical potential, �s is the spin relaxation
time, A is the junction area and RT is the resistance at the
interface of the tunnel junction.

Fig. 3 shows the variation of the TMR with the energy of
the tunneled electrons at different parameters B, T , h and �.
A peak is observed for TMR at a certain value which is in
the near value of the gap energy �0 for the superconductor
(Nb). These results (Fig. 3) show the interplay between the

spin polarization of electrons and Andreev-reflection process
at the ferromagnetic/superconductor interface [19]. From our
results; we can conclude that the spin-polarized transport de-
pends on the relative orientation of magnetization in the two
ferromagnetic leads. The spin polarization of the tunneled
electrons through the junction gives rise to a nonequilibrium
spin density in the superconductor. This is due to the imbal-
ance in the tunneling currents carried by the spin-up and spin-
down electrons. The trend of the tunneling magnetoresistance
(TMR) is due to the spin-orbit scattering in the superconduc-
tor. Our results are found concordant with those in literatures
[20, 21, 22].
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In this paper it is argued that knowledge dividing the usual, unusual, transient and tran-
scendental depends on human perception of the world (macro or micro) and depends too
on the inclusion of human consciousness in the system. For the analysis of this problem
the idea of “Schrödinger’s cat” is employed. Transient and transcendental knowledge of
the state of Schrödinger’s cat corresponds to the case when the observer’s consciousness
is included in the system. Here it is possible to speak about the latent parameters of the
sub quantum world of which Einstein was convinced. Knowledge of the unusual state
of Schrödinger’s cat, simultaneously alive and dead, corresponds to a case of the open
micro world. The usual knowledge of the state of Schrödinger’s cat (alive or dead) cor-
responds to a case of the open macrocosm. Each world separately divides the objective
and illusory.

1 Introduction

Scientific cognition frequently avoids the question of interac-
tion of our consciousness with the external world. However,
the celebrated known physicist Wigner [1] maintains that sep-
aration of our perception from the laws of a nature is no more
than simplification and although we are convinced that it has
a harmless character, to nevertheless merely forget about it
does not follow.

Purposeful perception is sensation and in order to under-
stand more deeply that sensation it is necessary, in the be-
ginning, to be able to distinguish sensation in a macrocosm
(spontaneously) from sensation in a microcosm (through the
device). Many scientists believe that information recorded
with the help of devices can be equally considered with sen-
tient data. Their belief, harmless at first sight would, should
not result in the serious misunderstanding. But actually it is
not so.

Sensation in a macrocosm, for example, that of a sunrise,
and sensation in a microcosm, for example, some number dis-
played on an ammeter, are not the same. Perception, by def-
inition, is complete subjective reflection: the phenomena are
events resulting from direct influence on sense organs, and in
a macrocosm it certainly does not depend on the level of our
knowledge. Nobody will argue that a sunrise and other such
phenomena, events in a macrocosm, are perceived by all peo-
ple equally. But in a microcosm this is not so. Perception of
the invisible world of electrons is not whole or complete and
therefore depends on the level of our scientific knowledge.
But that knowledge is connected to our consciousness. It be-
comes clear then why the consciousness of the observer finds
itself a place in quantum physics.

The problematic interpretation of quantum mechanics has
been a controversial topic of discussion for more than 80
years. The most important upshot of this for physicists is that
this problem is related to the problem of consciousness —

an interdisciplinary problem concerning not only physicists,
but also philosophers, psychologists, physiologists and biol-
ogists. Its solution will result in deeper scientific knowledge.
As many scientists have argued, the path to such knowledge
should not consider separately the physical phenomena and
the phenomena accompanying our thinking. By adhering to
this position it is reasonable to conclude that the correct inter-
pretation of the quantum mechanics comprises such knowl-
edge.

Really, the problem of quantum physics, as a choice of
one alternative at quantum measurement and a problem of
philosophy as to how consciousness functions, is deeply con-
nected with relations between these two. It is quite possi-
ble that in solving these two problems, it is likely that ex-
periments in the quantum mechanics will include workings
of a brain and consciousness, and it will then be possible to
present a new basis for the theory of consciousness

2 Dependence of physical experiment on the state of
consciousness

During sensation our brain accepts data and information from
an external world. On the basis of these data, during thinking,
knowledge is formed. The biological substratum of thinking
is the brain. Therefore, knowledge is a product of the brain.

Consciousness, as it is known, is a property of the brain
and therefore already concerns the origin of knowledge.
Clearly, this relation is either active, i.e. influencing the ori-
gin of knowledge, or passive. If active as well as passive,
we ask: Does consciousness influence the origin of knowl-
edge? It is possible to answer this because it is known that
there are different kinds and levels of consciousness and sci-
entific knowledge which represent various forms and levels
of reflection. Considering the definition of knowledge in that
it is a reflection of objective characteristics of reality in the
consciousness of a person, we are interested with a question:
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When and what reflection — passive or active, unequivocal
or multiple-valued — takes place?

Passivity or activity of reflection depends on passivity or
activity of the consciousness of the observer. Clearly, con-
sciousness is passive if it is not included in the system, being
in this case an open system. Consciousness can be active if
it is included in the system, being in this case a closed sys-
tem. Activity or passivity of consciousness is expressed in its
ability to influence reflection on reality, i.e. on knowledge.
With the contention that active consciousness may influence
reflection on reality it is possible to imply that this influence
can be directed onto reality as well. Whether or not this is so
is however difficult to say. But we know that a closed system
should differ from an open one. The difference is expressed
in the activity of consciousness, which influences reflection
and knowledge.

The unambiguous or the multi-valence nature of reflec-
tion does not depend on the activity or passivity of conscious-
ness; it depends on perception, i.e. from integrity of percep-
tion. The perception of a macrocosm is complete, but the per-
ception of a microcosm is not complete. Therefore it is clear
that reflection on reality in a macrocosm will be unequivocal,
but in a microcosm, multiple-valued.

Multiple-valued reflection does not influence knowledge,
but, nevertheless, makes knowledge multiple-valued, unclear,
and uncertain. It now becomes clear why knowledge of a
microcosm results in uncertainties, including the well-known
Heisenberg Uncertainties. It is possible that these uncertain-
ties are effects of consciousness, dependent not on the activity
of consciousness, but on the impossibility to completely per-
ceive the cognizable world by consciousness.

Thus, in a closed system, reflection is active. In an open
system reflection is passive. In a macrocosm it is unequivocal
but in a microcosm it is multiple-valued.

For elucidation we shall imagine a mirror; a usual mirror,
i.e. a mirror with which we are commonly familiar. Let’s
assume that this mirror is our consciousness. The mirror is
passive, because reflection of objects in it does not depend
on itself. Similarly, consciousness is passive, if reflection of
reality in it does not depend on itself. Clearly, the passive
consciousness appropriate for this mirror is consciousness in
an open system, because only in this case is consciousness
similar to a mirror that can be counter-posed to a being. If
around the mirror there is a bright light, for example, sunlight,
the reflection of objects in it will be unequivocal. Perception
of these objects will be complete. This case of bright light
around of a mirror corresponds to a case of the macrocosm.
Really, the macrocosm is our visible world. But now we shall
imagine that the mirror is in darkness. Images are absent in
the mirror. This case of darkness around the mirror corre-
sponds to a case of the microcosm. The microcosm is our
invisible world. Let’s now imagine that we want to receive
some image from the mirror. For this purpose we artificially
illuminate an object. This action corresponds to how we in-

vestigate a microcosm with the help of devices. Artificial il-
lumination is not ideal; therefore reflection of objects in the
mirror will be multiple-valued. Clearly, perception will not
be complete either. Already, as a result, knowledge cannot
be unequivocal. The Heisenberg Uncertainties of a micro-
cosm are the proof. Knowledge from these uncertainties is
multiple-valued because it is impossible to determine exactly
the localization and speed of a micro-particle. So the usual
mirror corresponds to passive consciousness. But what mir-
ror will correspond to active consciousness? In this case the
system is closed and the mirror should be unusual; the reflec-
tion of objects in it depends on itself. Such a mirror includes
a mirror, or more exactly, many mirrors; a mirror in a mirror
in a mirror.

So consciousness includes consciousness; it is conscious-
ness in consciousness. One could say that such mirror is a
distorting mirror, although a word “distorting” is perhaps not
the best description. It is a mirror of unusual reflection. De-
pending on the mirror, reflection in it varies up to the un-
recognisable. To make a distorting mirror a person performs
an act — alters a usual mirror. To effect this action he must
be included in the system — he cannot simply take a usual
mirror in his hands. Similar to this action of the person, con-
sciousness is included in the system, can change conscious-
ness, and reflection of reality will depend on it. Therefore
knowledge, being this reflection, will depend on conscious-
ness. In this case, consciousness influences processes in the
origin of knowledge. Phenomenologically speaking, reflec-
tion of objective reality will already be an actual stream of
consciousness.

After we have found out in what case some reflection
takes place, we shall be able to answer the aforementioned
question: Does consciousness influence the origin of knowl-
edge or not?

Passive consciousness can be excluded from being, from
what takes place in an open system. In this case, being is de-
termined according to materialist philosophy. In an open sys-
tem, passive reflection takes place, and consequently knowl-
edge is defined as passive reflection of reality in the con-
sciousness of a person. As remarked above, passive reflection
is unequivocal in a macrocosm, and it is multiple-valued in a
microcosm. Therefore, in the case of an open system, in a
macrocosm, knowledge is passive and unequivocal. In a mi-
crocosm it is passive too, but it is multiple-valued. We shall
call this knowledge, accordingly, usual and unusual knowl-
edge respectively — the unusual because knowledge of the
microcosm, including the Heisenberg Uncertainties, is for us,
unusual.

Thus, in unusual knowledge there is an affection of con-
sciousness. Hence, it is necessary to consider ontological
problems in physics. Many physicists adhere to a definition
of being according to materialism. Therefore, constructed by
them with the help of theories, physical reality characterizes
the world, and excludes the consciousness of the observer
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from consideration. We shall call such a concept of physical
reality usual. Building on it, the physicists do not take into
account questions connected with perception and conscious-
ness, so it is possible to act only in the case of a macrocosm.

For a microcosm, physical reality, as constructed by the
physicists, should be entirely different; unusual. We shall
call physical reality describing a microcosm, as an open sys-
tem, ontological. In this case, effects of consciousness take
place, but the effects are connected not with the activity of
consciousness, but with reflection or integrity of perception
of the cognizable world.

Answering “yes” to the question: Does consciousness in-
fluence the origin of knowledge or not? it is evident that con-
sciousness is active and therefore cannot be excluded from the
being participating in the closed system. As we have already
seen, in the closed system active reflection takes place, so
knowledge is active reflection of reality in the consciousness
of a person. In this knowledge there is a place for the effects
of consciousness, but they are connected not with perception
of the cognizable world, as in case of unusual knowledge, but
with the activity of the consciousness of the observer.

Can active consciousness of the observer be conscious-
ness of the person? Certainly not! The system, having cap-
tured the consciousness of one person, is not closed, because
outside it there is the consciousness of another person in
which reality can be reflected. Thus, when we speak of con-
sciousness of the observer in the closed system, i.e. about ac-
tive consciousness, we mean that it cannot be consciousness
of the person. The consciousness of the person is a passive
consciousness, i.e. this consciousness of the observer in an
open system. Knowledge which takes place in this case is
a simple knowledge of passive consciousness — the person.
Accordingly, this knowledge is usual (in case of a macro-
cosm), or unusual (in case of a microcosm).

Knowledge, which takes place in the case when the sys-
tem is closed, is knowledge of active consciousness. This
knowledge is absolute knowledge.

Let’s consider absolute knowledge in the case when the
closed system is a macrocosm. In this case knowledge is ac-
tive and unequivocal reflection. We shall call such knowledge
transcendental. Such a name is justified because transcenden-
tal knowledge can be understood by passive consciousness.
Clearly, such analysis is possible in a macrocosm because in
this case we learn of our world, which, in contrast with the
microcosm, is visible, audible, and otherwise sentient. Tran-
scendental knowledge concerns scientific knowledge.

In the case of a closed system as a microcosm, knowledge
is active, but multiple-valued reflection and so gives rise to
latent uncertainties which are not Heisenberg Uncertainties.
The paradoxes concerning the laws of the quantum world
were explained by Albert Einstein as properties of an unob-
servable, deeper sub-quantum world; hidden variables. With
the help of Bell’s inequalities it was proved that latent param-
eters (hidden variables) do not exist. However, if Heisenberg

Uncertainties are open to passive consciousness, i.e. to the
consciousness of a person, then the latent parameters are open
only to active consciousness. Therefore we also cannot open
them. We shall call such knowledge transient. Such a name
is justified in that it cannot be understood.

Thus, for open systems, knowledge is passive and un-
equivocal in a macrocosm, passive and multiple-valued in a
microcosm. For the closed systems the knowledge is active
and unequivocal in a macrocosm, active and multiple-valued
in a microcosm. Accordingly, knowledge is divided into the
usual, unusual, transcendental and transient. Physical reality
for these cases are, philosophically speaking, usual, ontolog-
ical and active.

3 The “Schrödinger cat” experiment

It is known that in a macrocosm a body can be in only one
state. Clearly, this knowledge is usual. In a microcosm an
elementary particle can be simultaneously in two states. Of
course, such knowledge is unusual.

However, it has been established that in the result of in-
tensification the superposition of two micro-states turns into
superposition of two macro-states. Therefore in a macrocosm
there is unusual knowledge. This paradox has been ampli-
fied by E. Schrödinger in his mental experiment, known as
Schrödinger’s cat.

In the paradox of Schrödinger’s cat the state of a cat (alive
or dead) depends on the act of looking inside the box contain-
ing the cat, i.e. depends on the consciousness of the observer.
Thus, consciousness becomes an object of quantum physics.
We mentioned above that in an open system the conscious-
ness of an observer, being passive, is the consciousness of
a person. In an open macrocosm perceived by us unequiv-
ocally, the open microcosm is perceived by us as multiple-
valued. Frequently it is asked: Where is the border between
the macrocosm and the microcosm It is possible to answer
that this border is the perception of a person. The state of
Schrödinger’s cat simultaneously both alive and dead corre-
sponds to an open microcosm. Although we talk about a
macro object — a cat — it is connected to a microcosm; it
is a microcosm when a person doesn’t open the box and look
at the cat. As soon as a person looks at the cat in the box, i.e.
completely and unequivocally perceive it, the state of the cat
is determined, for example, the cat is alive. This state of the
cat corresponds to an open macrocosm — to the world which
we live.

The state of Schrödinger’s cat — simultaneously alive and
dead — is the entangled state. In an open system the paradox
of Schrödinger’s cat is described with the help of the deco-
herence phenomenon [2]. The open system differs from the
closed. In an open system there are some degrees of freedom,
including a brain and the consciousness of the observer that
by our measurements can give us information. We open the
box and find out that the cat is actually alive — it is the deco-
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herence. With a statistical ensemble of Schrödinger cats, we
can use probability theory and statistical forecast.

What will be Schrödinger’s cat in a closed system? The
most interesting theory here is the many-world interpreta-
tion of quantum mechanics of Everett and Wheeler [3]. The
closed system is the whole world, including the observer. Ev-
ery component of superposition describes the whole world,
and none of them has any advantage. The question here is
not: What will be the result of measurement? The question
here is not: In what world, of many worlds, does the observer
appear? In the Everett-Wheeler theory it depends on the con-
sciousness of the observer. In the terminology of Wheeler
such consciousness is called active. Knowledge in this case
is knowledge of active consciousness and called by us the
transcendental (in a macrocosm) and the transient (in a mi-
crocosm).

Recall Einstein’s objection to Bohr’s probabilistic inter-
pretation of the quantum mechanics: “I do not believe that
God plays dice”. M. B. Menskii [4] writes “Yes, God does not
play dice. He equally accepts all possibilities. In dice plays
the consciousness of each observer”. The author means, that
the consciousness of the person, his mind, builds the fore-
casts, based on concepts of probability theory. Let’s agree
that the world, about which Einstein speaks, in which God
does not play dice, is a real world. The world in which the
person plays dice is a sentient world.

Besides these two worlds there exists, according to Max
Plank [5], a third — the world of physical science or the phys-
ical picture of world. This world is a bridge for us, and with
its help we learn of those worlds. It concerns the aforemen-
tioned physical reality. Descriptions of the real and sentient
worlds in the world of physical science are the quantum and
classical worlds, accordingly.

In physics the classical world is very frequently inter-
preted as the objective world. The quantum world exists as
some mathematical image — a state vector, i.e. the wave
function. Therefore it is objectively non-existent, an illusion.
Such an interpretation, warns Plank, can result in the opinion
that there is only a sentient world. Such an outlook cannot
be denied logically, because logic itself cannot pluck anyone
from his own sentient world. Plank held that besides logic
there is also common sense, which tells us that although we
may not directly see some world, that world may still exist.
From such a point of view, interpretation of the mutual rela-
tions between the worlds will be very different — the quan-
tum world is objective, the classical world is an illusion.

It is possible to interpret these worlds from the new point
of view. As we saw above for Schrödinger’s cat, the border
between quantum and classical worlds is erased. Therefore
the real world is both the objective quantum world and objec-
tive classical world. Furthermore, the sentient world is both
an illusion of the quantum world and an illusion of the classi-
cal world. Thus, the quantum and classical world each consist
of components — objective and illusory components.

Are there an objective classical world and an illusion of
the quantum world in our understanding? The classical world
is the world of macroscopic objects and our consciousness
sees and perceives this world. For us it should be sentient.
Illusion of the classical world satisfies this condition. The
quantum world is the world of microscopic objects. This
world is invisible to us and so cannot be the sentient world.
The objective quantum world satisfies this condition. Thus,
although there is an objective classical world and an illusion
of the quantum world, these worlds are outside the ambit of
our consciousness. It becomes clear now why classical and
quantum physics essentially and qualitatively differ from each
other. Classical physics studies a physical picture of an il-
lusion of the classical world. Quantum physics studies the
physical picture of the objective quantum world.

Thus, our consciousness comprehends the objective quan-
tum world. Following Menskii [4], it can be represented sym-
bolically as some complex volumetric figure, and the illusion
of the classical world is only one of the projections of this fig-
ure. It will be expedient to present this complex volumetric
figure, as a simplex.

4 Simplex interpretation of quantum physics

From functional analysis [6] it is known that a point is
zero-dimensional, a line is one-dimensional, a triangle is bi-
dimensional, a tetrahedron a three-dimensional simplex. The
three-dimensional simplex, a tetrahedron has 4 bi-dimensional
sides (triangles), 6 one-dimensional sides (lines) and 4 zero-
dimensional sides (points), giving a total of 14 sides.

It is impossible to imagine a four-dimensional simplex in
our three-dimensional space.

The parallelepiped or cube is not a simplex because for
this purpose it is necessary that all 8 points were in six-
measured space. Thus, formed from more than four points,
is a complex volumetric figure.

Let’s assume in experiment with 100 Schrödinger cats,
80 cats are alive and 20 are dead. Points 20 and 80 are two
ends of a simplex. At other moment of time or in another
experiment let’s assume from 100 cats that 60 are alive and 40
are dead. These two points are also ends of a simplex. We can
continue our tests, but we shall stop with these two, and thus,
we consider a three-dimensional simplex — a tetrahedron.
The ribs of our tetrahedron indicate various probabilities. For
example, the rib linking the points 80 live cats and 40 dead
cats give 80/120 = 2/3 of probability of the case in which a
cat is alive. In the case 60 live and 20 dead cats, the rib of the
simplex shows that the probability is 60/80 = 3/4, etc. The rib
linking the points 20 dead and 40 dead cats and the rib linking
the points 80 live and 60 live cats each give a probability of 1.
Let’s consider the faces of the simplex. In the case of a live
cat on one of them the probability changes from 2/3 to 0.8; on
another face, from 3/4 to 0.6; on third face, from 2/3 to 0.6;
on fourth, from 3/4 to 0.8 etc. As to points of a tetrahedron
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they specify determinism of an event. For example, the point
of 80 live cats specifies that in fact all 80 cats are alive.

We could construct the simplex with various probabilistic
ribs and sides because we are observers from outside. In this
case we built a physical picture of the real world. Only in
this world is the probabilistic interpretation of the quantum
mechanics given by Bohr true.

In a physical picture of the sentient world, we cannot con-
struct a simplex. We can only perceptions as projections, i.e.
sides of a simplex. After that, classical probability is applied,
but it is applied, we shall repeat, not for a whole simplex, but
only for one of its sides. This side, perceived by us as the sen-
tient world, is an illusion because it not unique: there exists a
set of worlds alternative to it. With a physical picture of the
world, we can even count the number of parallel worlds. As
our world is three-dimensional and our consciousness exists
in it we can count only sides of a three-dimensional simplex
— a tetrahedron, which, as shown above, has only 14 sides.

Returning now to the dispute between Einstein and Bohr,
in the real and sentient worlds, of course Einstein was right
— really, God does not play dice. However, in the physical
picture of the world, Bohr had the right to apply probability
and statistics.

Usually in a game of dice we mean only the act of throw-
ing dice. However, dice consists of acts before (we build
forecasts) and after (realization of one forecast from possi-
ble results). This situation can be likened to a court case;
there is a hearing of a case, a verdict and a process after the
verdict. In the physical picture of the real world, a game of
dice by consciousness is a game up to the act of throwing
the dice. Our consciousness can only imagine all sides of a
three-dimensional simplex, i.e. all alternative results. But the
choice of one of them depends on “active” consciousness. In
our sentient world, in the act of throwing the dice, we shall
see this choice. In the physical picture of the sentient world,
a game of dice by consciousness is a game after the act of
throwing the dice. Having these outcomes allow us to statis-
tically forecast.

Thus, uncertainty of the real world qualitatively differs
from uncertainty of the sentient world. Thus, uncertainty of
the sentient world is not present and, as a matter of fact, the
finding of the probability of some casual event has no connex-
ion with uncertainty because this probability exists before-
hand, a priori, and by doing a series of tests we simply find
it. It becomes clear then why quantum statistics essentially
differs from the classical.

This simplex, with various probabilistic ribs and sides,
we could construct with the help of epistemological analysis.
Knowledge which was analyzed in this case is knowledge of
active consciousness. In the case when the simplex from a
volumetric figure is converted into one of its projections, we
see only one of its sides (a point, a line, a triangle). Knowl-
edge appropriate to this case is knowledge of passive con-
sciousness. In a simplex the lines (80, 20) and (60, 40) where

points 80, 60 are live, and 20, 40 are dead cats, correspond to
usual knowledge. In this case we use classical statistics (after
we have looked in the box, Schrödinger’s cats became simple
cats, and we already have data, for example, from 100 cats in
one case 80 alive, and in the other case 6, etc.). With the help
of this date we find an average and dispersion of a random
variable.

But when the ensemble consists not of simple cats, but
Schrödinger cats we deal with a microcosm, with a world,
the perception of which, is multiple-valued. In this case, for
example, the point 80 is already fixed simultaneously and
with the point 20, and with the point 40. Therefore the trian-
gle (20, 80, 40) is examined. Similarly, the triangle (40, 60,
20) is also considered. These triangles correspond to unusual
knowledge. In this case we cannot apply classical statistics.
Therefore we use quantum statistics.

There is a question: But what in a simplex will correspond
to transcendental and transient knowledge? We can answer
that transcendental knowledge is knowledge of active con-
sciousness in the case of a macrocosm, and corresponds to the
entire simplex. Transcendental knowledge can be acquired by
us a priori (because we could construct the simplex), but for
transient knowledge this is not possible. Knowledge of active
consciousness appropriate to transition from a microcosm to
macrocosm, i.e. to our world, will be transcendental, and
from a microcosm to a microcosm it will be transient. There
is no sharp border between macro-world and microcosms, but
in fact there is a sharp border between knowledge about them.
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In this work we develop, in a somewhat extensive manner, a geometric theory of chiral
elasticity which in general is endowed with geometric discontinuities (sometimes re-
ferred to as defects). By itself, the present theory generalizes both Cosserat and void
elasticity theories to a certain extent via geometrization as well as by taking into ac-
count the action of the electromagnetic field, i.e., the incorporation of the electromag-
netic field into the description of the so-called microspin (chirality) also forms the un-
derlying structure of this work. As we know, the description of the electromagnetic
field as a unified phenomenon requires four-dimensional space-time rather than three-
dimensional space as its background. For this reason we embed the three-dimensional
material space in four-dimensional space-time. This way, the electromagnetic spin is
coupled to the non-electromagnetic microspin, both being parts of the complete mi-
crospin to be added to the macrospin in the full description of vorticity. In short, our
objective is to generalize the existing continuum theories by especially describing mi-
crospin phenomena in a fully geometric way.

1 Introduction

Although numerous generalizations of the classical theory of
elasticity have been constructed (most notably, perhaps, is the
so-called Cosserat elasticity theory) in the course of its de-
velopment, we are somewhat of the opinion that these gen-
eralizations simply lack geometric structure. In these exist-
ing theories, the introduced quantities supposedly describing
microspin and irregularities (such as voids and cracks) seem
to have been assumed from without, rather than from within.
By our geometrization of microspin phenomena we mean ex-
actly the description of microspin phenomena in terms of in-
trinsic geometric quantities of the material body such as its
curvature and torsion. In this framework, we produce the mi-
crospin tensor and the anti-symmetric part of the stress ten-
sor as intrinsic geometric objects rather than alien additions
to the framework of classical elasticity theory. As such, the
initial microspin variables are not to be freely chosen to be in-
cluded in the potential energy functional as is often the case,
but rather, at first we identify them with the internal properties
of the geometry of the material body. In other words, we can
not simply adhere to the simple way of adding external vari-
ables that are supposed to describe microspin and defects to
those original variables of the classical elasticity theory in the
construction of the potential energy functional without first
discovering and unfolding their underlying internal geomet-
ric existence.

Since in this work we are largely concerned with the be-
havior of material points such as their translational and rota-
tional motion, we need to primarily cast the field equations
in a manifestly covariant form of the Lagrangian system of
material coordinates attached to the material body. Due to

the presence of geometric discontinuities (geometric singu-
larities) and the local non-orientability of the material points,
the full Lagrangian description is necessary. In other words,
the compatibility between the spatial (Eulerian) and the ma-
terial coordinate systems can not in general be directly in-
voked. This is because the smooth transitional transforma-
tion from the Lagrangian to the Eulerian descriptions and
vice versa breaks down when geometric singularities and the
non-orientability of the material points are taken into account.
However, for the sake of accommodating the existence of
all imaginable systems of coordinates, we shall assume, at
least locally, that the material space lies within the three-
dimensional space of spatial (Eulerian) coordinates, which
can be seen as a (flat) hypersurface embedded in
four-dimensional space-time. With respect to this embedding
situation, we preserve the correspondence between the ma-
terial and spatial coordinate systems in classical continuum
mechanics, although not their equality since the field equa-
tions defined in the space of material points are in general not
independent of the orientation of that local system of coordi-
nates.

At present, due to the limits of space, we shall concen-
trate ourselves merely on the construction of the field equa-
tions of our geometric theory, from which the equations of
motion shall follow. We shall not concern ourselves with the
over-determination of the field equations and the extraction
of their exact solutions. There is no doubt, however, that in
the process of investigating particular solutions to the field
equations, we might catch a glimpse into the initial states of
the microspin field as well as the evolution of the field equa-
tions. We’d also like to comment that we have constructed
our theory with a relatively small number of variables only, a
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characteristic which is important in order to prevent superflu-
ous variables from encumbering the theory.

2 Geometric structure of the manifold =3 of material
coordinates

We shall briefly describe the local geometry of the manifold
=3 which serves as the space of material (Lagrangian) coordi-
nates (material points)�i (i= 1; 2; 3). In general, in addition
to the general non-orientability of its local points, the mani-
fold =3 may contain singularities or geometric defects which
give rise to the existence of a local material curvature repre-
sented by a generally non-holonomic (path-dependent) cur-
vature tensor, a consideration which is normally shunned in
the standard continuum mechanics literature. This way, the
manifold =3 of material coordinates, may be defined either
as a continuum or a discontinuum and can be seen as a three-
dimensional hypersurface of non-orientable points, embed-
ded in the physical four-dimensional space-time of spatial-
temporal coordinates <4. Consequently, we need to employ
the language of general tensor analysis in which the local met-
ric, the local connection, and the local curvature of the mate-
rial body =3 form the most fundamental structural objects of
our consideration.

First, the material space =3 is spanned by the three curvi-
linear, covariant (i.e., tangent) basis vectors gi as =3 is em-
bedded in a four-dimensional space-time of physical events
<4 for the sake of general covariance, whose coordinates are
represented by y� (�= 1; 2; 3; 4) and whose covariant ba-
sis vectors are denoted by !�. In a neighborhood of local co-
ordinate points of <4 we also introduce an enveloping space
of spatial (Eulerian) coordinates xA (A= 1; 2; 3) spanned by
locally constant orthogonal basis vectors eA which form a
three-dimensional Euclidean space E3. (From now on, it is to
be understood that small and capital Latin indices run from
1 to 3, and that Greek indices run from 1 to 4.) As usual,
we also define the dual, contravariant (i.e., cotangent) coun-
terparts of the basis vectors gi, eA, and !�, denoting them
respectively as gi, eA, and !� , according to the following
relations: 


gi ; gk
�

= �ik;

eA ; eB

�
= �AB ;

h!� ; !�i = ��� ;

where the brackets hi denote the so-called projection, i.e., the
inner product and where � denotes the Kronecker delta. From
these basis vectors, we define their tetrad components as

iA =


gi ; eA

�
=

@�i

@xA
;

�i� =


gi ; !�

�
=
@�i

@y�
;

eA� =


eA ; !�

�
=
@xA

@y�
:

Their duals are given in the following relations:

iA
A
k = �i��

�
k = �ik ;

eA� e
�
B = �AB :

(Einstein’s summation convention is implied throughout
this work.)

The distance between two infinitesimally adjacent points
in the (initially undeformed) material body =3 is given by the
symmetric bilinear form (with
 denoting the tensor product)

g = gikgi 
 gk ;
called the metric tensor of the material space, as

ds2 = gikd�id�k :

By means of projection, the components of the metric ten-
sor of =3 are given by

gik = hgi ; gki :
Accordingly, for a; b= 1; 2; 3, they are related to the four-

dimensional components of the metric tensor of
=3, i.e., G�� = h!� ; !vi, by

gik = ��i �
�
kG�� =

= �ai �
b
kGab + 2k(ibk) + �kikk ;

where the round brackets indicate symmetrization (in contrast
to the square brackets denoting anti-symmetrization which
we shall also employ later) and where we have set

ki = �4
i = c

@t
@�i

;

bi = G4i = �ai G4a ;

� = G44 :

Here we have obviously put y4 = ct with cthe speed of
light in vacuum and t time.

Inversely, with the help of the following projective rela-
tions:

gi = ��i !� ;

!� = �i�gi+ 2 n�n ;
we find that

G�� = �i��
k
� gik+ 2 n�n� ;

or, calling the dual components of g, as shown in the relations

girgkr = �ki ;

G��G�� = ��� ;
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we have
�i 

i
� = ���� 2 n�n� :

Here 2 = � 1 and n�and n� respectively are the con-
travariant and covariant components of the unit vector field n
normal to the hypersurface of material coordinates=3, whose
canonical form may be given as �

�
�i ; k

�
= 0 where k is a

parameter. (Note that the same 16 relations also hold for the
inner product represented by e�AeA� .) We can write

n� =21=2 @�
@y�

�
G��

@�
@y�

@�
@y�

��1=2

:

Note that
n�

�
i = n�e

�
i = 0 ;

n�n� =2 :

Let now g denote the determinant of the three-dimensional
components of the material metric tensor gik. Then the co-
variant and contravariant components of the totally
anti-symmetric permutation tensor are given by

2ijk= g1=2"ijk ;

2ijk= g�1=2"ijk ;

where "ijk are the components of the usual permutation ten-
sor density. More specifically, we note that

gi ^ gj =2ijk gk ;
where the symbol ^ denotes exterior product, i.e.,
gi ^ gj =

�
��i ��j � ��j ��i � !� 
 !� . In the same manner, we

define the four-dimensional permutation tensor as one with
components

2����= G1=2"���� ;

2����= G�1=2"���� ;

whereG= detG�� . Also, we call the following simple tran-
sitive rotation group:

!� ^ !� = � 2 2���� n�!� ;
where

2ijk n� = ��i �
�
j �

�
k 2���� ;

n� =
1
6
��i �

�
j �

�
k 2ijk 2���� :

Note the following identities:

2ijk 2pqr=�pqrijk =�pi
�
�qj �

r
k � �rj �qk�+�qi ��rj �pk � �pj �rk�+

+ �ri
�
�pj �

q
k � �qj �pk� ;

2ijr 2pqr= �pqij = �pi �
q
j � �qi �pj ;

2ijs 2ijr= �rs ;

where �pqrijk and �pqij represent generalized Kronecker deltas.
In the same manner, the four-dimensional components of the
generalized Kronecker delta, i.e.,

�������� = det

0BBB@
��� ��� ��� ���
��� ��� ��� ���
�� �� �� ��
��� ��� ��� ���

1CCCA
can be used to deduce the following identities:

2��� 2����=2 �������� ;

2��� 2����=2 ������ ;

2���� 2����= 2 2 ����� ;
2���� 2����= 6 2 ��� :

Now, for the contravariant components of the material
metric tensor, we have

gik = �ia�
k
b G

ab + 2k(ibk) + ��kikk ;

G�� = ��i �
v
k g

ik+ 2 n�n� ;
where

ki =
1
c
@�i

@t
;

bi = G4i = �iaG
4a ;

�� = G44 :

Obviously, the quantities @�i

@t in ki are the contravariant
components of the local velocity vector field. If we choose an
orthogonal coordinate system for the background space-time
<4, we simply have the following three-dimensional compo-
nents of the material metric tensor:

gik = �ai �
b
kGab + �kikk ;

gik = �ia�
k
b G

ab + ��kikk :

In a special case, if the space-time <4 is (pseudo-)Euclid-
ean, we may set �= ��= � 1. However, for the sake of gen-
erality, we shall not always need to assume the case just men-
tioned.

Now, the components of the metric tensor of the local Eu-
clidean space of spatial coordinates xA, hAB = heA ; eBi, are
just the components of the Euclidean Kronecker delta:

hAB = �AB :

Similarly, we have the following relations:

gik = Ai 
B
k hAB = Ai 

A
k ;

hAB = iA
k
Bgik :
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Now we come to an important fact: from the structure
of the material metric tensor alone, we can raise and lower
the indices of arbitrary vectors and tensors defined in =3, and
hence in <4, by means of its components, e.g.,

Ai = gikAk; Ai = gikAk; B� = G��Bv;
B� = G��Bv; etc:

Having introduced the metric tensor, let us consider the
transformations among the physical objects defined as acting
in the material space =3. An arbitrary tensor field T of rank
n in =3 can in general be represented as

T = T ij:::kl::: gi 
 gj 
 : : : 
 gk 
 gl 
 � � � =
= T 0AB:::CD:::eA 
 eB 
 : : : 
 eC 
 eD 
 � � � =
= T 00��:::��:::!� 
 !� 
 : : : 
 !� 
 !� 
 : : : :

In other words,

T ij:::kl::: =
i
A

j
B :::

C
k 

D
l :::T

0AB:::
CD::: = �i��

j
� :::�

�
k �

�
l :::T

00��:::
��::: ;

T 0AB:::CD:::=
A
i 

B
j :::

k
C

l
D :::T

ij:::
kl::: =eA� e

B
� :::e

�
C e

�
D :::T

00��:::
��::: ;

T 00��:::��::: =�
k
��

l
� :::�

�
i �

�
j :::T

ij:::
kl::: = eC� e

D
� :::e

�
Ae

�
BT
0AB:::
CD::: :

For instance, the material line-element can once again be
written as

ds2 =gik (�p) d�id�k = �ABdxAdxB = G�� (y�) dy�dy� :

We now move on to the notion of a covariant derivative
defined in the material space =3. Again, for an arbitrary ten-
sor field T of =3, the covariant derivative of the components
of T is given as

rpT ij:::kl::: =
@T ij:::kl:::
@�p

+ �irpT
rj:::
kl::: + �jrpT

ir:::
kl::: + � � � �

� �rkpT
ij:::
rl::: � �rlpT

ij:::
kr::: � : : : ;

such that

rpT =
@T
@�p

= rpT ij:::kl::: gi 
 gj 
 : : : 
 gk 
 gl 
 : : : ;

where @gi
@�k

= �rikgr :

Here the n3 = 27 quantities �ijk are the components of the
connection field �, locally given by

�ijk = iA
@Aj
@�k

;

which, in our work, shall be non-symmetric in the pair of
its lower indices (jk) in order to describe both torsion and
discontinuities. If ��i represent another system of coordinates

in the material space =3, then locally the components of the
connection field � are seen to transform inhomogeneously ac-
cording to

�ijk =
@�i

@ ��p
@ ��r

@�j
@ ��s

@�k
��prs +

@�i

@ ��p
@2 ��p

@�k@�j
;

i.e., the �ijk do not transform as components of a local ten-
sor field. Before we continue, we shall note a few things
regarding some boundary conditions of our material geom-
etry. Because we have assumed that the hypersurface =3 is
embedded in the four-dimensional space-time <4, we must in
general have instead

@gi
@�k

= �rikgr+ 2 Kikn ;

whereKik = hrkgi ; ni =n�rk��i are the covariant compo-
nents of the extrinsic curvature of =3. Then the scalar given
by �K = 2 Kik

d�i
ds

d�k
ds , which is the Gaussian curvature of

=3, is arrived at. However our simultaneous embedding sit-
uation in which we have also defined an Euclidean space in
<4 as the space of spatial coordinates embedding the space
of material coordinates =3, means that the extrinsic curvature
tensor, and hence also the Gaussian curvature of =3, must
vanish and we are left simply with @gi

@�k = �rikgr. This situa-
tion is analogous to the simple situation in which a plane (flat
surface) is embedded in a three-dimensional space, where on
that plane we define a family of curves which give rise to a
system of curvilinear coordinates, however, with discontinu-
ities in the transformation from the plane coordinates to the
local curvilinear coordinates and vice versa.

Meanwhile, we have seen that the covariant derivative of
the tensor field T is again a tensor field. As such, here we
have

rpT ij:::kl::: = iA
j
B : : : 

C
k 

D
l : : : Ep

@T 0AB:::CD:::
@xE

Although a non-tensorial object, the connection field �
is a fundamental geometric object that establishes compari-
son of local vectors at different points in =3, i.e., in the La-
grangian coordinate system. Now, with the help of the mate-
rial metrical condition

rpgik = 0 ;
i.e.,

@gik
@�p

= �ikp + �kip ;

where �ikp = gir �rkp, one solves for �ijk as follows:

�ijk =
1
2
gri
�
@grj
@�k

� @gjk
@�r

+
@gkr
@ �j

�
+ �i[jk]�

� gri �gjs�s[rk] + gks�s[rj]
�
:

From here, we define the following geometric objects:
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1. The holonomic (path-independent) Christoffel or Levi-
Civita connection, sometimes also called the elastic
connection, whose components are symmetric in the
pair of its lower indices (jk) and given by�i

jk
	

=
1
2
gri
�
@grj
@�k

� @gjk
@�r

+
@gkr
@�j

�
:

2. The non-holonomic (path-dependent) object, a chiral-
ity tensor called the torsion tensor which describes lo-
cal rotation of material points in =3 and whose com-
ponents are given by

� ijk = �i[jk] =
1
2
iA

 
@Aj
@�k

� @Ak
@�j

!
:

3. The non-holonomic contorsion tensor, a linear com-
bination of the torsion tensor, whose components are
given by

T ijk = �i[jk] � gri
�
gjs�s[rk] + gks�s[rj]

�
=

= iA ~rk Aj =

= iA

 
@Aj
@�k

� �rjk	 Ar ! ;

which are actually anti-symmetric with respect to the
first two indices iandj.

In the above, we have exclusively introduced a covariant
derivative with respect to the holonomic connection alone,
denoted by ~rp. Again, for an arbitrary tensor field T of =3,
we have

~rpT ij:::kl::: =
@T ij:::kl:::
@�p

+
�i
rp
	
T rj:::kl::: +

�j
rp
	
T ir:::kl::: + � � � �

� �rkp	 T ij:::rl::: � �rlp	 T ij:::kr::: � : : : :
Now we can see that the metrical condition rpgik = 0

also implies that ~rpgik = 0, ~rkAi =T rikAr , and rkAi = 0.
Finally, with the help of the connection field � , we derive

the third fundamental geometric objects of =3, i.e., the local
fourth-order curvature tensor of the material space

R = Ri:jklgi 
 gj 
 gk 
 gl ;
where

Ri:jkl =
@�ijl
@�k

� @�ijk
@�l

+ �rjl�
i
rk � �rjk�irl :

These are given in the relations

(rkrj �rjrk) Fi = Rr:ijkFr � 2�r[jk]rr Fi ;
where Fi are the covariant components of an arbitrary vector
field F of =3. Correspondingly, for the contravariant compo-
nents F i we have

(rkrj �rjrk) F i = �Ri:rjkF r � 2�r[jk]rrF i :

The Riemann-Christoffel curvature tensor ~R here then ap-
pears as the part of the curvature tensorR built from the sym-
metric, holonomic Christoffel connection alone, whose com-
ponents are given by

~Ri:jkl =
@
@�k

�i
jl
	� @

@�l
�i
jk
	

+
�r
jl
	 �i

rk
	� �rjk	 �irl	 :

Correspondingly, the components of the symmetric Ricci
tensor are given by

~Rik = ~Rr:irk =
@
@�r
frikg � @2 e log (g)1=2

@�k@�i
+

+ fsikg @
e log (g)1=2

@�s
� fsirg frskg ;

where we have used the relations�k
ik
	

=
@e log (g)1=2

@�i
= �kki :

Then the Ricci scalar is simply ~R= ~Ri:i, an important ge-
ometric object which shall play the role of the microspin (chi-
rality) potential in our generalization of classical elasticity
theory developed here.

Now, it is easily verified that�
~rk ~rj � ~rj ~rk

�
Fi = ~Rr:ijkFr

and �
~rk ~rj � ~rj ~rk

�
F i = � ~Ri:rjkF

r :

The remaining parts of the curvature tensor R are then
the remaining non-holonomic objects J and Q whose com-
ponents are given as

J i:jkl =
@T ijl
@�k

� @T ijk
@�l

+ T rjlT
i
rk � T rjkT irl

and

Qi:jkl =
�r
jl
	
T irk + T rjl

�i
rk
	� �rjk	 T irl � T rjk �irl	 :

Hence, we write

Ri:jkl = ~Ri:jkl + J i:jkl +Qi:jkl :

More explicitly,

Ri:jkl = ~Ri:jkl + ~rkT ijl � ~rlT ijk + T rjlT
i
rk � T rjkT irl :

From here, we define the two important contractions of
the components of the curvature tensor above. We have the
generalized Ricci tensor whose components are given by

Rik = Rr:irk = ~Rik + ~rrT rik � T risT srk � ~rk!i + T rik!r ;

where the n= 3 quantities

!i = T kik = 2�k[ik]
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define the components of the microspin vector. Furthermore,
with the help of the relations grsT irs =� 2gik�s[ks] =�!i,
the generalized Ricci scalar is

R = Ri:i = ~R� 2 ~ri!i � !i!i � TijkT ikj :
It is customary to give the fully covariant components of

the Riemann-Christoffel curvature tensor. They can be ex-
pressed somewhat more conveniently in the following form
(when the gik are continuous):

~Rijkl =
1
2

�
@2gil
@�k@�j

+
@2gjk
@�l@�i

� @2gik
@�l@�j

� @2gjl
@�k@�i

�
+

+ grs
�frilg �sjk	� frikg �sjl	� :

In general, when the gik are continuous, all the following
symmetries are satisfied:

~Rijkl = � ~Rjikl = � ~Rijlk ;

~Rijkl = ~Rklij :

However, for the sake of generality, we may as well drop
the condition that the gik are continuous in their second
derivatives, i.e., with respect to the material coordinates �i
such that we can define further more non-holonomic, anti-
symmetric objects extracted from R such as the tensor field
V whose components are given by

Vik = Rr:rik = �lA
�

@
@�k

�
@Al
@�i

�
� @
@�i

�
@Al
@�k

��
:

The above relations are equivalent to the following
1
2 n (n� 1) = 3 equations for the components of the mate-
rial metric tensor:

@
@�l

�
@gij
@�k

�
� @
@�k

�
@gij
@�l

�
= � (Rijkl +Rjikl) ;

which we shall denote simply by kgij;klk. When the gik pos-
sess such discontinuities, we may define the discontinuity po-
tential by

�i =
�k
ik
	

=
@ e log (g)1=2

@�i
:

Hence we have

Vik =
@�k
@�i
� @�i
@�k

:

From the expression of the determinant of the material
metric tensor, i.e.,

g = "ijkg1ig2jg3k

we see, more specifically, that a discontinuum with arbitrary
geometric singularities is characterized by the following dis-

continuity equations:�
@2

@�s@�r
� @2

@�r@�s

�
g =

= "ijkg2jg3k

�
@2

@�s@�r
� @2

@�r@�s

�
g1i +

+ "ijkg1ig3k

�
@2

@�s@�r
� @2

@�r@�s

�
g2j +

+ "ijkg1ig2j

�
@2

@�s@�r
� @2

@�r@�s

�
g3k :

In other words,�
@2

@�s@�r
� @2

@�r@�s

�
g=�"ijk (R1irs +Ri1rs) g2jg3k�
� "ijk (R2jrs +Rj2rs) g1ig3k�
� "ijk (R3krs +Rk3rs) g1ig2j :

It is easy to show that in three dimensions the components
of the curvature tensor R obey the following decomposition:

Rijkl = Wijkl + gikRjl + gjlRik � gilRjk � gjkRil+
+

1
2

(gilgjk � gikgjl)R ;
i.e.,

Rij:: kl = W ij
::kl + �ikRjl + �jl R

i
:k � �ilRjk � �jkRi:l+

+
1
2

�
�il �

j
k � �ik�jl

�
R ;

where Wijkl (and W ij
::kl) are the components of the Weyl ten-

sor W satisfying W r
:irk = 0, whose symmetry properties fol-

low exactly those of Rijkl. Similarly, for the components of
the Riemann-Christoffel curvature tensor ~R we have

~Rij::kl = ~W ij
::kl + �ik ~Rjl + �jl ~Ri:k � �il ~Rjk � �jk ~Ri:l+

+
1
2

�
�il �

j
k � �ik�jl

�
~R :

Later, the above equations shall be needed to generalize
the components of the elasticity tensor of classical continuum
mechanics, i.e., by means of the components

1
2

�
�ik�

j
l � �il �jk

�
~R :

Furthermore with the help of the relations

Ri:jkl +Ri:klj +Ri:ljk = �2

 
@�i[jk]

@�l
+
@�i[kl]
@�j

+
@�i[lj]
@�k

+

+ �irj�
r
[kl] + �irk�r[lj] + �irl�

r
[jk]

�
;

we derive the following identities:

rpRijkl +rkRijlp +rlRijpk = 2
�

�r[kl]Rijrp+

+ �r[lp]Rijrk + �r[pk]Rijrl
�
;
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ri
�
Rik � 1

2
gikR

�
= 2gik�s[ri]R

r
:s + �r[ij]R

ijk
:::r :

From these more general identities, we then derive the
simpler and more specialized identities:

~Rijkl + ~Riklj + ~Riljk = 0 ;

~rp ~Rijkl + ~rk ~Rijlp + ~rl ~Rijpk = 0 ;

~ri
�

~Rik � 1
2
gik ~R

�
= 0 ;

often referred to as the Bianchi identities.
We are now able to state the following about the sources

of the curvature of the material space =3: there are actually
two sources that generate the curvature which can actually
be sufficiently represented by the Riemann-Christoffel curva-
ture tensor alone. The first source is the torsion represented
by �i[jk] which makes the hypersurface =3 non-orientable
as any field shall in general depend on the twisted path it
traces therein. As we have said, this torsion is the source
of microspin, i.e., point-rotation. The torsion tensor enters
the curvature tensor as an integral part and hence we can
equivalently attribute the source of microspin to the Riemann-
Christoffel curvature tensor as well. The second source is the
possible discontinuities in regions of =3 which, as we have
seen, render the components of the material metric tensor
gik = Ai Bk �AB discontinuous at least in their second deriva-
tives with respect to the material coordinates �i. This is ex-
plicitly shown in the following relations:

Ri:jkl = � iA
 
@
@�l

 
@Aj
@�k

!
� @
@�k

 
@Aj
@�l

!!
=

= � iA �rlKA
jk �rkKA

jl
�

+ 
i:jkl ;
where

KA
ij =

@Ai
@�j

=
1
2

 
@Ai
@�j

+
@Aj
@�i

!
+ Ak �k[ij]

and


i:jkl = iA
�

�rjkK
A
rl � �rjlK

A
rk � 2�r[kl]K

A
jr

�
:

Another way to cognize the existence of the curvature in
the material space =3 is as follows: let us inquire into the
possibility of “parallelism” in the material space =3. Take
now a “parallel” vector field pB such that

rk pBi = 0 ;
i.e.,

@ pBi
@�k

= �rik
pBr :

Then in general we obtain the following non-integrable
equations of the form

@
@�l

�
@ pBi
@ �k

�
� @
@ �k

�
@ pBi
@ �l

�
= �Rr:ikl pBr

showing that not even the “parallel” vector field pB is path-
independent. Hence even though parallelism may be possibly
defined in our geometry, absolute parallelism is obtained if
and only if the integrability condition Ri:jkl = 0 holds, i.e., if
the components of the Riemann-Christoffel curvature tensor
are given by

~Ri:jkl = ~rlT ijk � ~rkT ijl + T rjkT
i
rl � T rjlT irk :

In other words, in the presence of torsion (microspin) the
above situation concerning absolute parallelism is only pos-
sible if the material body is free of geometric defects, also
known as singularities.

The relations we have been developing so far of course
account for arbitrary nonorientability conditions as well as
geometric discontinuities of the material space =3. Conse-
quently, we see that the holonomic field equations of classi-
cal continuum mechanics shall be obtained whenever we drop
the assumptions of non-orientability of points and geometric
discontinuities of the material body. We also emphasize that
geometric non-linearity of the material body has been fully
taken into account. A material body then becomes linear if
and only if we neglect any quadratic and higher-order terms
involving the connection field � of the material space =3.

3 Elements of the generalized kinematics: deformation
analysis

Having described the internal structure of the material space
=3, i.e., the material body, we now move on to the dynam-
ics of the continuum/discontinuum =3 when it is subject to
an external displacement field. Our goal in this kinemati-
cal section is to generalize the notion of a material deriva-
tive with respect of the material motion. We shall deal with
the external displacement field in the direction of motion of
=3 which brings =3 from its initially undeformed configura-
tion to the deformed configuration �=3. We need to gener-
alize the structure of the external displacement (i.e., external
diffeomorphism) to include two kinds of microspin of mate-
rial points: the non-electromagnetic microspin as well as the
electromagnetic microspin which is generated, e.g., by elec-
tromagnetic polarization.

In this work, in order to geometrically describe the me-
chanics of the so-called Cosserat continuum as well as other
generalized continua, we define the external displacement
field  as being generally complex according to the decom-
position

 i = ui + i'i ;

where the diffeomorphism =3
 ! �=3 is given by

��i = �i +  i :

Here ui are the components of the usual displacement
field u in the neighborhood of points in =3, and 'i are the
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components of the microspin “point” displacement field '
satisfying

rk'i +ri'k = 0 ;

which can be written as an exterior (“Lie”) derivative:

L'gik = 0 :

This just says that the components of the material metric
tensor remain invariant with respect to the action of the field
'. We shall elaborate on the notion of exterior differentiation
in a short while.

The components of the displacement gradient tensor D
are then

Dik = rk i =

=
1
2

(rk i +ri k) +
1
2

(rk i �ri k) =

=
1
2

(rkui +riuk) +
1
2

(rkui �riuk) +

+
1
2
i (rk'i �ri'k) =

= "ik + !ik :

Accordingly,

"ik =
1
2

(rkui +riuk) =
1
2
Lugik

lin= 1
2

(�gik � gik)
are the components of the linear strain tensor and

!ik = 
ik + �ik

are the components of the generalized spin (vorticity) tensor,
where


ik =
1
2

(rkui �riuk)
are the components of the ordinary macrospin tensor, and

�ik =
1
2
i (rk'i �ri'k)

are the components of the microspin tensor describing rota-
tion of material points on their own axes due to torsion, or,
in the literature, the so-called distributed moment. At this
point, it may be that the internal rotation of material points is
analogous to the spin of electrons if the material point them-
selves are seen as charged point-particles. However, we know
that electrons possess internal spin due to internal structural
reasons while the material points also rotate partly due to ex-
ternally induced couple stress giving rise to torsion. For this
reason we split the components of the microspin ' into two
parts:

'i = �i + eAi ;

where �i describe non-electromagnetic microspin and eAi
describe pure electron spin with e being the electric charge
and Ai, up to a constant of proportionality, being the material
components of the electromagnetic vector potential A:

Ai = q!�i A� ;

where q is a parametric constant and A� are the components
of the four-dimensional electromagnetic vector potential in
the sense of Maxwellian electrodynamics. Inversely, we have

A� =
1
q
�
!i�Ai+ 2 Nn�� ;

where N = qn�A�. The correspondence with classical elec-
trodynamics becomes complete if we link the electromagnetic
microspin tensor f represented by the components

fik =
1
2
ie (rkAi �riAk)

to the electromagnetic field tensor F =F��!� 
 !� through

fik =
�
e
!�i !

�
kF�� ;

where �= 1
2 iqe

2. The four-dimensional components of the
electromagnetic field tensor in canonical form are

F�� =
@A�
@y�

� @A�
@y�

=

0BBBBB@
0 �E1 �E2 �E3

E1 0 B3 B2

E2 �B3 0 B1

E3 B2 �B1 0

1CCCCCA ;

whereE=
�
E1; E2; E3� andB=

�
B1; B2; B3� are the elec-

tric and magnetic fields, respectively. In three-dimensional
vector notation, E=� 1

c
@ ~A
@t � ~r� and B= curl ~A, where

�A =A�!� =
� ~A; ��. They satisfy Maxwell’s equations in the

Lorentz gauge div ~A= 0, i.e.,

1
c
@E
@t

= curlB � 4�
c
j ;

divE = �r2� = 4��e ;

1
c
@B
@t

= �curlE ;

divB = 0 ;

where j is the electromagnetic current density vector and �e
is the electric charge density. In addition, we can write

r�F�� =
4�
c
j� ;

i.e.,r�FA� = 4�
c j

A and j4 = �e. The inverse transformation
relating fik to Fik is then given by

F�� =
e
�
!i�!

k
� fik + F̂�� ;

where
F̂�� = � 2 (n�F�� � n�F��) n� ;

F̂��n� = 22 F��n� = F��n� :
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This way, the components of the generalized vorticity ten-
sor once again are

!ik =
1
2

(rkui �rkui) +
1
2
i (rk�i �ri�k) +

+
1
2
ie (rkAi �riAk) =

=
1
2

�
@ui
@�k
� @uk
@�i

�
+

1
2
i
�
@�i
@�k
� @�k
@�i

�
+

+
1
2
ie
�
@Ai
@�k
� @Ak
@�i

�
� �r[ik] (ur + i�r + ieAr) =

= 
ik +$ik +
�
e
!�i !

�
kF�� ;

where
$ik =

1
2
i (rk�i �ri�k)

are the components of the non-electromagnetic microspin
tensor. Thus we have now seen, in our generalized defor-
mation analysis, how the microspin field is incorporated into
the vorticity tensor.

Finally, we shall now produce some basic framework for
equations of motion applicable to arbitrary tensor fields in
terms of exterior derivatives. We define the exterior derivative
of an arbitrary vector field (i.e., a rank-one tensor field) of
=3, say W , with respect to the so-called Cartan basis as the
totally anti-symmetric object

LUW = 2U[iWk]gi 
 gk ;
where U is the velocity vector in the direction of motion of
the material body =3, i.e., U i = @ i

@t . If we now take the local
basis vectors as directional derivatives, i.e., the Cartan coor-
dinate basis vectors gi = @

@�i = @i and gi = d�i, we obtain for
instance, in component notation,

(LUW )i = LUWi = Uk@kWi +Wk@iUk :

Using the exterior product, we actually see that

LUW = U ^W = U 
W �W 
 U :
Correspondingly, for W i, we have

(LUW )i = LUW i = Uk@kW i �W k@kU i :

The exterior material derivative is then a direct general-
ization of the ordinary material derivative (e.g., as we know,
for a scalar field � it is given by D�

Dt = @�
@t + @�

@�i U
i) as fol-

lows:

DWi

Dt
=
@Wi

@t
+ LUWi =

@Wi

@t
+ (U ^ V )i =

@Wi

@t
+

+ Uk@kWi +Wk@iUk ;

DW i

Dt
=
@W i

@t
+ LUW i =

@W i

@t
+ (U ^ V )i =

@W i

@t
+

+ Uk@kW i �W k@iUk :

Finally, we obtain the generalized material derivative of
the components of an arbitrary tensor field T of =3 as

DT ij:::kl:::
Dt

=
@T ij:::kl:::
@t

+ Um@mT
ij:::
kl::: + T ij:::ml:::@kU

m+

+ T ij:::km:::@lU
m + � � � � Tmj:::kl::: @mU

i � T im:::kl::: @mU
j � : : : ;

or alternatively as

DT ij:::kl:::
Dt

=
@T ij:::kl:::
@t

+ UmrmT ij:::kl::: + T ij:::ml:::rkUm+

+ T ij:::km:::rlUm + � � � � Tmj:::kl::: rmU i � T im:::kl::: rmU j �
� � � �+ 2�m[kp]T

ij:::
ml:::U

p + 2�m[lp]T
ij:::
km:::U

p + � � � �
� 2�i[mp]T

mj:::
kl::: U

p � 2�j[mp]T
im:::
kl::: U

p � : : : :
Written more simply,

DT ij:::kl:::
Dt

=
@T ij:::kl:::
@t

+ LUT
ij:::
kl::: =

@T ij:::kl:::
@t

+ (U ^ T )ij:::kl::: :

For a scalar field �, we have simply

D�
Dt

=
@�
@t

+ Uk@k� ;

which is just the ordinary material derivative.
Now, with the help of the Cartan basis vectors, the torsion

tensor can be expressed directly in terms of the permutation
tensor as

�i[jk] = �1
2
gip 2pjk :

Hence from the generalized material derivative for the com-
ponents of the material metric tensor g (defined with respect
to the Cartan basis), i.e.,

Dgik
Dt

=
@gik
@t

+ LU gik =
@gik
@t

+ (U ^ g)ik ;

we find especially that

Dgik
Dt

=
@gik
@t

+rkUi +riUk ;
with the help of the metrical condition rpgik = 0. Similarly,
we also find

Dgik

Dt
=
@gik

@t
� �rkU i +riUk� :

Note also that
D�ik
Dt

= 0 :

The components of the velocity gradient tensor are
given by

Lik = rkUi =
1
2

(rkUi +riUk) +
1
2

(rkUi �riUk) ;
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where, following the so-called Helmholtz decomposition the-
orem, we can write

Ui = ri�+
1
2
gil 2ljk (rj�k �rk�j) ;

for a scalar field � and a vector field �. However, note that in
our case we obtain the following generalized identities:

div curl U = �1
2
2ijk�Rl:kijUl � 2�l[ij]rlAk

�
;

curl grad � = 2ijk �l[ij]rl� ;
which must hold throughout unless a constraint is invoked.
We now define the generalized shear scalar by

� = riU i = riri�+
1
2
2ijk (rirj �rjri) �k =

= r2�� 1
2
2ijk Rl:kij�l+ 2ijk �l[ij]rl�k :

In other words, the shear now depends on the microspin
field generated by curvature and torsion tensors.

Meanwhile, we see that the “contravariant” components
of the local acceleration vector will simply be given by

ai =
DU i

Dt
=
@U i

@t
+ Uk@kU i � Uk@kU i =

=
@U i

@t
:

However, we also have

ai =
DUi
Dt

=
@Ui
@t

+ (rkUi +riUk) Uk ;
for the “covariant” components.

Furthermore, we have

ai =
@Ui
@t

+
�
Dgik
Dt

� @gik
@t

�
Uk :

Now, define the local acceleration covector through

âi = gikai =

= gik
@Uk
@t

+
�rkU i +riUk� Uk =

=
@U i

@t
� UkDg

ik

Dt
;

such that we have

ai � âi = Uk
Dgik

Dt
:

Hence we see that the sufficient condition for the two local
acceleration vectors to coincide is

Dgik
Dt

= 0 :

In other words, in such a situation we have

@gik
@t

= � (rkUi +riUk) :
In this case, a purely rotational motion is obtained only

when the material motion is rigid, i.e., when @gik
@t = 0 or, in

other words, when the condition

LU gik = L(ik) = rkUi +riUk = 0

is satisfied identically. Similarly, a purely translational mo-
tion is obtained when L[ik] = 0, which describes a potential
motion, where we have Ui =ri�. However, as we have seen,
in the presence of torsion even any potential motion of this
kind is still obviously path-dependent as the relations 2ijk
�l[ij]rl�, 0 hold in general.

We now consider the path-dependent displacement field
� tracing a loop `, say, from point P1 to point P2 in <4 with
components:

�i =
I

P1�P2

d i =
I

P1�P2

�
"i:k + !i:k �  l�ilk� d� :k

Let us observe that

 k�ikl =  kiA
@Ak
@�l

= � kAk @
i
A

@�l
=

= � A @iA
@�l

= �
�
@
@�l

�
iA 

A�� iA @ A@�l

�
=

= iA
@ A

@�l
� @ i

@�l
:

Now since  i = ��i, and using @�f
@�i = � @f@�i for an arbi-

trary function f , we have

 k�ikl = iA�
�
@xA

@xB

�
Bl � �

�
@�i

@�l

�
= 0 ;

and we are left with

�i =
I

P1�P2

d i =
I

P1�P2

�
"i:k + !i:k

�
d�k :

Assuming that the "ik are continuous, we can now derive
the following relations:

D i = rk id�k =
@ i

@�k
d�k ;

rl!i:kd�k=
�rl"i:k �ri"lk� d�k =

�
@"i:k
@�l
� @"lk

@�i

�
d�k :

With the help of the above relations and by direct partial
integration, we then have

�i=
I

P1�P2

d i=!i:k�
k��P2

P1
�

I
P1�P2

�rl :i:k�rk i:l���kd�l ;
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where
 i:k = "i:k � �j �rj "i:k �ri"jk� :

It can be seen that

rl i:k �rk i:l = �Zi:jkl�j ;
where we have defined another non-holonomic tensor Z with
the components

Zi:jkl = rlrj "i:k +rkri"jl �rkrj "i:l �rlri"jk :
Now, the linearized components of the Riemann-

Christoffel curvature tensor are given by

~Rijkl
lin= 1

2

�
@2gil
@�k@�j

+
@2gjk
@�l@�i

� @2gik
@�l@�j

� @2gjl
@�k@�i

�
:

Direct calculation gives

� ~Rijkl
lin= 1

2
(rkrj � gil +rlri� gjk �rlrj � gik�
� rkri� gjl) :

However, � gik = "ik, and hence we obtain

� ~Rijkl
lin= 1

2
(rkrj"il +rlri"jk �rlrj"ik�
� rkri"jl) :

In other words,

Zijkl
lin= �2� ~Rijkl :

Obviously the Zijkl possess almost the same fundamen-
tal symmetries as the components of the Riemann-Christoffel
curvature tensor, i.e., Zijkl =�Zjikl =�Zijlk as well as the
general asymmetry Zijkl ,Zklij as

Zijkl � Zklij =
�
Rr:ijl+R

r
:jli
�
"rk +

�
Rr:klj+Rr:lkj

�
"ir +

+
�
Rr:jik +Rr:ikj

�
"rl + (Rr:lik +Rr:kli) "jr �

� 2
�

�r[jl]rr"ik + �r[ik]rr"jl + �r[kj]rr"il +
+ �r[li]rr"jk

�
:

When the tensor Z vanishes we have, of course, a set of
integrable equations giving rise to the integrability condition
for the components of the strain tensor, which is equivalent to
the vanishing of the field �. That is, to the first order in the
components of the strain tensor, if the condition

� ~Rijkl = 0

is satisfied identically.

Finally, we can write (still to the first order in the compo-
nents of the strain tensor)

�i =
I

P1�P2

d i =
�
!i:k�

k���P2

P1
+

1
2

I
P1�P2

Zi:jkl�
jdSkl =

=
�
!i:k�

k���P2

P1
�

I
P1�P2

� ~Ri:jkl�
jdSkl ;

where
dSik = d�i��k � d�k��i

are the components of an infinitesimal closed surface in =3
spanned by the displacements d� and �� in 2 preferred direc-
tions.

Ending this section, let us give further in-depth investiga-
tion of the local translational-rotational motion of points on
the material body. Define the unit velocity vector by

Û i =
�i4p
gkl�k4 �l4

=
d�i

ds
;

such that

�i4 =
@�i

@t
=
�
gkl�k4 �

l
4
�1=2 d�i

ds
;

i.e.,

ds =
�
gik�i4�

k
4
�1=2 @t

@�l
d�l =

�
UiU i

�1=2
dt = Udt :

Then the local equations of motion along arbitrary curves
on the hypersurface of material coordinates =3 � <4 can be
described by the quadruplet of unit space-time vectors
(Û ; V̂ ; Ŵ ; 2n) orthogonal to each other where the first three
unit vectors (i.e., Û ; V̂ ; Ŵ ) are exclusively defined as local
tangent vectors in the hypersurface =3 and n is the unit nor-
mal vector to the hypersurface=3. These equations of motion
are derived by generalizing the ordinary Frenet equations of
orientable points of a curve in three-dimensional Euclidean
space to four-dimensions as well as to include effects of mi-
crospin generated by geometric torsion. Setting

Û = u�!� = Û igi ;

V̂ = v�!� = V̂ igi ;

Ŵ = w�!� = Ŵ igi ;

n = n�!� ;

we obtain, in general, the following set of equations of motion
of the material points on the material body:

�u�

�s
= kv� ;

�v�

�s
= �w� � ku� ;

�w�

�s
= � v� + �n� ;
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�n�

�s
= �w� ;

where the operator
�
�s

= Û iri = u�r�
represents the absolute covariant derivative in =3 � <4. In
the above equations we have defined the following invariants:

k =
�
G��

�u�

�s
�u�

�s

�1=2

=

 
gik

�Û i

�s
�Ûk

�s

!1=2

;

� =2���� u�v� �v
�

�s
n� = 22 ijk Û i V̂ j �V̂

k

�s
;

� =
�
G��

�n�

�s
�n�

�s

�1=2

:

In our case, however, the vanishing of the extrinsic cur-
vature of the hypersurface =3 means that the direction of the
unit normal vector n is fixed. Consequently, we have

� = 0 ;

and our equations of motion can be written as

Ûk ~rk Û i = kV̂ i � T iklÛk Û l ;
Ûk ~rk V̂ i = � Ŵ i � kÛ i � T ikl V̂ k Û l ;

Ûk ~rkŴ i = � V̂ i � T iklŴ k Û l

in three-dimensional notation. In particular, we note that, just
as the components of the contorsion tensor T ijk, the scalar �
measures the twist of any given curve in =3 due to microspin.

Furthermore, it can be shown that the gradient of the unit
velocity vector can be decomposed accordingly as

rk Ûi = �ik + �ik +
1
4
hik �̂ + ÛkÂi ;

where
hik = gik � ÛiÛk ;

�ik=
1
4
hri h

s
k

�rr Ûs+rs Ûr�=
1
4
hri h

s
k

�
~rr Ûs+ ~rsÛr

��
� 1

2
hri h

s
kT

l
(rs)Ûl ;

�ik=
1
4
hri h

s
k

�rr Ûs�rsÛr�=
1
4
hri h

s
k

�
~rr Ûs� ~rsÛr

��
� 1

2
hri h

s
kT

l
[rs] Ûl ;

�̂ = riÛ i ;
Âi =

�Ûi
�s

:

Note that

hik Ûk = �ik Ûk = �ik Ûk = 0 :

Setting ��=
�
gik�i4�k4

��1=2
such that Û i = ��U i, we ob-

tain in general

��rkUi =
1
4

��hri h
s
k (rrUs +rsUr) +

1
4

��hri h
s
k (rrUs�

� rsUr) +
1
2

��riUk +
1
4
gik

���
�s

+
1
4

��gikrlU l+

+ ��UiUk
���
�s

+ ��2Uk
�Ui
�s
� 1

4
��2UiUk

���
�s
�

� 1
2

��3Ui
�Uk
�s
� 1

4
��3UiUkrlU l :

Again, the vanishing of the extrinsic curvature of the hy-
persurface =3 gives ���

�s = 0. Hence we have

rkUi= 1
4
hri h

s
k (rrUs+rsUr)+

1
4
hri h

s
k (rrUs�rsUr)+

+
1
2
riUk +

1
4
gikrlU l + ��Uk

�Ui
�s
� 1

2
��2Ui

�Uk
�s
�

� 1
4

��2UiUkrlU l ;
for the components of the velocity gradient tensor.

Meanwhile, with the help of the identities

Û jrkrj Ûi = rk
�
Û jrj Ûi

�� �rk Ûj� �rj Ûi� =

= rkÂi �
�rk Ûj� �rj Ûi� ;

Û j (rkrj �rjrk) Ûi = Rl:ijk ÛlÛ
j � 2�l[jk]Û

jrlÛi ;
we can derive the following equation:

��̂
�s

= ri
 
�Û i

�s

!
� �ri Ûk� �rk Û i��Rik Û iÛk+

+ 2�l[ik]Û
irlÛk :

Hence we obtain

��
�s

=ri
�
�U i

�s

�
���

�riUk� �rkU i��2
�U i

�s
ri (e log �)�

� ��RikU iUk + 2���l[ik]U
irlUk ;

for the rate of shear with respect to the local arc length of the
material body.

4 Generalized components of the elasticity tensor of
the material body =3 in the presence of microspin
and geometric discontinuities (defects)

As we know, the most general form of the components of a
fourth-rank isotropic tensor is given in terms of spatial coor-
dinates by

IABCD = C1�AB �CD + C2�AC �BD + C3�AD�BC ;
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whereC1; C2; andC3 are constants. In the case of anisotropy,
C1; C2, andC3 are no longer constant but still remain in-
variant with respect to the change of the coordinate system.
Transforming these to material coordinates, we have

Iij::kl = C1gijgkl + C2�ik�
j
l + C3�il �

j
k :

On reasonably relaxing the ordinary symmetries, we now
generalize the components of the fourth-rank elasticity tensor
with the addition of a geometrized part describing microspin
and geometric discontinuities as follows:

Cij::kl = �gijgkl + �
�
�ik�

j
l + �il �

j
k

�
+ 

�
�ik�

j
l � �il �jk

�
;

where
� =

2
15
Aik:i:k � 1

15
Aki:i:k ;

� =
1
10
Aki::ik � 1

10
Aik:i:k ;

 =
1
2
� ~R ;

where � is a non-zero constant, and where

Aij::kl = �gijgkl + �
�
�ik�

j
l + �il �

j
k

�
are, of course, the components of the ordinary, non-microspin
(non-micropolar) elasticity tensor obeying the symmetries
Aij::kl =Aji::kl =Aij::lk =A ij

kl:: . Now if we define the remain-
ing components by

Bij::kl =
1
2
�
�
�ik�

j
l � �il �jk

�
~R ;

with Bij::kl =�Bji::kl =�Bij::lk =B ij
kl:: , then we have relaxed

the ordinary symmetries of the elasticity tensor. Most impor-
tantly, we note that our choice of the Ricci curvature scalar
~R (rather than the more general curvature scalar R of which
~R is a component) to enter our generalized elasticity tensor
is meant to accommodate very general situations such that in
the absence of geometric discontinuities the above equations
will in general still hold. This corresponds to the fact that
the existence of the Ricci curvature tensor ~R is primarily due
to microspin while geometric discontinuities are described by
the full curvature tensor R as we have seen in Section 2.

Now with the help of the decomposition of the Riemann-
Christoffel curvature tensor, we obtain

Cij::kl = �gijgkl + �
�
�ik�

j
l + �il �

j
k

�
+ �

�
~W ij
::kl + �ik ~Rj:l+

+ �jl ~Ri:k � �il ~Rj:k � �jk ~Ri:l � ~Rij::kl
�

for the components of the generalized elasticity tensor. Hence
for linear elastic continua/discontinua, with the help of the
potential energy functional �F , i.e., the one given by

�F =
1
2
C kl
ij::D

ijDkl ;

such that

�ij =
@ �F
@Dij ;

i.e.,

�(ij) =
@ �F
@"ij

;

�[ij] =
@ �F
@!ij

;

we obtain the following constitutive relations:

�ij = C kl
ij::Dkl ;

relating the components of the stress tensor � to the compo-
nents of the displacement gradient tensor D. Then it follows,
as we have expected, that the stress tensor becomes asymmet-
ric. Since B kl

(ij):: = 0, we obtain

�(ij) = C kl
(ij)::Dkl = A kl

ij::"kl = �gij"k:k + 2�"ij ;

for the components of the symmetric part of the stress ten-
sor, in terms of the components strain tensor and the dilation
scalar �= "i:i. Correspondingly, since A kl

[ij]:: = 0, the compo-
nents of the anti-symmetric part of the stress tensor are then
given by

�[ij] = C kl
[ij]::Dkl = B kl

ij::!kl =

= �
�

~W kl
ij:: � ~R kl

ij::

�
+ �

�
D k
i:

~Rjk +Dk
:j

~Rik�
� Dk

:i
~Rjk �D k

j:
~Rik
�

=

= �
�

~W kl
ij:: � ~R kl

ij::

�
!kl + 2�

�
! ki: ~Rjk � ! k

j:
~Rik
�

=

= �!ij ~R ;

in terms of the components of the generalized vorticity tensor.
We can now define the geometrized microspin potential by the
scalar

S = � ~R = �
�
R+ 2 ~ri!i + !i!i + TijkT ikj

�
:

Then, more specifically, we write

�[ij] = S
�


ij +$ij +
�
e
!�i !

�
j F��

�
:

From the above relations, we see that when the electro-
magnetic contribution vanishes, we arrive at a geometrized
Cosserat elasticity theory. As we know, the standard Cosserat
elasticity theory does not consider effects generated by the
electromagnetic field. Various continuum theories which can
be described as conservative theories often take into consider-
ation electrostatic phenomena since the electric field is sim-
ply described by a gradient of a scalar potential which cor-
responds to their conservative description of force and stress.
But that proves to be a limitation especially because magnetic
effects are still neglected.
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As usual, should we consider thermal effects, then we
would define the components of the thermal stress t by

tik = ��T gik�T ;

where �T is the thermal coefficient and �T is the temper-
ature increment. Hence the components of the generalized
stress tensor become

�ik = C rs
ik::Drs � �T gik�T :

Setting now
��T = �1

3
�T

(�+ 2�)
;

we can alternatively write

�ik = C rs
ik:: (Drs + ��T grs�T ) :

Finally, we shall obtain

�ik = (�"r:r � �T �T ) gik + 2�"ik + �!ik ~R ;

i.e., as before

�(ij) = (�"r:r � �T �T ) gij + 2�"ij ;

�[ij] = �!ij ~R =
1
2
� 2ijk Sk ~R ;

where Sk are the components of the generalized vorticity vec-
tor S.

We note that, as is customary, in order to accord with the
standard physical description of continuum mechanics, we
need to set

� = G =
E

2 (1 + �)
;

� = G
�

2�
1� 2�

�
;

where G is the shear modulus, E is Young’s modulus, and �
is Poisson’s ratio.

Extending the above description, we shall have a glimpse
into the more general non-linear constitutive relations
given by

�ij = C kl
ij::Dkl +K kl

ij::mnDklD
mn + : : : ;

where the dots represent terms of higher order. Or, up to the
second order in the displacement gradient tensor, we have

�ij = C kl
ij::Dkl +K kl

ij::mnDklD
mn :

Here the Kijklmn are the components of the sixth-rank,
isotropic, non-linear elasticity tensor whose most general
form appears to be given by

Kijklmn=A1gijgklgmn + A2gijgkmgnl + A3gijgknglm +

+A4gklgimgjn + A5gklgingjm + A6gmngikgjl +

+A7gmngilgjk + A8gimgjkgnl + A9gimgjlgkn +

+A10gingjkglm+A11gingjlgkm+A12gjmgikgnl +

+A13gjmgilgkn+A14gjngikglm+A15gjngilgkm ;

where A1; A2; : : : ; A15 are invariants. In a similar manner
as in the generalized linear case, we shall call the following
symmetries:

Kijklmn = Kklijmn = Kklmnij = Kmnijkl :

Hence, we can bring the Kijklmn into the form

Kijklmn = B1gijgklgmn +B2gij (gkmgnl + gknglm) +

+B3gij (gkmgnl � gknglm) +B4gkl (gimgjn+

+ gingjm) +B5gkl (gimgjn � gingjm) +

+B6gmn (gikgjl + gilgjk) +B7gmn (gikgjl�
� gilgjk) +B8gim (gjkgnl + gjlgkn) +

+B9gim (gjkgnl � gjlgkn ) +B10gjm (gikgnl +

+ gilgkn) +B11gjm (gikgnl � gilgkn) ;

where, again, B1; B2; : : : ; B11 are invariants. As in the gen-
eralized linear case, relating the coefficients B3; B5; B7; B9 ,
and B11 to the generator of microspin in our theory, i.e., the
Riemann-Christoffel curvature tensor, we obtain

Kijklmn = �1gijgklgmn + �2gij (gkmgnl + gknglm) +

+ �3gkl (gimgjn + gingjm) + �4gmn (gikgjl +

+ gilgjk) + �5gim (gjkgnl + gjlgkn) +

+ �6gjm (gikgnl + gilgkn) +
1
2
�1gij (gkmgnl�

� gknglm) ~R+
1
2
�2gkl (gimgjn � gingjm) ~R+

+
1
2
�3gmn (gikgjl�gilgjk) ~R+

1
2
�4gim (gjkgnl�

� gjlgkn) ~R+
1
2
�5gjm (gikgnl � gilgkn) ~R ;

where we have set B1 =�1; B2 =�2; B4 =�3; B6 =�4;
B8 =�5; B10 =�6 and where, for constant �1; �2; : : : ; �5,
the five quantities

K1 = B3 =
1
2
�1 ~R ;

K2 = B5 =
1
2
�2 ~R ;

K3 = B7 =
1
2
�3 ~R ;

K4 = B9 =
1
2
�4 ~R ;

K5 = B11 =
1
2
�5 ~R

form a set of additional microspin potentials. Hence we see
that in the non-linear case, at least there are in general six
microspin potentials instead of just one as in the linear case.
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Then the constitutive equations are readily derivable by
means of the third-order potential functional

� �F =
1
2
C kl
ij::D

ijDkl +
1
3
K kl
ij::mnD

ijDklDmn

through

�ij =
@ � �F
@Dij = (1)�ij + (2)�ij ;

where (1) indicates the linear part and (2) indicates the non-
linear part. Note that this is true whenever the Kijklmn in
general possess the above mentioned symmetries. Direct, but
somewhat lengthy, calculation gives

(2)�ij = K kl
ij::mnDklD

mn =

=
�
�1
�
"k:k
�2

+ 2�2"kl"kl + �1!kl!kl ~R
�
gij +

+ "k:k
�

(2�3 + 2�4) "ij + (�2 + �3) !ij ~R
�

+

+D k
i:

�
2�5"jk+�4!jk ~R

�
+D k

j:

�
2�6"ik+�5!ik ~R

�
:

Overall, we obtain, for the components of the stress ten-
sor, the following:

�ij =
�
�"k:k � �T �T

�
gij + 2�"ij + �!ij ~R+

+
�
�1
�
"k:k
�2

+ 2�2"kl"kl + �1!kl!kl ~R
�
gij +

+ "k:k
�

(2�3 + 2�4) "ij + (�2 + �3) !ij ~R
�

+

+Dk
i:

�
2�5"jk+�4!jk ~R

�
+D k

j:

�
2�6"ik + �5!ik ~R

�
:

5 Variational derivation of the field equations. Equa-
tions of motion

We shall now see that our theory can best be described, in
the linear case, independently by 2 Lagrangian densities. We
give the first Lagrangian density as

�L =
p
g
�
�ik (rk i �Dik) +

1
2
Cij::klDijD

kl�
� �TDi

:i�T + U i (ri k) �f k � �mUk��;
where �m is the material density and f is a scalar potential.
From here we then arrive at the following invariant integral:

I =
Z
vol

�
�ik

�r(k  i) � "ik�+ �ik
�r[k  i] � !ik�+

+
1
2
Aij::kl"ij "

kl +
1
2
Bij::kl!ij!

kl � �T "i:i�T +

+ U i (ri k) �f k � �mUk�� dV ;
where dV = pgd�1d�2d�3.

Writing �L= pgL, we then have

�I =
Z
vol

�
@ L
@�ik

��ik +
@L
@"ik

�"ik +
@L
@!ik

�!ik+

+
@L

@ (ri k) � (ri k)
�
dV = 0 :

NowZ
vol

@L
@ (ri k) � (ri k) dV =

Z
vol

ri
�

@ L
@ (ri k) � k

�
dV�

�
Z
vol

ri
�

@L
@ (ri k)

�
� kdV =

= �
Z
vol

ri
�

@L
@ (ri k)

�
� kdV ;

since the first term on the right-hand-side of the first line is
an absolute differential that can be transformed away on the
boundary of integration by means of the divergence theorem.
Hence we have

�I =
Z
vol

�
@L
@�ik

��ik +
@L
@"ik

�"ik +
@L
@!ik

�!ik�

� ri
�

@L
@ (ri k)

�
� k

�
dV = 0 ;

where each term in the integrand is independent of the oth-
ers. Note also that the variations ��ik; �"ik; �!ik, and� k
are arbitrary.

From @L
@�ik = 0, we obtain

"ik = r(k  i) ;

!ik = r[k  i] ;

i.e., the components of the strain and vorticity tensors, respec-
tively.

From @L
@"ik = 0, we obtain

�(ik) = Aik::rs"
rs � �T gik�T ;

i.e., the symmetric components of the stress tensor.
From @L

@!ik = 0, we obtain

�[ik] = Bik::rs!
rs = �!ik ~R ;

i.e., the anti-symmetric components of the stress tensor.
Finally, from the fourth variation we now show in detail

that it yields the equations of motion. We first see that

@L
@ (ri k) = �ik + U i

�
f k � �mUk� :

Hence

ri
�

@L
@ (ri k)

�
= ri�ik +ri �fU i�  k + fU iri k�
�ri ��mU i� Uk � �mU iriUk :
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Define the “extended” shear scalar and the mass current
density vector, respectively, through

l = ri �fU i� ;
J i = �mU i :

Now we readily identify the force per unit mass f and the
body force per unit mass b, respectively, by

f i = UkrkU i =
�U i

�t
;

bi =
1
�m

�
l i + f

�
1�rkJk� U i� =

=
1
�m

�
l i + f

�
1 +

@�m
@t

�
U i
�
;

where we have used the relation

D�m
Dt

= ��mriU i ;
i.e., @�m

@t +ri ��mU i� = 0, derivable from the four-
dimensional conservation law r� (�m �U�) = 0 where
�U� =

�
U i; c

�
.

Hence we have (for arbitrary � k)Z
vol

�ri�ik + �mbk � �mfk�� kdV = 0 ;

i.e., the equations of motion

ri�ik = �m
�
fk � bk� :

Before we move on to the second Lagrangian density, let’s
discuss briefly the so-called couple stress, i.e., the couple per
unit area also known as the distributed moment. We denote
the couple stress tensor by the second-rank tensor field M . In
analogy to the linear constitutive relations relating the stress
tensor � to displacement gradient tensor D, we write

Mik = D rs
ik::Nrs ;

where
Dijkl = Eijkl + Fijkl

are assumed to possess the same symmetry properties asCijkl
(i.e., Eijkl have the same symmetry properties as Aijkl while
Fijkl, representing the chirality part, have the same symmetry
properties as Bijkl).

Likewise,

Nik = N(ik) +N[ik] = Xik + Yik

are comparable to Dik =D(ik) +D[ik] = "ik +!ik.
As a boundary condition, let us now define a completely

anti-symmetric third-rank spin tensor as follows:

J ikl = J [ikl] =
1
2
2ikl  ;

where  is a scalar function such that the spin tensor of our
theory (which contains both the macrospin and microspin ten-
sors) can be written as a gradient, i.e.,

Si = � 2ijk ~R!jk = ri ;
such that whenever we desire to subject the above to the inte-
grability condition 2ijkrjSk = 0, we have 2ijk �l[jk]Sl = 0,
resulting in Yik = 0.

In other words,

 =  0 + �
Z
2ijk ~R!ijd�k ;

where  0 is constant, acts as a scalar generator of spin.
As a consequence, we see that

rlJ ikl =
1
2
2ikl rl =

1
2
2ikl Sl =

=
1
2
� ~R 2ikl 2pql !pq

=
1
2
� ~R
�
�ip�

k
q � �iq�kp� !pq

= � ~R!ik ;

i.e.,
rlJ ikl = �[ik] :

Taking the divergence of the above equations and using
the relations 2r[kri] =� 2�l[ik]rl , we obtain the fol-
lowing divergence equations:

rk�[ik] =
1
2
2ikl �r[kl]Sr ;

coupling the components of the spin vector to the components
of the torsion tensor. Furthermore, we obtain

rk!ik =
1
2
�
� ~R
� 2ikl �r[kl]Sr � !ik @

e log
�
� ~R
�

@�k
:

We now form the second Lagrangian density of our
theory as

�H =
p
g
�
M ik (rkSi �Nik) +

1
2
Dij
::klNijN

kl�
� 2k:rs (riSk) Jrsi + U iri Sk �hSk � I�mV k��;

where h is a scalar function (not to be confused with the scalar
function f), I is the moment of inertia, and V i are the com-
ponents of the angular velocity field.

Hence the action integral corresponding to this is

J =
Z
vol

�
M ik �r(k S i) �Xik�+M ik �r[k S i] � Yik�+

+
1
2
Eij::klXijX

kl +
1
2
F ij::klYijY

kl� 2k:rs (riSk) Jrsi+
+ U i (riSk) �hSk � I�mV k��dV :
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As before, writing �H = pgH and performing the varia-
tion �J = 0, we have

�J =
Z
vol

�
@H
@M ik �M

ik +
@H
@Xik �X

ik +
@H
@Y ik

�Y ik�

� ri
�

@H
@ (riSk)

�
�Sk

�
dV = 0 ;

with arbitrary variations �M ik; �Xik; �Y ik, and �Sk.
From @H

@Mik = 0, we obtain

Xik = r(k S i) ;

Yik = r[k S i] :

From @H
@Xik = 0, we obtain

M (ik) = Eik::rsX
rs :

From @H
@Y ik = 0, we obtain

M [ik] = F ik::rsY
rs :

Again, we shall investigate the last variation

�
Z
vol

ri
�

@H
@ (riSk)

�
�SkdV = 0

in detail.
Firstly,

@H
@ (riSk) = M ik� 2k:rs Jrsi + U i

�
hSk � I�V k� :

Then we see that

ri
�

@H
@ (riSk)

�
= riM ik� 2 k

:rs�
[rs] +ri �hU i� Sk+

+ hU iriSk � Iri ��mU i� V k�
� I�mU iriV k :

We now define the angular force per unit mass � by

�i = UkrkV i =
�V i

�t
;

and the angular body force per unit mass � by

�i =
1
�m

�
�lSi + h

�Si

�t
� I �rkJk� V i� ;

where �l=ri �h U i�.
We haveZ

vol

�riM ik� 2k:rs �[rs] + �m�k � I�m�k
�
�SkdV = 0 :

Hence we obtain the equations of motion

riM ik =2k:rs �[rs] + �m
�
I�k � �k� :

6 Concluding remarks

At this point we see that we have reproduced the field equa-
tions and the equations of motion of Cosserat elasticity the-
ory by our variational method, and hence we have succeeded
in showing parallels between the fundamental equations of
Cosserat elasticity theory and those of our present theory.
However we must again emphasize that our field equations as
well as our equations of motion involving chirality are fully
geometrized. In other words, we have succeeded in general-
izing various extensions of the classical elasticity theory, es-
pecially the Cosserat theory and the so-called void elasticity
theory by ascribing both microspin phenomena and geomet-
ric defects to the action of geometric torsion and to the source
of local curvature of the material space. As we have seen, it is
precisely this curvature that plays the role of a fundamental,
intrinsic differential invariant which explains microspin and
defects throughout the course of our work.
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Geodetic Precession of the Spin in a Non-Singular Gravitational Potential
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Using a non-singular gravitational potential which appears in the literature we analyti-
cally derived and investigated the equations describing the precession of a body’s spin
orbiting around a main spherical body of mass M . The calculation has been performed
using a non-exact Schwarzschild solution, and further assuming that the gravitational
field of the Earth is more than that of a rotating mass. General theory of relativity pre-
dicts that the direction of the gyroscope will change at a rate of 6.6 arcsec/year for a
gyroscope in a 650 km high polar orbit. In our case a precession rate of the spin of a
very similar magnitude to that predicted by general relativity was calculated resulting
to a �Sgeo

Sgeo
=�5.570�10�2.

1 Introduction

A new non-singular gravitational potential appears in the lit-
erature that has the following form (Williams [1])

V (r) = �GM
r

e� �r ; (1)

where the constant � appearing in the potential above is de-
fined as follows:

� =
GM
c2

=
Rgrav

2
; (2)

and G is the Newtonian gravitational constant, M is the mass
of the main body that produces the potential, and c is the
speed of light. In this paper we wish to investigate the dif-
ferences that might exist in the results

2 Geodetic precession

One of the characteristics of curved space is that parallel
transport of a vector alters its direction, which suggests that
we can probably detect the curvature of the space-time near
the Earth by actually examining parallel transport. From non
gravitational physics we know that if a gyroscope is
suspended in frictionless gimbals the result is a parallel trans-
port of its spin direction, which does not help draw any valu-
able conclusion immediately. Similarly in gravitational
physics the transport of such gyroscope will also result in
parallel transport of the spin. To find the conditions under
which parallel transport of gyroscope can happen, we start
with Newton’s equation of motion for the spin of a rigid body.
A rigid body in a gravitational field is subject to a tidal torque
that results to a spin rate of change given by [2]:

dSn

dt
= "klnRk0s0

�
�Isl +

1
3
�sl I

r
r

�
; (3)

where n; k; l; s; r= 1; 2; 3. Here Rk0s0 is the Riemann ten-
sor evaluated in the rest frame of the gyroscope, the presence
of which signifies that this particular equation of motion does
not obey the principle of minimal coupling, and that the gyro-
scope spin transport does not imitate parallel transport [1] and
the quantity "kqp is defined as follows "123 = "231 = "312 = 1
and "321 = "213 = "132 = � 1. For a spherical gyroscope we
have that Isl / �sl , then the tidal torque in the equation (3) be-
comes zero and the equation reads dSn

dt = 0. Isl is the moment
of inertia tensor defined in the equation below:

Isl =
Z �

r2�sl � xsxl�dM ; (4)

where �sl is the Kronecker delta. This Newtonian equation
remains in tact when we are in curved spacetime, and in a
reference frame that freely falls along a geodesic line. Thus
the Newtonian time tmust now interpreted as the proper time
� measured along the geodesic. In the freely falling reference
frame the spin of the gyroscope remains constant in mag-
nitude and direction, which means that it moves by parallel
transport.

If now an extra non gravitational force acts on the gyro-
scope and as a result the gyroscope moves into a world line
that is different from a geodesic, then we can not simply in-
troduce local geodesic coordinates at every point on of this
world line which makes the equation of motion for the spin
dSn
dt , 0. In flat space-time the precession of an accelerated

gyroscope is called Thomas Precession. In a general coordi-
nate system the spin vector in parallel obeys the equation:

dS�

d�
= �����S

� dx�

d�
= �����S

� _x� = �����S
�v� ; (5)

where ���� are the Christoffel symbols of the second kind, and
S� are the spin vector components (here �; �; �= 0; 1; 2; 3).
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Alternative theories of gravitation have also been proposed
that predict different magnitudes for this effect [3, 4].

3 Gyroscope in orbit

In order to examine the effect of the new non singular gravi-
tational potential has on the gyroscope let us assume a gyro-
scope in a circular orbit of radius r around the Earth. In real
life somebody measures the change of the gyroscope spin rel-
ative to the fixed stars, which is also equivalent of finding this
change with respect to a fixed coordinate system at infinity.
We can use Cartesian coordinates since they are more conve-
nient in calculating this change of spin direction than polar
coordinates. The reason for this is that in Cartesian coordi-
nates any change of the spin can be directly related to the cur-
vature of the space-time, where in polar coordinates there is a
contribution from both coordinate curvature and curvature of
the space-time [2].

Next let us in a similar way to that of linear theory and
following Ohanian and Ruffini [2] we write the line element
ds2 in the following way:

ds2 � c2
�

1� 2GM
rc2

e��=r
�
dt2�

�
�

1� 2GM
rc2

e��=r
��1 �

dx2 + dy2 + dz2� (6)

further assume that our gyroscope is in orbit around the Earth
and let the orbit be located in the x� y plane as shown in
Figure 1.

In a circular orbit all points are equivalent and if we know
the rate of the spin change at one point we can calculate the
rate of change of the spin at any point. For that let us write
the line interval in the following way:

ds2 � c2
�

1� 2GM
rc2

e��=r
�
dt2�

�
�

1 +
2GM
rc2

e��=r
��

dx2 + dy2 + dz2� ; (7)

which implies that:

g00 =
�

1� 2GM
rc2

e��=r
�
;

g11 = g22 = g33 = �
�

1 +
2GM
rc2

e��=r
�
:

(8)

4 The spin components

To evaluate the spatial components of the spin we will use
equation (5), and the right hand symbols must be calculated.
For that we need the four-velocity v� � (vt; vx; vy; vz) =
= (1; 0; v; 0). We also need the S0 component of the spin,
and for that we note that in the rest frame of the gyroscope

Fig. 1: A gyroscope above a satellite orbiting the Earth, and where
its orbital plane coincides with the x� y plane, having at an instant
coordinates x= r0, y= z= 0, and where S is the spin vector of the
gyroscope.

S
00 = 0 and v

0� = (1; 0; 0; 0) and therefore g0��S0�v
0� = 0,

and also in our coordinate system we will also have that
g��S�v� = 0, using the latter we have that:

S0 = � 1
g00

�
S1g11

dx1

d�
+ S2g22

dx2

d�
+ S3g33

dx3

d�

�
;

S0 = � 1
g00

�
Sxg11

dx
d�

+ Syg22
dy
d�

+ Szg33
dz
d�

�
;

(9)

substituting for the metric coefficients we obtain:

S0 =
�
1 + 2GM

rc2 e��=r
��

1� 2GM
rc2 e��=r

� vSy �

�
�

1 +
2GM
rc2

e��=r
�2

vSy :
(10)

Next letting �= 1 and summing over �= 0; 1; 2; 3 the
component of the spin equation becomes:

dS1

d�
= ��1

0�S
0v���1

1�S
1v���1

2�S
2v���1

3�S
3v� ; (11)

summing over � = 0; 1; 2; 3 again we obtain:

dS1

d�
= ��1

00S
0v0��1

01S
0v1��1

02S
0v2��1

03S
0v3�

� �1
10S

1v0 � �1
11S

1v1 � �1
12S

1v2 � �1
13S

1v3�
� �1

20S
2v0 � �1

21S
2v1 � �1

22S
2v2 � �1

23S
2v3�

� �1
30S

3v0 � �1
31S

3v1 � �1
32S

3v2 � �1
33S

3v3:

(12)

Next we will calculate the Cristoffel symbols of the sec-
ond kind for that we use:

���� =
1
2
g��

�
@g��
@x�

+
@g��
@x�

� @g��
@x�

�
: (13)
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Since ���� = 0 if �, � ,� equation (12) further sim-
plifies to:

dS1

d�
= ��1

00S
0v0 � �1

01S
0v1 � �1

10S
1v0�

� �1
11S

1v1 � �1
12S

1v2 � �1
13S

1v3�
� �1

21S
2v1 � �1

22S
2v2 � �1

31S
3v1 � �1

33S
3v3 :

(14)

The only non-zero Christoffel symbols calculated at
r= r0 are:

�0
01 = �0

10 =
GM
r2

0c2

�
1� �

r0

�
e��=r0�

1� 2GM
r0c2 e

��=r0
� ; (15)

�1
00 =

GM
c2r2

0

�
1� �

r0

�
e��=r0�

1� 2GM
r0c2 e

��=r0
� ; (16)

�1
11 = �GM

c2r2
0

�
1� �

r0

�
e��=r0�

1� 2GM
r0c2 e

��=r0
� ; (17)

�1
22 =

GM
r2

0c2

�
1� �

r0

�
e� �

r0�
1 + 2GM

r0c2 e
� �
r0

� ; (18)

�1
21 = �1

12 =
GM
r2

0c2

�
1� �

r0

�
e� �

r0�
1 + 2GM

r0c2 e
� �
r0

� ; (19)

�1
33 =

GM
r2

0c2

�
1� �

r0

�
e� �

r0�
1 + 2GM

r0c2 e
� �
r0

� ; (20)

�3
13 = �3

31 = �GM
r2

0c2

�
1� �

r0

�
e� �

r0�
1 + 2GM

r0c2 e
� �
r0

� : (21)

Thus equation (14) further becomes:

dSx
d�

= ��1
00S

0 � �1
22S

2v2 ; (22)

substituting we obtain:

dSx
d�

= �GM
r2

0c2

�
1� �

r0

�
e� �

r0�
1 + 2GM

r0c2 e
� �
r0

� �
�
"

1 +
�

1 +
2GM
r0c2

e� �
r0

�2
#
vSy :

(23)

Expanding in powers of �
r to first order we can rewrite

(23) as follows:

dSx
d�

= �GM
r2

0c2

�
1� �

r0

�2�
1 + 2GM

r0c2

�
1� �

r0

�� �
�
"

1 +
�

1 +
2GM
r0c2

�
1� �

r0

��2
#
vSy ;

(24)

dSx
d�

� �GM
r2

0c2

�
1� 2�

r0

��
1 + 2GM

r0c2

�
1� �

r0

�� �
�
"

1 +
�

1 +
2GM
r0c2

�
1� �

r0

��2
#
vSy ;

(25)

keeping only 1
c2 terms and omitting the rest higher powers

G2M2

c4 equation (25) can be simplified to:

dSx
d�

� �2GM
r2

0c2

�
1� 2�

r0

�
vSy : (26)

Similarly the equation for the SY component of the spin
becomes:

dSy
d�

= ��2
12vSx � �2

20Sy � �2
22vSy � �2

32vSy ; (27)

which becomes:

dSy
d�

= �GM
r2

0c2

�
1� �

r

�
e� �

r0�
1 + 2GM

r0c2 e
� �
r0

� ; (28)

can be approximated to:

dSy
d�

= �GM
r2

0c2

�
1� 2�

r0

��
1 + 2GM

r0c2

�
1� �

r0

�� =

= �GM
r2

0c2

�
1� 2�

r0

��
1 + 2GM

r0c2 � 2GM�
r2
0c2

� vSx : (29)

Finally the equation for the Sz component becomes:

dS3

d�
= ��3

00S
0v0 � �3

01S
0v1 � �3

02S
0v2�

� �3
03S

0v3 � �3
10S

1v0 � �3
11S

1v1�
� �3

12S
1v2 � �3

13S
1v3 � �3

20S
2v0�

� �3
21S

2v1 � �3
22S

2v2 � �3
23S

2v3�
� �3

30S
3v0 � �3

31S
3v1 � �3

32S
3v2 � �3

33S
3v3 ;

(30)

which finally becomes:
dSz
d�

= 0 : (31)

Equations (23), (28), (31) are valid at the chosen x= r0,
y= z= 0 point. These equations can also be written in a form
that is valid at any point of the orbit, if we just recognize that
all of them can be combined in the following single 3-D equa-
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Sx (t) = S0

8<:cosh

0@ p
2GM (2�� r0)

c2r3
0

q
1 + 2GM

r0c2 � 2GM�
r2
0c2

vt

1A�
�
s

2
�

1 +
2GM
r0c2

� 2GM�
r2

0c2

�
sinh

0@ p
2GM (2�� r0)

c2r3
0

q
1 + 2GM

r0c2 � 2GM�
r2
0c2

vt

1A9=; (43)

Sy (t) � S0

8<:cosh

0@ p
2GM (2�� r0)

c2r3
0

q
1 + 2GM

r0c2 � 2GM�
r2
0c2

vt

1A� 1p
2

sinh

0@ p
2GM (2�� r0)

c2r3
0

q
1 + 2GM

r0c2 � 2GM�
r2
0c2

vt

1A9=; (44)

tion in the following way [2]:
dS
d�

= �2v � SrV + vS � rV ; (32)

where V =� GM
r0 e

��=r0 is the non singular potential used.
Below in order to compare we can write down the same equa-
tions for the spin components in the case of the Newtonian
potential.

dSx
d�

= �GM
r2

0c2
vSy

24�1 +
2GM
r0c2

�
+

1�
1 + 2GM

r0c2

�35 �
� �2GM

r2
0c2

vSy ; (33)

dSy
d�

=
GM

r2
0c2
�

1 + 2GM
r0c2

� vSx � GM
r2

0c2
vSx ; (34)

dSz
d�

= 0 : (35)

5 Non-singular potential solutions

To find the components of the precessing spin let us now solve
the system of equations (26) (29) (31) solving we obtain:

Sx (t) = C1 cosh

8<: p
2GM (2�� r0)

c2r3
0

q
1 + 2GM

r0c2 � 2GM�
r2
0c2

vt

9=;+

+ C2
p

2 sinh

8<: p
2GM (2�� r0)

c2r3
0

q
1 + 2GM

r0c2 � 2GM�
r2
0c2

vt

9=; ; (36)

Sy (t) = C2 cosh

8<: p
2GM (2�� r0)

c2r3
0

q
1 + 2GM

r0c2 � 2GM�
r2
0c2

vt

9=;+

+
C1p

2
sinh

8<: p
2GM (2�� r0)

c2r3
0

q
1 + 2GM

r0c2 � 2GM�
r2
0c2

vt

9=; ; (37)

Sz (t) = const = D0 ; (38)

since the motion is not relativistic we have that dt= d� , and
the orbital velocity of the gyroscope is v=

q
GM
r0 .

6 Newtonian gravity solutions

Next we can compare the solutions in (36), (37), (38) with
those of the system (33), (34), (35) which are:

Sx (t) = C1 cos

 p
2GM
c2r2

0
vt

!
�

� C2
p

2 sin

 p
2GM
c2r2

0
vt

!
; (39)

Sy (t) = C2 cos

 p
2GM
c2r2

0
vt

!
+

+
C1p

2
sin

 p
2GM
c2r2

0
vt

!
; (40)

Sz (t) = const = D0 :

If we now assume the initial conditions t= 0; Sx (0) =
=Sy (0) =S0 we obtain the final solution:

Sx (t) = S0

(
cos

 p
2GM
c2r2

0
vt

!
�

�p2 sin

 p
2GM
c2r2

0
vt

!)
; (41)

Sy (t) = S0

(
cos

 p
2GM
c2r2

0

r
GM
r0

t

!
�

� 1p
2

sin

 p
2GM
c2r2

0

r
GM
r0

t

!)
: (42)

Similarly from the solutions of the non-singular Newto-
nian potential we obtain (43) and (44).

Since numerically c2r3
0� 2GMr2

0 � 2GM�r0 the above
equations take the form (45) and (46).

7 Numerical results for an Earth satellite

Let us now assume a satellite in a circular orbit around the
Earth, at an orbital height h= 650 km or an orbital radius
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Sx(t) = S0

8><>:cosh

0B@2�GM
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�
1� r0
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� vuut 2GM

r0

�
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� t1CA�
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2
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r2
0c2

� t1CA
9>=>; (45)

Sy (t) = S0

8><>:cosh

0B@2�GM
c2r3

0

�
1� ro

2�

� vuut 2GM

r0

�
1 + 2GM

r0c2 � 2GM�
r2
0c2

� t1CA�
� 1p

2
sinh

0B@2�GM
c2r3

0

�
1� r0

2�

� vuut 2GM

r0

�
1 + 2GM

r0c2 � 2GM�
r2
0c2

� t1CA
9>=>; (46)

V (r) �Sx=Sx �Sy=Sy Geodetic precession �Sgeo=Sg
S (arcsec/year)

Newtonian �4.30�10�5 2.00�10�5 �6.6

Non-Singular �4.80�10�5 2.40�10�5 �6.289 �5.570�10�2

Table 1: Changes of the spin components and final geodetic precession of an orbiting
the Earth satellite t an altitude h= 650 km.

Fig. 2: Gyroscope spin components (Sx; Sy). Newtonian and non-
singular potential change in the gyro pin components for a satellite
orbiting the earth for a year. Abscissa axis means time.

r0 = 7.028�106 m, then �= 4.372�10�3 m, v= 7.676 km/s,
t= 1 year = 3.153�107 s using (41) and (42) we obtain:

Newtonian potential

Sx = 0.999957S0 ;

Sy = 1.000020S0 ;
(47)

and from (45) and (46) we obtain:

Non-Singular Potential

Sx = 0.999952S0 ;

Sy = 0.999976S0 :
(48)

For a gyroscope in orbit around the Earth we can write an
expression for the geodetic precession in such a non-singular
potential to be equal to:

Sgeo =
3
2
r�� v =

3GM
2c2r2

0

r
GM
r0

�
1� �

r0

�
e� �

r0 ; (49)

substituting values for the parameters above we obtain that:

Sgeo = 1.01099�10�12 rad/s ; (50)

Sgeo = 6.289 arcsec/year : (51)

8 Conclusions

We have derived the equations for the precession of the spin in
a case of a non-singular potential and we have compared them
with those of the Newtonian potential. In the case of the non-
singular gravitational potential both components of the spin
are very slow varying functions of time. In a hypothetically
large amount of time of the order of �105 years or more spin
components Sx and Sy of the non-singular potential appear to
diverge in opposite directions, where those of the Newtonian
potential exhibit a week periodic motion in time.
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In the case of the non-singular potential we found that
�Sx
Sx

=�4.80�10�5 and �Sy
Sy

=�2.40�10�5 where in the case
of the Newtonian potential we have that �Sx

Sx
=� 4.30�10�5

and �Sy
Sy

= 2.00�10�5. The calculation has been performed
using a non-exact Schwarzschild solution. On the other hand
the gravitational field of the Earth is not an exact Schwarz-
schild field, but rather the field of a rotating mass. Compared
to the Newtonian result, the non-singular potential modifies
the original equation of the geodetic precession by the term�
1� �

r0

�
e� �

r0 which at the orbital altitude of h= 650 km con-
tributes to a spin reduction effect of the order of 9.99�10�1.
If such a type of potential exists its effect onto a gyroscope
of a satellite orbiting at h= 650 km could probably be easily
detected.
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In the present article we argue that it is possible to find numerical solution of coupled
magnetic resonance equation for describing wireless energy transmit, as discussed re-
cently by Karalis (2006) and Kurs et al. (2007). The proposed approach may be found
useful in order to understand the phenomena of magnetic resonance. Further observa-
tion is of course recommended in order to refute or verify this proposition.

1 Introduction

In recent years there were some new interests in methods
to transmit energy without wire. While it has been known
for quite a long-time that this method is possible theoreti-
cally (since Maxwell and Hertz), until recently only a few
researchers consider this method seriously.

For instance, Karalis et al [1] and also Kurs et al. [2] have
presented these experiments and reported that efficiency of
this method remains low. A plausible way to solve this prob-
lem is by better understanding of the mechanism of magnetic
resonance [3].

In the present article we argue that it is possible to find nu-
merical solution of coupled magnetic resonance equation for
describing wireless energy transmit, as discussed recently by
Karalis (2006) and Kurs et al. (2007). The proposed approach
may be found useful in order to understand the phenomena of
magnetic resonance.

Nonetheless, further observation is of course recommend-
ed in order to refute or verify this proposition.

2 Numerical solution of coupled-magnetic resonance
equation

Recently, Kurs et al. [2] argue that it is possible to repre-
sent the physical system behind wireless energy transmit us-
ing coupled-mode theory, as follows:

am(t) = (i!m � �m) am(t) +

+
X
n,m

i�nman(t)� Fm(t) : (1)

The simplified version of equation (1) for the system of
two resonant objects is given by Karalis et al. [1, p. 2]:

da1

dt
= � i (!1 � i�1) a1 + i�a2 ; (2)

and da2

dt
= � i (!2 � i�2) a2 + i�a1 : (3)

These equations can be expressed as linear 1st order ODE
as follows:

f 0(t) = � i�f(t) + i�g(t) (4)
and

g0(t) = � i� g(t) + i�f(t) ; (5)
where

� = (!1 � i�1) (6)
and

� = (!2 � i�2) (7)

Numerical solution of these coupled-ODE equations can
be found using Maxima [4] as follows. First we find test when
parameters (6) and (7) are set up to be 1. The solution is:

(%i5) ’diff(f(x),x)+%i*f=%i*b*g(x);
(%o5) ’diff(f(x),x,1)+%i*f=%i*b*g(x)
(%i6) ’diff(g(x),x)+%i*g=%i*b*f(x);
(%o6) ’diff(g(x),x,1)+%i*g=%i*b*f(x)
(%i7) desolve([%o5,%o6],[f(x),g(x)]);

The solutions for f(x) and g(x) are:

f(x) =
�
ig(0)b� if(x)

�
sin(bx)

b
�

�
�
g(x)� f(0)b

�
cos(bx)

b
+
g(x)
b

; (8)

g(x) =
�
if(0)b� ig(x)

�
sin(bx)

b
�

�
�
f(x)� g(0)b

�
cos(bx)

b
+
f(x)
b

: (9)

Translated back to our equations (2) and (3), the solutions
for � = � = 1 are given by:

a1(t) =
�
ia2(0)�� ia1

�
sin(�t)

�
�

�
�
a2 � a1(0)�

�
cos(�t)

�
+
a2

�
(10)
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f(x) = e�(ic�ia)t=2

24�2if(0)c+ 2ig(0)b� f(0)(ic� ia)
�

sin
� p

c2�2ac+4b2+a2

2 t
�

p
c2 � 2ac+ 4b2 + a2

+

+
f(0) cos

� p
c2�2ac+4b2+a2

2 t
�

p
c2 � 2ac+ 4b2 + a2

35 (13)

g(x) = e�(ic�ia)t=2

24�2if(0)c+ 2ig(0)a� g(0)(ic� ia)
�

sin
� p

c2�2ac+4b2+a2

2 t
�

p
c2 � 2ac+ 4b2 + a2

+

+
g(0) cos

� p
c2�2ac+4b2+a2

2 t
�

p
c2 � 2ac+ 4b2 + a2

35 (14)

a1(t) = e�(i��i�)t=2

 �
2ia1(0)� + 2ia2(0)�� (i� � i�)a1

�
sin
� �

2 t
�

�
� a1(0) cos

� �
2 t
�

�

!
(15)

a2(t) = e�(i��i�)t=2

 �
2ia2(0)� + 2ia1(0)�� (i� � i�)a2

�
sin
� �

2 t
�

�
� a2(0) cos

� �
2 t
�

�

!
(16)

and

a2(t) =
�
ia1(0)�� ia2

�
sin(�t)

�
�

�
�
a1 � a2(0)�

�
cos(�t)

�
+
a1

�
: (11)

Now we will find numerical solution of equations (4) and
(5) when � , � , 1. Using Maxima [4], we find:

(%i12) ’diff(f(t),t)+%i*a*f(t)=%i*b*g(t);
(%o12) ’diff(f(t),t,1)+%i*a*f(t)=%i*b*g(t)
(%i13) ’diff(g(t),t)+%i*c*g(t)=%i*b*f(t);
(%o13) ’diff(g(t),t,1)+%i*c*g(t)=%i*b*f(t)
(%i14) desolve([%o12,%o13],[f(t),g(t)]);

and the solution is found to be quite complicated: these are
formulae (13) and (14).

Translated back these results into our equations (2) and
(3), the solutions are given by (15) and (16), where we can
define a new “ratio”:

� =
p
�2 � 2�� + 4�2 + �2 : (12)

It is perhaps quite interesting to remark here that there is
no “distance” effect in these equations.

Nonetheless, further observation is of course recommend-
ed in order to refute or verify this proposition.
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A good description of the excited positive and negative parity states of radium nuclei
(Z = 88, N = 130–142) is achieved using the interacting boson approximation model
(IBA-1). The potential energy surfaces, energy levels, parity shift, electromagnetic tran-
sition rates B (E1), B (E2) and electric monopole strength X(E0/E2) are calculated
for each nucleus. The analysis of the eigenvalues of the model Hamiltonian reveals the
presence of an interaction between the positive and negative parity bands. Due to this
interaction the �I = 1 staggering effect, between the energies of the ground state band
and the negative parity state band, is produced including beat patterns.

1 Introduction

The existence of stable octupole deformation in actinide nu-
clei has encouraged many authors to investigate these nuclei
experimentally and theoretically but until now no definitive
signatures have been established. Different models have been
considered, but none has provided a complete picture of oc-
tupole deformation.

Cluster model has been applied to 221-226Ra by many au-
thors [1–7]. The intrinsic multipole transition moment and
parity splitting were calculated. Also, the half-lives of clus-
ter emission are predicted. In general, cluster model suc-
ceeded in reproducing satisfactory the properties of normal
deformed ground state and super deformed excited bands in a
wide range of even-even nuclei.

A proposed formalism of the collective model [8, 9, 10]
have been used in describing the strong parity shift observed
in low-lying spectra of 224;226Ra and 224;226Th with octupole
deformations together with the fine rotational band structure
developed at higher angular momenta. Beat staggering pat-
terns are obtained also for 218-226Ra and 224;226Th.

The mean field model [11] and the analytic quadrupole
octupole axially symmetric (AQOA) model [12] have been
applied to 224;226Ra and 226Ra nuclei respectively, and found
useful for the predictions of the decay properties where the
experimental data are scarce.

Spdf interacting boson model [13] has been applied to
the even-even 218-228Ra isotopes and an explanation of how
the octupole deformation can arise in the rotational limit. The
discussion of the properties of the fractional symmetric rigid
rotor spectrum [14] and the results of its application to the
low excitation energy of the ground state band of 214-224Ra
show an agreement with the experimental data.

The aim of the present paper is to calculate and analyze
the complete spectroscopic properties of the low-lying pos-
itive and negative parity excited states in 218-230Ra isotopes
using IBA-1 Hamiltonian. The potential energy surfaces, lev-

els energy, parity shift, electromagnetic transition rates and
electric monopole strength X(E0/E2) are calculated.

2 (IBA-1) model

2.1 Level energies

The IBA-1 model describes the low-lying energy states of the
even-even radium nuclei as a system of interacting s-bosons
and d-bosons. The � and � bosons are treated as one boson.
Introducing creation

�
sydy

�
and annihilation

�
s ~d
�

operators
for s and d bosons, the most general Hamiltonian [15] which
includes one-boson term in boson-boson interaction has been
used in calculating the levels energy is:

H = EPS � nd + PAIR � (P � P ) +

+
1
2
ELL � (L � L) +

1
2
QQ � (Q �Q) +

+ 5OCT � (T3 � T3) + 5HEX � (T4 � T4) ;

(1)

where

P � p =
1
2

24 n(sysy)(0)
0 �

p
5(dydy)(0)

0

o
xn

(ss)(0)
0 �

p
5( ~d ~d)(0)

0

o 35(0)

0

; (2)

L � L = �10
p

3
h
(dy ~d)(1)x (dy ~d)(1)

i(0)

0
; (3)

Q �Q =
p

5

26664
�

(Sy ~d+ dys)(2) �
p

7
2

(dy ~d)(2)
�
x�

(sy ~d+ + ~ds)(2) �
p

7
2

(dy ~d)(2)
�
37775

(0)

0

; (4)

T3 � T3 = �p7
h
(dy ~d)(2)x (dy ~d)(2)

i(0)

0
; (5)

T4 � T4 = 3
h
(dy ~d)(4)x (dy ~d)(4)

i(0)

0
: (6)
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nucleus EPS PAIR ELL QQ OCT HEX E2SD(eb) E2DD(eb)

218Ra 0.3900 0.000 0.0005 �0.0090 0.0000 0.0000 0.2020 �0.5957

220Ra 0.3900 0.000 0.0005 �0.0420 0.0000 0.0000 0.1960 �0.5798

222Ra 0.0650 0.0000 0.0100 �0.0650 0.0000 0.0000 0.1960 �0.5798

224Ra 0.2000 0.0000 0.0060 �0.0450 0.0000 0.0000 0.1640 �0.4851

226Ra 0.0700 0.0000 0.0060 �0.0450 0.0000 0.0000 0.1660 �0.4910

228Ra 0.0600 0.0000 0.0060 �0.0380 0.0000 0.0000 0.1616 �0.4780

230Ra 0.0580 0.0000 0.0060 �0.0502 0.0000 0.0000 0.1560 �0.4615

Table 1: Table 1. Parameters used in IBA-1 Hamiltonian (all in MeV).

In the previous formulas, nd is the number of boson; P �P ,
L �L, Q �Q, T3 �T3 and T4 �T4 represent pairing, angular mo-
mentum, quadrupole, octupole and hexadecupole interactions
between the bosons; EPS is the boson energy; and PAIR,
ELL, QQ, OCT , HEX is the strengths of the pairing, an-
gular momentum, quadrupole, octupole and hexadecupole in-
teractions.

2.2 Transition rates

The electric quadrupole transition operator [15] employed in
this study is given by:

T (E2) = E2SD � (sy ~d+ dys)(2) +

+
1p
5
E2DD � (dy ~d)(2) : (7)

The reduced electric quadrupole transition rates between
Ii ! If states are given by

B (E2; Ii � If ) =
[< If k T (E2) k Ii >]2

2Ii + 1
: (8)

3 Results and discussion

3.1 The potential energy surface

The potential energy surfaces [16], V (�, ), for radium iso-
topes as a function of the deformation parameters � and 
have been calculated using:

EN�N� (�; ) = <N�N� ;� jH�� jN�N� ;�> =

= �d(N�N�)�2(1 + �2) + �2(1 + �2)�2�
��kN�N�[4� ( �X� �X�)� cos 3]

	
+

+
�

[ �X� �X��2] +N�(N� � 1)
�

1
10
c0 +

1
7
c2
�
�2
�
;

(9)

where

�X� =
�

2
7

�0:5

X� � = � or � : (10)

The calculated potential energy surfaces for radium
series of isotopes presented in Fig. 1 show that 218Ra is a

vibrational-like nucleus where the deformation � is zero.
220Ra nucleus started to deviate from vibrational-like and a
slight prolate deformation appeared. 222-230Ra nuclei show
more deformation on the prolate and oblate sides, but the de-
formation on the prolate side is deeper.

3.2 Energy spectra

IBA-1 model has been used in calculating the energy of the
positive and negative parity low -lying levels of radium se-
ries of isotopes. A comparison between the experimental
spectra [17–23] and our calculations, using the values of the
model parameters given in Table 1 for the ground and oc-
tupole bands, is illustrated in Fig. 2. The agreement between
the theoretical and their correspondence experimental values
for all the nuclei are slightly higher but reasonable. The most
striking is the minimum observed in the negative parity states,
Fig. 3, at N = 136 which interpreted as 224Ra is the most de-
formed nucleus in this chain of isotopes.

3.3 Electromagnetic transitions rates

Unfortunately there is no enough measurements of B (E1)
or B (E2) rates for these series of nuclei. The only mea-
suredB (E2; 0+

1 ! 2+
1 )’s are presented, in Table 2a, for com-

parison with the calculated values. The parameters E2SD
and E2DD used in the present calculations are determined
by normalizing the calculated values to the experimentally
known ones and displayed in Tables 2a and 2b.

For calculating B (E1) and B (E2) transition rates of in-
traband and interaband we did not introduce any new param-
eters. The calculated values some of it are presented in Fig. 4
and Fig. 5 which show bending in the two figures at N = 136
which support what we have seen in Fig. 3 as 224Ra is the
most octupole deformed nucleus.

3.4 Electric monopole transitions

The electric monopole transitions, E0, are normally occur-
ring between two states of the same spin and parity by trans-
ferring energy and zero unit of angular momentum. The
strength of the electric monopole transition, Xif 0f (E0=E2),
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I+i I+f
218Ra 220Ra 222Ra 224Ra 226Ra 228Ra 230Ra

01 Exp. 21 1.10(20) ——– 4.54(39) 3.99(15) 5.15(14) 5.99(28) ——-

01 Theor. 21 1.1222 2.4356 4.5630 3.9633 5.1943 5.9933 6.6861

21 01 0.224 0.4871 0.9126 0.7927 1.0389 1.1987 1.3372

22 01 0.0005 0.0028 0.0001 0.0014 0.0002 0.0001 0.0001

22 02 0.086 0.2509 0.5978 0.5287 0.7444 0.8878 1.0183

23 01 0.000 0.0058 0.0001 0.0015 0.0001 0.0001 0.0001

23 02 0.173 0.0854 0.0141 0.0075 0.0122 0.0122 0.0118

23 03 0.022 0.0476 0.0001 0.0011 0.0001 0.0000 0.0000

24 03 0.010 0.1322 0.3662 0.3013 0.5326 0.6481 0.7627

24 04 0.152 0.0707 0.0006 0.0041 0.0001 0.0000 0.0000

22 21 0.300 0.0819 0.0003 0.0034 0.0003 0.0003 0.0001

23 21 0.0001 0.0023 0.0002 0.0022 0.0002 0.0002 0.0001

23 22 0.088 0.4224 0.0690 0.0730 0.0398 0.0348 0.0302

41 21 0.368 0.7474 1.2490 1.0973 1.4449 1.6752 1.8756

41 22 0.0318 0.0337 0.0004 0.0051 0.0004 0.0004 0.0002

41 23 0.0715 0.0331 0.0000 0.0002 0.0000 0.0000 0.0000

61 41 0.4194 0.7924 1.2673 1.1380 1.5138 1.7714 1.9970

61 42 0.0463 0.0270 0.0004 0.0057 0.0005 0.0004 0.0002

61 43 0.0514 0.0249 0.0001 0.0009 0.0000 0.0000 0.0000

81 61 0.3749 0.7217 1.626 1.0830 1.4672 1.7430 1.9864

81 62 0.0529 0.0205 0.0004 0.0051 0.0006 0.0005 0.0002

81 63 0.0261 0.0170 0.0001 0.0018 0.0001 0.0001 0.0000

101 81 0.2346 0.5600 0.9737 0.9649 1.3492 1.6406 1.9005

101 82 0.0553 0.0161 0.0003 0.0041 0.0005 0.0005 0.0002

Table 2: Table 2a. Values of the theoretical reduced transition probability, B(E2) (in e2 b2).

I�i I+f
218Ra 220Ra 222Ra 224Ra 226Ra 228Ra 230Ra

11 01 0.0008 0.0605 0.1942 0.1886 0.2289 0.2612 0.3033

11 02 0.1203 0.0979 0.0222 0.0293 0.0195 0.0190 0.0183

31 21 0.1117 0.1921 0.3352 0.3301 0.3927 0.4378 0.4937

31 22 0.0451 0.0325 0.0245 0.0330 0.0243 0.0238 0.0228

31 23 0.0025 0.0095 0.0001 0.0001 0.0000 0.0000 0.0001

31 41 0.0015 0.0094 0.0419 0.0458 0.0791 0.0883 0.0926

31 42 0.0007 0.0040 0.0073 0.0100 0.0099 0.0090 0.0074

51 41 0.2397 0.3169 0.4358 0.4349 0.5032 0.5493 0.6043

51 42 0.0531 0.0267 0.0187 0.0260 0.0214 0.0214 0.0205

51 43 0.0017 0.0027 0.0006 0.0005 0.0002 0.0002 0.0003

71 61 0.3839 0.4454 0.5349 0.5388 0.6033 0.6476 0.6996

71 62 0.0476 0.0204 0.0121 0.0187 0.0168 0.0173 0.0169

91 81 0.5429 0.5785 0.6398 0.6479 0.7041 0.7452 0.7936

91 82 0.0295 0.0139 0.0070 0.0129 0.0122 0.0131 0.0132

Table 3: Table 2b. Values of the theoretical reduced transition probability, B(E1) (in � e2b).
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Fig. 1: The potential energy surfaces for 218-230Ra nuclei.

Fig. 2: Comparison between experimental (Exp.) and theoretical (IBA-1) energy levels in 218-230Ra, (a–g).
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Fig. 3: Energy versus neutron numbers N for
the �ve parity band in 218-230Ra.

Fig. 4: The calculated B(E2)’s for the ground state band of Ra
isotopes.

Fig. 5: The calculated B(E1)’s for the (�ve) parity band.

Fig. 6: The calculated X(E0/E2, 2+
2! 0+

1 ) versus N for
218-230Ra isotopes.
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Fig. 7: �I = 1, staggering patterns for the ground state and octupole bands of 218-230Ra
isotope.

I+i I+f I+0f
218Ra 220Ra 222Ra 224Ra 226Ra 228Ra 230Ra

02 01 21 0.016 0.046 0.376 0.562 0.335 0.279 0.243

03 01 21 0.125 —— —— 0.058 0.081 —- 0.500

03 01 22 0.007 0.058 —- 0.009 0.003 —– 0.230

03 01 23 0.015 0.002 —- 0.333 0.005 —— 0.0005

03 02 21 —- —– 10.00 1.705 0.702 2.000 9.000

03 02 22 —— 0.029 0.008 0.027 0.027 0.189 4.153

03 02 23 ——– 0.001 —— 9.666 0.054 0.049 0.103

04 01 22 0.009 0.008 1.200 —- 1.700 0.391 0.094

04 01 23 0.009 1.000 —- 1.230 0.459 1.636 —-
04 01 24 0.005 0.018 0.027 4.000 1.307 0.129 5.000

04 02 22 0.018 0.042 1.400 —— 0.1000 —– 0.037

04 02 23 0.019 5.000 —— 0.769 0.027 —— ——

04 02 24 0.011 0.093 0.031 2.500 0.076 —— 2.000

04 03 21 —– —– 0.250 —- 0.333 ——- —–

04 03 22 —- —– 0.066 —– 0.001 —— —–

04 03 23 —— —— —– —– 0.027 —— ——

04 03 24 —— —— 0.001 —- 0.076 —— ——-

Table 3. Theoretical Xif 0f (E0/E2) ratios for E0 transitions in Ra isotopes.
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[24] can be calculated using equations (11, 12) and presented
in Table 3. Fig. 6 shows also that 224Ra has strong electric
monopole strength than the other radium isotopes which is in
agreement with the previous explanations.

Xif 0f (E0=E2) =
B (E0; Ii � If )
B (E2; Ii � I0f )

; (11)

Xif 0f (E0=E2) = (2.54�109)A3=4 �
�E

5
(MeV)

KL

�(E2)
Te(E0; Ii � If )
Te(E2; Ii � I0f )

: (12)

3.5 The staggering

A presence of an odd-even staggering effect has been ob-
served for 218-230Ra series of isotopes [8, 9, 10, 25]. Odd-
even staggering patterns between the energies of the ground
state band and the (�ve) parity octupole band have been cal-
culated, �I = 1, using staggering function as in equations
(13, 14) using the available experimental data [17–23].

Stag (I) = 6�E (I)� 4�E (I � 1)� 4�E (I + 1) +
+ �E (I + 2) + �E (I � 2) ; (13)

with
�E (I) = E (I + 1)� E (I) : (14)

The calculated staggering patterns are illustrated in Fig. 7,
where we can see the beat patterns of the staggering behavior
which show an interaction between the ground state and the
octupole bands.

3.6 Conclusions

The IBA-1 model has been applied successfully to 218-230Ra
isotopes and we have got:

1. The ground state and octupole bands are successfully
reproduced;

2. The potential energy surfaces are calculated and show
vibrational characters to 218;220Ra and rotational be-
havior to 222-230Ra isotopes where they are prolate de-
formed nuclei;

3. Electromagnetic transition rates B (E1) and B (E2)
are calculated;

4. The strength of the electric monopole transitions are
calculated and show with the other calculated data that
224Ra is the most octupole deformed nucleus;

5. Staggering effect have been observed and beat patterns
obtained which show an interaction between the
ground state and octupole bands;
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Weak external forces and non-inertial motion are equivalent with the free motion in a
curved space. The Hamilton-Jacobi equation is derived for such motion and the effects
of the curvature upon the quantization are analyzed, starting from a generalization of
the Klein-Gordon equation in curved spaces. It is shown that the quantization is actually
destroyed, in general, by a non-inertial motion in the presence of external forces, in the
sense that such a motion may produce quantum transitions. Examples are given for a
massive scalar field and for photons.

Newton’s law. We start with Newton’s law

m
dv�
dt

= f� ; (1)

for a particle of mass m, with usual notations. I wish to show
here that it is equivalent with the motion of a free particle of
mass m in a curved space, i.e. it is equivalent with

Dui

ds
=
dui

ds
+ �ijku

juk = 0 ; (2)

again with usual notations.�
Obviously, the spatial coordinates of equation (1) are eu-

clidean, and equation (1) is a non-relativistic limit. It follows
that the metric we should look for may read

ds2 = (1 + h) c2dt2 + 2cdtg0�dx� + g�� dx�dx� ; (3)

where g�� =����(= ���), while functions h; g0�� 1 are de-
termined such that equation (2) goes into equation (1) in the
non-relativistic limit v�c � 1 and for a correspondingly weak
force f�. Such a metric, which recovers Newton’s law in the
non-relativistic limit, is not unique. The metric given by
�The geometry of the curved spaces originates probably with Gauss

(1830). It was given a sense by Riemann (Uber die Hypothesen welche
der Geometrie zugrunde liegen, 1854), Grassman (1862), Christoffel (1869),
thereafter Klein (Erlanger Programm, Programm zum Eintritt in die
philosophische Fakultät in Erlangen, 1872), Ricci and Levi-Civita (1901).
It was Einstein (1905,1916), Poincare (1905), Minkowski (1907), Sommer-
feld (1910), (Kottler, 1912), Weyl (Raum, Zeit und Materie, 1918), Hilbert
(1917) who made the connection with the physical theories. It is based on
point (local) coordinate transforms, cogredient (contravariant) and contragre-
dient (covariant) tensors and the distance element. It is an absolute calculus,
as it does not depend on the point, i.e. the reference frame. It may be di-
vided into the motion of a particle, the motion of the fields, the motion of
the gravitational field, and their applications, especially in cosmology and
cosmogony. As the curved space is universal for gravitation, so it is for the
non-inertial motion, which we focus upon here. The body which creates the
gravitation and the corresponding curved space is here the moving observer
for the non-inertial motion, beside forces. It could be very well that the world
and the motion are absolute, but they depend on subjectivity, though it could
be an universal subjectivity (inter-subjectivity). See W. Pauli, Theory of Rel-
ativity, Teubner, Leipzig, (1921).

equation (3) can be written as

gij =

0BB@ 1 + h g10 g20 g30
g01 �1 0 0
g02 0 �1 0
g03 0 0 �1

1CCA ; (4)

(where g0� = g�0 = g�). We perform the calculations up to
the first order in h; g� and v�

c . The distance given by (3)
becomes then ds= cdt

�
1 + h

2

�
and the velocities read

u0 =
dx0

ds
= 1� h

2
; u� =

dx�

ds
=
v�
c
: (5)

It is the Christoffel’s symbols (affine connections)

�ijk =
1
2
gim

�
@gmj
@xk

+
@gmk
@xj

� @gjk
@xm

�
(6)

which require more calculations. First, the contravariant met-
ric is g00 = 1�h, g0� = g�0, g0� = g�0, g�� =���� , such that
gimgmj = gjmgmi = �ji . By making use of (6) we get

�0
00 =

1
2c
@h
@t

; �0
0� = �0

�0 =
1
2
@h
@x�

�0
�� = �0

�� =
1
2

�
@g0�

@x�
+
@g0�

@x�

�
���0 = ��0� =

1
2

�
@g0�

@x�
� @g0�

@x�

�
��00 =

1
2
@h
@x�

� 1
c
@g0�

@t
; ��� = 0

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
: (7)

Now, the first equation in (2) has du0

ds =� 1
2c
@h
@t and

�0
jkujuk = 1

2c
@h
@t , so it is satisfied identically in this approxi-

mation. The remaining equations in (2) read

dv�
dt

= c2
�
@g0�

c@t
� 1

2
@h
@x�

�
: (8)
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By comparing this with Newton’s equation (1) we get the
functions h and g0� as given by

@g0�

c@t
� 1

2
@h
@x�

=
f�
mc2

: (9)

As it is well-known for a static gravitational potential �,
the force is given by f� =�m @�

@x� , so that h= 2�
c2 and also

g0� = const.�

Translations. Suppose that the force f is given by a static
potential ', such that f =�@'@r . Then h= 2'

mc2 and g = const.
Let us perform a translation

r = r0 + R(t0) ; t = t0: (10)

Then, Newton’s equation mdv
dt = f given by (1) becomes

m
dv0
dt0 = f 0 �m dV

dt0 ; (11)

where f 0 is the force in the new coordinates and V = dR
dt0 is

the translation velocity. The inertial force �mdV
dt0 appearing

in (11) is accounted by the g in the metric of the curved space.
Indeed, equation (9) gives

g = �V
c
; (12)

up to a constant. The constant reflects the principle of inertia.
We may put it equal to zero. The time-dependent g and V
represent a non-inertial motion. Such a non-inertial motion
is therefore equivalent with a free motion in a curved space.
Of course, this statement is nothing else but the principle of
equivalence, or the general principle of relativity. It is how-
ever noteworthy that the non-inertial curved space depends
on the observer, through the velocity V, by virtue of the reci-
procity of the motion.

Rotations. A rotation of angular frequency 
 about some
axis is an orthogonal transformation of coordinates defined
locally by

dr0 = dr +
�

� r

�
dt ; (13)

such that the velocity is v0=v + 
� r and

dv0 = dv +
� _
� r

�
dt+ (
� v) dt+

+
�

� (v + 
� r)

�
dt =

= dv +
� _
� r

�
dt+ 2 (
� v) dt+

�

� (
� r)

�
dt :

It is easy to see that in Newton’s law for a particle of
massm there appears a force related to the non-uniform rota-
tion ( _
), the Coriolis force �
�v and the centrifugal force
�
2. The lagrangianL= 1

2mv
02�', where ' is a potential,

leads to the hamiltonian

�With regard to equation (3), this was for the first time when Einstein
“suspected the time” (1905).

H =
mv2

2
� m

2
�

� r

�2 + ' =

=
1

2m
p2 � 


�
r� p

�
+ ' =

1
2m

p2 � 
L + ' ;
(14)

where L = r�p is the angular momentum. We can see that
neither the Coriolis force nor the centrifugal potential appear
anymore in the hamiltonian. Instead, it contains the angular
momentum.

The local coordinate transformation (13) leads to a dis-
tance given by

ds2 =
�
1 + h� (
� r)2

c2

�
(dx0)2�

� 2
c
�

� r

�
drdx0 � dr2;

(15)

where a static potential �h is introduced as before, related to
the potential ' in (14). It can be checked, through more la-
borious calculations, that the free motion in the curved space
given by (15) is equivalent with the non-relativistic equations
of motion given by (14).

As it is well-known, a difficulty appears however in the
above metric, related to the unbounded increase with r of the

� r. Therefore, we drop out the square of this term in the
g00-term above, and keep only the first-order contributions in

� r in the subsequent calculations. As one can see, this
approximation does not affect the hamiltonian (14). With this
approximation, the metric given by (15) is identical with the
metric given by equation (4), with the identification

g = �1
c

(
� r) : (16)

Coordinate transformations. The translation given by (10)
or the rotations given by (13) correspond to local coordinate
transformations. As it is well-known, we can define such
transformations in general, through suitable matrices (vier-
beins). They take locally the infinitesimal coordinates in a
flat space into infinitesimal coordinates in a curved space. For
instance, the coordinate transformation corresponding to our
metric given by equation (3) is given by

dt =
(1 + h)dt0 + (g + ��)dx

0
cp

(1 + h)(1� �2)

dx =
c�(1 + h)dt0 + (�g + �)dx0p

(1 + h)(1� �2)

9>>>>=>>>>; ; (17)

dy= dy0, dz= dz0, where � =
p

1+h+g2, while g is along
dx= dx1, �= V

c and the velocity V is V = dx
dt for dx0= 0

(dy= dx2, dz= dx3). The inverse of this transformation is

dt0 = g
�
�dt� dx

c

�
+ �

�
dt� �dx

c

�
�
p

(1 + h)(1� �2)

dx0 =
p

1 + h
dx� c� dt
�
p

1� �2

9>>>>=>>>>; : (18)
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All the square roots in these equations must exist, which
imposes certain restrictions upon h and � (reality conditions;
in particular, 1+h> 0 and 1��2> 0).

In the local transformations given above it is assumed that
there exist global transformations xi(x0) and x0i(x), where
x; x0 stand for all xi and, respectively, x0i, because the coef-
ficients in these transformations are functions of x or, respec-
tively, x0. This restricts appreciably the derivation of metrics
by means of (global) coordinate transformations, because in
general, as it is well-known, the 10 elements of a metric can-
not be obtained by 4 functions xi(x0). Conversely, we can
diagonalize the curved metric at any point, such as to reduce
it to a locally flat metric (tangent space), but the flat coordi-
nates (axes) will not, in general, be the same for all the points;
they depend, in general, on the point.

One can see from (17) that in the flat limit h; g! 0 the
above transformations become the Lorentz transformations,
as expected. Therefore, we may have corrections to the flat
relativistic motion by first-order contributions of the param-
eters h and g. Indeed, in this limit, the transformation (18)
becomes

dt =
�
1 + h

2

�
dt0 + (g + �)dx

0
cp

1� �2

dx =
c�
�
1 + h

2

�
dt0 + (g� + 1)dx0p

1� �2

9>>>>=>>>>; : (19)

which include corrections to the Lorentz transformations, due
to the curved space.

The metric given by (3) provides the proper time

d� =
p

1 + hdt ; (20)

corresponding to dx� = 0. The metric given by (3) can also
be written as

ds2 = c2(1 + h)
�
dt+

1
c (1 + h)

gdr
�2

�

�
�
dr2 +

1
1 + h

(gdr)2
�
;

(21)

hence the length given by

dl2 = dr2 +
1

1 + h
(gdr)2 (22)

and the time

dt0 =
p

1 + h �
�
dt+

1
c (1 + h)

gdr
�
; (23)

corresponding to the length dl. The difference �t= gdr
c (1+h)

between the two times, dt1 = d�pg00
= dt in the proper time

(20) and dt2 = dt0pg00
= dt+ gdr

c (1+h) in the time given by (23),
gives the difference in the synchronization of two simultane-
ous events, infinitesimally separated. The difference in time

depends on the path followed to reach a point starting from
another point.

We limit ourselves to the first order in h, g, and put
g =� V

c , in order to investigate corrections to the motion un-
der the action of a weak force in a flat space moving with
a non-uniform velocity V with respect to the observer. We
will do the calculations basically for translations but a similar
analysis can be made for rotations, using equation (16). For
the observer, such a motion is then a free motion in a curved
space with metric (3). The proper time is then d�=

�
1+ h

2

�
dt,

the time given by (23) becomes dt0=
�
1 + h

2

�
dt+ gdr

c and
the length is given by dl2 = dr2, as for a three-dimensional
euclidean space.

Hamilton-Jacobi equation. Let us assume that we have
a particle moving freely in a flat space. We denote its con-
travariant momentum by (P0 = E0

c ;P) and the corresponding
covariant momentum by (P0�P), such that P 2

0 �P 2=m2c2,
whereE0 is the energy of the particle, and P0, P are constant.

We can use the coordinate transformation given by (18)
to get the momentum of the particle in the curved space. We
prefer to write it down in its covariant form, using the metric
(4). We get

p0 = (1 + h)p0 + gp1 =
p

1 + h
P0 � �P1p

1� �2

p1 = gp0 � p1 =
(g + ��)P0 � (g� + �)P1p

(1 + h)(1� �2)

9>>>>=>>>>; : (24)

Then, it seems that we would have already an integral of
motion for the motion in the curved space, by using the defi-
nition pi =mc duids . However, this is not true, because the pi
are at point x0 in the curved space, while the coefficients in
the transformation (18) are at point x in the flat space. To
know the global coordinate transformations x(x0) and x0(x)
would amount to solve in fact the equations of motion.

We can revert the above transformations for P0 and P1,
and make use of P 2

0 �P 2 =m2c2, with p2 =�P2, p3 =�P3
for g=��. We get�

p0 + gp1
�2 ��2�p2 +m2c2

�
= 0 ; (25)

or �
E � cgp

�2 � c2�1 + h+ g2��p2 +m2c2
�

= 0 ; (26)

where E is the energy of the particle and p denotes its three-
dimensional momentum. This is the relation between energy
and momentum for the motion in the curved space. It gives
the Hamilton-Jacobi equation.

Indeed, pi =� @S
@xi and, obviously, for a free particle, pipi

is a constant; we put pipi =m2c2 and get gijpipj =m2c2 or�
@S
@t

+cg
@S
@r

�2
�c2�1+h+g2���@S

@r

�2
+m2c2

�
=0: (27)
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In the limit h= 2'
mc2 ! 0 and g =�V

c ! 0 it describes the
relativistic motion of a particle under the action of the (weak)
force f =�@'@r and for an observer moving with a (small) ve-
locity V. One can check directly that the coordinate trans-
formations given by equation (19) takes the free Hamilton-
Jacobi equation

�@S
@t

�2� c2��@S@r �2 +m2c2
�
= 0 into the “in-

teracting” Hamilton-Jacobi equation (27), as expected.

The eikonal equation. Waves move through kidxi =�d�,
where ki =� @�

@xi =
�!
c ;k

�
, ! is the frequency, k is the

wavevector and � is called the eikonal. In a flat space ki
are constant, and the wave propagates along a straight line,
such that kiki = 0, i.e. !2

c2 � k2 = 0 and � =�!t+ kr. This
is a light ray. In a curved space kiki = 0 reads gijkikj = 0,
and for gij slightly departing from the flat metric we have
the geometric approximation to the wave propagation. It is
governed by the eikonal equation gij

� @�
@xi
�� @�
@xj
�
= 0, or�

1
c
@�
@t

+ g
@�
@r

�2
� �1 + h+ g2��@�

@r

�2
= 0 ; (28)

which is the Hamilton-Jacobi equation (27) for m= 0.
We neglect the g2-contributions to this equation and no-

tice that the first term may not depend on the time (h is a
function of the coordinates only). It follows then that the first
term in the above equation can be put equal to !0

c ,

1
c
@�
@t

+ g
@�
@r

= �!0

c
; (29)

where !0 is the frequency of the wave in the flat space, and�
@�
@r

�2
= k2 =

1
1 + h

�!0

c

�2
=

1
1 + h

k2
0 ; (30)

where k0 is the wavevector in the flat space. Within our ap-
proximation equation (29) becomes

@�
c@t

= �!0

c
� gk0 : (31)

We measure the frequency ! corresponding to the proper
time, i.e. !c =� @�

c@� , where d� =
p

1 + hdt for our metric, so
the measured frequency of the wave is given by

!
c

= � @�
c@�

= � 1p
1+h

@�
c@t

=
1p

1+h
!0

c
+ gk0 : (32)

There exists, therefore, a shift in frequency

�!
!0

= �h
2

+
cgk0

!0
: (33)

The first term in equation (33) is due to the static forces
(like the gravitational potential, for instance), while the sec-
ond term is analogous to the (longitudinal) Doppler effect,
for g =�V

c .

By (30) we have�
@�
@r

�2
= (1� h) k2

0 : (34)

We assume that h depends only on the radius r, and write
the above equation in spherical coordinates; � does not de-
pend on �, and we put �= �

2 ;�
@�
@r

�2
+

1
r2

�
@�
@'

�2
= (1� h) k2

0 ; (35)

the solution is of the form

� = �r(r) +M' ; (36)

where M is a constant and

�r(r) =
Z r

1
dr �

r
(1� h) k2

0 � M2

r2 ; (37)

the trajectory is given by @�
@M = const,� hence

' = �
Z r

1
dr � M

r2
q

(1� h) k2
0 � M2

r2

: (38)

For h= 0 we get r sin'= M
k0

, which is a straight line
passing at distance M

k0
from the centre. The deviation angle is

�' = �k2
0

2

Z r

1
dr

hM

r2
�
k2

0 � M2

r2

�3=2 : (39)

Therefore, the light ray is bent by the static forces in a
curved space.y One can also define the refractive index n of
the curved space, by k= n !

c . Its magnitude is related to gk0,
while its direction is associated to the inhomogeneity h of the
space.

It is worth noting, by (31), that the time-dependent part of
the eikonal is given by

�t(t) = �!0t+ k0R(t) ; (40)

for g =�V
c , i.e. the eikonal corresponding to a translation, as

expected. A similar solution of the Hamilton-Jacobi equation
can be obtained for massive particles.

Quantization. Suppose that we have a free motion. Then
we know its solution, i.e. the dependence of the coordinates,
say some x, on some parameter, which may be called some
�Constant M is a generalized moving freely coordinate; therefore, the

force acting upon it vanishes, @L
@M

= 0, or d(@S=@M)
dt

= 0, i.e. @S
@M

= const.
yThe metric given by (3) for h= 2'

c2
differs from the metric created by

a gravitational point mass m with '= Gm
r

; they coincide only in the non-
relativistic limit. The deviation angle given by (39) for a gravitational poten-
tial is smaller by a factor of 4 than the deviation angle in the gravitational
potential of a point mass.
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time t. Suppose further that we have a motion under the ac-
tion of some forces. Then, we know the dependence of its
coordinates, say some x0, on some parameter, which may be
the same t as in the former case. Then, we may establish a
correspondence between x and x0, i.e. a global coordinate
transformation. It follows that the motion under the action of
the forces is a global coordinate transformation applied to the
free motion. Similarly, two distinct motions are put in relation
to each other by such global coordinate transformations.

This line of thought, due to Einstein, lies at the basis of
both the special theory of relativity and the general theory of
relativity.

Indeed, it has beeen noticed that the equations of the elec-
tromagnetic field are invariant under Lorentz transformations
of the coordinates, which leave the distance given by
s2 = c2t2� r2 invariant. These transformations are an ex-
pression of the principle of inertia, and this invariance is the
principle of relativity. As such, the Lorentz transformations
are applicable to the motion of particles, starting, for instance,
from a particle at rest. Let x= c� �p

1��2
, t= �p

1��2
be these

Lorentz transformations where � is the time of the particle
at rest. We may apply these transformations to the momen-
tum p = @S

@r and p0 =� @S
c@t = E

c , where E is the energy of the
particle. Then, we get immediately p= vE

c2 andE= E0p
1��2

.

The non-relativistic limit is recovered for E0 =mc2, the “in-
ertia of the energy”. The equations of motion are dp

dt = f , and
we can see that indeed, there appear additional, “dynamic
forces”, depending on relativistic v2

c2 -terms, in comparison
with Newton’s law. In adition, we get the Hamilton-Jacobi
equation E2� c2�p2 +m2c2

�
= 0. This is the whole theory

of special relativity.
The situation is similar in the general theory of relativ-

ity, except for the fact that in a curved space we have not
the global coordinate transformations, in general, as in a flat
space. However, the Hamilton-Jacobi equation gives access
to the action function, which may provide a relationship be-
tween some integrals of motion. Action S depends on some
constants of integration, say M . Then, these constants can
be viewed as freely-moving generalized coordinates, so
@S
@M = const, because the force @L

@M = d(@S=@M)
dt vanishes.

Equation @S
@M = const provides the equation of the trajectory.

Of course, this is based upon the assumption that the motion
is classical, i.e. non-quantum, in the sense that there exists a
trajectory. For instance, the solution of the Hamilton-Jacobi
equation for a free particle is S=�Et+pr, where E and p
are constants such that E=

p
m2c4 + c2p2. By @S

@E = const
we get � t+ E

c2p2 pr = const, which is the trajectory of a free
particle.

For a classical motion it is useless to attempt to solve the
motion in a curved space produced by a non-inertial motion,
like non-uniform translations, because it is much simpler to
solve the motion in the absence of the non-inertial motion and

then get the solution by a coordinate transformation, like a
non-uniform translation for instance. For a quantum motion,
however, the things change appreciably.

The Hamilton-Jacobi equation admits another kind of mo-
tion too, the quantum motion. Obviously, for a free parti-
cle, the classical action given above is the phase of a wave.
Then, it is natural to introduce a wavefunction  through
S=�i~ ln , where ~ turns out to be Planck’s constant. The
classical motion is recovered in the limit ~! 0, Re = finite
and Im !1, such that S= finite. With this transformation
we have p =�i~ @ =@r and E= i~ @ =@t , which means that
momentum and energy are eigenvalues of their correspond-
ing operators,�i~ @

@r and i~ @
@t , respectively.� It follows that

the physical quantities have not well-defined values anymore,
in contrast to the classical motion. In particular, there is no
trajectory of the motion. Instead, they have mean values and
deviations, i.e. they have a statistical meaning, and the mea-
surement process has to be defined in such terms. It turns
out that the wavefunction squared is just the density of prob-
ability for the motion to be in some quantum state, and for a
defined motion this probability must be conserved.

Klein-Gordon equation. With the substitution E!i~ @
@t

and p!�i~ @
@r in the Hamilton-Jacobi equation in the flat

space we get the Klein-Gordon equation

@2 
@t2
� c2 @2 

@r2 +
m2c4

~2  = 0 : (41)

A similar quantization for the Hamilton-Jacobi equation
given by (27) encounters difficulties, since the operators
1 +h+ g2 and p2 +m2c2 do not commute with each other,
nor with the operator E� cgp.y We may neglect the g2-term
in 1 +h+ g2, and write the Hamilton-Jacobi equation (27) as

1
1 + h

(E � cgp)2 = c2
�
p2 +m2c2

�
; (42)

where the two operators in the left side of this equation com-
mute now, up to quantities of the order of hg (or higher),
which we neglect. With these approximations, the quantiza-
tion rules can now be applied, and we get an equation which
can be written as�

@
@t

+cg
@
@r

�2
 �c2(1+h)

�
@2 
@r2
�m2c2

~2  
�

=0: (43)

It can be viewed as describing the quantum motion of a
particle under the action of a weak force � mc2

2
@h(r)
@r , as seen

by an observer moving with the small velocity�cg(t). It can

�Einstein’s (1905) quantization of energy and de Broglie’s (1923) quan-
tization of momentum follow immediately by this assumption, which gives a
meaning to the Bohr-Sommerfeld quantization rules (Bohr, 1913, Sommer-
feld, 1915). The quantum operators was first seen as matrices by Heisenberg,
Born, Jordan, Pauli (1925-1926).
yWe recall that h is a function of the coordinates only, h(r), and g is a

function of the time only, g(t).
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be derived directly from (41) by the coordinate transforma-
tions (19), in the limit h;g! 0.� It is worth noting, however,
that there is still a slight inaccuracy in deriving this equation,
arising from the fact that the operator (1 + h)(p2 +m2c2) is
not hermitean. It reflects the indefineteness in writing
(1+h)(p2+m2c2) or (p2+m2c2)(1+h) when passing from
(42) to (43). This indicates the ambiguities in quantizing the
relativistic motion, and they are remedied by the theory of the
quantal fields, as it is shown below.

The above equation can be written more conveniently as�
i~

@
@t
� cgp

�2
 � c2(1 + h)

�
p2 +m2c2

�
 = 0 ; (44)

where p=�i~ @
@r and i~ @

@t stands for the energy E.
We introduce the operator

H2 = c2(1 + h)
�
p2 +m2c2

�
=

= c2
�
p2 +m2c2

�
+ c2h

�
p2 +m2c2

�
;

(45)

which is time-independent, and treat the h-term as a small
perturbation. It is easy to see, in the first-order of the pertur-
bation theory, that the wavefunctions are labelled by momen-
tum p, and are plane waves with a weak admixture of plane
waves of the order of h; we denote them by '(p). Similarly,
in the first-order of the perturbation theory, the eigenvalues of
H2 can be written as E2(p) = c2(1 + �h)(p2 +m2c2), where
�h= 1

V

R
dr � h, V being the volume of normalization. We

have, therefore, H2'(p) =E2(p)'(p). Now, we look for a
time-dependent solution of equation (44)

�
i~ @@t � cgp

�2  =
=H2 , which can also be written as

�
i~ @

@t � cgp
�
 =H ,

where  is a superposition of eigenfunctions

 =
X
p

cp(t) e�iE(p)t=~ '(p) : (46)

We get

_cp0 = � i
~

X
p

cp e�i[E(p)�E(p0)]=~ cgpp0p ; (47)

where pp0p is the matrix element of the momentum p betwen
the states '(p0) and '(p). We assume cp = c0p + c1p, such as
c0p0 = 0 for all p0 ,p and c0p = 1, and get

_c1p0 = � i
~
e�i[E(p)�E(p0)]=~ cgpp0p ; (48)

which can be integrated straightforwardly. The square jc1p0 j2
gives the transition probability from state '(p) in state '(p0).

It follows that an observer in a non-uniform translation
might see quantum transitions between the states of a relativ-
�It has to be compared with the Klein-Gordon equation written as�

i~ @
@t � e'

�2
 � c2��i~ @@r + eA

c

�2
+m2c2

�
= 0 for a particle with

charge e in the electromagnetic field (';A), which, hystorically, was first
considered for the Hydrogen atom (Schrödinger, Klein, Gordon, 1926).
There, the forces come by the electromagnetic gauge field.

istic particle, providing the frequencies in the Fourier expan-
sion of g(t) match the difference in the energy levels. In
the zeroth-order of the perturbation theory the eigenfunctions
'(p) are plane waves, and the matrix elements pp0p of the
momentum vanish, so there are no such transitions to this or-
der. In general, if the total momentum is conserved, as for
free or interacting particles, these transitions do not occur. In
the first order of the perturbation theory for the external force
represented by h the matrix elements of the momentum do
not vanish, in general, and we may have transitions, as an
effect of a non-uniform translation. Within this order of the
perturbation theory the matrix elements of the momentum are
of the order of h, and the transition amplitudes given by (48)
are of the order of gh. We can see that the time-dependent
term of the order of gh neglected in deriving equation (44)
produces corrections to the transition amplitides of the order
of gh2, so its neglect is justified.

In general, the solution of the second-order differential
equation (43) can be approached by using the Fourier trans-
form. Then, it reduces to a homogeneous matricial equation,
where labels are the frequency and the wavevector (!;k),
conveniently ordered. The condition of a non-trivial solu-
tion is the vanishing of the determinant of such an equation.
This gives a set of conditions for the ordered points (!;k)
in the (!;k)-space, but these conditions do not provide any-
more an algebraic connection between the frequency ! and
the wavevector k. This amounts to saying that for a given
! the wavevectors are not determined, and, conversely, for a
given wavevector k the frequencies are not determined, i.e.
the quantum states do not exist in fact, anymore. The par-
ticle exhibits quantum transitions, which make its quantum
state undetermined. The same conclusion can also be seen
by introducing a non-uniform translation in the phase of a
plane wave, expanding the plane wave with respect to this
translation, under certain restrictions, and then using the time
Fourier expansion of the translation. The frequency of the
original plane wave changes correspondingly, which indicates
indeed that there are quantum transitions. One may say that
for a curved space as the one represented by the metric given
here, the quantization question has no meaning anymore, or
it has the meaning given here.

In the non-relativistic limit, the above Klein-Gordon
equation becomes

i~
@ 
@t

= H =
�
mc2 +

p2

2m
+ '

�
 + cgp ; (49)

which is Schrödinger’s equation up to the rest energy mc2,
and one can see more directly the perturbation cgp =�Vp.
It is worth noting that the derivation of Schrödinger’s equa-
tion holds irrespectively of the ambiguities related to the
quantization of the Hamilton-Jacobi equation. It follows, that
under the conditions mentioned above, i.e. in the presence of
a (non-trivial) external field ', an observer in a non-uniform
translation may observe quantum transitions in the non-
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relativistic limit, due to the non-inertial motion.� Obviously,
the frequency of this motion must match the quantum energy
gaps, for such transitions to be observed.

Similar considerations hold for the metric corresponding
to rotations. It is the hamiltonian (14) which is subjected to
quantization in that case, so we may have quantum transitions
between the states of the particle, providing these states do
not conserve the angular momentum. This requires a force,
as the one given by a potential'. The 
�r is exactly the rota-
tion velocity V, so we can apply directly the formalism devel-
oped above for a non-uniform translation to a non-uniform ro-
tation. The only difference is that the g for rotations depends
on the spatial coordinates too, beside its time dependence.
The g-interaction gives rise to terms of the type 
L, and the
evaluation of the matrix elements in the interacting terms be-
comes more cumbersome. It is worth keeping in mind the
condition 
r � c in such evaluations.

The difficulties encountered above with the quantization
of the Klein-Gordon equation in curved spaces remain for a
corresponding Dirac equation. It is impossible, in general, to
get a Dirac equation for equation (43), because the operators�
1� h

2

�
(E�cgp) and �cp+�mc2 (with � and � the Dirac

matrices), which represent the square roots of the two sides
of equation (42), do not commute anymore. Nevertheless, if
we limit ourselves to the first order of the perturbation the-
ory, we can see that the operator H2 defined above reduces to
c2(p2 +m2) providing we redefine the energy levels such as
to include the factor 1+ �h. Within this approximation, we get
the Dirac equation�

i~
@
@t
� cgp

�
 = (�cp + �mc2) ; (50)

where  contains now a weak admixture of plane waves, of
the order of h. It is worth noting that this equation is the Dirac
equation corresponding to (41), subjected to the translation
r = r0 + R, and t = t0. The non-uniform translation in the
left side of equation (50) gives now quantum transitions.

As it is well-known, there remain problems with the quan-
tization of the Klein-Gordon equation, which are not solved
by the Dirac equation. These problems find for themselves a
natural solution with the quantum fields.

A scalar field in a curved space. Let

S =
Z
dx0dr

p�g
�
(@i )(@i ) +

m2c2

~2  2
�

(51)

be the lagrangian for the (real) scalar field  , where g=
=��2 =�(1+h+g2) is the determinant of the metric given
�A suitable unitary transformation of the wavefunction — for instance,

exp
�� i Rp

~

�
— can produce such an interaction in the time-dependent

left side of the Schrödinger equation, but, at the same time, it produces an
equivalent interaction in the hamiltonian, such that the Schrödinger equation
is left unchanged. Such unitary transformations are related to symmetries
(Wigner’s theorem, 1931) and they are different from a change of coordi-
nates.

by (4).y It is easy to see that the principle of least action for
 in a flat space leads to the Klein-Gordon equation (41). For
the metric given by (4), and neglecting g2-terms, we get a
generalized Klein-Gordon equation�

@
@t

+ cg
@
@r

�
1p

1 + h

�
@
@t

+ cg
@
@r

�
 �

� c2 @
@r
p

1 + h
@
@r

 +
p

1 + h
m2c4

~2  = 0 :

(52)

We can apply the same perturbation approach to this equa-
tion as we did for equation (42). Doing so, we get equation
(44) and an additional term i c

2~
2
@h
@r p, which yields no diffi-

culties in the perturbation approach. The resulting equation
reads�

i~
@
@t
� cgp

�2
 � c2(1 + h)

�
p2 +m2c2

�
 +

+
ic2~

2

�
@h
@r

�
p = 0 :

(53)

It is worth noting that in the limit g ! 0 this is an exact
equation. The qualitative conclusions derived above for equa-
tion (44), as regards the quantum transitions produced by the
non-uniform translation, remain valid, though, we have now
a language of fields. It follows that a quantum particle, either
relativistic or non-relativistic, in a curved space of the form
analyzed herein becomes a wave packet from a plane wave
(or even forms a bound state), as a consequence of the forces,
and, at the same time, it may suffer quantum transitions, due
to the time-dependent metric (as if in a non-inertial transla-
tion for instance). This gives no meaning to the problem of
the quantization in curved spaces, or it gives the meaning dis-
cussed here.

The density L of lagrangian in the action S=
R
dtdr �L

given by (51) gives the momentum � = @L
@(@ =@t) and the

hamiltonian density � @ 
@t �L. The quantized field reads

 =
X
p

c~
2
p
"
�
ap e�i"t=~+ipr=~ + a+

p e
i"t=~�ipr=~�; (54)

and

� = �iX
p

p
"
c
�
ap e�i"t=~+ipr=~�a+

p e
i"t=~�ipr=~�; (55)

where "= c
p
m2c2+p2 and

�
 (t; r);�(t; r0)

�
=i~�(r�r0)

with usual commutation relations for the bosonic operators
ap; a+

p and a normalization of one p-state in a unit volume.
The hamiltonian is obtained by integrating its density given

yIn general, the action for fields must be written by replacing the flat
metric �ij by the curved metric gij (including

p�g in the elementary vol-
ume of integration) and replacing the derivatives @i by covariant derivatives
Di. The latter requirement can produce technical difficulties, in general.
However, for a scalar field or for the electromagnetic field the Di has the
same effect as @i, so the former are superfluous.
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above over the whole space. It can be written as H =H0 +
+H1h +H1g , where

H0 =
Z
dr �

"
1
4
c2�2 +

�
@ 
@r

�2
+
m2c2

~2  2

#
=

=
X
p

"
2

(apa+
p + a+

pap)
(56)

is the free hamiltonian,

H1h =
Z
dr�

� (
p

1 + h� 1)

"
1
4
c2�2 +

�
@ 
@r

�2
+
m2c2

~2  2

# (57)

is the interacting part due to the external field h and

H1g = � c
2

Z
dr �

�
�
�
g
@ 
@r

�
+
�
g
@ 
@r

�
�
�

=

= � c
2

X
p

(gp)(apa+
p + a+

pap)
(58)

is the time-dependent interaction. Perturbation theory can
now be applied systematically to the first-order of g and all
the orders of h, with the same results as those described
above: the quanta will scatter both their wavevectors and their
energy. Similar field theories can be set up for charged parti-
cles, or for particles with spin 1

2 and for photons, moving in a
curved space given by the metric (4).

Electromagnetic field in curved spaces. Photons. The ac-
tion for the electromagnetic field is

S = � 1
16�c

Z
dx0dr � p�g FijF ij ; (59)

where the electromagnetic fields Fij are given by the poten-
tials Ai through Fij = @iAj � @jAi. This leads immedi-
ately to the first pair of Maxwell equations (the free equa-
tions) @iFjk + @jFki + @kFij = 0 and the principle of least
action gives the second pair of Maxwell equations

@j(
p�g F ij) = 0 : (60)

In the presence of charges and currents the right side of
equation (60) contains the current, conveniently defined. The
antisymmetric tensor Fij consists of a vector and a three-
tensor in spatial components, the latter being representable
by another vector, its dual. Let these vectors be denoted by E
and B. Similarly, by raising or lowering the suffixes we can
define other two vectors, related to the former pair of vec-
tors, and denoted by D and H. Then, the Maxwell equations
obtained above take the usual form of Maxwell equations in
matter, namely curl E=� 1

cp
@ (pB)

@t , div B = 0 (the free

equations) and div D= 4��, curl H= 1
cp

@ (pD)
@t + 4�

c �v,

where � is the density of charge divided by
p and �� =

=�g�� + g0�g0�
g00

is the spatial metric (div and curl are con-
veniently defined in the curved space). For our metric, and
neglecting g2, the matrix  reduces to the euclidean metric of
the space (= 1).

We use A0 = 0, F0� = @0A� and F�� = @�A� � @�A�.
We define an electric field E= grad A and a magnetization
field B =�curl A. Then, neglecting g2, equation (60) can be
written as

div
�

1
�

(E + g �B)
�

= 0 (61)

and
@
c@t

�
1
�

(E + g �B)
�

= curl
�
�B +

1
�

g �E
�
; (62)

where � =
p

1+h. One can see that we may have a displace-
ment field D= E+g�B

� and a magnetic field H=�B + g�E
� ,

and the Maxwell equations div D= 0, @Dc@t = curl H without
charges.

Equations (61) and (62) can be solved by the perturbation
theory, for small values of h and g, starting with free electro-
magnetic waves as the unperturbed solution. Doing so, we ar-
rive immediately at the result that the solution must be a wave
packet, and the frequencies are not determined anymore, in
the sense that either for a given wavevector we have many
frequencies or for a given frequency we have many wavevec-
tors. This can be most conveniently expressed in terms of
photons which suffer quantum transitions.

The quantization of the electromagnetic field in a curved
space proceeds in the usual way. The action given by (59) can
be written as

S =
1

8�

Z
dtdr ���D2 �B2� =

=
1

8�

Z
dtdr � 1

�
�
E2 + 2E(g �B)��2B2�; (63)

which exhibits the well-known density of lagrangian in the
limit h;g! 0. We change now to the covariant vector poten-
tial A!�A, such that E=� @A

c@t and B= curl A. Leaving
aside the factor 1

8� , the momentum is given by �= @L
@(@A=@t)=

= 2
�c2

�@A
@t �g �B

�
. The vector potential is represented as

A� =
X
�p

c~
2
p
"
�
a�p e� e�i"t=~+ipr=~ + hc

�
(64)

and the momentum by

�� = �iX
�p

p
"
c
�
a�p e� e�i"t=~+ipr=~ � hc�; (65)

where e� is the polarization vector along the direction �, per-
pendicular to p= ~k (we assume the transversality condition
divA = 0), "= ~!= cp, while ! is the frequency and k is the
wavevector. The commutation relations are the usual bosonic
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ones, and we get the hamiltonian H =H0 +H1h +H1g ,
given by

H0 =
Z
dr �

�
1
4
c2�2 +B2

�
=

=
X
�p

"
2

(a+
�pa�p + a�pa+

�p)

H1h =
Z
dr � �p1 + h� 1

��1
4
c2�2 + B2

�
H1g = �1

2

X
�p

gp
�
a+
�pa�p + a�pa+

�p

�

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
: (66)

Systematic calculations can now be performed within the
perturbation theory, and we can see that quantum transitions
between the photonic states may appear, starting with the hg-
order of the perturbation theory. Therefore, an observer mov-
ing with a non-uniform velocity is able to see a “blue shift”
in the frequency of the photons “acted” by a force like the
gravitational one.� The shift occurs obviously at the expense
of the energy of the observer’s motion.y

Other fields. A similar approach can be used for other fields
in a curved space. In particular, it can be applied to spin-1/2
Dirac fields, with similar conclusions, though, technically, it
is more cumbersome to write down the action for spinors in
curved spaces. It can be speculated upon the question of
quantizing the gravitational field in a similar manner. In-
deed, weak perturbations of the flat metric can be represented
as gravitational waves, which can be quantized by using the
gravitational action

R
dx0dr � p�g R, where R is the curva-

ture of the space.z Now, we may suppose that these gravi-
tons move in a curved space with the metric g. We may use
the same gravitational action as before, where g is now the
metric of the space and R contains the graviton field. Or, al-
ternately, we expand g= g0 + �g, where g0 is the background
part and �g is the graviton part. We get a field theory of gravi-
tons interacting with the underlying curved space, and we get
quantum transitions of the gravitons, which gives a meaning
to the quantization of the gravity, in the sense that either it is
not possible or the gravitons suffer quantum transitions. The
space and time (the gravitons) are then scattered statistically
�This is similar with the Unruh effect (1976).
yIt is worth investigating the change in the equilibrium distribution of

the black-body radiation as a consequence of the non-uniform translation in
a gravitational field. The frequency shift amounts to a change of temperature,

which increases, most likely, by �T
T
� �g�h

�2
, with temporal and spatial av-

erages (for the quantization of the black-body radiation see Fermi, 1932). In
this respect, the effect discussed here, though related to the Unruh effect,
is different. The Unruh effect assumes rather that the external non-uniform
translation, as a macroscopic motion, consists of a coherent vacuum, so equi-
librium photons can be created; the related increase in temperature is rather
the measurement made by the observer of its own motion.
zThough there are difficulties in establishing a relativistically-invariant

quantum theory for particles with helicity 2, like the gravitons. Another re-
lated difficulty is the general non-localizability of the gravitational energy.

by matter (which in turn suffers a similar process) or by the
non-inertial motion.

Conclusion. The quantum motion implies, basically, delo-
calized waves, like plane wave, both in space and time. The
general theory of relativity, gravitation or curved space as
the one discussed here, arising from weak static forces and
non-inertial motion, imply localized field, both in space and
time. Consequently, the quantization is destroyed in those
situations involved by the latter case, in the sense that quanta
are scattered both in energy and the wavevector, and we have
to deal there with transition amplitudes and probabilities, i.e.
with a statistical perspective. The basic equations for the
classical motion in these cases become meaningful only with
scattered quanta. This shows indeed that the quantization is
both necessary and illusory. The basic aspect of the natural
world is its statistical character in terms of quanta.
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The important rôle played in society today by scientific research is highlighted, and the
related various social, economical and political conditionings of science are discussed.
It is suggested that the exclusive emphasis upon the multiple technological applications
of science, the use and abuse of scientific research, may lead to the very disappearance
of science, transforming scientific research into a routine and almost ritualistic activity,
empty of any real content. This may already be seen in the inadequate way present day
society tackles the fundamental problems we are confronted with, issues such as the
environment, conflict, life and the thinking process.

Science is used and misused today in a great variety of ways,
in all of the utmost relevance to human life and activity.
Worldwide policy has found it useful for science to be em-
ployed by the military, and developed nations spend gener-
ously on this application of science. New, sophisticated, pow-
erful weaponry is produced today, by an application of sci-
entific achievements. It has also been found beneficial to put
science to work for a more comfortable life; highly-developed
technologies, industry, manufacturing, farming, agriculture,
commerce, services, transport and communications are
science-based today. Education, culture, civilization, a
highly-qualified work force are produced on the basis of sci-
ence. Everything that matters to humans, namely wealth,
fame and pleasure, is achieved on an ever larger scale today
by using science. Modern science is viewed as an immensely
beneficial resource, whose rôle in society is to be tapped more
and more for the greatest of profit. In this respect, everybody
talks now only of “technology transfer”, “competitiveness”,
“innovation”, “leadership”, and last but not least, of “intel-
lectual leadership”, through science. Science is everywhere
“oriented” on our epoch towards the military, warfare, tech-
nology, industry, economy, education, etc, etc. There is no
more “simply science”; it is everywhere determined, oriented,
conditioned.

Scientists should feel well and flattered by the great inter-
est shown by society in their art and trade. The fact is that
science has provided much for society, through mechanical
constructions, thermal machines, electricity, nuclear energy,
materials, electronics, and it is natural for society to try to
control, accelerate and harness all this in the process of prof-
iting by the use and abuse of science.

Yet nobody is satisfied with such a policy, all around the
world. Taxpayers want more and more from science, and the
scientists are more and more incapable of responding to their
high demands. In addition, politicians stirr up heavily this

conflictual issue. The reason for such a failure resides in the
inadequacy of this type of science policy.

Indeed, science is not funded, according to this policy,
unless it produces something immediately relevant to society,
i.e. something useful for the military, for industry, the econ-
omy, education, etc. Scientific research, which is the way
science advances, is only desired for its applications. Yet all
these outlets for science, in various areas of activity and in-
terest, are not science; they are only its applications. Science
policy today greatly confuses science with its applications.
By laying emphasis exclusively on applications we will end
up having no science at all.

Science is a resource, like any other, and yet a bit special.
Of course, scientific knowledge does not fade, or degrade, by
repeated use, it is not wasted or dissipated by using it. New-
ton’s laws do not vanish by being repeatedly used. But people
who have scientific knowledge, and who at least endeavour to
maintain it, if not advancing it, i.e. those we call scientists,
disappear, if not properly cultivated. We have a lot of applica-
tions of science, a serious endeavour for technology transfer,
great expectations from using this science, but where is the
science? We have no science anymore by such policy which
provides exclusively for scientific applications, irrespective
of how desirable and benefical they might be.

A very deeply-rooted fallacy is to think that scientists are
in universities. This is profoundly wrong. In universities we
have professors who teach science to young people. They
need to acquire scientific fuel for this teaching process, from
elsewhere. We cannot say reasonably that teachers in univer-
sities do both science and teaching contemporaneously, be-
cause they then do either half of each or half of neither. It
is more appropriate to emphasize the exclusive educational
task of the universities, and provide separately for scientists,
in distinct laboratories, institutes, etc. The great advances
in science and in its applications made by the former Soviet
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Union and the USA in the last half of the past century were
achieved precisely because these States cultivated distinctly
science and scientists, and did not mix up science with teach-
ing or production.

Of course, these things are related, and it is desirable and
profitable to cultivate such naturally beneficial relations. How
are we going to strenghten the relations between universi-
taries, scientists and high-tech entrepreneurs? Simply by do-
ing precisely what we need to: by providing for close rela-
tionships between such people, encouraging their meetings,
discussions, talks, cooperation, etc. The main cause of the
difficulties and dissatisfaction today with the “failure” of sci-
ence in society is due precisely to the vanishing relationship
between scientists, technologists, entrepreneurs, and teach-
ers. We need to urgently provide for such close contacts, but
we have to be very careful not to mix things up: to keep the
distinction between these socio-professional categories. It is
a scientific fact that distinctiveness and variety produce force
and motion, whilst admixture increases only the potential of
ineffectiveness, resulting in only a restful peace.

If we are going to cultivate, by our policies, the distinc-
tion between scientists, teachers, professors, technologists,
entrepreneurs, to provide for close collaborative relationships
between all them, keeping at the same time the distinction,
and not to mistake science and scientific research for teaching
or production, then we will be more scientific in our endeav-
ours, and will be more fortunate in our expectations.

We are yet pretty unscientific with respect to basic is-
sues. For instance, nowadays we set for science the mission
of reducing, or circumventing, the degradation of the envi-
ronment, without noticing that every human activity degrades
the environment. Indeed, even the mental processes degrade
their environment; brains in this case. Life is an organized
process whereby entropy is diminished, and therefore it is a
great fluctuation, but at the same time we increase also the
environmental entropy, including that of our own body, just
by living, and the increase is greater than the decrease, and
the process goes to equilibrium. We will end with a more bal-
anced world, where life will become extinct, because the fluc-
tuations diminish near equlibrium. We would think of finding
a solution for preserving life by creating artificially another
similar fluctuation, then with a greater spending of energy.
The inherent limitations of such an artificial process will then
pose serious issues regarding how, who and how many would
be going to live that artificial life. This may present a serious
problem for science and technology, and for the future of our
society. Another is the process of thinking, for many believe
that we should think the thinking process in order to under-
stand what we are tinking. First, they assume erroneously
that there exists a conscience, or a consciousness, i.e. a state
or process of thinking the thinking process, which is false.
Anyone who thinks is not conscious of what he or she is do-
ing, there is no double thinking; consciousness is identical to
thinking itself. Thinking is a natural process, associated with

the complexity of the human brain, and so we do not think of
thinking, because it is impossible, we just do it. To think is
just to be. Such sorts of things we only learn through science,
so, providing in our policies for properly cultivating science
will greatly enhance our chances of responding to truly rele-
vant questions. Besides, life and the thinking process may be
manipulated and controlled by others, but never in those who
are doing that. But full power is illusory. We may destroy sci-
ence in others but never in ourselves. The need for scientific
knowledge is essential for survival.
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This paper reviews a new solution which concerns the black hole problem. The new so-
lution, by S. J. Crothers, doesn’t eliminate the line-element of the classical “black hole
solution” produced by the founders of the problem, but represents the gravitational col-
lapse condition in terms of physical observable quantities accessible to a real observer
whose location is in the real Schwazschild space itself, not with the quantities in an
abstract flat space tangential to it at the point of observation (as it was in the classical
solution). Besides, Schwarzschild space is only a very particular case of Einstein spaces
of type I. There are minor studies on the physical conditions of gravitational collapse in
other spaces of type I, and nothing on Einstein spaces of type II and type III (of which
there are hundreds). Einstein spaces (empty spaces, without distributed matter, wherein
Ricci’s tensor is proportional to the fundamental metric tensor), are spaces filled by an
electromagnetic field, dust, or other substances, of which there are many. As a result,
studies on the physical conditions of gravitational collapse are only in their infancy.

In a series of pioneering papers, starting in 1979, Leonard S.
Abrams (1924–2001) discussed [1] the physical sense of the
black hole solution. Abrams claimed that the correct solution
for the gravitational field in a Schwarzschild space (an empty
space filled by a spherically symmetric gravitational field pro-
duced by a spherical source mass) shouldn’t lead to a black
hole as a physical object. Such a statement has profound con-
sequences for astrophysics.

It is certain that if there is a formal error in the black hole
solution, committed by the founders of this theroy, in the pe-
riod from 1915–1920’s, a long list of research produced dur-
ing the subsequent decades would be brought into question.
Consequently, Abrams’ conclusion has attracted the attention
of many physicists. Since millions of dollars have been in-
vested by governments and private organizations into astro-
nomical research connected with black holes, this discussion
ignited the scientific community.

Leonard S. Abrams’ professional reputation is beyond
doubt. As a result, it is particularly noteworthy to observe that
Stephen J. Crothers [2], building upon the work of Abrams,
was able to deduce solutions for the gravitational field in a
Schwarzschild metric space produced in terms of a physical
observable (proper) radius. Crothers’ solutions fully verify
the initial arguments of Abrams. Therefore, the claim that the
correct solution for the gravitational field in a Schwarzschild
space does not lead to a black hole as a physical object re-
quires serious attention.

Herein, it is important to give a clarification of Crothers’
solution from the viewpoint of a theoretical physicist whose
professional field is the General Theory of Relativity. The
historical aspect of the black hole problem will not be dis-
cussed as this has been sufficiently addressed in the scien-
tific literature and, especially, in a historical review [3]. The
technical details of Crothers’ solution will also not be reana-

lyzed: his calculations were reviewed by many professional
relativists prior to publication in Progress in Physics. These
reviewers had a combined forty years of professional employ-
ment in this field and it is thus extremely unlikely that a for-
mal error exists within Crothers’ work. Rather, our attention
will be focused only upon clarification of the new result in
comparison to the classical solution in Schwarzschild space.
In other words, the main objective is to answer the question:
what have Abrams and Crothers achieved?

In this letter, two important items must be highlighted:
1. The new solution, by Crothers, doesn’t eliminate the

classical “black hole solution” (i.e. the line-element
thereof) produced by the founders of the black hole
problem, but represents the perspective of a real ob-
server whose location is in the real Schwazschild space
itself (inhomogeneous and curved), not by quantities
in an abstract flat space tangential to it at the point of
observation (as it was previously, in the classical so-
lution). Consequently, the new solution opens a door-
way to new research on the specific physical conditions
accompanying gravitational collapse in Schwarzschild
space. This can now be studied in a reasonable manner
both through a purely theoretical approach and with the
methods of numerical relativity (computers);

2. Schwarzschild space is only a very particular case re-
lated to Einstein spaces of type I. There are minor stud-
ies on the physical conditions of gravitational collapse
in other spaces of type I, but nothing on it in relation
to Einstein spaces of type II and type III (of which
there are hundreds). Besides Einstein spaces (empty
spaces, without distributed matter, wherein Ricci’s ten-
sor is proportional to the fundamental metric tensor
R�� � k g��), there are spaces filled by an electromag-
netic field, dust, or other substances, of which there are
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many. As a result, studies on the physical conditions of
gravitational collapse are only in their infancy.

First, the corner-stone of Crothers’ solution is that it was
produced in terms of the physical observed (proper) radius
which is dependent on the properties of the space itself, while
the classical solution was produced in terms of the coordinate
radius determined in the tangentially flat space (it can be cho-
sen at any point of the inhomogeneous, curved space). For in-
stance, when one makes a calculation at such a proper radius
where the gravitational collapse condition g00 = 0 occurs, the
calculation result manifests in what might be really measur-
able on the surface of collapse from the perspective of a real
observer who has a real reference body which is located in
this space, and is bearing not on the ideal, but on real physical
standards whereto this observer compares his measurements.
This is in contrast to the classic procedure of calculation ori-
ented to the coordinate quantities measurable by an “abstract”
observer who has an “ideal” reference body which, in com-
mon with its ideal physical standards, is located in the flat
space tangential to the real space at the point of observation,
not the real space which is inhomogeneous and curved.

In the years 1910–1920’s people had no clear understand-
ing of physical observable quantities in General Relativity.
Later, in the years 1930–1940’s, many researchers such as
Einstein, Lichnerowicz, Cattaneo and others, were working
on methods for determination of physical observable quan-
tities in the inhomogeneous curved space of General Rela-
tivity. For instance, Landau and Lifshitz, in §84 of their fa-
mous book, The Classical Theory of Fields, first published in
1939, introduced observable time and the observable three-
dimensional interval. But they all limited themselves to only
a few particular cases and did not arrive at general mathe-
matical methods to define physical observable quantities in
pseudo-Riemannian spaces. The complete mathematical ap-
paratus for calculating physical observable quantities in four-
dimensional pseudo-Riemannian space, that is a strict solu-
tion to the problem of physical observable quantities in Gen-
eral Relativity, was only constructed in the 1940’s, by Abra-
ham Zelmanov (1913–1987), and first published in 1944 in
his doctoral dissertation [4].

Therefore David Hilbert and the other founders of the
black hole problem�, who did their work during the period
1916–1920’s, worked in the circumstances of the gravitation-
al collapse condition g00 = 0 in Schwarzschild space in terms
of the coordinate radius (which isn’t the same as the real dis-
tance in this space). As a result, they concluded that the spher-
ical mass which produces the gravitational field in Schwarz-
schild space, with the increase of its density, becomes a a
“self-closed” object surrounded by the gravitational collapse

�Karl Schwarzschild died in 1916, and had no relation to the black hole
solution. He only deduced the metric of a space filled by the spherically
symmetric gravitational field produced by a spherical mass therein (such a
space is known as a space with a Schwarzschild metric or, alternatively, a
Schwarzschild space).

surface of the condition g00 = 0 so that all events can occur
only inside it (this means a singular break in the surface of
collapse).

By the new solution, which was obtained by Crothers in
terms of the proper radius, there is no observable singular
break under any physical conditions: so a real spherical body
of a Schwarzschild metric cannot become a “self-closed” ob-
ject observable as a “black hole” in the space.

This new solution, in common with the classical solution,
means that we have two actual pictures of gravitational col-
lapse, drawn by two observers who are respectively located
in different spaces: (1) a real observer located in the same
Schwarzschild space where the gravitational collapse occurs;
(2) an “abstract” observer whose location is in the flat space
tangential to the Schwarzschild space at the point of obser-
vation.

So, the new solution doesn’t eliminate the classical “black
hole solution” (i.e. the line-element thereof), but represents
the same phenomenon of gravitational collapse in a Schwarz-
schild space from another perspective, related to real obser-
vation and experiment.

Second, Schwarzschild space is only a very particular
case of Einstein spaces of Type I. Einstein spaces [5] are
empty spaces without distributed matter, wherein Ricci’s
tensor is proportional to the fundamental metric tensor
(R�� � k g��). There are three known kinds of Einstein
spaces, and there are many spaces related to each kind (hun-
dreds, as expected, and nobody knows exactly how many).
There are almost no studies of the gravitational collapse con-
dition g00 = 0 in most other Einstein spaces of Type I. There
are no studies at all of the collapse condition in Einstein
spaces of Type II and Type III. Besides that, General Rela-
tivity has many spaces beyond Einstein spaces: spaces filled
by distributed matter such as an electromagnetic field, dust, or
other substances, of which there are many. Such spaces are
closer to real observation and experiment than Schwarzschild
space, so it would be very interesting to study the collapse
condition in spaces beyond Einstein spaces.

This is why Schwarzschild (empty) space is good for ba-
sic considerations, where there are no sharp boundaries for
the physical conditions therein. However, such a space be-
comes unusable under some ultimate physical conditions,
which are smooth in the real Universe due to the influences
of many other space bodies and fields. Gravitational collapse
as the ultimate condition in Scwarzschild space leads to black
holes outside a real physical space, with the consequence that
the black hole solution in Schwarzschild space has no real
meaning (despite the fact that it can be formally obtained).
Mathematical curiosities are always interesting, but if these
things have no real meaning, then one must make it clear in
the end. Consequently, the current mathematical treatment
of black holes in Schwarzschild space does not have physical
validity in nature, as Crothers explains.

These results are not amazing: many solutions to Ein-
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stein’s equation have no validity in the physical world. There-
fore the collapse condition in a real case, which could be met
in the real Universe filled by fields and substance, should be
a subject of numerical relativity which produces approximate
solutions to Einstein’s equations with the use of computers,
not an exact theory of the phenomenon.

As a result we see that studies on the physical conditions
of gravitational collapse are only beginning. New solutions,
given in terms of physical observable quantities, do not close
the gravitational collapse problem, but open new horizons for
studies by both exact theory and numerical methods of Gen-
eral Relativity.
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SPECIAL REPORT

PLANCK, the Satellite: a New Experimental Test of General Relativity

Larissa Borissova and Dmitri Rabounski
E-mail: lborissova@yahoo.com; rabounski@yahoo.com

If the origin of a microwave background (EMB) is the Earth, what would be its density
and associated dipole anisotropy measured at different altitudes from the surface of
the Earth? The mathematical methods of the General Theory of Relativity are applied
herein to answer these questions. The density of the EMB is answered by means of
Einstein’s equations for the electromagnetic field of the Earth. The dipole anisotropy,
which is due to the rapid motion of the source (the Earth) in the weak intergalactic field,
is analysed by using the geodesic equations for light-like particles (photons), which
are mediators for electromagnetic radiation. It is shown that the EMB decreases with
altitude so that the density of its energy at the altitude of the COBE orbit (900km) is 0.68
times less than that at the altitude of a U2 aeroplane (25 km). Furthermore, the density
at the 2nd Lagrange point (1.5 million km, the position of the WMAP and PLANCK
satellites) should be only�10�7 of the value detected by a U2 aeroplane or at the COBE
orbit. The dipole anisotropy of the EMB doesn’t depend on altitude from the surface of
the Earth, it should be the same irrespective of the altitude at which measurements are
taken. This result is in support to the experimental and observational analysis conducted
by P.-M. Robitaille, according to which the 2.7 K microwave background, first observed
by Penzias and Wilson, is not of cosmic origin, but of the Earth, and is generated by
the oceans. WMAP indicated the same anisotropy of the microwave background at the
2nd Lagrange point that near the Earth. Therefore when PLANCK, which is planned
on July, 2008, will manifest the 2.7 K monopole microwave signal deceased at the 2nd
Langrange point, it will be a new experimental verification of Einstein’s theory.

1 Introduction

Our recent publication [1] was focused on the mathematical
proof in support to the claim made by P.-M. Robitaille: ac-
cording to the experimental and observational analysis con-
ducted by him [3–10], the 2.7 K monopole microwave back-
ground, first detected by Penzias and Wilson [2], is not of
cosmic origin, but of the Earth, and is generated by oceanic
water�. As shown in the framework of Robitaille’s concept,
the anisotropy of the background, observed on the 3.35 mK
dipole component of ity, is due to the rapid motion of the
whole field in common with its source, the Earth, in a weak
intergalactic field so that the anisotropy of the observed mic-
rowave background has a purely relativistic origin [21].z
�Robitaille reported the result first in 1999 and 2001 in the short com-

munications [1, 2], then detailed explanation of the problem was given by
him in the journal publications [3–6] and also in the reports [9, 10].
yThe 3.35 mK dipole component of the background was first observed in

1969 by Conklin [11] in a ground-based observation. Then it was studied by
Henry [12], Corey [13], and also Smoot, Gorenstein, and Muller (the latest
team organized a stratosphere observation on board of a U2 aeroplane [14]).
The history of the discovery and all the observations is given in detail in
Lineweaver’s paper [15]. The anisotropy of the dipole component was found
later, in the COBE space mission then verified by the WMAP space mission
[16–20].
zThis conclusion is based on that fact that, according to the General

Theory of Relativity, photons exceeded from a source at radial directions
should be carried out with the space wherein this source moves so that the
spherical distribution of the signals should experience an anisotropy in the
direction of the motion of this source in the space [22, 23].

If the microwave background is of the earthy origin, the
density of the field should obviously decrease with altitude
from the surface of the Earth. The ground-bound measure-
ments and those made on board of the COBE satellite, at the
altitude 900 km, were processed very near the oceans which
aren’t point-like sources, so the observations were unable to
manifest the change of the field density with altitude. An-
other case — the 2nd Lagrange point, which is located as far
as 1.5 mln km from the Earth, the position of the WMAP
satellite and the planned PLANCK satellite.

A problem is that WMAP has only differential instru-
ments on board: such an instrument, having a few channels
for incoming photons, registers only the difference between
the number of photons in the channels. WMAP therefore tar-
geted measurements of the anisotropy of the field, but was un-
able to measure the field density. PLANCK, which is planned
on July, 2008, is equipped by absolute instruments (with just
one channel for incoming photons, an absolute instrument
gets the integral density of the monopole and all the multi-
pole components of the field). Hence PLANCK will be able
to measure the field density at the 2nd Lagrange point.

We therefore were looking for a theory which would be
able to represent the density and anisotropy of the Earth’s
microwave background as the functions of altitude from the
Earth’s surface.

In our recent publication [1], we created such a theory
with use of the mathematical methods of the General The-
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ory of Relativity where the physical characteristics of fields
are expressed through the geometrical characteristics of the
space itself. We have split our tasks into two particular prob-
lems: if a microwave background originates from the Earth,
what would be the dependency of its density and relativis-
tic anisotropy with altitude? The first problem was solved via
Einstein’s equations for the electromagnetic field of the Earth.
The second problem was solved using the geodesic equations
for light-like particles (photons) which are mediators for elec-
tromagnetic radiation.

We have determined, according to our solutions [1], that a
microwave background that originates at the Earth decreases
with altitude so that the density of the energy of such a back-
ground in the COBE orbit (the altitude 900 km) is 0.68 times
less than that at the altitude of a U2 aeroplane. The density of
the energy of the background at the L2 point is only �10�7

of the value detected by a U2 aeroplane or at the COBE or-
bit. The dipole anisotropy of such an earthy microwave back-
ground, due to the rapid motion of the Earth relative to the
source of a weak intergalactic field which is located in depths
of the cosmos, doesn’t depend on altitute from the surface of
the Earth. Such a dipole will be the same irrespective of the
position at which measurements are taken.

In principle, the first problem — how the density of an
earthy-origin microwave background decreases with altitude
— may be resolved by the methods of classical physics. But
this is possible only in a particular case where the space is
free of rotation. In real, the Earth experiences daily rotation.
We therefore should take into account that fact that the rota-
tion makes the observer’s local space non-holonomic: in such
a space the time lines are non-orthogonal to the spatial sec-
tion, so the Riemannian curvature of the space is non-zero. A
satellite’s motion around the Earth should be also taken into
account for the local space of an observer which is located
on board of the satellite. Therefore in concern of a real ex-
periment, in both cases of ground-based and satellite-based
observations, the first problem can be resolved only in the
framework of the General Theory of Relativity.

The second problem can never been resolved in the frame-
work of classical physics due to the purely relativistic origin
of the field anisotropy we are considering.

WMAP registered the same parameters of the microwave
background anisotropy that the registered by COBE near the
Earth. This is according to our theory.

Therefore when PLANCK will manifest the 2.7 K mono-
pole microwave signal deceased at the 2nd Langrange point,
with the same anisotropy of the background that the measured
near the Earth (according to WMAP which is as well located
at the 2nd Langange point), this will be a new experimental
verification of the General Theory of Relativity.

A drawback of our theory was only that complicate way
in which it was initially constructed. As a result, our re-
cently published calculation [1] is hard to reproduce by the
others who have no mathematical skills in the very specific

areas of General Relativity, which are known to only a close
circle of the specialists who are no many in the world. We
therefore were requested for many additional explanations by
those readers who tried to repeat the calculation.

Due to that discussion, we found another way to give rep-
resentation of our result with much unused stuff removed. We
also gave an additional explanation to those parts of our cal-
culation, which were asked by the readers. As a result a new
representation of our calculation, with the same result, be-
came as simple as easy to peroduce by everyone who is free
in tensor algebra. This representation is given here.

2 The local space metric of a satellite-bound observer

A result of real measurement processed by an observer de-
pends on the properties of his local space. These properties
are completely determined by the metric of this space. We
therefore are looking for the metric of the local space of an
observer, who is located on board of a statellite moved in the
Earth’s gravitational field.

As one regularly does in construction for a metric, we
take a simplest metric which is close to the case we are con-
sidering, then modify the metric by introduction of those ad-
ditional factors which are working in our particular case.

Here is how we do it.
As was proven in the 1940’s by Abraham Zelmanov, on

the basis of the theory of hon-holonomic manifolds [24] con-
structed in the 1930’s by Schouten then applied by Zelmanov
to the four-dimensional pseudo-Riemannian space of General
Relativity, the non-holonomity of such a space (i.e. the non-
orthogonality of the time lines to the spatial section, that is
expressed as g0i , 0 in the fundamental metric tensor g��)
is manifest as the three-dimensional rotation of this space.
Moreover, Zelmanov proven that any non-holonomic space
has nonzero Riemannian curvature (nonzero Riemann-
Christoffel tensor) due to g0i , 0. All these was first reported
in 1944 by him in his dissertation thesis [25], then also in the
latter publications [26–28].

In practice this means that the physical space of the Earth,
the planet, is non-holonomic and curved due to the daily rota-
tion of it. This is in addition to that fact that the Earth’s space
is curved due to the gravitational field of the Earth, described
in an approximation by Schwarzschild metric of a centrally
symmetric gravitational field, created by a spherical mass in
emptiness. The space metric of a satellite-bound observer
should also take into account that fact that the satellite moves
along its orbit in the Earth’s space around the terrestrial globe
(the central mass that produces the field). In addition to it the
Earth, in common with the satellite and the observer located
in it, rapidly moves in the physical space of the Universe as-
sociated to the weak intergalactic microwave field. This fact
should also be taken into account in the metric.

First, we consider a simplest non-holonomic space —
a space wherein all g0i , 0, and they have the same numerical
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values. According to Zelmanov [25–28], such a space ex-
periences rotation around all three axes with the same linear
velocity v= v1 = v2 = v3, where vi =� c g0ipg00

. As obvious,
the metric of such a non-holonomic space is

ds2 = c2dt2+
2v
c
cdt (dx+dy+dz)�dx2�dy2�dz2: (1)

For easy taking the Earth’s field into account, we change
to the cylindrical coordinates r, ', z, where the r-axis is di-
rected from the centre of gravity of the Earth along its ra-
dius. The corresponding transformations of the coordinates
are x= r cos', y= r sin', z= z so that the metric (1) rep-
resented in the new coordinates is

ds2 = c2dt2 +
2v
c

(cos'+ sin') cdtdr +

+
2vr
c

(cos'� sin') cdtd'+
2v
c
cdtdz � (2)

� dr2 � r2d'2 � dz2:

Next we introduce the factor of the Earth’s gravitational
field in the same way as it is made in Schwarzschild metric
(see §100 in The Classical Theory of Fields [29]) — the met-
ric of a spherically symmetric gravitational field, produced
by a sperical mass M in emptiness, which in the cylindrical
coordinates is

ds2 =
�

1� 2GM
c2r

�
c2dt2� dr2

1� 2GM
c2r
� r2d'2� dz2; (3)

where we should take into account that fact that 2GM
c2r is small

value, so we have

ds2 =
�

1� 2GM
c2r

�
c2dt2 �

�
1 +

2GM
c2r

�
dr2�

� r2d'2 � dz2:
(4)

Besides, we should take into account the factor of rota-
tional motion of the observer, in common with the satellite,
along its orbit around the Earth. We see how to do it in the
example of a plane metric in the cylindrical coordinates

ds2 = c2dt2 � dr2 � r2d'2 � dz2; (5)

where we change the reference frame to another one, which
rotates relative to the initially reference frame with a constant
angular velocity !. By the applying the transformation of the
coordinates r0= r, '0='+!t, x0= z, we obtain ds2 in the
rotating reference frame�

ds2 =
�

1� !2r2

c2

�
c2dt2 � 2!r2

c
cdtd'� dr2�
� r2d'2 � dz2:

(6)

Following with the aforementioned stepsy, we obtain the
metric of the local physical space of a satellite-bound ob-
server which takes all properties of such a space into account.
This resulting metric is represented in formula (7).

This metric will be used by us in calculation for the den-
sity of the Earth microwave background, measured by an ob-
server on board of a satellite of the Earth.

This metric is definitely curved due to two factors: non-
zero gravitational potential w = c2 (1�pg00), 0 and the
space non-holonomity g0i , 0. Hence we are able to consider
Einstein equations in such a space.

On the other hand this metric doesn’t take into account
that fact that the Earth microwave background, in common
with the Earth, moves in a weak intergalactic field with a ve-
locity of v = 365�18 km/sec (as observational analysis indi-
cates it). To calculate the accociated dipole anisotropy of the
Earth microwave background, which is due to the motion, we
should use such a space metric which takes this motion into
account. To do it we take the metric (7) then apply Lorentz’
transformations to the z-coordinate (we direct the z-axis with
the motion of the Earth in the weak intergalactic field) and
time with an obvious approximation of v� c and high order
terms omitted: z0= z+ vt, t0= t+ vz

c2 . In other word, we
“move” the whole local physical space of an earthy satellite-
bound observer relative to the source of the weak intergalactic
field. As a result the local physical space of such an observer
and all physical fields connected to the Earth should experi-
ence a drift in the z-direction and a corresponding change the
�See §10.3 in [27], or §3.6 in [28] for detail.
yAs known in Riemannian geometry, which is particular to metric ge-

ometries, a common metric can be deduced as a superposition of all the par-
ticular metrics each of whom takes a particular property of the common space
into account.
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local physically observed time that should has a sequel on the
observed charachteristics of the Earth’s microwave field.

The resulting metric we have obtained after the transfor-
mation is (8). We will use this metric in calculation for the
anisotropy of the Earth microwave background measured by
a satellite-bound observer.

3 The density of the Earth’s microwave background at
the 2nd Lagrange point

To calculate the density of a field (distributed matter) depen-
dent from the properties of the space wherein this field is sit-
uated we should operate with Einstein’s equations

R�� � 1
2
g��R = ��T�� + �g�� ; (9)

the left side of which is for the space geometry, while the
right side describes distributed matter (it is with the energy-
momentum tensor of distributed matter and the �-term which
describes the distribution of physical vacuum).

Projection of the energy-momentum tensor T�� onto the
time line and spatial section of an observer’s local physical
space gives the properties of distributed matter observed by
him [25–28]: the density of the energy of distributed mat-
ter �= T00

g00
, the density of the momentum J i = c T i0pg00

, and the

stress-tensor U ik = c2T ik. To express the first of these ob-
servable quantities through the observable properties of the
local physical space is a task in our calculation.

To reach this task we should project the whole Einstein
equations onto the ime line and spatial section of the metric
space (7) with taking into account that fact that the energy-
momentum tensor is of an electromagnetic field. The left side
of the projected equations will be containing the observable
properties of the local space of such an observer, while the
right side will be containing the aforementioned observable
properties of distributed matter (the Earth microwave back-
ground, in our case). Then we can express the density of the
Earth microwave background � as a function of the observ-
able properties of the local space.

Einstein’s equations projected onto the time line and spa-
tial section of a common case were obtained in the 1940’s
by Zelmanov [25–28], and are quite complicate in the left
side (the observable properties of the local space). We there-
fore first should obtain the observable properties of the given
space (7), then decide what propetries can be omitted from
consideration in the framework of our problem.

According to the theory of physical observable quanti-
ties of the General Theory of Relativity [25–28], the observ-
able properties of a space are the three-dimensional quan-
tities which are invariant within the fixed spatial section of
an observer (so-called chronometrically invariant quantities).
Those are the three-dimensional metric tensor hik, the grav-
itational inertial force Fi, the angular velocity of the space
rotationAik (known as the non-holonomity tensor), the space

deformation tensor Dik, the three-dimensional Christoffel
symbols �i

kn, and the three-dimensional curvature Ciklj , ex-
pressed through the gravitational potential w = c2 (1�pg00)
and the linear velocity of the space rotation vi =� c g0ipg00

(whose components are vi =�cg0ipg00 and vi =hikvk):

hik =�gik +
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is Zelmanov’s tensor constructed by him on the basis of the
non-commutativity of the second chronometrically invariant
derivatives of an arbitrary spatial vector taken in a given three-
dimensional spatial section

�ri�rkQl � �rk�riQl =
2Aik
c2

�@Ql
@t

+H :::j
lki�Qj ; (21)

where �riQl = �@Ql
@xi ��j

jiQl is the chronometrically invari-

ant derivative of the vector (�riQl =
�@Ql
@xi +�j

jiQl respec-
tively). The tensor H :::j

lki� was introduced by Zelmanov sim-
ilarly to Schouten’s tensor of the theory of non-holonomic
manifolds [24] so that the three-dimensional curvature tensor
Clkij possesses all the algebraic properties of the Riemann-
Christoffel curvature tensor in the spatial section.

We take the components of the fundamental metric tensor
g�� from the metric of the local physical space of a satellite-
bound observer (7), then calculate the aforementioned ob-
servable quantities. In this calculation we take into account
that fact that 2GM

c2r and !2r2

c2 are in order of 10�9 near the sur-
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face of the Earth, and the values decrease with altitude. We
therefore operate these terms according to the rules of small
values. We also neglect all high order terms. We however
cannot neglect 2GM

c2r and !2r2

c2 in g00 =1� 2GM
c2r � !2r2

c2 when
calculating the gravitational potential w = c2 (1�pg00) ac-
cording to the rule of small values

w = c2
�

1�
r

1� 2GM
c2r

� !2r2

c2

�
=

= c2
�

1�
�

1 +
GM
c2r

+
!2r2

2c2

�� (22)

because these terms are multiplied by c2. We also assume
the linear velocity of the space rotation v to be small to the
velocity of light c. We assume that v doesn’t depend from
the z-coordinate. This assumption is due to the fact that the
Earth, in common with its space, moves relative to a weak in-
tergalactic microwave background that causes the anisotropy
of the Earth’s microwave field.

As a result we obtain the substantially non-zero compo-
nents of the characteristics of the space

w =
GM
r

+
!2r2

2
; (23)

v1 = �v (cos'+ sin')

v2 = �r [v (cos'� sin')� !r ]

v3 = �v

9>=>; ; (24)

F1 = (cos'+ sin') vt + !2r � GM
r2

F2 = r (cos'� sin') vt ; F3 = vt

9=; ; (25)

A12 = !r +
1
2
�
(cos'+ sin') v'�

� r (cos'� sin') vr
�

A23 = �v'
2
; A13 = �vr

2

9>>>>=>>>>; ; (26)

h11 = h33 = 1 ; h22 = r2; h11 = h33 = 1

h22 =
1
r2 ; h = r2;

@ ln
p
h

@r
=

1
r

9>=>; ; (27)

�1
22 = �r ; �2

12 =
1
r

(28)

while all components of the tensor of the space deformation
Dik and the three-dimensional curvature Ciklj are negligible
in the framework of the first order approximation (the four-
dimensional Riemannian curvature isn’t negligible).

The quantities vr, v', and vt denote the partial derivatives
of the linear velocity of the space rotation v by the respective
coordinate and time. (Here vz = 0 according to the initially
assumptions in the framework of our problem.)

We consider the projected Einstein equations in complete
form, published in [25–28]

�@D
@t

+DjlDjl+AjlAlj+
�
�rj � 1

c2
Fj
�
F j =

= ��
2
�
�c2 + U

�
+ �c2

�rj �hijD �Dij � Aij�+
2
c2
FjAij = �J i

�@Dik
@t

� (Dij + Aij)
�
Dj
k + A�jk�

�
+DDik +

+ 3AijA
�j
k� +

1
2

(�riFk + �rkFi)� 1
c2
FiFk�

� c2Cik =
�
2
�
�c2hik+2Uik�Uhik�+�c2hik

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

: (29)

We withdraw the �-term, the space deformation Dik, and
the three-dmensional curvature Ciklj from consideration. We
also use the aforemonetioned assumptions on small values
and high order terms that reduce the chronometrically invari-
ant differential operators to the regular differential operators:�@
@t = @

@t ,
�@
@xi = @

@xi . As a result of all these, the projected
Einstein equations take the simplified form

@F i

@xi
+
@ ln
p
h

@xi
F i � AikAik = ��

2
�
�c2 + U

�
@Aik

@xk
+
@ ln
p
h

@xk
Aik = ��J i

2AijA
�j
k� +

1
2

�
@Fi
@xk

+
@Fk
@xi
� 2�m

ikFm
�

=

=
�
2
�
�c2hik + 2Uik � Uhik�

9>>>>>>>>>>>>=>>>>>>>>>>>>;
: (30)

We substitute hereto the obtained observable characheris-
tics of the local physical space of a satellite-bound observer.
Because the value v is assumed to be small, we neglect not
only the square of it, but also the square of its derivative and
the products of the derivatives.

The Einstein equations (30) have been written for a space
filled with an arbitrary matter, which is described by the
energy-momentum tensor written in the common form T�� .
In other word, the distributed matter can be the superposi-
tion of an electromagnetic field, dust, liquid or other mat-
ter. Concerning our problem, we consider only an electro-
magnetic field. As known [29], the energy-momentum tensor
T�� of any electromagnetic field should satisfy the condition
T = �c2�U . We therefore assume that the right side of the
Einstein equations contains the energy-momentum tensor of
only an electromagnetic field (no dust, liquid, or other matter
distributed near the Earth). In other word we should mean, in
the right side,

�c2 = U : (32)

Besides, because all measurement in the framework of
our problem are processed by an observer on board of a satel-
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�2!2�2! (cos'+ sin')
v'
r

+2! (cos'� sin') vr+ (cos'+ sin') vtr+ (cos'� sin')
vt'
r

= ���c2
1
2

h
(cos'+ sin')

�vr
r

+
v''
r2

�
+ (cos'� sin')

�v'
r2 � vr'

r

�i
= ��J1

1
2

h
(cos'+ sin')

�v'
r3 � vr'

r2

�
+ (cos'� sin')

vrr
r

i
= ��J2

1
2

�
vrr +

vr
r

+
v''
r2

�
= ��J3

2!2 + 2! (cos'+ sin')
v'
r
� 2! (cos'� sin') vr + (cos'+ sin') vtr = �U11

r2

2

h
(cos'+ sin')

vt'
r2 + (cos'� sin')

vtr
r

i
= �U12

!
v'
r

+
1
2
vtr = �U13

2!2 + 2! (cos'+ sin')
v'
r
� 2! (cos'� sin') vr + (cos'� sin')

vt'
r

= �
U22

r2

r2

2

�vt'
r2 � 2!

vr
r

�
= �U23

�U33 = 0

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(31)

lite, we should also take into account the weightlessness con-
dition GM

r2 = !2r : (33)

As a result, we obtain the system of the projected Einstein
equations (30) in the form (31) which is specific to the real
physical space of a satellite-bound observer.

In other word, that fact that we used the conditions (32)
and (33) means that our theoretical calculation targets mea-
surement of an electromagnetic field in the weightlessness
state in an orbit of the Earth.

We are looking for the quantity � as a function of the prop-
erties of the space from the first (scalar) equation of the Ein-
stein equantions (31). This isn’t a trivial task, because the
aforementioned scalar Einstein equation

��c2 = 2!2 + 2! (cos'+ sin')
v'
r
�

� 2! (cos'� sin') vr � (cos'+ sin') vtr �
� (cos'� sin')

vt'
r

(34)

contains the distribution functions of the linear velocity of
the space rotation (the functions vr, v', and vt), which are
unknown. We therefore should first find the functions.

According to our asumption, �c2 =U . Therefore ��c2
and �U are the same in the framework of our problem. We
calculate the quantity

�U = �hikUik = �
�
U11 +

U22

r2 + U33

�
(35)

as the sum of the 5th and the 8th equations of the system of
the Einstein equations (31) with taking into account that fact
that, in our case, U33 = 0 (as seen from the 10th equation,
with �c2 =U ). We obtain

�U = 4!2 + 4! (cos'+ sin')
v'
r
�

� 4! (cos'� sin') vr + (cos'+ sin') vtr +

+ (cos'� sin')
vt'
r
:

(36)

Subtracting ��c2 (34) from �U (36) then equalizing the
result to zero, according to the electromagnetic field condi-
tion �c2 =U , we obtain the geometrization condition for the
electromagnetic field

!2 + ! (cos'+ sin')
v'
r
� ! (cos'� sin') vr +

+ (cos'+ sin') vtr + (cos'� sin')
vt'
r

= 0 :
(37)

With this condition, all the components of the energy-
momentum tensor of the field T�� (the right side of the Ein-
stein equations) are expressed in only the properties of the
space (the left side of the Einstein equations). Hence we have
geometrized the electromagnetic field. This is an important
result: earlier only isotropic electromagnetic fields (they are
satisfying Rainich’s condition and Nordtvedt-Pagels condi-
tion) were geometrized.

To find the distribution functions of v, we consider the
conservation lawr� T�� = 0, expressed in terms of the phys-
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(cos'� sin')
�vtr'

r
� vt'
r2

�
+ ! (cos'+ sin')

�vr'
r
� v'
r2

��
�! (cos'� sin') vrr + (cos'+ sin') vtrr = 0

(cos'+ sin')
�vtr'
r2 � vt'

r3

�
+ (cos'� sin')

�vt''
r3 +

vtr
r2

�
+

+! (cos'+ sin')
�v''
r3 +

vr
r2

�
+ ! (cos'� sin')

�v'
r3 � vr'

r2

�
= 0

9>>>>>>>>>>=>>>>>>>>>>;
(41)

ical observed quantities [25–28]

�@�
@t

+D�+
1
c2
DijU ij +

+
�
�ri � 1

c2
Fi
�
J i � 1

c2
FiJ i = 0

�@Jk
@t

+ 2
�
Dk
i + A�ki�

�
J i +

+
�
�ri � 1

c2
Fi
�
U ik � �F k = 0

9>>>>>>>>>>>=>>>>>>>>>>>;
(38)

which, under the assumptions specific in our problem, is

@J i

@xi
+
@ ln
p
h

@xi
J i = 0

@Jk

@t
+ 2A�ki� J i +

@U ik

@xi
+ �k

imU
im +

+
@ ln
p
h

@xi
U ik � �F k = 0

9>>>>>>>>=>>>>>>>>;
: (39)

The first (scalar) equation of the system of the conserva-
tion equations (39) means actually that the chronometrically
invariant derivative of the vector J i is zero

�riJ i =
@J i

@xi
+
@ ln
p
h

@xi
J i = 0 ; (40)

i.e. the flow of the vector J i (the flow of the density of the
field momentum) is constant. So, the first equation of (39)
satisfies identically as �riJ i = 0.

The rest three (vectorial) equations of the system (39),
with the properties of the local space of a satellite-bound ob-
server and the components of the energy-momentum tensor
substituted (the latest should be taken from the Einstein equa-
tions), take the form (41). As seen, only first two equations
still remaining meaningful, while the third of the vectorial
equations of conservation vanishes becoming the identity
zero equals zero.

In other word, we have obtained the equations of the con-
servation law specific to the real physical space of a satellite-
bound observer.

Let’s suppose that the function v has the form

v = T (t) rei'; (42)

hence the partial derivatives of this function are

vr = T ei' v' = i T rei'

vtr = _T ei' vt' = i _T rei'

vrr = 0 vtrr = 0

vtr' = i _T ei' vt'' = � _T rei'

v'' = �T rei' vr' = iT ei'

9>>>>>>=>>>>>>;
: (43)

After the functions substituted into the equations of the
conservation law (41), we see that the equations satisfy iden-
tically. Hence v=T (t) rei' is exact solution of the conser-
vation equations with respect to v.

Now we need to find only the unknown function T (t).
This function can be found from the electromagnetic field
condition �c2 =U expressed by us through the properties of
the space itself as the formula (37).

We assume that the satellite, on board of which the ob-
server is located, displaces at small angle along its orbit dur-
ing the process of his observation. This is obvious assump-
tion, because the very fast registration process for a single
photon. Therefore ' is small value in the framework of our
problem. Hence in concern of the formula (37), we should
mean cos'' 1 +' and sin'''. We also take into account
only real parts of the function v and its derivatives. (This is
due to that fact that a real instrument processes measurement
with only real quantities.) Concerning those functions which
are contained in the formula (37), all these means that

v = T r (1 + ')

vr = T (1 + ')
v'
r

= �T '
vtr = _T (1 + ')

vt'
r

= � _T '

9>>>>=>>>>; : (44)

Substituting these into (37), we obtain

(1 + 2') _T � (1 + 2')!T + !2 = 0 ; (45)

or, because '=!t and ! is small value (we also neglect the
terms which order is higher than !2),

_T � !T = � !2

1 + 2!t
= �!2 (1� 2!t) = �!2: (46)

This is a linear differential equation of the first order

_y + f(t) y = g(t) (47)
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whose exact solution is (see Part I, Chapter I, §4.3 in Erich
Kamke’s reference book [30])

y = e�F
�
y0 +

tZ
t0=0

g(t) eF dt
�
; (48)

where
F (t) =

Z
f(t)dt : (49)

We substitute f =�! and g=�!2. So we obtain, for
small values of !,

eF = e
R�!dt = e�!t; e�F = e!t; (50)

hence the function y is

y = e!t
�
y0 � !2

tZ
t0=0

e�!tdt
�

=

= e!t
�
y0 + ! (e�!t � 1)

�
: (51)

We assume the numerical value of the function y=T (t)
to be zero at the initial moment of observation: y0 =T0 = 0.
As a result we obtain the solution for the function T (t):

T = ! (1� e!t) : (52)

Applying this solution, we can find a final formula for the
density of the energy of the Earth’s microwave background
W = �c2 observed by a satellite-bound observer.

First, we substitute the distribution functions of v (44)
into the initially formula for �c2 (34) which is originated
from the scalar Einstein equation. Assuming cos'' 1 +'
and sin''', we obtain

��c2 = �2!2 � 2!T (1 + 2')� (1 + 2') _T : (53)

Then we do the same substitution into the geometrization
condition (37) which is originated from the Einstein equa-
tions, and is necessary to be applied to our case due to that fact
that we have only an electromagnetic field distributed in the
space (�c2 =U in the right side of the Einstein equations, as
for any electromagnetic field). After algebra the geometriza-
tion condition (37) takes the form

!2 � !T (1 + 2') + (1 + 2') _T = 0 : (54)

We express (1 + 2') _T =!T (1 + 2')� 4!2 from this
formula, then substitute it into the previous expression (53)
with taking into accout that fact that the angle ' is a small
value. As a result, we obtain

�c2 =
3!
�

(! � T ) =
3!2

�
�
1� �1� e!t�� : (55)

Expanding the exponent into the series e!t = 1 +!t+
+ 1

2 !
2t2 + : : : ' 1 +!t and taking into account that fact

that ! is small value�, we arrive to the final formula for cal-
culation the density of the energy of the Earth’s microwave
background observed on board of a satellite

�c2 =
3!2

�
; (56)

which is obviously dependent on altitude from the surface of
the Earth due to that fact that !=

p
GM�=R3.

With this final formula (55), we calculate the ratio be-
tween the density of the Earth’s microwave background ex-
pected to be measured at different altitudes from the surface
of the Earth. According to this formula, the ratio between the
density at the altitude of the COBE orbit (RCOBE = 6,370 +
+ 900 = 7,270 km) and that at the altitude of a U2 aeroplane
(RU2 = 6,370 + 25 = 6,395 km) should be

�COBE

�U2

=
R3

U2

R3
COBE

' 0.68 ; (57)

the ratio between the density at the 2nd Lagrange point
(R L2 = 1.5 million km) and that at the COBE orbit should be

� L2

�COBE

=
R3

COBE

R3
L2

' 1.1�10�7; (58)

and the ratio between the density at the 2nd Lagrange point
and that at the altitude of a U2 aeroplane should be

� L2

�U2

=
R3

U2

R3
L2

' 7.8�10�8: (59)

As a result of our calculation, processed on the basis of
the General Theory of Relativity, we see that a microwave
background field which originates in the Earth (the Earth mi-
crowave background) should have almost the same density
at the position of a U2 aeroplane and the COBE satellite.
However, at the 2nd Lagrange point (1.5 million km from
the Earth, the point of location of the WMAP satellite and the
planned PLANCK satellite), the density of the background
should be only�10�7 of that registered either by the U2 aero-
plane or by the COBE satellite.

4 The anisotropy of the Earth’s microwave background
at the 2nd Lagrange point

We consider the anisotropy of the Earth’s microwave back-
ground which is due to the rapid motion of the source of
this field (the Earth) in a weak intergalactic microwave fieldy.
From views of physics this means that photons, the mediators
for electromagnetic radiation, being radiated by the source of
the field (the Earth) should experience a carrying in the direc-

�The quantity !=
p
GM�=R3, the frequency of the rotation of

the Earth space for an observer existing in the weightless state, takes its
maximum numerical value at the equator of the Earth’s surface, where
!= 1.24�10�3 sec�1, and decreases with altitude above the surface.
yAs observatonal analysis indicates it, the Earth moves in the weak in-

tergalactic field with a velocity of v = 365�18 km/sec in the direction of the
anisotropy.
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tion whereto the Earth flies in the weak intergalactic field.
From mathematical viewpoint this problem can be formulated
as a shift of the trajectories experienced by photons of the
Earth’s microwave field in the direction of this motion.

A light-like free particle, e.g. a free photon, moves along
isotropic geodesic trajectories whose four-dimensional (gen-
eral covariant) equations are [25–28]

dK�

d�
+ ����K

� dx�

d�
= 0 ; (60)

whereK� = 

c
dx�
d� is the four-dimensional wave vector of the

photon (the vector satisfies the condition K�K� = 0 which
is specific to any isotropic vector), 
 is the proper cyclic
frequency of the photon, while d� is the three-dimensional
chronometrically invariant (observable) spatial interval deter-
mined as d�2 =

��gik+ g0i g0k
g00

�
dxidxk =hik dxidxk. The

quantity d� is chosen as a parameter of differentiation along
isotropic geodesics, because along them the four-dimensional
interval is zero ds2 = c2d� 2� d�2 = 0 while d�= cd� , 0
(where d� is the interval of the physical observable time de-
termined as d� =pg00 dt+ g0i

cpg00
dxi).

In terms of the physical observables, the isotropic geo-
desic equations are represented by their projections on the
time line and spatial section of an observer [25–28]

d

d�
� 

c2
Fi ci +



c2
Dik cick = 0

d
d�
�

ci
�

+ 2

�
Di
k + A�ik�

�
ck�

�
F i + 
�i
knc

kcn = 0

9>>>>=>>>>; (61)

where ci = dxi
d� is the three-dimensional vector of the observ-

able velocity of light (the square of the vector satisfies ckck =
=hik cick = c2 in the spatial section of the observer). The
first of the equations (the scalar equation) represents the law
of energy for the particle, while the vectorial equation is the
three-dimensional equation of its motion.

The terms Fi
c2

and Dik
c2

are negligible in the framework of
our assumption. We obtain, from the scalar equation of (61),
that the proper frequency of the photons, registered by the
observer, is constant. In such a case the vectorial equations of
isotropic geodesics (61), written in component notation, are

dc1

d�
+ 2

�
D1
k + A�1k�

�
ck � F 1 + �1

22 c
2c2 +

+ 2�1
23 c

2c3 + �1
33 c

3c3 = 0

dc2

d�
+ 2

�
D2
k + A�2k�

�
ck � F 2 + 2�2

12 c
1c2 +

+ 2�2
13 c

1c3 + �2
33 c

3c3 = 0

dc3

d�
+ 2

�
D3
k + A�3k�

�
ck � F 3 + �3

11 c
1c1+

+ 2�3
12 c

1c2 + 2�3
13 c

1c3+

+ �3
22 c

2c2 + 2�3
23 c

2c3 = 0

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

; (62)

where c1 = dr
d� , c2 = d'

d� , and c3 = dz
d� , while d

d� =
�@
@t + vi

�@
@xi .

We direct the z-axis of our cylindrical coordinates along
the motion of the Earth in the weak intergalactic field. In such
a case the local physical space of a satellite-bound observer
is described by the metric (8). We therefore will solve the
isotropic geodesic equations in the metric (8).

The metric (7) we used in the first part of the problem is
a particular to the metric (8) in a case, where v = 0. There-
fore the solution v=T (t) rei' (42) we have obtained for the
metric (7) is also lawful for the generatized metric (8). We
therefore calculate the observable characteristics of the space
with taking this function into account. As earlier, we take into
account only real part of the function ei'= cos'+ i sin''
' (1+')+i'. We also take into account the derivatives of
this function (43) and the function T =! (1� e!t) we have
found earlier (52).

As well as in the first part of the problem, we assume '
to be small value: cos'' 1 +' and sin'''. Because !
is small value too, we neglect !2' terms. We also take the
weightlessness condition GM

r2 =!2r into account in calcula-
tion for the gravitational inertial force. It should be noted that
the weightlessness condition is derived from the derivative
of the gravitational potential w = c2 (1�pg00). We there-
fore cannot mere substitute the weightlessness condition into
g00 = 1� 2GM

c2r � !2r2

c2 + 2vv
c2 taken from the metric (8). We

first calculate w = c2 (1�pg00), then take derivative of it by
the respective coordinate that is required in the formula for
the gravitational inertial force Fi (12). Only then the weight-
lessness condition GM

r2 =!2r is lawful to be substituted.
Besides these, we should take into account that fact that

the anisotropy of a field is a second order effect. We there-
fore cannot neglect the terms divided by c2. This is in con-
trast to the first part of the problem, where we concerned only
a first order effect. As a result the space deformation and
the three-dimensional curvature, neglected in the first part,
now cannot be neglected. We however take into account only
the space deformation Dik. The three-dimensional curvature
Ciklj isn’t considered here due to the fact that this quantity
isn’t contained in the equations of motion.

In the same time, in the framework of our assumption for
a weak gravitational field and a low speed of the space rota-
tion,

�@
@t = 1pg00

@
@t ' @

@t and
�@
@xi = @

@xi + 1
c2 vi

�@
@t ' @

@xi .
Applying all these conditions to the definitions of vi, hik,

Fi, Aik, Dik, and �i
km, given in Page 7, we obtain substan-

tially non-zero components of the characteristics of the space
whose metric is (8):

w =
GM
r

+
!2r2

2
� vv ; (63)

v1 = !2tr

v2 = !r2 (!t+ 1)

v3 = !2tr

9>=>; ; (64)
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�r � !2
�
t� rv

c2
�

_z + !2 (r � vt) +
!2v t
c2

_z2 = 0

�'+ 2!
�

1 +
!t
2

�
_r
r

+
!2v
c2

_z + !2 +
2!v

�
1 + ! t

2

�
c2r

_r _z = 0

�z + !2
�
t+

rv
c2
�

_r +
2!2vr
c2

_z + !2r +
!2v t
c2

_r2 +
2!2v t
c2
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9>>>>>>>>=>>>>>>>>;
(70)

_r2 +
2!2rv t
c2

_r _z +
�

1� 2!2rv t
c2

�
_z2 = c2 (71)

F1 = �!2 (r � vt)

F2 = �!2r2

F3 = �!2r

9>>=>>; ; (65)
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�

1 +
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2

�
A23 = 0
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!2 t
2

9>>>>=>>>>; ; (66)
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!r2v (1 + !t)

c2

h33 = 1� 2!2v tr
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�
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!2rv
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!2rv
c2

9>>=>>; ; (68)

�1
22 = �r ; �1

23 = �!rv
c2

�
1 +

!t
2

�
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�
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!2v t
c2

�3
12 =

!2rv t
2c2

; �3
13 = �!2v t

c2

9>>>>>>>>>>>=>>>>>>>>>>>;
; (69)

where we present only those components of Christoffel’s
symbols which will be used in the geodesic equations (equa-
tions of of motion).

After substitution of the components, the vectorial equa-
tions of isotropic geodesic (62) take the form (70). The condi-
tion hik cick = c2 — a chronometrically invariant expression
of the condition ds2 = c2d� 2� d�2 = 0, which is specific to
isotropic trajectories — takes the form (71).

We consider a light beam (a couple of photons) travel-
ling from the Earth along the radial direction r. Therefore,
looking for anisotropy in the distribution of the photons’ tra-
jectories in the field, we are interested to solve only the third
isotropic geodesic equation of (70), which is the equation of
motion of a photon along the z-axis orthogonal to the light
beam’s direction r.

Before to solve the equation, a few notes on our assump-
tions should be made.

First, because the Earth moves relative to the weak mi-
crowave background with a velocity vi along the z-direction,
only v3 = _z of the components vi is non-zero. Besides that, as
easy to see from our previous considerations, we should mean�@
@t = 1pg00

@
@t ' @

@t and
�@
@z= @

@xi + 1
c2 v3

�@
@t ' @

@z = 0. Hence,

we apply d
d� =

�@
@t + v3 �@

@z = d
@t to our calculation.

Second, the orbital velocity of a satellite of the Earth,
�8 km/sec, is much lesser than the velocity of light. We
therefore assume that a light beam doesn’t sense the orbital
motion of such a satellite. The coordinate ' in the equations
of isotropic geodesics is related to the light beam (a couple
of single photons), not the rotation of the reference space of a
satellite bound observer. Hence, we assume '= const in our
calculation, i.e. c2 = d'

dt = _'= 0.
Third, we are talking about the counting for signle pho-

tons in a detector which is located on board of a satellite. The
process of the measurement is actually instant. In other word,
the measurement is processed very close the moment t0 = 0.
Hence we assume _z= 0 in our calculation, while the acceler-
ation �z can be non-zero in the z-direction orthogonally to the
initially r-direction of such a photon.

Fourth, we apply the relations _r= c and r= ct which are
obvious for such a photon. If such a photon, travelling ini-
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tially in the r-direction, experiences a shift to the z-direction
(the direction of the motion of the Earth relative to the weak
intergalactic field), the distribution of photons of the Earth’s
microwave field has an anisotropy to the z-direction.

After taking all the factors into account, the third equation
of the system (70), which is the equation of motion of a single
photon in the z-direction, takes the simple form

�z + !2
�
ct+

rv
c

�
+ !2 (r + vt) = 0 (72)

which, due to the weightlessness condition GM
r2 =!2r and

the condition r= ct, is

�z +
2GM�
c2t2

�
1 +

v
c

�
= 0 : (73)

Integration of this equation gives

_z =
2GM�
cr

�
1 +

v
c

�
= _z0 + �z0: (74)

The first term of the solution (74) manifests that fact that
such a photon, initially launched in the r-direction (radial di-
rection) in the gravitational field of the Earth, is carried into
the z-direction by the rotation of the space of the Earth. The
second term, �z0, manifests the carriage of the photon into
the z-direction due to the motion of the Earth in this direction
through the weak intergalactic field.

As a result we obtain the carriage of the three-dimensional
vector of the observable velocity of light from the initially
r-direction to the z-direction, due to the common motion of
the space of the Earth in the point of observation:

� _z0
_z0 =

v
c
: (75)

Such a carriage of a photon radiated from the Earth’s sur-
face, being applied to a microwave background generated by
oceanic water, reveals the anisotropy associated with the di-
pole component of the microwave background.

As seen from the obtained formula (75), such a carriage of
a photon into the z-direction, doesn’t depend on the path trav-
elled by such a photon in the radial direction r from the Earth.
In other word, the anisotropy associated with the dipole com-
ponent of the Earth microwave background shouldn’t be de-
pendent on altitude from the surface of the Earth: the aniso-
tropy of the Earth microwave background should be the same
if measured on board a U2 aeroplane (25 km), at the orbit of
the COBE satellite (900 km), and at the 2nd Langrange point
(the WMAP satellite and PLANCK satellite, 1.5 million km
from the Earth).
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It is shown that a photon with a specific frequency can be identified with the Dirac mag-
netic monopole. When a Dirac-Wilson line forms a Dirac-Wilson loop, it is a photon.
This loop model of photon is exactly solvable. From the winding numbers of this loop-
form of photon, we derive the quantization properties of energy and electric charge. A
new QED theory is presented that is free of ultraviolet divergences. The Dirac-Wilson
line is as the quantum photon propagator of the new QED theory from which we can
derive known QED effects such as the anomalous magnetic moment and the Lamb shift.
The one-loop computation of these effects is simpler and is more accurate than that in
the conventional QED theory. Furthermore, from the new QED theory, we have derived
a new QED effect. A new formulation of the Bethe-Salpeter (BS) equation solves the
difficulties of the BS equation and gives a modified ground state of the positronium. By
the mentioned new QED effect and by the new formulation of the BS equation, a term
in the orthopositronium decay rate that is missing in the conventional QED is found,
resolving the orthopositronium lifetime puzzle completely. It is also shown that the
graviton can be constructed from the photon, yielding a theory of quantum gravity that
unifies gravitation and electromagnetism.

1 Introduction

It is well known that the quantum era of physics began with
the quantization of energy of electromagnetic field, from
which Planck derived the radiation formula. Einstein then
introduced the light-quantum to explain the photoelectric ef-
fects. This light-quantum was regarded as a particle called
photon [1–3]. Quantum mechanics was then developed, ush-
ering in the modern quantum physics era. Subsequently, the
quantization of the electromagnetic field and the theory of
Quantum Electrodynamics (QED) were established.

In this development of quantum theory of physics, the
photon plays a special role. While it is the beginning of quan-
tum physics, it is not easy to understand as is the quantum
mechanics of other particles described by the Schrödinger
equation. In fact, Einstein was careful in regarding the
light-quantum as a particle, and the acceptance of the light-
quantum as a particle called photon did not come about until
much later [1]. The quantum field theory of electromagnetic
field was developed for the photon. However, such difficul-
ties of the quantum field theory as the ultraviolet divergences
are well known. Because of the difficulty of understanding
the photon, Einstein once asked: “What is the photon?” [1].

On the other hand, based on the symmetry of the electric
and magnetic field described by the Maxwell equation and
on the complex wave function of quantum mechanics, Dirac
derived the concept of the magnetic monopole, which is hy-
pothetically considered as a particle with magnetic charge, in
analogy to the electron with electric charge. An important
feature of this magnetic monopole is that it gives the quanti-

zation of electric charge. Thus it is interesting and important
to find such particles. However, in spite of much effort, no
such particles have been found [4, 5].

In this paper we shall establish a mathematical model of
photon to show that the magnetic monopole can be identified
as a photon. Before giving the detailed model, let us discuss
some thoughts for this identification in the following.

First, if the photon and the magnetic monopole are dif-
ferent types of elementary quantum particles in the electro-
magnetic field, it is odd that one type can be derived from the
other. A natural resolution of this oddity is the identification
of the magnetic monopole as a photon.

The quantum field theory of the free Maxwell equation
is the basic quantum theory of photon [6]. This free field
theory is a linear theory and the models of the quantum parti-
cles obtained from this theory are linear. However, a stable
particle should be a soliton, which is of the nonlinear na-
ture. Secondly, the quantum particles of the quantum the-
ory of Maxwell equation are collective quantum effects in the
same way the phonons which are elementary excitations in
a statistical model. These phonons are usually considered as
quasi-particles and are not regarded as real particles. Regard-
ing the Maxwell equation as a statistical wave equation of
electromagnetic field, we have that the quantum particles in
the quantum theory of Maxwell equation are analogous to the
phonons. Thus they should be regarded as quasi-photons and
have properties of photons but not a complete description of
photons.

In this paper, a nonlinear model of photon is established.
In the model, we show that the Dirac magnetic monopole
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can be identified with the photon with some frequencies. We
provide a U(1) gauge theory of Quantum Electrodynamics
(QED), from which we derive photon as a quantum Dirac-
Wilson loop W (z; z) of this model. This nonlinear loop
model of the photon is exactly solvable and thus may be re-
garded as a quantum soliton. From the winding numbers of
this loop model of the photon, we derive the quantization
property of energy in Planck’s formula of radiation and the
quantization property of charge. We show that the quanti-
zation property of charge is derived from the quantization
property of energy (in Planck’s formula of radiation), when
the magnetic monopole is identified with photon with certain
frequencies. This explains why we cannot physically find a
magnetic monopole. It is simply a photon with a specific fre-
quency.

From this nonlinear model of the photon, we also con-
struct a model of the electron which has a mass mechanism
for generating mass of the electron. This mechanism of gen-
erating mass supersedes the conventional mechanism of gen-
erating mass (through the Higgs particles) and makes hypoth-
esizing the existence of the Higgs particles unnecessary. This
explains why we cannot physically find such Higgs particles.

The new quantum gauge theory is similar to the conven-
tional QED theory except that the former is not based on the
four dimensional space-time (t;x) but is based on the proper
time s in the theory of relativity. Only in a later stage in the
new quantum gauge theory, the space-time variable (t;x) is
derived from the proper time s through the Lorentz metric
ds2 = dt2� dx2 to obtain space-time statistics and explain
the observable QED effects.

The derived space variable x is a random variable in this
quantum gauge theory. Recall that the conventional quan-
tum mechanics is based on the space-time. Since the space
variable x is actually a random variable as shown in the new
quantum gauge theory, the conventional quantum mechanics
needs probabilistic interpretation and thus has a most myste-
rious measurement problem, on which Albert Einstein once
remarked: “God does not play dice with the universe.” In
contrast, the new quantum gauge theory does not involve the
mentioned measurement problem because it is not based on
the space-time and is deterministic. Thus this quantum
gauge theory resolves the mysterious measurement problem
of quantum mechanics.

Using the space-time statistics, we employ Feynman dia-
grams and Feynman rules to compute the basic QED effects
such as the vertex correction, the photon self-energy and the
electron self-energy. In this computation of the Feynman in-
tegrals, the dimensional regularization method in the conven-
tional QED theory is also used. Nevertheless, while the con-
ventional QED theory uses it to reduce the dimension 4 of
space-time to a (fractional) number n to avoid the ultraviolet
divergences in the Feynman integrals, the new QED theory
uses it to increase the dimension 1 of the proper time to a
number n less than 4, which is the dimension of the space-

time, to derive the space-time statistics. In the new QED the-
ory, there are no ultraviolet divergences, and the dimensional
regularization method is not used for regularization.

After this increase of dimension, the renormalization
method is used to derive the well-known QED effects. Unlike
the conventional QED theory, the renormalization method is
used in the new QED theory to compute the space-time statis-
tics, but not to remove the ultraviolet divergences, since the
ultraviolet divergences do not occur in the new QED theory.
From these QED effects, we compute the anomalous mag-
netic moment and the Lamb shift [6]. The computation does
not involve numerical approximation as does that of the con-
ventional QED and is simpler and more accurate.

For getting these QED effects, the quantum photon prop-
agator W (z; z0), which is like a line segment connecting
two electrons, is used to derive the electrodynamic interac-
tion. (When the quantum photon propagatorW (z; z0) forms a
closed circle with z= z0, it then becomes a photon W (z; z).)
From this quantum photon propagator, a photon propagator is
derived that is similar to the Feynman photon propagator in
the conventional QED theory.

The photon-loop W (z; z) leads to the renormalized elec-
tric charge e and the mass m of electron. In the conventional
QED theory, the bare charge e0 is of less importance than the
renormalized charge e, in the sense that it is unobservable. In
contrast, in this new theory of QED, the bare charge e0 and
the renormalized charge e are of equal importance. While the
renormalized charge e leads to the physical results of QED,
the bare charge e0 leads to the universal gravitation constant
G. It is shown that e=nee0, where ne is a very large wind-
ing number and thus e0 is a very small number. It is further
shown that the gravitational constant G= 2e2

0 which is thus
an extremely small number. This agrees with the fact that the
experimental gravitational constant G is a very small num-
ber. The relationships, e=nee0 and G= 2e2

0, are a part of
a theory unifying gravitation and electromagnetism. In this
unified theory, the graviton propagator and the graviton are
constructed from the quantum photon propagator. This con-
struction leads to a theory of quantum gravity. In short, a new
theory of quantum gravity is developed from the new QED
theory in this paper, and unification of gravitation and elec-
tromagnetism is achieved.

In this paper, we also derive a new QED effect from the
seagull vertex of the new QED theory. The conventional
Bethe-Salpeter (BS) equation is reformulated to resolve its
difficulties (such as the existence of abnormal solutions [7–
32]) and to give a modified ground state wave function of
the positronium. By the new QED effect and the reformu-
lated BS equation, another new QED effect, a term in the or-
thopositronium decay rate that is missing in the conventional
QED is discovered. Including the discovered term, the com-
puted orthopositronium decay rate now agrees with the ex-
perimental rate, resolving the orthopositronium lifetime puz-
zle completely [33–52]. We note that the recent resolution of
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this orthopositronium lifetime puzzle resolves the puzzle only
partially due to a special statistical nature of this new term in
the orthopositronium decay rate.

This paper is organized as follows. In Section 2 we give a
brief description of a new QED theory. With this theory, we
introduce the classical Dirac-Wilson loop in Section 3. We
show that the quantum version of this loop is a nonlinear ex-
actly solvable model and thus can be regarded as a soliton.
We identify this quantum Dirac-Wilson loop as a photon with
the U(1) group as the gauge group. To investigate the prop-
erties of this Dirac-Wilson loop, we derive a chiral symmetry
from the gauge symmetry of this quantum model. From this
chiral symmetry, we derive, in Section 4, a conformal field
theory, which includes an affine Kac-Moody algebra and a
quantum Knizhnik-Zamolodchikov (KZ) equation. A main
point of our model on the quantum KZ equation is that we
can derive two KZ equations which are dual to each other.
This duality is the main point for the Dirac-Wilson loop to
be exactly solvable and to have a winding property which ex-
plains properties of photon. This quantum KZ equation can
be regarded as a quantum Yang-Mills equation.

In Sections 5 to 8, we solve the Dirac-Wilson loop in a
form with a winding property, starting with the KZ equations.
From the winding property of the Dirac-Wilson loop, we de-
rive, in Section 9 and Section 10, the quantization of energy
and the quantization of electric charge which are properties of
photon and magnetic monopole. We then show that the quan-
tization property of charge is derived from the quantization
property of energy of Planck’s formula of radiation, when we
identify photon with the magnetic monopole for some fre-
quencies. From this nonlinear model of photon, we also de-
rive a model of the electron in Section 11. In this model of
electron, we provide a mass mechanism for generating mass
to electron. In Section 12, we show that the photon with a spe-
cific frequency can carry electric charge and magnetic charge,
since an electron is formed from a photon with a specific fre-
quency for giving the electric charge and magnetic charge. In
Section 13, we derive the statistics of photons and electrons
from the loop models of photons and electrons.

In Sections 14 to 22, we derive a new theory of QED,
wherein we perform the computation of the known basic QED
effects such as the photon self-energy, the electron self-energy
and the vertex correction. In particular, we provide simpler
and more accurate computation of the anomalous magnetic
moment and the Lamb shift. Then in Section 23, we com-
pute a new QED effect. Then from Section 24 to Section
25, we reformulate the Bethe-Salpeter (BS) equation. With
this new version of the BS equation and the new QED effect,
a modified ground state wave function of the positronium is
derived. Then by this modified ground state of the positron-
ium, we derive in Section 26 another new QED effect, a term
missing in the theoretic orthopositronium decay rate of the
conventional QED theory, and show that this new theoretical
orthopositronium decay rate agrees with the experimental de-

cay rate, completely resolving the orthopositronium life time
puzzle [33–52].

In Section 27, the graviton is derived from the photon.
This leads to a new theory of quantum gravity and a new uni-
fication of gravitation and electromagnetism. Then in Section
28, we show that the quantized energies of gravitons can be
identified as dark energy. Then in a way similar to the con-
struction of electrons by photons, we use gravitons to con-
struct particles which can be regarded as dark matter. We
show that the force among gravitons can be repulsive. This
gives the diffusion phenomenon of dark energy and the accel-
erating expansion of the universe [53–57].

2 New gauge model of QED

Let us construct a quantum gauge model, as follows. In prob-
ability theory we have the Wiener measure � which is a mea-
sure on the space C[t0; t1] of continuous functions [58]. This
measure is a well defined mathematical theory for the Brow-
nian motion and it may be symbolically written in the follow-
ing form:

d� = e�L0dx ; (1)

where L0 := 1
2

R t1
t0

�dx
dt

�2 dt is the energy integral of the
Brownian particle and dx= 1

N
Q
t dx(t) is symbolically a

product of Lebesgue measures dx(t) and N is a normalized
constant.

Once the Wiener measure is defined we may then define
other measures on C[t0; t1], as follows [58]. Let a potential
term 1

2

R t1
t0
V dt be added to L0. Then we have a measure �1

on C[t0; t1] defined by:

d�1 = e
� 1

2

R t1
t0
V dt

d� : (2)

Under some condition on V we have that �1 is well de-
fined on C[t0; t1]. Let us call (2) as the Feynman-Kac for-
mula [58].

Let us then follow this formula to construct a quantum
model of electrodynamics, as follows. Then similar to the
formula (2) we construct a quantum model of electrodynam-
ics from the following energy integral:

� R s1s0 Dds := � R s1s0 h 1
2

�@A1
@x2 � @A2

@x1

���@A1
@x2 � @A2

@x1

�
+

+
�
dZ�
ds + ie0(

P2
j=1Aj

dxj
ds )Z�

��
��dZds � ie0(

P2
j=1Aj

dxj
ds )Z

�i
ds ;

(3)

where the complex variable Z =Z(z(s)) and the real vari-
ables A1 =A1(z(s)) and A2 =A2(z(s)) are continuous
functions in a form that they are in terms of a (continuously
differentiable) curve z(s) =C(s) = (x1(s); x2(s)); s0 6 s 6
s1; z(s0) = z(s1) in the complex plane where s is a parameter
representing the proper time in relativity. (We shall also write
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z(s) in the complex variable form C(s) = z(s) =x1(s) +
+ ix2(s); s0 6 s 6 s1.) The complex variable Z =Z(z(s))
represents a field of matter, such as the electron (Z� denotes
its complex conjugate), and the real variables A1 =A1(z(s))
and A2 =A2(z(s)) represent a connection (or the gauge field
of the photon) and e0 denotes the (bare) electric charge.

The integral (1.1) has the following gauge symmetry:

Z 0(z(s)) := Z(z(s)) eie0a(z(s))

A0j(z(s)) := Aj(z(s)) + @a
@xj ; j = 1; 2

(4)

where a= a(z) is a continuously differentiable real-valued
function of z.

We remark that this QED theory is similar to the conven-
tional Yang-Mills gauge theories. A feature of (1.1) is that it
is not formulated with the four-dimensional space-time but is
formulated with the one dimensional proper time. This one
dimensional nature let this QED theory avoid the usual ul-
traviolet divergence difficulty of quantum fields. As most of
the theories in physics are formulated with the space-time let
us give reasons of this formulation. We know that with the
concept of space-time we have a convenient way to under-
stand physical phenomena and to formulate theories such as
the Newton equation, the Schrödinger equation, e.t.c. to de-
scribe these physical phenomena. However we also know that
there are fundamental difficulties related to space-time such
as the ultraviolet divergence difficulty of quantum field the-
ory. To resolve these difficulties let us reexamine the concept
of space-time. We propose that the space-time is a statistical
concept which is not as basic as the proper time in relativity.
Because a statistical theory is usually a convenient but incom-
plete description of a more basic theory this means that some
difficulties may appear if we formulate a physical theory with
the space-time. This also means that a way to formulate a ba-
sic theory of physics is to formulate it not with the space-time
but with the proper time only as the parameter for evolution.
This is a reason that we use (1.1) to formulate a QED theory.
In this formulation we regard the proper time as an indepen-
dent parameter for evolution. From (1.1) we may obtain the
conventional results in terms of space-time by introducing the
space-time as a statistical method.

Let us explain in more detail how the space-time comes
out as a statistics. For statistical purpose when many electrons
(or many photons) present we introduce space-time (t;x) as
a statistical method to write ds2 in the form

ds2 = dt2 � dx2: (5)

We notice that for a given ds there may have many dt
and dx which correspond to many electrons (or photons) such
that (5) holds. In this way the space-time is introduced as a
statistics. By (5) we shall derive statistical formulas for many
electrons (or photons) from formulas obtained from (1.1). In
this way we obtain the Dirac equation as a statistical equa-
tion for electrons and the Maxwell equation as a statistical

equation for photons. In this way we may regard the con-
ventional QED theory as a statistical theory extended from
the proper-time formulation of this QED theory (From the
proper-time formulation of this QED theory we also have a
theory of space-time statistics which give the results of the
conventional QED theory). This statistical interpretation of
the conventional QED theory is thus an explanation of the
mystery that the conventional QED theory is successful in
the computation of quantum effects of electromagnetic inter-
action while it has the difficulty of ultraviolet divergence.

We notice that the relation (5) is the famous Lorentz met-
ric. (We may generalize it to other metric in General Relativ-
ity.) Here our understanding of the Lorentz metric is that it
is a statistical formula where the proper time s is more fun-
damental than the space-time (t;x) in the sense that we first
have the proper time and the space-time is introduced via the
Lorentz metric only for the purpose of statistics. This reverses
the order of appearance of the proper time and the space-time
in the history of relativity in which we first have the concept
of space-time and then we have the concept of proper time
which is introduced via the Lorentz metric. Once we under-
stand that the space-time is a statistical concept from (1.1)
we can give a solution to the quantum measurement prob-
lem in the debate about quantum mechanics between Bohr
and Einstein. In this debate Bohr insisted that with the prob-
ability interpretation quantum mechanics is very successful.
On the other hand Einstein insisted that quantum mechan-
ics is incomplete because of probability interpretation. Here
we resolve this debate by constructing the above QED the-
ory which is a quantum theory as the quantum mechanics and
unlike quantum mechanics which needs probability interpre-
tation we have that this QED theory is deterministic since it
is not formulated with the space-time.

Similar to the usual Yang-Mills gauge theory we can gen-
eralize this gauge theory with U(1) gauge symmetry to non-
abelian gauge theories. As an illustration let us consider
SU(2)
U(1) gauge symmetry where SU(2)
U(1) denotes
the direct product of the groups SU(2) and U(1).

Similar to (1.1) we consider the following energy integral:

L :=
R s1
s0

� 1
2 Tr (D1A2 �D2A1)�(D1A2 �D2A1) +

+ (D�0Z�)(D0Z)
�
ds ;

(6)

where Z = (z1; z2)T is a two dimensional complex vector;
Aj =

P3
k=0A

k
j tk (j= 1; 2) where Akj denotes a component

of a gauge field Ak; tk = i T k denotes a generator of
SU(2) 
 U(1) where T k denotes a self-adjoint generator of
SU(2) 
 U(1) (here for simplicity we choose a convention
that the complex i is absorbed by tk and tk is absorbed by
Aj ; and the notation Aj is with a little confusion with the no-
tation Aj in the above formulation of (1.1) where Aj ; j= 1; 2
are real valued); andDl = @

@xl�e0(
P2
j=1Aj

dxj
ds ) for l= 1; 2;

andD0 = d
ds �e0(

P2
j=1Aj

dxj
ds ) where e0 is the bare electric
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charge for general interactions including the strong and weak
interactions.

From (6) we can develop a nonabelian gauge theory as
similar to that for the above abelian gauge theory. We have
that (6) is invariant under the following gauge transformation:

Z 0(z(s)) := U(a(z(s)))Z(z(s))

A0j(z(s)) := U(a(z(s)))Aj(z(s))U�1(a(z(s))) +

+ U(a(z(s)))@U
�1

@xj (a(z(s))); j = 1; 2

(7)

where U(a(z(s))) = ea(z(s)); a(z(s)) =
P
k e0ak(z(s))tk

for some functions ak. We shall mainly consider the case
that a is a function of the form a(z(s)) =

P
k Re!k(z(s))tk

where !k are analytic functions of z. (We let the function
!(z(s)) :=

P
k !

k(z(s))tk and we write a(z) = Re!(z).)
The above gauge theory is based on the Banach space

X of continuous functions Z(z(s)), Aj(z(s)), j= 1; 2; s0 6
s 6 s1 on the one dimensional interval [s0; s1].

Since L is positive and the theory is one dimensional (and
thus is simpler than the usual two dimensional Yang-Mills
gauge theory) we have that this gauge theory is similar to the
Wiener measure except that this gauge theory has a gauge
symmetry. This gauge symmetry gives a degenerate degree
of freedom. In the physics literature the usual way to treat
the degenerate degree of freedom of gauge symmetry is to in-
troduce a gauge fixing condition to eliminate the degenerate
degree of freedom where each gauge fixing will give equiv-
alent physical results [59]. There are various gauge fixing
conditions such as the Lorentz gauge condition, the Feynman
gauge condition, etc. We shall later in the Section on the Kac-
Moody algebra adopt a gauge fixing condition for the above
gauge theory. This gauge fixing condition will also be used to
derive the quantum KZ equation in dual form which will be
regarded as a quantum Yang-Mill equation since its role will
be similar to the classical Yang-Mill equation derived from
the classical Yang-Mill gauge theory.

3 Classical Dirac-Wilson loop

Similar to the Wilson loop in quantum field theory [60] from
our quantum theory we introduce an analogue of Wilson loop,
as follows. (We shall also call a Wilson loop as a Dirac-
Wilson loop.)
Definition A classical Wilson loop WR(C) is defined by:

WR(C) := W (z0; z1) := Pee0
R
C
Ajdxj ; (8)

where R denotes a representation of SU(2); C(�) = z(�) is
a fixed closed curve where the quantum gauge theories are
based on it as specific in the above Section. As usual the
notation P in the definition ofWR(C) denotes a path-ordered
product [60–62].

Let us give some remarks on the above definition of Wil-
son loop, as follows.

1. We use the notationW (z0; z1) to mean the Wilson loop
WR(C) which is based on the whole closed curve z(�). Here
for convenience we use only the end points z0 and z1 of the
curve z(�) to denote this Wilson loop (We keep in mind that
the definition of W (z0; z1) depends on the whole curve z(�)
connecting z0 and z1).

Then we extend the definition of WR(C) to the case that
z(�) is not a closed curve with z0 , z1. When z(�) is not a
closed curve we shall call W (z0; z1) as a Wilson line.

2. In constructing the Wilson loop we need to choose a
representation R of the SU(2) group. We shall see that be-
cause a Wilson line W (z0; z1) is with two variables z0 and
z1 a natural representation of a Wilson line or a Wilson loop
is the tensor product of the usual two dimensional represen-
tation of the SU(2) for constructing the Wilson loop. �

A basic property of a Wilson line W (z0; z1) is that for a
given continuous path Aj ; j= 1; 2 on [s0; s1] the Wilson line
W (z0; z1) exists on this path and has the following transition
property:

W (z0; z1) = W (z0; z)W (z; z1) (9)

where W (z0; z1) denotes the Wilson line of a curve z(�)
which is with z0 as the starting point and z1 as the ending
point and z is a point on z(�) between z0 and z1.

This property can be proved as follows. We have that
W (z0; z1) is a limit (whenever exists) of ordered product of
eAj4xj and thus can be written in the following form:

W (z0; z1) = I +
R s00
s0 e0Aj(z(s))dx

j(s)
ds ds+

+
R s00
s0 e0Aj(z(s2))dx

j(s2)
ds �

�hR s2s0 e0Aj(z(s3))dx
j(s3)
ds ds3

i
ds2 + � � �

(10)

where z(s0) = z0 and z(s00) = z1. Then since Ai are contin-
uous on [s0; s00] and xi(z(�)) are continuously differentiable
on [s0; s00] we have that the series in (10) is absolutely con-
vergent. Thus the Wilson line W (z0; z1) exists. Then since
W (z0; z1) is the limit of ordered product we can write
W (z0; z1) in the form W (z0; z)W (z; z1) by dividing z(�)
into two parts at z. This proves the basic property of Wil-
son line. �
Remark (classical and quantum versions of Wilson loop)
From the above property we have that the Wilson line
W (z0; z1) exists in the classical pathwise sense where Ai are
as classical paths on [s0; s1]. This pathwise version of the
Wilson line W (z0; z1); from the Feynman path integral point
of view; is as a partial description of the quantum version of
the Wilson line W (z0; z1) which is as an operator when Ai
are as operators. We shall in the next Section derive and de-
fine a quantum generator J of W (z0; z1) from the quantum
gauge theory. Then by using this generator J we shall com-
pute the quantum version of the Wilson line W (z0; z1).

We shall denote both the classical version and quantum
version of Wilson line by the same notation W (z0; z1) when
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there is no confusion. �
By following the usual approach of deriving a chiral sym-

metry from a gauge transformation of a gauge field we have
the following chiral symmetry which is derived by applying
an analytic gauge transformation with an analytic function !
for the transformation:

W (z0; z1) 7! W 0(z0; z1) =

= U(!(z1))W (z0; z1)U�1(!(z0)) ;
(11)

where W 0(z0; z1) is a Wilson line with gauge field:

A0� =
@U(z)
@x�

U�1(z) +U(z)A� U�1(z) : (12)

This chiral symmetry is analogous to the chiral symmetry
of the usual guage theory where U denotes an element of the
gauge group [61]. Let us derive (11) as follows. Let U(z) :=
:= U(!(z(s))) and U(z + dz) � U(z) + @U(z)

@x� dx� where
dz = (dx1; dx2). Following [61] we have

U(z + dz)(1 + e0dx�A�)U�1(z) =

= U(z + dz)U�1(z) + e0dx�U(z+dz)A�U�1(s)

� 1+ @U(z)
@x� U�1(z)dx� + e0dx�U(z+dz)A�U�1(s)

� 1 + @U(z)
@x� U�1(z)dx� + e0dx�U(z)A�U�1(z)

=: 1 + @U(z)
@x� U�1(z)dx� + e0dx�U(z)A�U�1(z)

=: 1 + e0dx�A0� :

(13)

From (13) we have that (11) holds.
As analogous to the WZW model in conformal field the-

ory [65, 66] from the above symmetry we have the following
formulas for the variations �!W and �!0W with respect to
this symmetry (see [65] p.621):

�!W (z; z0) = W (z; z0)!(z) (14)
and

�!0W (z; z0) = �!0(z0)W (z; z0) ; (15)

where z and z0 are independent variables and !0(z0) =!(z)
when z0= z. In (14) the variation is with respect to the z vari-
able while in (15) the variation is with respect to the z0 vari-
able. This two-side-variations when z , z0 can be derived as
follows. For the left variation we may let ! be analytic in a
neighborhood of z and extended as a continuously differen-
tiable function to a neighborhood of z0 such that !(z0) = 0 in
this neighborhood of z0. Then from (11) we have that (14)
holds. Similarly we may let !0 be analytic in a neighborhood
of z0 and extended as a continuously differentiable function to
a neighborhood of z such that !0(z) = 0 in this neighborhood
of z. Then we have that (15) holds.

4 Gauge fixing and affine Kac-Moody algebra

This Section has two related purposes. One purpose is to
find a gauge fixing condition for eliminating the degenerate
degree of freedom from the gauge invariance of the above
quantum gauge theory in Section 2. Then another purpose is
to find an equation for defining a generator J of the Wilson
line W (z; z0). This defining equation of J can then be used
as a gauge fixing condition. Thus with this defining equation
of J the construction of the quantum gauge theory in Section
2 is then completed.

We shall derive a quantum loop algebra (or the affine Kac-
Moody algebra) structure from the Wilson line W (z; z0) for
the generator J of W (z; z0). To this end let us first con-
sider the classical case. Since W (z; z0) is constructed from
SU(2) we have that the mapping z ! W (z; z0) (We con-
sider W (z; z0) as a function of z with z0 being fixed) has a
loop group structure [63, 64]. For a loop group we have the
following generators:

Jan = tazn n = 0 ;�1;�2; : : : (16)

These generators satisfy the following algebra:

[Jam; J
b
n] = ifabcJcm+n : (17)

This is the so called loop algebra [63, 64]. Let us then
introduce the following generating function J :

J(w) =
X
a

Ja(w) =
X
a

ja(w) ta; (18)

where we define

Ja(w) = ja(w)ta :=
1X

n=�1
Jan(z)(w � z)�n�1: (19)

From J we have

Jan =
1

2�i

I
z
dw (w � z)nJa(w) ; (20)

where
H
z denotes a closed contour integral with center z. This

formula can be interpreted as that J is the generator of the
loop group and that Jan is the directional generator in the di-
rection !a(w) = (w � z)n. We may generalize (20) to the
following directional generator:

1
2�i

I
z
dw !(w)J(w) ; (21)

where the analytic function !(w) =
P
a !

a(w)ta is regarded
as a direction and we define

!(w)J(w) :=
X
a

!a(w)Ja: (22)

Then since W (z; z0) 2 SU(2), from the variational for-
mula (21) for the loop algebra of the loop group of SU(2) we
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have that the variation of W (z; z0) in the direction !(w) is
given by

W (z; z0) 1
2�i

I
z
dw !(w)J(w) : (23)

Now let us consider the quantum case which is based on
the quantum gauge theory in Section 2. For this quantum case
we shall define a quantum generator J which is analogous to
the J in (18). We shall choose the equations (34) and (35) as
the equations for defining the quantum generator J . Let us
first give a formal derivation of the equation (34), as follows.
Let us consider the following formal functional integration:

hW (z; z0)A(z)i :=

:=
R
dA1dA2dZ�dZe�LW (z; z0)A(z);

(24)

where A(z) denotes a field from the quantum gauge theory.
(We first let z0 be fixed as a parameter.)

Let us do a calculus of variation on this integral to derive
a variational equation by applying a gauge transformation on
(24) as follows. (We remark that such variational equations
are usually called the Ward identity in the physics literature.)

Let (A1; A2; Z) be regarded as a coordinate system of the
integral (24). Under a gauge transformation (regarded as a
change of coordinate) with gauge function a(z(s)) this co-
ordinate is changed to another coordinate (A01; A02; Z 0). As
similar to the usual change of variable for integration we have
that the integral (24) is unchanged under a change of variable
and we have the following equality:R

dA01dA02dZ 0�dZ 0e�L
0
W 0(z; z0)A0(z) =

=
R
dA1dA2dZ�dZe�LW (z; z0)A(z) ;

(25)

where W 0(z; z0) denotes the Wilson line based on A01 and A02
and similarlyA0(z) denotes the field obtained fromA(z) with
(A1; A2; Z) replaced by (A01; A02; Z 0).

Then it can be shown that the differential is unchanged
under a gauge transformation [59]:

dA01dA02dZ 0�dZ 0 = dA1dA2dZ�dZ : (26)

Also by the gauge invariance property the factor e�L is
unchanged under a gauge transformation. Thus from (25) we
have

0 = hW 0(z; z0)A0(z)i � hW (z; z0)A(z)i ; (27)

where the correlation notation h�i denotes the integral with
respect to the differential

e�LdA1dA2dZ�dZ (28)

We can now carry out the calculus of variation. From the
gauge transformation we have the formula:

W 0(z; z0) = U(a(z))W (z; z0)U�1(a(z0)) ; (29)

where a(z) = Re!(z). This gauge transformation gives a
variation ofW (z; z0) with the gauge function a(z) as the vari-
ational direction a in the variational formulas (21) and (23).
Thus analogous to the variational formula (23) we have that
the variation of W (z; z0) under this gauge transformation is
given by

W (z; z0) 1
2�i

I
z
dw a(w)J(w) ; (30)

where the generator J for this variation is to be specific. This
J will be a quantum generator which generalizes the classical
generator J in (23).

Thus under a gauge transformation with gauge function
a(z) from (27) we have the following variational equation:

0 =
D
W (z; z0)

h
�aA(z) +

+
1

2�i

I
z
dwa(w)J(w)A(z)

iE
;

(31)

where �aA(z) denotes the variation of the field A(z) in the
direction a(z). From this equation an ansatz of J is that J
satisfies the following equation:

W (z; z0)
h
�aA(z) +

1
2�i

I
z
dwa(w)J(w)A(z)

i
= 0 : (32)

From this equation we have the following variational
equation:

�aA(z) =
�1
2�i

I
z
dwa(w)J(w)A(z) : (33)

This completes the formal calculus of variation. Now
(with the above derivation as a guide) we choose the follow-
ing equation (34) as one of the equation for defining the gen-
erator J :

�!A(z) =
�1
2�i

I
z
dw !(w)J(w)A(z) ; (34)

where we generalize the direction a(z) = Re!(z) to the ana-
lytic direction !(z). (This generalization has the effect of ex-
tending the real measure of the pure gauge part of the gauge
theory to include the complex Feynman path integral since it
gives the transformation ds ! �ids for the integral of the
Wilson line W (z; z0).)

Let us now choose one more equation for determine the
generator J in (34). This choice will be as a gauge fixing
condition. As analogous to the WZW model in conformal
field theory [65–67] let us consider a J given by

J(z) := �k0W�1(z; z0) @zW (z; z0) ; (35)

where we define @z = @x1 + i@x2 and we set z0= z after the
differentiation with respect to z; k0 > 0 is a constant which
is fixed when the J is determined to be of the form (35) and
the minus sign is chosen by convention. In the WZW model
[65, 67] the J of the form (35) is the generator of the chiral
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symmetry of the WZW model. We can write the J in (35) in
the following form:

J(w) =
X
a

Ja(w) =
X
a

ja(w) ta: (36)

We see that the generators ta of SU(2) appear in this form
of J and this form is analogous to the classical J in (18). This
shows that this J is a possible candidate for the generator J
in (34).

Since W (z; z0) is constructed by gauge field we need to
have a gauge fixing for the computations related to W (z; z0).
Then since the J in (34) and (35) is constructed by W (z; z0)
we have that in defining this J as the generator J of W (z; z0)
we have chosen a condition for the gauge fixing. In this paper
we shall always choose this defining equations (34) and (35)
for J as the gauge fixing condition.

In summary we introduce the following definition.
Definition The generator J of the quantum Wilson line
W (z; z0) whose classical version is defined by (8), is an op-
erator defined by the two conditions (34) and (35). �
Remark We remark that the condition (35) first defines J
classically. Then the condition (34) raises this classical J to
the quantum generator J . �

Now we want to show that this generator J in (34) and
(35) can be uniquely solved. (This means that the gauge fix-
ing condition has already fixed the gauge that the degenerate
degree of freedom of gauge invariance has been eliminated so
that we can carry out computation.)

Let us now solve J . From (11) and (35) the variation �!J
of the generator J in (35) is given by [65, p. 622] and [67]:

�!J = [J; !]� k0@z! : (37)

From (34) and (37) we have that J satisfies the following
relation of current algebra [65–67]:

Ja(w)Jb(z) =
k0�ab

(w � z)2 +
X
c

ifabc
Jc(z)

(w � z)
; (38)

where as a convention the regular term of Ja(w)Jb(z) is
omitted. Then by following [65–67] from (38) and (36) we
can show that the Jan in (18) for the corresponding Laurent
series of the quantum generator J satisfy the following Kac-
Moody algebra:

[Jam; J
b
n] = ifabcJcm+n + k0m�ab�m+n;0 ; (39)

where k0 is usually called the central extension or the level of
the Kac-Moody algebra.
Remark Let us also consider the other side of the chiral
symmetry. Similar to the J in (35) we define a generator
J 0 by:

J 0(z0) = k0@z0W (z; z0)W�1(z; z0) ; (40)

where after differentiation with respect to z0 we set z= z0.

Let us then consider the following formal correlation:

hA(z0)W (z; z0)i :=

:=
Z
dA1dA2dZ�dZA(z0)W (z; z0) e�L;

(41)

where z is fixed. By an approach similar to the above deriva-
tion of (34) we have the following variational equation:

�!0A(z0) =
�1
2�i

I
z0
dwA(z0)J 0(w)!0(w) ; (42)

where as a gauge fixing we choose the J 0 in (42) be the J 0 in
(40). Then similar to (37) we also have

�!0J 0 = [J 0; !0]� k0@z0!0: (43)

Then from (42) and (43) we can derive the current algebra
and the Kac-Moody algebra for J 0 which are of the same form
of (38) and (39). From this we have J 0= J . �

Now with the above current algebra J and the formula
(34) we can follow the usual approach in conformal field
theory to derive a quantum Knizhnik-Zamolodchikov (KZ)
equation for the product of primary fields in a conformal field
theory [65–67]. We derive the KZ equation for the product
of n Wilson lines W (z; z0). Here an important point is that
from the two sides of W (z; z0) we can derive two quantum
KZ equations which are dual to each other. These two quan-
tum KZ equations are different from the usual KZ equation
in that they are equations for the quantum operators W (z; z0)
while the usual KZ equation is for the correlations of quan-
tum operators. With this difference we can follow the usual
approach in conformal field theory to derive the following
quantum Knizhnik-Zamolodchikov equation [65, 66, 68]:

@ziW (z1; z01) � � �W (zn; z0n) =

= �e20
k0+g0

Pn
j,i

P
a
tai
taj

zi�zj W (z1; z01) � � �W (zn; z0n) ;
(44)

for i= 1; : : : ; n where g0 denotes the dual Coxeter number
of a group multiplying with e2

0 and we have g0 = 2e2
0 for

the group SU(2) (When the gauge group is U(1) we have
g0 = 0). We remark that in (44) we have defined tai := ta and:

tai 
 tajW (z1; z01) � � �W (zn; z0n) := W (z1; z01) � � �
� � � [taW (zi; z0i)] � � � [taW (zj ; z0j)] � � �W (zn; z0n) :

(45)

It is interesting and important that we also have the fol-
lowing quantum Knizhnik-Zamolodchikov equation with re-
spect to the z0i variables which is dual to (44):

@z0iW (z1; z01) � � �W (zn; z0n) =

= �e20
k0+g0

Pn
j,iW (z1; z01) � � �W (zn; z0n)

P
a
tai
taj

z0j�z0i
(46)
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for i= 1; : : : ; n where we have defined:

W (z1; z01) � � �W (zn; z0n)tai 
 taj := W (z1; z01) � � �
� � � [W (zi; z0i)ta] � � � [W (zj ; z0j)ta] � � �W (zn; z0n) :

(47)

Remark From the quantum gauge theory we derive the
above quantum KZ equation in dual form by calculus of vari-
ation. This quantum KZ equation in dual form may be con-
sidered as a quantum Euler-Lagrange equation or as a quan-
tum Yang-Mills equation since it is analogous to the classi-
cal Yang-Mills equation which is derived from the classical
Yang-Mills gauge theory by calculus of variation. �
5 Solving quantum KZ equation in dual form

Let us consider the following product of two quantum Wilson
lines:

G(z1; z2; z3; z4) := W (z1; z2)W (z3; z4) ; (48)

where the quantum Wilson lines W (z1; z2) and W (z3; z4)
represent two pieces of curves starting at z1 and z3 and ending
at z2 and z4 respectively.

We have that this product G(z1; z2; z3; z4) satisfies the
KZ equation for the variables z1, z3 and satisfies the dual
KZ equation for the variables z2 and z4. Then by solving
the two-variables-KZ equation in (44) we have that a form of
G(z1; z2; z3; z4) is given by [69–71]:

e�t̂ log[�(z1�z3)]C1 ; (49)

where t̂ := e20
k0+g0

P
a t
a
ta andC1 denotes a constant matrix

which is independent of the variable z1 � z3.
We see that G(z1; z2; z3; z4) is a multi-valued analytic

function where the determination of the � sign depended on
the choice of the branch.

Similarly by solving the dual two-variable-KZ equation
in (46) we have that G is of the form

C2 et̂ log[�(z4�z2)] ; (50)

where C2 denotes a constant matrix which is independent of
the variable z4 � z2.

From (49), (50) and letting:

C1 = Aet̂ log[�(z4�z2)]; C2 = e�t̂ log[�(z1�z3)]A ; (51)

where A is a constant matrix we have that G(z1; z2; z3; z4) is
given by:

G(z1; z2; z3; z4) = e�t̂ log[�(z1�z3)]Aet̂ log[�(z4�z2)] ; (52)

where at the singular case that z1 = z3 we define
log[�(z1 � z3)] = 0. Similarly for z2 = z4.

Let us find a form of the initial operator A. We notice
that there are two operators ��(z1 � z3) := e�t̂ log[�(z1�z3)]

and 	�(z4 � z2) = et̂ log[�(z4�z2)] acting on the two sides of

A respectively where the two independent variables z1; z3 of
�� are mixed from the two quantum Wilson lines W (z1; z2)
and W (z3; z4) respectively and the the two independent vari-
ables z2; z4 of 	� are mixed from the two quantum Wilson
lines W (z1; z2) and W (z3; z4) respectively. From this we
determine the form of A as follows.

Let D denote a representation of SU(2). Let D(g) rep-
resent an element g of SU(2) and let D(g) 
 D(g) denote
the tensor product representation of SU(2). Then in the KZ
equation we define

[ta 
 ta][D(g1)
D(g1)]
 [D(g2)
D(g2)] :=

:= [taD(g1)
D(g1)]
 [taD(g2)
D(g2)]
(53)

and

[D(g1)
D(g1)]
 [D(g2)
D(g2)][ta 
 ta] :=

:= [D(g1)
D(g1)ta]
 [D(g2)
D(g2)ta] :
(54)

Then we let U(a) denote the universal enveloping alge-
bra where a denotes an algebra which is formed by the Lie
algebra su(2) and the identity matrix.

Now let the initial operator A be of the form A1 
 A2 

A3 
 A4 with Ai; i= 1; : : : ; 4 taking values in U(a). In this
case we have that in (52) the operator ��(z1 � z3) acts on A
from the left via the following formula:

ta 
 taA = [taA1]
A2 
 [taA3]
 A4 : (55)

Similarly the operator 	�(z4�z2) in (52) acts onA from
the right via the following formula:

Ata 
 ta = A1 
 [A2ta]
 A3 
 [A4ta] : (56)

We may generalize the above tensor product of two quan-
tum Wilson lines as follows. Let us consider a tensor product
of n quantum Wilson lines: W (z1; z01) � � �W (zn; z0n) where
the variables zi, z0i are all independent. By solving the two
KZ equations we have that this tensor product is given by:

W (z1; z01) � � �W (zn; z0n) =

=
Y
ij

��(zi � zj)AY
ij

	�(z0i � z0j) ; (57)

where
Q
ij denotes a product of ��(zi � zj) or 	�(z0i � z0j)

for i; j = 1; : : : ; n where i , j. In (57) the initial opera-
tor A is represented as a tensor product of operators Aiji0j0 ,
i; j; i0; j0= 1; : : : ; n where each Aiji0j0 is of the form of the
initial operator A in the above tensor product of two-Wilson-
lines case and is acted by ��(zi � zj) or 	�(z0i � z0j) on its
two sides respectively.

6 Computation of quantum Wilson lines

Let us consider the following product of two quantum Wilson
lines:

G(z1; z2; z3; z4) := W (z1; z2)W (z3; z4) ; (58)
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where the quantum Wilson lines W (z1; z2) and W (z3; z4)
represent two pieces of curves starting at z1 and z3 and ending
at z2 and z4 respectively. As shown in the above Section we
have that G(z1; z2; z3; z4) is given by the following formula:

G(z1; z2; z3; z4) = e�t̂ log[�(z1�z3)]Aet̂ log[�(z4�z2)] ; (59)

where the product is a 4-tensor.
Let us set z2 = z3. Then the 4-tensorW (z1; z2)W (z3; z4)

is reduced to the 2-tensorW (z1; z2)W (z2; z4). By using (59)
the 2-tensor W (z1; z2)W (z2; z4) is given by:

W (z1; z2)W (z2; z4) =

= e�t̂ log[�(z1�z2)]A14et̂ log[�(z4�z2)] ;
(60)

where A14 =A1
A4 is a 2-tensor reduced from the 4-tensor
A=A1
A2
A3
A4 in (59). In this reduction the t̂ operator
of � = e�t̂ log[�(z1�z2)] acting on the left side of A1 and A3
in A is reduced to acting on the left side of A1 and A4 in A14.
Similarly the t̂ operator of 	 = et̂ log[�(z4�z2)] acting on the
right side of A2 and A4 in A is reduced to acting on the right
side of A1 and A4 in A14.

Then since t̂ is a 2-tensor operator we have that t̂ is as
a matrix acting on the two sides of the 2-tensor A14 which
is also as a matrix with the same dimension as t̂. Thus �
and 	 are as matrices of the same dimension as the matrix
A14 acting on A14 by the usual matrix operation. Then since
t̂ is a Casimir operator for the 2-tensor group representation
of SU(2) we have that � and 	 commute with A14 since �
and 	 are exponentials of t̂. (We remark that � and 	 are
in general not commute with the 4-tensor initial operator A.)
Thus we have

e�t̂ log[�(z1�z2)]A14et̂ log[�(z4�z2)] =

= e�t̂ log[�(z1�z2)]et̂ log[�(z4�z2)]A14 :
(61)

We let W (z1; z2)W (z2; z4) be as a representation of the
quantum Wilson line W (z1; z4):

W (z1; z4) := W (z1; w1)W (w1; z4) =

= e�t̂ log[�(z1�w1)]et̂ log[�(z4�w1)]A14 :
(62)

This representation of the quantum Wilson lineW (z1; z4)
means that the line (or path) with end points z1 and z4 is
specific that it passes the intermediate point w1 = z2. This
representation shows the quantum nature that the path is not
specific at other intermediate points except the intermediate
point w1 = z2. This unspecification of the path is of the same
quantum nature of the Feynman path description of quantum
mechanics.

Then let us consider another representation of the quan-
tum Wilson line W (z1; z4). We consider the three-product
W (z1; w1)W (w1; w2)W (w2; z4) which is obtained from the

three-tensor W (z1; w1)W (u1; w2)W (u2; z4) by two reduc-
tions where zj , wj , uj , j= 1; 2 are independent variables.
For this representation we have:

W (z1; w1)W (w1; w2)W (w2; z4)= e�t̂ log[�(z1�w1)]�
� e�t̂ log[�(z1�w2)]et̂ log[�(z4�w1)]et̂ log[�(z4�w2)]A14 :

(63)

This representation of the quantum Wilson lineW (z1; z4)
means that the line (or path) with end points z1 and z4 is spe-
cific that it passes the intermediate points w1 and w2. This
representation shows the quantum nature that the path is not
specific at other intermediate points except the intermediate
points w1 and w2. This unspecification of the path is of
the same quantum nature of the Feynman path description of
quantum mechanics.

Similarly we may represent W (z1; z4) by path with end
points z1 and z4 and is specific only to pass at finitely many
intermediate points. Then we let the quantum Wilson line
W (z1; z4) as an equivalent class of all these representations.
Thus we may write:

W (z1; z4) = W (z1; w1)W (w1; z4) =

= W (z1; w1)W (w1; w2)W (w2; z4) = � � � (64)

Remark Since A14 is a 2-tensor we have that a natural
group representation for the Wilson line W (z1; z4) is the 2-
tensor group representation of the group SU(2).

7 Representing braiding of curves by quantum Wilson
lines

Consider again the G(z1; z2; z3; z4) in (58). We have that
G(z1; z2; z3; z4) is a multi-valued analytic function where the
determination of the � sign depended on the choice of the
branch.

Let the two pieces of curves represented byW (z1; z2) and
W (z3; z4) be crossing at w. In this case we write W (zi; zj)
as W (zi; zj) = W (zi; w)W (w; zj) where i = 1; 3, j = 2; 4.
Thus we have

W (z1; z2)W (z3; z4) =

= W (z1; w)W (w; z2)W (z3; w)W (w; z4) :
(65)

If we interchange z1 and z3, then from (65) we have the
following ordering:

W (z3; w)W (w; z2)W (z1; w)W (w; z4) : (66)

Now let us choose a branch. Suppose these two curves
are cut from a knot and that following the orientation of a
knot the curve represented by W (z1; z2) is before the curve
represented by W (z3; z4). Then we fix a branch such that the
product in (59) is with two positive signs:

W (z1; z2)W (z3; z4) = e�t̂ log(z1�z3)Aet̂ log(z4�z2) : (67)
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Then if we interchange z1 and z3 we have

W (z3; w)W (w; z2)W (z1; w)W (w; z4) =

= e�t̂ log[�(z1�z3)]Aet̂ log(z4�z2) :
(68)

From (67) and (68) as a choice of branch we have

W (z3; w)W (w; z2)W (z1; w)W (w; z4) =

= RW (z1; w)W (w; z2)W (z3; w)W (w; z4) ;
(69)

where R = e�i�t̂ is the monodromy of the KZ equation. In
(69) z1 and z3 denote two points on a closed curve such that
along the direction of the curve the point z1 is before the point
z3 and in this case we choose a branch such that the angle of
z3� z1 minus the angle of z1� z3 is equal to �.

Remark We may use other representations of the product
W (z1; z2)W (z3; z4). For example we may use the following
representation:

W (z1; w)W (w; z2)W (z3; w)W (w; z4) =

= e�t̂ log(z1�z3)e�2t̂ log(z1�w)e�2t̂ log(z3�w)�
�Aet̂ log(z4�z2)e2t̂ log(z4�w)e2t̂ log(z2�w) :

(70)

Then the interchange of z1 and z3 changes only z1� z3
to z3� z1. Thus the formula (69) holds. Similarly all other
representations of W (z1; z2)W (z3; z4) will give the same
result. �

Now from (69) we can take a convention that the order-
ing (66) represents that the curve represented by W (z1; z2)
is up-crossing the curve represented by W (z3; z4) while (65)
represents zero crossing of these two curves.

Similarly from the dual KZ equation as a choice of branch
which is consistent with the above formula we have

W (z1; w)W (w; z4)W (z3; w)W (w; z2) =

= W (z1; w)W (w; z2)W (z3; w)W (w; z4)R�1;
(71)

where z2 is before z4. We take a convention that the order-
ing in (71) represents that the curve represented byW (z1; z2)
is under-crossing the curve represented by W (z3; z4). Here
along the orientation of a closed curve the piece of curve
represented by W (z1; z2) is before the piece of curve rep-
resented by W (z3; z4). In this case since the angle of z3� z1
minus the angle of z1� z3 is equal to � we have that the an-
gle of z4� z2 minus the angle of z2� z4 is also equal to �
and this gives the R�1 in this formula (71).

From (69) and (71) we have

W (z3; z4)W (z1; z2) = RW (z1; z2)W (z3; z4)R�1; (72)

where z1 and z2 denote the end points of a curve which is
before a curve with end points z3 and z4. From (72) we
see that the algebraic structure of these quantum Wilson lines
W (z; z0) is analogous to the quasi-triangular quantum group
[66, 69].

8 Computation of quantum Dirac-Wilson loop

Consider again the quantum Wilson line W (z1; z4) given by
W (z1; z4) =W (z1; z2)W (z2; z4). Let us set z1 = z4. In this
case the quantum Wilson line forms a closed loop. Now in
(61) with z1 = z4 we have that the quantities e�t̂ log�(z1�z2)

and et̂ log�(z1�z2) which come from the two-side KZ equa-
tions cancel each other and from the multi-valued property of
the log function we have:

W (z1; z1) = RNA14 ; N = 0;�1;�2; : : : (73)

where R= e�i�t̂ is the monodromy of the KZ equation [69].

Remark It is clear that if we use other representation of the
quantum Wilson loop W (z1; z1) (such as the representation
W (z1; z1) =W (z1; w1)W (w1; w2)W (w2; z1)) then we will
get the same result as (73).

Remark For simplicity we shall drop the subscript of A14
in (73) and simply write A14 =A.

9 Winding number of Dirac-Wilson loop as quanti-
zation

We have the equation (73) where the integerN is as a winding
number. Then when the gauge group is U(1) we have

W (z1; z1) = RNU(1)A ; (74)

where RU(1) denotes the monodromy of the KZ equation for
U(1). We have

RNU(1) = eiN
�e20
k0+g0 ; N = 0;�1;�2; : : : (75)

where the constant e0 denotes the bare electric charge (and
g0 = 0 for U(1) group). The winding number N is as the
quantization property of photon. We show in the follow-
ing Section that the Dirac-Wilson loop W (z1; z1) with the
abelian U(1) group is a model of the photon.

10 Magnetic monopole is a photon with a specific fre-
quency

We see that the Dirac-Wilson loop is an exactly solvable non-
linear observable. Thus we may regard it as a quantum soliton
of the above gauge theory. In particular for the abelian gauge
theory with U(1) as gauge group we regard the Dirac-Wilson
loop as a quantum soliton of the electromagnetic field. We
now want to show that this soliton has all the properties of
photon and thus we may identify it with the photon.

First we see that from (75) it has discrete energy levels of
light-quantum given by

h� := N
�e2

0
k0

; N = 0; 1; 2; 3; : : : (76)
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where h is the Planck’s constant; � denotes a frequency and
the constant k0> 0 is determined from this formula. This
formula is from the monodromy RU(1) for the abelian gauge
theory. We see that the Planck’s constant h comes out from
this winding property of the Dirac-Wilson loop. Then since
this Dirac-Wilson loop is a loop we have that it has the polar-
ization property of light by the right hand rule along the loop
and this polarization can also be regarded as the spin of pho-
ton. Now since this loop is a quantum soliton which behaves
as a particle we have that this loop is a basic particle of the
above abelian gauge theory where the abelian gauge property
is considered as the fundamental property of electromagnetic
field. This shows that the Dirac-Wilson loop has properties of
photon. We shall later show that from this loop model of pho-
ton we can describe the absorption and emission of photon by
an electron. This property of absorption and emission is con-
sidered as a basic principle of the light-quantum hypothesis
of Einstein [1]. From these properties of the Dirac-Wilson
loop we may identify it with the photon.

On the other hand from Dirac’s analysis of the magnetic
monopole we have that the property of magnetic monopole
comes from a closed line integral of vector potential of the
electromagnetic field which is similar to the Dirac-Wilson
loop [4]. Now from this Dirac-Wilson loop we can define
the magnetic charge q and the minimal magnetic charge qmin
which are given by:

eq := enqmin := nee0n
nme0�
k0

; n = 0; 1; 2; 3; : : : (77)

where e :=nee0 is as the observed electric charge for some
positive integer ne; and qmin := nme0�

k0
for some positive in-

teger nm and we write N =nnenm; n = 0; 1; 2; 3; : : : (by
absorbing the constant k0 to e2

0 we may let k0 = 1).
This shows that the Dirac-Wilson loop gives the property

of magnetic monopole for some frequencies. Since this loop
is a quantum soliton which behaves as a particle we have that
this Dirac-Wilson loop may be identified with the magnetic
monopole for some frequencies. Thus we have that photon
may be identified with the magnetic monopole for some fre-
quencies. With this identification we have the following in-
teresting conclusion: Both the energy quantization of elec-
tromagnetic field and the charge quantization property come
from the same property of photon. Indeed we have:

nh�1 := n
nenme2

0�
k0

= eq ; n = 0; 1; 2; 3; : : : (78)

where �1 denotes a frequency. This formula shows that the
energy quantization gives the charge quantization and thus
these two quantizations are from the same property of the
photon when photon is modelled by the Dirac-Wilson loop
and identified with the magnetic monopole for some frequen-
cies. We notice that between two energy levels neqmin and
(n+ 1)eqmin there are other energy levels which may be re-
garded as the excited states of a particle with charge ne.

11 Nonlinear loop model of electron

In this Section let us also give a loop model to the electron.
This loop model of electron is based on the above loop model
of the photon. From the loop model of photon we also con-
struct an observable which gives mass to the electron and is
thus a mass mechanism for the electron.

LetW (z; z) denote a Dirac-Wilson loop which represents
a photon. Let Z denotes the complex variable for electron in
(1.1). We then consider the following observable:

W (z; z)Z : (79)

Since W (z; z) is solvable we have that this observable
is also solvable where in solving W (z; z) the variable Z is
fixed. We let this observable be identified with the electron.
Then we consider the following observable:

Z�W (z; z)Z : (80)

This observable is with a scalar factor Z�Z where Z� de-
notes the complex conjugate ofZ and we regard it as the mass
mechanism of the electron (79). For this observable we model
the energy levels with specific frequencies of W (z; z) as the
mass levels of electron and the massm of electron is the low-
est energy level h�1 with specific frequency �1 of W (z; z)
and is given by:

mc2 = h�1 ; (81)

where c denotes the constant of the speed of light and the
frequency �1 is given by (78). From this model of the mass
mechanism of electron we have that electron is with mass m
while photon is with zero mass because there does not have
such a mass mechanism Z�W (z; z)Z for the photon. From
this definition of mass we have the following formula relat-
ing the observed electric charge e of electron, the magnetic
charge qmin of magnetic monopole and the mass m of elec-
tron:

mc2 = eqmin = h�1 : (82)

By using the nonlinear model W (z; z)Z to represent an
electron we can then describe the absorption and emission of
a photon by an electron where photon is as a parcel of energy
described by the loop W (z; z), as follows. Let W (z; z)Z
represents an electron and let W1(z1; z1) represents a pho-
ton. Then the observable W1(z1; z1)W (z; z)Z represents an
electron having absorbed the photon W1(z1; z1). This prop-
erty of absorption and emission is as a basic principle of the
hypothesis of light-quantum stated by Einstein [1]. Let us
quote the following paragraph from [1]:

. . . First, the light-quantum was conceived of as a par-
cel of energy as far as the properties of pure radiation
(no coupling to matter) are concerned. Second, Ein-
stein made the assumption — he call it the heuristic
principle — that also in its coupling to matter (that is,
in emission and absorption), light is created or anni-
hilated in similar discrete parcels of energy. That, I
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believe, was Einstein’s one revolutionary contribution
to physics. It upset all existing ideas about the interac-
tion between light and matter. . .

12 Photon with specific frequency carries electric and
magnetic charges

In this loop model of photon we have that the observed elec-
tric charge e :=nee0 and the magnetic charge qmin are car-
ried by the photon with some specific frequencies. Let us
here describe the physical effects from this property of pho-
ton that photon with some specific frequency carries the elec-
tric and magnetic charge. From the nonlinear model of elec-
tron we have that an electron W (z; z)Z also carries the elec-
tric charge when a photon W (z; z) carrying the electric and
magnetic charge is absorbed to form the electron W (z; z)Z.
This means that the electric charge of an electron is from the
electric charge carried by a photon. Then an interaction (as
the electric force) is formed between two electrons (with the
electric charges).

On the other hand since photon carries the constant e2
0 of

the bare electric charge e0 we have that between two photons
there is an interaction which is similar to the electric force
between two electrons (with the electric charges). This in-
teraction however may not be of the same magnitude as the
electric force with the magnitude e2 since the photons may
not carry the frequency for giving the electric and magnetic
charge. Then for stability such interaction between two pho-
tons tends to give repulsive effect to give the diffusion phe-
nomenon among photons.

Similarly an electron W (z; z)Z also carries the magnetic
charge when a photonW (z; z) carrying the electric and mag-
netic charge is absorbed to form the electron W (z; z)Z. This
means that the magnetic charge of an electron is from the
magnetic charge carried by a photon. Then a closed-loop in-
teraction (as the magnetic force) may be formed between two
electrons (with the magnetic charges).

On the other hand since photon carries the constant e2
0 of

the bare electric charge e0 we have that between two photons
there is an interaction which is similar to the magnetic force
between two electrons (with the magnetic charges). This in-
teraction however may not be of the same magnitude as the
magnetic force with the magnetic charge qmin since the pho-
tons may not carry the frequency for giving the electric and
magnetic charge. Then for stability such interaction between
two photons tends to give repulsive effect to give the diffusion
phenomenon among photons.

13 Statistics of photons and electrons

The nonlinear modelW (z; z)Z of an electron gives a relation
between photon and electron where the photon is modelled
by W (z; z) which is with a specific frequency for W (z; z)Z

to be an electron, as described in the above Sections. We
want to show that from this nonlinear model we may also de-
rive the required statistics of photons and electrons that pho-
tons obey the Bose-Einstein statistics and electrons obey the
Fermi-Dirac statistics. We have thatW (z; z) is as an operator
acting on Z. LetW1(z; z) be a photon. Then we have that the
nonlinear model W1(z; z)W (z; z)Z represents that the pho-
tonW1(z; z) is absorbed by the electronW (z; z)Z to form an
electron W1(z; z)W (z; z)Z. Let W2(z; z) be another pho-
ton. The we have that the modelW1(z; z)W2(z; z)W (z; z)Z
again represents an electron where we have:

W1(z; z)W2(z; z)W (z; z)Z =

= W2(z; z)W1(z; z)W (z; z)Z :
(83)

More generally the model
QN
n=1Wn(z; z)W (z; z)Z rep-

resents that the photons Wn(z; z); n= 1; 2; : : : ; N are
absorbed by the electron W (z; z)Z. This model shows that
identical (but different) photons can appear identically and it
shows that photons obey the Bose-Einstein statistics. From
the polarization of the Dirac-Wilson loop W (z; z) we may
assign spin 1 to a photon represented by W (z; z).

Let us then consider statistics of electrons. The observ-
able Z�W (z; z)Z gives mass to the electron W (z; z)Z and
thus this observable is as a scalar and thus is assigned with
spin 0. As the observable W (z; z)Z is between W (z; z) and
Z�W (z; z)Z which are with spin 1 and 0 respectively we thus
assign spin 1

2 to the observable W (z; z)Z and thus electron
represented by this observable W (z; z)Z is with spin 1

2 .
Then letZ1 andZ2 be two independent complex variables

for two electrons and let W1(z; z)Z1 and W2(z; z)Z2 repre-
sent two electrons. Let W3(z; z) represents a photon. Then
the model W3(z; z)(W1(z; z)Z1 +W2(z; z)Z2) means that
two electrons are in the same state that the operator W3(z; z)
is acted on the two electrons. However this model means that
a photon W (z; z) is absorbed by two distinct electrons and
this is impossible. Thus the models W3(z; z)W1(z; z)Z1 and
W3(z; z)W2(z; z)Z2 cannot both exist and this means that
electrons obey Fermi-Dirac statistics.

Thus this nonlinear loop model of photon and electron
gives the required statistics of photons and electrons.

14 Photon propagator and quantum photon propagator

Let us then investigate the quantum Wilson line W (z0; z)
with U(1) group where z0 is fixed for the photon field. We
want to show that this quantum Wilson line W (z0; z) may
be regarded as the quantum photon propagator for a photon
propagating from z0 to z.

As we have shown in the above Section on computation
of quantum Wilson line; to compute W (z0; z) we need to
write W (z0; z) in the form of two (connected) Wilson lines:
W (z0; z) =W (z0; z1)W (z1; z) for some z1 point. Then we
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have:

W (z0; z1)W (z1; z) =

= e�t̂ log[�(z1�z0)]Aet̂ log[�(z�z1)] ;
(84)

where t̂=� e20
k0

for the U(1) group (k0 is a constant and we

may for simplicity let k0 = 1) where the term e�t̂ log[�(z�z0)]

is obtained by solving the first form of the dual form of the KZ
equation and the term et̂ log[�(z0�z)] is obtained by solving
the second form of the dual form of the KZ equation.

Then we may write W (z0; z) in the following form:

W (z0; z) = W (z0; z1)W (z1; z) = e�t̂ log (z1�z0)
(z�z1) A : (85)

Let us fix z1 with z such that:

jz1 � z0j
jz � z1j =

r1

n2
e

(86)

for some positive integer ne such that r1 6 n2
e; and we let

z be a point on a path of connecting z0 and z1 and then a
closed loop is formed with z as the starting and ending point.
(This loop can just be the photon-loop of the electron in this
electromagnetic interaction by this photon propagator (85).)
Then (85) has a factor e2

0 log r1
n2
e

which is the fundamental
solution of the two dimensional Laplace equation and is anal-
ogous to the fundamental solution e2

r (where e := e0ne de-
notes the observed (renormalized) electric charge and r de-
notes the three dimensional distance) of the three dimensional
Laplace equation for the Coulomb’s law. Thus the opera-
tor W (z0; z) =W (z0; z1)W (z1; z) in (85) can be regarded
as the quantum photon propagator propagating from z0 to z.

We remark that when there are many photons we may in-
troduce the space variable x as a statistical variable via the
Lorentz metric ds2 = dt2� dx2 to obtain the Coulomb’s law
e2
r from the fundamental solution e2

0 log r1
n2
e

as a statistical
law for electricity (We shall give such a space-time statistics
later).

The quantum photon propagator (85) gives a repulsive ef-
fect since it is analogous to the Coulomb’s law e2

r . On the
other hand we can reverse the sign of t̂ such that this photon
operator can also give an attractive effect:

W (z0; z) = W (z0; z1)W (z1; z) = et̂ log (z�z1)
(z1�z0)A ; (87)

where we fix z1 with z0 such that:

jz � z1j
jz1 � z0j =

r1

n2
e

(88)

for some positive integer ne such that r1 > n2
e; and we again

let z be a point on a path of connecting z0 and z1 and then a
closed loop is formed with z as the starting and ending point.
(This loop again can just be the photon-loop of the electron
in this electromagnetic interaction by this photon propagator

(85).) Then (87) has a factor �e2
0 log r1

n2
e

which is the funda-
mental solution of the two dimensional Laplace equation and
is analogous to the attractive fundamental solution� e2r of the
three dimensional Laplace equation for the Coulomb’s law.

Thus the quantum photon propagator in (85), and in (87),
can give repulsive or attractive effect between two points z0
and z for all z in the complex plane. These repulsive or at-
tractive effects of the quantum photon propagator correspond
to two charges of the same sign and of different sign respec-
tively.

On the other hand when z= z0 the quantum Wilson line
W (z0; z0) in (85) which is the quantum photon propagator
becomes a quantum Wilson loop W (z0; z0) which is identi-
fied as a photon, as shown in the above Sections.

Let us then derive a form of photon propagator from the
quantum photon propagator W (z0; z). Let us choose a path
connecting z0 and z= z(s). We consider the following path:

z(s) = z1 + a0
�
�(s1 � s)e�i�1(s1�s) +

+ �(s� s1)ei�1(s1�s)�; (89)

where �1> 0 is a parameter and z(s0) = z0 for some proper
time s0; and a0 is some complex constant; and � is a step
function given by �(s) = 0 for s< 0, �(s) = 1 for s > 0. Then
on this path we have:

W (z0; z) =

= W (z0; z1)W (z1; z) = et̂ log (z�z1)
(z1�z0)A =

= et̂ log a0[�(s�s1)e�i�1(s1�s)+�(s1�s)ei�1(s1�s)]
(z1�z0) A =

= et̂ log b[�(s�s1)e�i�1(s1�s)+�(s1�s)ei�1(s1�s)]A =

= b0
�
�(s� s1)e�it̂�1(s1�s) + �(s1 � s)eit̂�1(s1�s)�A

(90)

for some complex constants b and b0. From this chosen of
the path (89) we have that the quantum photon propagator is
proportional to the following expression:

1
2�1

�
�(s� s1)e�i�1(s�s1) + �(s1 � s)ei�1(s�s1)� (91)

where we define �1 = � t̂ �1 = e2
0�1 > 0. We see that this is

the usual propagator of a particle x(s) of harmonic oscillator
with mass-energy parameter �1 > 0 where x(s) satisfies the
following harmonic oscillator equation:

d2x
ds2 = ��2

1x(s) : (92)

We regard (91) as the propagator of a photon with mass-
energy parameter �1. Fourier transforming (91) we have the
following form of photon propagator:

i
k2
E � �1

; (93)

28 Sze Kui Ng. New Approach to Quantum Electrodynamics



April, 2008 PROGRESS IN PHYSICS Volume 2

where we use the notation kE (instead of the notation k) to
denote the proper energy of photon. We shall show in the
next Section that from this photon propagator by space-time
statistics we can get a propagator with the kE replaced by
the energy-momemtum four-vector k which is similar to the
Feynman propagator (with a mass-energy parameter �1 > 0).
We thus see that the quantum photon propagator W (z0; z)
gives a classical form of photon propagator in the conven-
tional QED theory.

Then we notice that while �1 > 0 which may be think of
as the mass-energy parameter of a photon the original quan-
tum photon propagator W (z0; z) can give the Coulomb po-
tential and thus give the effect that the photon is massless.
Thus the photon mass-energy parameter �1 > 0 is consis-
tent with the property that the photon is massless. Thus in
the following Sections when we compute the vertex correc-
tion and the Lamb shift we shall then be able to let �1 > 0
without contradicting the property that the photon is mass-
less. This then can solve the infrared-divergence problem
of QED.

We remark that if we choose other form of paths for con-
necting z0 and z we can get other forms of photon propaga-
tor corresponding to a choice of gauge. From the property
of gauge invariance the final result should not depend on the
form of propagators. We shall see that this is achieved by
renormalization. This property of renormalizable is as a prop-
erty related to the gauge invariance. Indeed we notice that the
quantum photon propagator with a photon-loop W (z; z) at-
tached to an electron represented by Z has already given the
renormalized charge e (and the renormalized mass m of the
electron) for the electromagnetic interaction.

It is clear that this renormalization by the quantum photon
propagator with a photon-loop W (z; z) is independent of the
chosen photon propagator (because it does not need to choose
a photon propagator). Thus the renormalization method as
that in the conventional QED theory for the chosen of a pho-
ton propagator (corresponding to a choice of gauge) should
give the observable result which does not depend on the form
of the photon propagators since these two forms of renormal-
ization must give the same effect of renormalization.

In the following Section and the Sections from Section 16
to Section 23 on Quantum Electrodynamics (QED) we shall
investigate the renormalization method which is analogous to
that of the conventional QED theory and the computation of
QED effects by using this renormalization method.

15 Renormalization

In this Section and the following Sections from Section 16 to
Section 23 on Quantum Electrodynamics (QED) we shall use
the density (1.1) and the notations from this density where
Aj ; j= 1; 2 are real components of the photon field. Follow-
ing the conventional QED theory let us consider the following

renormalization:

Aj = z
1
2
AAjR ; j = 1; 2; Z = z

1
2
ZZR ;

e0 =
ze

zZz
1
2
A

e =
1
ne

e ;
(94)

where zA, zZ , and ze are renormalization constants to be de-
termined andARj ; j= 1; 2, ZR are renormalized fields. From
this renormalization the density D of QED in (1.1) can be
written in the following form:

D = 1
2 zA

�@A1R
@x2 � @A2R

@x1

���@A1R
@x2 � @A2R

@x1

�
+

+ zZ
�
dZ�R
ds + ie (

P2
j=1AjR

dxj
ds )Z�R

��
��dZRds � ie (

P2
j=1AjR

dxj
ds )ZR

�
=

=
n

1
2

�@A1R
@x2 � @A2R

@x1

���@A1R
@x2 � @A2R

@x1

�
+

+ dZ�R
ds

dZR
ds + �2Z�RZR � �2Z�RZR +

+ ie (
P2
j=1AjR

dxj
ds )Z�R dZRds �

� ie (
P2
j=1AjR

dxj
ds )dZ

�
R

ds ZR +

+ e2(
P2
j=1ARj

dxj
ds )2Z�RZR

o
+

+
n

(zA � 1)
� 1

2

�@A1R
@x2 � @A2R

@x1

���@A1R
@x2 � @A2R

@x1

��
+

+ (zZ � 1)dZ
�
R

ds
dZR
ds +

+ (ze � 1)
�
+ie (

P2
j=1AjR

dxj
ds )Z�R dZRds �

� ie(P2
j=1AjR

dxj
ds )dZ

�
R

ds ZR
�

+

+ ( z
2
e
zZ
� 1)e2(

P2
j=1AjR

dxj
ds )2Z�RZR

o
:=

:= Dphy +Dcnt ;

(95)

where Dphy is as the physical term and the Dcnt is as the
counter term; and in Dphy the positive parameter � is intro-
duced for perturbation expansion and for renormalization.

Similar to that the Ward-Takahashi identities in the con-
ventional QED theory are derived by the gauge invariance of
the conventional QED theory; by using the gauge invariance
of this QED theory we shall also derive the corresponding
Ward-Takahashi identities for this QED theory in the Section
on electron self-energy. From these Ward-Takahashi identi-
ties we then show that there exists a renormalization proce-
dure such that ze = zZ ; as similar to that in the conventional
QED theory. From this relation ze = zZ we then have:

e0 =
e

z
1
2
A

=
1
ne

e (96)

and that in (95) we have z2
e
zZ
� 1 = ze � 1.
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16 Feynman diagrams and Feynman rules for QED

Let us then transform ds in (1.1) to 1
(�+ih)ds where �; h > 0

are parameters and h is as the Planck constant. The parame-
ter h will give the dynamical effects of QED (as similar to the
conventional QED). Here for simplicity we only consider the
limiting case that � ! 0 and we let h= 1. From this transfor-
mation we get the Lagrangian L from� R s1s0 Dds changing toR s1
s0
Lds. Then we write L = Lphy +Lcnt where Lphy cor-

responds to Dphy and Lcnt corresponds to Dcnt. Then from
the following term in Lphy:

� i
��

dZR
ds

�� dZR
ds
� �2Z�RZR

�
(97)

and by the perturbation expansion of e
R s1
s0
Lds

we have the
following propagator:

i
p2
E � �2 (98)

which is as the (primitive) electron propagator where pE de-
notes the proper energy variable of electron.

Then from the pure gauge part of Lphy we get the photon
propagator (93), as done in the above Sections and the Section
on photon propagator.

Then from Lphy we have the following seagull vertex
term:

ie2
� 2X
j=1

AjR
dxj

ds

�2
Z�RZR : (99)

This seagull vertex term gives the vertex factor ie2. (We
remark that the ds of the paths dxj

ds are not transformed to
�ids since these paths are given paths and thus are indepen-
dent of the transformation ds! �ids.)

From this vertex by using the photon propagator (93) in
the above Section we get the following term:

ie2

2�

Z
i dkE
k2
E � �2

1
= � ie2

2�1
=: �i !2: (100)

The parameter ! is regarded as the mass-energy param-
eter of electron. Then from the perturbation expansion of

e
R s1
s0
Lds

we have the following geometric series (which is
similar to the Dyson series in the conventional QED):

i
p2
E��2 + i

p2
E��2 (�i!2 + i�2) i

p2
E��2 + � � � =

= i
p2
E��2�!2+�2 = i

p2
E�!2 ;

(101)

where the term i� of�i!2 +i�2 is the i� term in Lphy . (The
other term�i� in Lphy has been used in deriving (98).) Thus
we have the following electron propagator:

i
p2
E � !2 : (102)

This is as the electron propagator with mass-energy
parameter !. From ! we shall get the mass m of electron.
(We shall later introduce a space-time statistics to get the
usual electron propagator of the Dirac equation. This usual
electron propagator is as the statistical electron propagator.)
As the Feynman diagrams in the conventional QED we rep-
resent this electron propagator by a straight line.

In the above Sections and the Section on the photon prop-
agator we see that the photon-loop W (z; z) gives the renor-
malized charge e=nee0 and the renormalized mass m of
electron from the bare charge e0 by the winding numbers of
the photon loop such that m is with the winding number fac-
tor ne. Then we see that the above one-loop energy integral
of the photon gives the mass-energy parameter ! of electron
which gives the mass m of electron. Thus these two types
of photon-loops are closely related (from the relation of pho-
ton propagator and quantum photon propagator) such that the
mass m obtained by the winding numbers of the photon loop
W (z; z) reappears in the one-loop energy integral (100) of
the photon.

Thus we see that even there is no mass term in the La-
grangian of this gauge theory the mass m of the electron can
come out from the gauge theory. This actually resolves the
mass problem of particle physics that particle can be with
mass even without the mass term. Thus we do not need the
Higgs mechanism for generating masses to particles.

On the other hand from the one-loop-electron form of the
seagull vertex we have the following term:

ie2

2�

Z
idpE

p2
E � �2 = � ie2

2�
=: �i�2

2 : (103)

So for photon from the perturbation expansion of e
R s1
s0
Lds

we have the following geometric series:

i
k2
E��2

1
+ i

k2
E��2

1
(�i�2

2) i
k2
E��2

1
+ � � � =

= i
k2
E��2

1��2
2

=: i
k2
E��2

0
;

(104)

where we define �2
0 =�2

1 +�2
2. Thus we have the following

photon propagator: i
k2
E � �2

0
; (105)

which is of the same form as (93) where we replace �1 with
�0. As the Feynman diagrams in the conventional QED we
represent this photon propagator by a wave line.

Then the following interaction term in Lphy:

� iedZ�Rds (
P2
j=1AjR

dxj
ds )ZR +

+ iedZRds (
P2
j=1AjR

dxj
ds )Z�R

(106)

gives the vertex factor (�ie)(pE + qE) which corresponds
to the usual vertex of Feynman diagram with two electron
straight lines (with energies pE and qE) and one photon wave
line in the conventional QED.
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Then as the Feynman rules in the conventional QED a
sign factor (�1)n, where n is the number of the electron
loops in a Feynman diagram, is to be included for the Feyn-
man diagram.

17 Statistics with space-time

Let us introduce space-time as a statistical method for a large
amount of basic variables ZR and A1R, A2R. As an illus-
tration let us consider the electron propagator i

p2
E�!2 and the

following Green’s function corresponding to it:

i
2�

Z
e�ipE(s�s0)dpE

p2
E � !2 ; (107)

where s is the proper time.
We imagine each electron (and photon) occupies a space

region (This is the creation of the concept of space which is
associated to the electron. Without the electron this space
region does not exist). Then we write

pE(s� s0) = pE(t� t0)� p(x� x0) ; (108)

where p(x�x0) denotes the inner product of the three di-
mensional vectors p and x�x0 and (t;x) is the time-space
coordinate where x is in the space region occupied by ZR(s)
and that

!2 � p2 = m2 > 0 ; (109)

where m is the mass of electron. This mass m is greater
than 0 since each ZR occupies a space region which implies
that when t� t0 tends to 0 we can have that jx � x0j does
not tend to 0 (x and x0 denote two coordinate points in the
regions occupied by ZR(s) and ZR(s0) respectively) and thus
(109) holds. Then by linear summing the effects of a large
amount of basic variables ZR and letting ! varies from m to
1 from (107), (108) and (109) we get the following statistical
expression:

i
(2�)4

Z
e�ip(x�x0)dp
p2 �m2 ; (110)

which is the usual Green’s function of a free field with mass
m where p is a four vector and x= (t;x).

The result of the above statistics is that (110) is induced
from (107) with the scalar product p2

E of a scalar pE changed
to an indefinite inner product p2 of a four vector p and the
parameter ! is reduced to m.

Let us then introduce Fermi-Dirac statistics for electrons.
As done by Dirac for deriving the Dirac equation we factorize
p2�m2 into the following form:

p2 �m2 = (pE � !)(pE + !) =

= (�p� �m)(�p� +m) ;
(111)

where � are the Dirac matrices. Then from (110) we get the

following Green’s function:

i
(2�)4

R
e�ip(x�x0) �p

�+m
p2�m2 dp =

= i
(2�)4

R e�ip(x�x0)dp
�p��m :

(112)

Thus we have the Fermi-Dirac statistics that the statistical
electron propagator is of the form i

�p��m which is the prop-
agator of the Dirac equation and is the electron propagator of
the conventional QED.

Let us then consider statistics of photons. Since the above
quantum gauge theory of photons is a gauge theory which is
gauge invariant we have that the space-time statistical equa-
tion for photons should be gauge invariant. Then since the
Maxwell equation is the only gauge invariant equation for
electromagnetism which is based on the space-time we have
that the Maxwell equation must be a statistical equation for
photons.

Then let us consider the vertexes. The tree vertex (106)
with three lines (one for photon and two for electron) gives
the factor�ie(pE +qE) where pE and qE are from the factor
dZR
ds for electron.

We notice that this vertex is with two electron lines (or
electron propagator) and one photon line (or photon propa-
gator). In doing a statistics on this photon line when it is
as an external electromagnetic field on the electron this pho-
ton line is of the statistical form �A� where A� denotes the
four electromagnetic potential fields of the Maxwell equation.
Thus the vertex �ie(pE + qE) after statistics is changed to
the form �ie(pE + qE)

�

2 where for each � a factor 1
2 is

introduced for statistics.
Let us then introduce the on-mass-shell condition as in

the conventional QED theory (see [6]). As similar to the on-
mass-shell condition in the conventional QED theory our on-
mass-shell condition is that pE =m where m is the observ-
able mass of the electron. In this case �ie(pE + qE)

�

2 is
changed to �iem�. Then the m is absorbed to the two ex-
ternal spinors 1p

E
u (where E denotes the energy of the elec-

tron satisfied the Dirac equation while the E of pE is only
as a notation) of the two electrons lines attached to this ver-
tex such that the factor 1p

E
of spin 0 of the Klein-Gordon

equation is changed to the factor
pm

E of spinors of the Dirac
equation. In this case we have the magnitude of pE and qE
reappears in the two external electron lines with the factorp
m. The statistical vertex then becomes �ie�. This is ex-

actly the usual vertex in the conventional QED. Thus after a
space-time statistics on the original vertex �ie(pE + qE) we
get the statistical vertex �ie� of the conventional QED.

18 Basic effects of Quantum Electrodynamics

To illustrate this new theory of QED let us compute the three
basic effects of QED: the one-loop photon and electron self-
energies and the one-loop vertex correction.
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As similar to the conventional QED we have the Feynman
rules such that the one-loop photon self-energy is given by the
following Feynman integral:

i�0(kE) := i2(�i)2 e2
2� �

� R (2pE+kE)(2pE+kE)dpE
(p2
E�!2)((kE+pE)2�!2) ;

(113)

where e is the renormalized electric charge.
Then as the Feynman rules in the conventional QED for

the space-time statistics a statistical sign factor (�1)j , where
j is the number of the electron loops in a Feynman diagram,
will be included for the Feynman diagram. Thus for the one-
loop photon self-energy (113) a statistical factor (�1)j will
be introduced to this one-loop photon self-energy integral.

Then similarly we have the Feynman rules such that the
one-loop electron self-energy is given by the following
Feynman integral:

�i�0(pE) := i2(�i)2 e2
2� �

� R (2pE�kE)(2pE�kE)dkE
(k2
E��2

0)((pE�kE)2�!2) :
(114)

Similarly we have the Feynman rules that the one-loop
vertex correction is given by the following Feynman integral:

(�ie)�0(pE ; qE) :=

:= (i)3(�i)3 e3
2�

R (2pE�kE)(2qE�kE)(pE+qE�2kE)dkE
((pE�kE)2�!2)((qE�kE)2�!2)(k2

E��2
0) :

(115)

Let us first compute the one-loop vertex correction and
then compute the photon self-energy and the electron self-
energy.

As a statistics we extend the one dimensional integralR
dkE to the n-dimensional integral

R
dnk (n ! 4) where

k= (kE ;k). This is similar to the dimensional regularization
in the conventional quantum field theories (However here our
aim is to increase the dimension for statistics which is dif-
ferent from the dimensional regularization which is to reduce
the dimension from 4 to n to avoid the ultraviolet divergence).
With this statistics the factor 2� is replaced by the statistical
factor (2�)n. From this statistics on (115) we have the fol-
lowing statistical one loop vertex correction:

e3
(2�)n

R 1
0 dx

R 1
0 2ydy

R
dnk�

� 4pE qE(pE+qE)�2kE((pE+qE)2+4pE qE)+5k2
E(pE+qE)�2k3

E
[k2�2k(pxy+q(1�x)y)�p2

Exy�q2E(1�x)y+m2y+�2(1�y)]3 ;

(116)

where k2 = k2
E �k2, and k2 is from the free parameters !, �0

where we let !2 = m2 +k2, �2
0 =�2 + k2 for the electron

mass m and a mass-energy parameter � for photon; and:

k (pxy + q(1�x)y) := kE(pExy + qE(1�x)y)

�k � 0 = kE(pExy + qE(1�x)y)

)
: (117)

By using the formulae for computing Feynman integrals

we have that (116) is equal to (see [6, 72]):

ie3
(2�)n

R 1
0 dx

R 1
0 2ydy�

� h 4pE qE(pE+qE)�
n
2 �(3�n2 )

�(3)(��r2)3�2
1

(��+r2)2�n2
�

� 2((pE+qE)2+4pE qE)�
n
2 �(3�n2 )r

�(3)(��r2)3�2
1

(��+r2)2�n2
+

+ 5(pE+qE)�
n
2 �(3�1�n2 )n2

�(3)(��r2)3�2�1
1

(��+r2)2�n2
+

+ 5(pE+qE)�
n
2 �(3�n2 )r2

�(3)(��r2)3�2
1

(��+r2)2�n2
�

� (n+2)
2 2�

n
2 �(3�1�n2 )r

�(3)(��r2)3�2�1
1

(��+r2)2�n2
�

� 2�
n
2 �(3�n2 )r3

�(3)(��r2)3�2
1

(��+r2)2�n2

i
=:

=: (�ie)�(p1; p2) ;

(118)

where we define:

r := pExy + qE(1� x)y

� := p2
Exy + q2

E(1� x)y �m2y � �2(1� y)

)
: (119)

We remark that in this statistics the pE and qE variables
are remained as the proper variables which are derived from
the proper time s.

Let us then introduce the Fermi-Dirac statistics on the
electron and we consider the on-mass-shell case as in the con-
ventional QED. We shall see this will lead to the theoretical
results of the conventional QED on the anomalous magnetic
moment and the Lamb shift.

As a Fermi-Dirac statistics we have shown in the above
Section that the vertex term �ie(pE + qE) is replaced with
the vertex term �ie(pE + qE)

�

2 . Then as a Fermi-Dirac
statistics in the above Section we have shown that the sta-
tistical vertex is �ie� under the on-mass-shell condition.
We notice that this vertex agrees with the vertex term in the
conventional QED theory.

Let us then consider the Fermi-Dirac statistics on the one-
loop vertex correction (118). Let us first consider the follow-
ing term in (118):

ie3
(2�)n

R 1
0 dx

R 1
0 2ydy�
��2(pE+qE)4pE qE

�(3)(��r2)3�2
1

(��+r2)2�n2
;

(120)

where we can (as an approximation) let n= 4. From Fermi-
Dirac statistics we have that this term gives the following
statistics:

ie3

(2�)4

Z 1

0
dx
Z 1

0
2ydy

�2(pE + qE)1
2

�4pE qE
�(3)(�� r2)3�2 : (121)

Then we consider the case of on-mass-shell. In this case
we have pE =m and qE =m. Thus from (121) we have the
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following term:

ie3

(2�)4

Z 1

0
dx
Z 1

0
2ydy

�2�4pE qE
�(3)(�� r2)3�2 ; (122)

where a mass factor m= 1
2 (pE + qE) has been omitted and

put to the external spinor of the external electron as explained
in the above Section on space-time statistics. In (122) we
still keep the expression pE qE even though in this case of
on-mass-shell because this factor will be important for giving
the observable Lamb shift, as we shall see. In (122) because
of on-mass-shell we have (as an approximation we let n= 4):

(�� r2)3�2 = ��2(1� y)� r2 =

��2(1� y)�m2y2 :
(123)

Thus in the on-mass-shell case (122) is of the following
form:

ie�
�
�

Z 1

0
dx
Z 1

0
ydy

�2pE qE��2(1� y)�m2y2 ; (124)

where �= e2
4� is the fine structure constant. Carrying out the

integrations on y and on x we have that as � ! 0 (124) is
equal to:

(�ie)��
�
pE qE
m2 log

m
�
; (125)

where the proper factor pE qE will be for a linear space-time
statistics of summation. We remark that (125) corresponds
to a term in the vertex correction in the conventional QED
theory with the infra-divergence when � = 0 (see [6]). Here
since the parameter � has not been determined we shall later
find other way to determine the effect of (125) and to solve
the infrared-divergence problem.

Let us first rewrite the form of the proper value pE qE . We
write pE qE in the following space-time statistical form:

pE qE = �2p0 � p ; (126)

where p and p0 denote two space-time four-vectors of electron
such that p2 =m2 and p02 =m2. Then we have

pE qE =

= 1
3 (pE qE+pE qE+pE qE)= 1

3 (m2�2p0 �p+m2)

= 1
3 (m2�2p0 �p+m2)= 1

3 (p02�2p0 �p+p2)

= 1
3 (p0�p)2

=: 1
3 q

2;

(127)

where following the convention of QED we define q= p0� p.
Thus from (125) we have the following term:

(�ie)� �
3�

q2

m2 log
m
�
; (128)

where the parameter � are to be determined. Again this term

(128) corresponds to a term in the vertex correction in the
conventional QED theory with the infrared-divergence when
�= 0 (see [6]).

Let us then consider the following term in (118):

�ie3

(2�)n

Z 1

0
dx�

�
Z 1

0

2((pE + qE)2 + 4pE qE)� n
2 r2ydy

�(3)(�� r2)3�2(�� + r2)2�n2 :
(129)

For this term we can (as an approximation) also let n= 4
and we have let � (3 � n

2 ) = 1. As similar to the conven-
tional QED theory we want to show that this term gives the
anomalous magnetic moment and thus corresponds to a sim-
ilar term in the vertex correction of the conventional QED
theory (see [6]).

By Fermi-Dirac statistics the factor (pE + qE) in (129)
of (pE + qE)2 gives the statistical term (pE + qE) 1

2
�. Thus

with the on-mass-shell condition the factor (pE + qE) gives
the statistical term m�. Thus with the on-mass-shell con-
dition the term (pE + qE)2 gives the term m�(pE + qE).
Then the factor (pE + qE) in this statistical term also give 2m
by the on-mass-shell condition. Thus by Fermi-Dirac statis-
tics and the on-mass-shell condition the factor (pE + qE)2 in
(129) gives the statistical term �2m2. Then since this is a
(finite) constant term it can be cancelled by the correspond-
ing counter term of the vertex giving the factor �ie� and
having the factor ze� 1 in (95). From this cancellation the
renormalization constant ze is determined. Since the constant
term is depended on the � > 0 which is introduced for space-
time statistics we have that the renormalization constant ze is
also depended on the � > 0. Thus the renormalization con-
stant ze (and the concept of renormalization) is related to the
space-time statistics.

At this point let us give a summary of this renormalization
method, as follows.

Renormalization
1. The renormalization method of the conventional QED

theory is used to obtain the renormalized physical results.
Here unlike the conventional QED theory the renormaliza-
tion method is not for the removing of ultraviolet divergences
since the QED theory in this paper is free of ultraviolet diver-
gences.

2. We have mentioned in the above Section on photon
propagator that the property of renormalizable is a property of
gauge invariance that it gives the physical results independent
of the chosen photon propagator.

3. The procedure of renormalization is as a part of the
space-time statistics to get the statistical results which is in-
dependent of the chosen photon propagator. �

Let us then consider again the above computation of the
one-loop vertex correction. We now have that the (finite) con-
stant term of the one-loop vertex correction is cancelled by
the corresponding counter term with the factor ze� 1 in (95).
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Thus the nonconstant term (128) is renormalized to be the
following renormalized form:

(�ie)� �
3�

q2

m2 log
m
�
: (130)

Let us then consider the following term in (129):

�ie3

(2�)n

Z 1

0
dx
Z 1

0
2ydy

8pE qE�
n
2 �(3� n

2 )r
�(3)(�� r2)3�n2 ; (131)

where we can (as an approximation) let n= 4. With the on-
mass-shell condition we have that � � r2 is again given by
(123). Then letting �= 0 we have that (131) is given by:

�ie�
4�

Z 1

0
dx
Z 1

0
ydy :

8pE qE�r (132)

With the on-mass-shell condition we have r=my. Thus
this term (132) is equal to:

(�ie) ��
4�m

8pE qE : (133)

Again the factor pE qE is for the exchange of energies for
two electrons with proper energies pE and qE respectively
and thus it is the vital factor. This factor is then for the space-
time statistics and later it will be for a linear statistics of sum-
mation for the on-mass-shell condition. Let us introduce a
space-time statistics on the factor pE qE , as follows. With
the on-mass-shell condition we write pE qE in the following
form:

pE qE =
1
2

(mpE + qEm) =
1
2
m(pE + qE) : (134)

Then we introduce a space-time statistics on the proper
energies pE and qE respectively that pE gives a statistics �p
and qE gives a statistics �p0 where p and p0 are space-time
four vectors such that p2 =m2; p02 =m2; and � is a statisti-
cal factor to be determined.

Then we have the following Gordan relation on the space-
time four vectors p and p0 respectively (see [6] [72]):

p� = �(p � ) + i���p�

p�0 = (p0 � )� � i���p0�

)
; (135)

where p� and p�0 denote the four components of p and p0
respectively. Thus from (134) and the Gordan relation (135)
we have the following space-time statistics:

1
2 (mpE + qEm) =

= 1
2m�(�(p � ) + (p0 � )� � i���q�) ;

(136)

where following the convention of QED we define q = p0�p.
From (136) we see that the space-time statistics on pE

for giving the four vector p needs the product of two Dirac
-matrices. Then since the introducing of a Dirac -matrix

for space-time statistics requires a statistical factor 1
2 we have

that the statistical factor �= 1
4 .

Then as in the literature on QED when evaluated between
polarization spinors, the p0� and �p terms are deduced to the
mass m respectively. Thus the term 1

2m�(�p � + p0 � �)
as a constant term can be cancelled by the corresponding
counter term with the factor ze� 1 in (95).

Thus by space-time statistics on pE qE from (133) we get
the following vertex correction:

(�ie) i�
4�m

���q� (137)

where q= p� p0 and the factor 8 in (133) is cancelled by the
statistical factor 1

2�= 1
8 . We remark that in the way of getting

(137) a factor m has been absorbed by the two polarization
spinors u to get the form

pm
E u of the spinors of external

electrons.
Then from (137) we get the following exact second order

magnetic moment:
�
2�

�0 ; (138)

where �0 = 1
2m is the Dirac magnetic moment as in the liter-

ature on QED (see [6]).
We see that this result is just the second order anoma-

lous magnetic moment obtained from the conventional QED
(see [6] [72]- [78]). Here we can obtain this anomalous mag-
netic moment exactly while in the conventional QED this
anomalous magnetic moment is obtained only by approxima-
tion under the condition that jq2j � m2. The point is that we
do not need to carry out a complicate integration as in the lit-
erature in QED when the on-mass-shell condition is applied
to the proper energies pE and qE , and with the on-mass-shell
condition applied to the proper energies pE and qE the com-
putation is simple and the computed result is the exact result
of the anomalous magnetic moment.

Let us then consider the following terms in the one-loop
vertex correction (118):

ie3
(2�)n

R 1
0 dx

R 1
0 2ydy�

�h5(pE+qE)�
n
2 �(3�1�n2 )n2

�(3)(��r2)3�2�1
1

(��+r2)2�n2
+

+ 5(pE+qE)�
n
2 �(3�n2 )r2

�(3)(��r2)3�2
1

(��+r2)2�n2
�

� (n+2)
2 2�

n
2 �(3�1�n2 )r

�(3)(��r2)3�2�1
1

(��+r2)2�n2
�

� 2�
n
2 �(3�n2 )r3

�(3)(��r2)3�2
1

(��+r2)2�n2

i
:

(139)

From the on-mass-shell condition we have �� r2 =�r2

where we have set �= 0. The first and the second term are
with the factor (pE + qE) which by Fermi-Dirac statistics
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gives the statistics (pE + qE) 1
2 

�. Then from the following
integration:R 1

0 dx
R 1

0 2yrdy =

=
R 1

0 dx
R 1

0 2y2(pEx+ (1� x)qE)dy
(140)

we get a factor (pE + qE) for the third and fourth terms. Thus
all these four terms by Fermi-Dirac statistics are with the
statistics (pE + qE)1

2 
�. Then by the on-mass-shell condi-

tion we have that the statistics (pE + qE) 1
2 

� gives the statis-
tics m�. Thus (139) gives a statistics which is of the form
(� � constant). Thus this constant term can be cancelled by
the corresponding counter term with the factor ze� 1 in (95).

Thus under the on-mass-shell condition the renormalized
vertex correction (�ie)�R(p0; p) from the one-loop vertex
correction is given by the sum of (128) and (137):

(�ie)�R(p0; p) =

= (�ie)�� �
3�

q2
m2 log m

� + i�
4�m ���q�

�
:

(141)

19 Computation of the Lamb shift: Part I

The above computation of the vertex correction has not been
completed since the parameter � has not been determined.
This appearance of the nonzero � is due to the on-mass-shell
condition. Let us in this Section complete the above compu-
tation of the vertex correction by finding another way to get
the on-mass-shell condition. By this completion of the above
computation of the vertex correction we are then able to com-
pute the Lamb shift.

As in the literature of QED we let !min denote the min-
imum of the (virtual) photon energy in the scatting of elec-
tron. Then as in the literature of QED we have the following
relation between !min and � when v

c � 1 where v denotes
the velocity of electron and c denotes the speed of light (see
[6, 68–74]):

log 2!min = log �+
5
6
: (142)

Thus from (141) we have the following form of the vertex
correction:

(�ie)� �
3�

q2
m2

�
log m

2!min
+ 5

6

�
+

+(�ie)� ie�i���q�
4�m :

(143)

Let us then find a way to compute the following term in
the vertex correction (143):

(�ie)� �
3�

q2

m2 log
m

2!min
: (144)

The parameter 2!min is for the exchanging (or shifting)
of the proper energies pE and qE of electrons. Thus the mag-
nitudes of pE and qE correspond to the magnitude of !min.
When the !min is chosen the corresponding pE and qE are
also chosen and vise versa.

Since !min is chosen to be very small we have that the
corresponding proper energies pE and qE are very small that
they are no longer equal to the mass m for the on-mass-shell
condition and they are for the virtual electrons. Then to get
the on-mass-shell condition we use a linear statistics of sum-
mation on the vital factor pE qE . This means that the large
amount of the effects pE qE of the exchange of the virtual
electrons are to be summed up to statistically getting the on-
mass-shell condition.

Thus let us consider again the one-loop vertex correction
(118) where we choose pE and qE such that pE � m and
qE � m. This chosen corresponds to the chosen of !min. We
can choose pE and qE as small as we want such that pE � m
and qE � m. Thus we can let �= 0 and set pE = qE = 0
for the pE and qE in the denominators (�� r2)3�2 in (118).
Thus (118) is approximately equal to:

ie3
(2�)n

R 1
0 dx

R 1
0 dy

h
4pE qE(pE+qE)�

n
2 �(3�2)

�m2 �
� 2((pE+qE)2+4pE qE)�

n
2 �(3�2)r

�m2 +

+ 5(pE+qE)�
n
2 �(2�n2 )n2

(��+r2)2�n2
+ 5(pE+qE)�

n
2 �(3�2)r2

�m2 �
� (n+2)

2 2�
n
2 �(2�n2 )r

(��r2)2�n2
+ 2�

n
2 �(3�2)r3

�m2

�
:

(145)

Let us then first consider the four terms in (145) without
the factor �(2� n

2 ). For these four terms we can (as an appro-
ximation) let n= 4. Carry out the integrations

R 1
0 dx

R 1
0 ydy

of these four terms we have that the sum of these four terms
is given by:

(ie) ��2

4�3m2

�
4pE qE(pE + qE)�

� 1
2 ((pE + qE)2 + 4pE qE)(pE + qE) +

+ 5
9 (pE + qE)(p2

E + q2
E + pE qE)�

� 1
8 (p3

E + q3
E + p2

EqE + pEq2
E)
�

=

= (ie) ��2

4�3m2 (pE + qE)
� 5

72p
2
E + 5

72q
2
E � 14

9 pE qE
�
;

(146)

where the four terms of the sum are from the corresponding
four terms of (145) respectively.

Then we consider the two terms in (145) with the factor
�(2� n

2 ). Let � := 2� n
2 > 0. We have:

�(�) � (�� + r2)�� =

=
� 1
� + a finite limit term as �!0

� � e�� log(��+r2) :

(147)

We have:

1
� � e�� log(��+r2) =

= 1
� �
�
1� � log(�� + r2) + 0(�2)

�
: (148)
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Then we have:

� 1
� � � log(�� + r2) =

= � logm2y � log 1
m2�

��m2 � p2
Ex� q2

E(1� x) + (pEx+ qE(1� x))2y
�

=

= � logm2y � log
h
1� p2

Ex(1�xy)+q2E(1�x)(1�(1�x)y)
m2 +

+ 2pE qEx(1�x)y
m2 + 0

�
p2
E+q2E
m2

�i
: (149)

Then the constant term � logm2y in (149) can be can-
celled by the corresponding counter term with the factor
ze� 1 in (95) and thus can be ignored. When p2

E � m2 and
q2
E � m2 the second term in (149) is approximately equal to:

f(x; y) := p2
Ex(1�xy)+q2E(1�x)(1�(1�x)y)

m2 �
� 2pE qEx(1�x)y

m2 :
(150)

Thus by (150) the sum of the two terms in (145) having
the factor �(2� n

2 ) is approximately equal to:

ie3
(2�)n

R 1
0 dx

R 1
0 ydyf(x; y)�

��5(pE + qE)� n
2 n

2 � 2� n
2

(n+2)
2 r

�
;

(151)

where we can (as an approximation) let n= 4. Carrying out
the integration

R 1
0 dx

R 1
0 ydy of the two terms in (151) we

have that (151) is equal to the following result:

(ie) ��2

4�3m2 (pE + qE)�
��(�5 � 1

9 � 2pE qE) + (� 7
24p

2
E � 7

24q
2
E + 3

9pE qE)
�
;
(152)

where the first term and the second term in the [�] are from the
first term and the second term in (151) respectively.

Combining (146) and (151) we have the following result
which approximately equal to (145) when p2

E � m2 and
q2
E � m2:

(�ie) ��2

4�3m2 (pE + qE)
�

2
9
p2
E +

2
9
q2
E +

7
3
pE qE

�
; (153)

where the exchanging term 7
3 pE qE is of vital importance.

Now to have the on-mass-shell condition let us consider
a linear statistics of summation on (153). Let there be a large
amount of virtual electrons zj ; j 2 J indexed by a set J with
the proper energies p2

Ej � m2 and q2
Ej � m2, j 2 J . Then

from (153) we have the following linear statistics of summa-
tion on (153):

(�ie)��2(pEj0+qEj0 )
4�3m2 �
�h 2

9
P
j(p

2
Ej + q2

Ej) + 7
3
P
j pEjqEj

i
;

(154)

where for simplicity we let:

pEj + qEj = pEj0 + qEj0 = pEj0 + qEj0 = 2m0 (155)

for all j; j0 2 J and for some (bare) mass m0 � m and for
some j0 2 J . Then by applying Fermi-Dirac statistics on
the factor pEj0 + qEj0 in (154) we have the following Fermi-
Dirac statistics for (154):

(�ie) ��2

4�3m2
1
2 

�(pEj0 + qEj0)�
�� 2

9
P
j(p

2
Ej + q2

Ej) + 7
3
P
j pEjqEj

�
=

= (�ie)��2�m0
4�3m2

�2
9
P
j(p

2
Ej + q2

Ej) + 7
3
P
j pEjqEj

�
:

(156)

Then for the on-mass-shell condition we require that the
linear statistical sum m0

7
3
P
j pEjqEj in (156) is of the fol-

lowing form:

m0
7
3

X
j

pEjqEj = �0m
7
3
q2; (157)

where q2 = (p0� p2) and the form mq2 =m(p0� p2) is the
on-mass-shell condition which gives the electron mass m;
and that �0 is a statistical factor (to be determined) for this
linear statistics of summation and is similar to the statistical
factor (2�)n for the space-time statistics.

Then we notice that (156) is for computing (144) and thus
its exchanging term corresponding to

P
j pEjqEj must be

equal to (144). From (156) we see that there is a statistical
factor 4 which does not appear in (144). Since this exchang-
ing term in (156) must be equal to (144) we conclude that the
statistical factor �0 must be equal to 4 so as to cancel the sta-
tistical factor 4 in (156). (We also notice that there is a statis-
tical factor �2 in the numerator of (156) and thus it requires
a statistical factor 4 to form the statistical factor (2�)2 and
thus �0 = 4.) Thus we have that for the on-mass-condition
we have that (156) is of the following statistical form:

(�ie) ��2

�3m2 m
�
�
�2

2
9
m2 + �02

2
9
m2 +

7
3
q2
�
: (158)

Then from (158) we have the following statistical form:

(�ie) ��2

�3m2 
�
�
�2

2
9
m2 + �02

2
9
m2 +

7
3
q2
�
; (159)

where the factor m of m� has been absorbed to the two
external spinors of electron. Then we notice that the term
corresponding to �2

2
9m

2 +�02 2
9m

2 in (159) is as a constant
term and thus can be cancelled by the corresponding counter
term with the factor ze� 1 in (95). Thus from (159) we
have the following statistical form of effect which corres-
ponds to (144):

(�ie)� �
�m2

7
3
q2: (160)

This effect (160) is as the total effect of q2 computed from
the one-loop vertex with the minimal energy !min and thus
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includes the effect of q2 from the anomalous magnetic mo-
ment. Thus we have that (144) is computed and is given by
the following statistical form:

(�ie)� �
3�

q2
m2 log m

2!min
=

= (�ie)� �
3�

q2
m2

�
7� 3

8

�
;

(161)

where the term corresponding to the factor 3
8 is from the

anomalous magnetic moment (137) as computed in the lit-
erature of QED (see [6]). This completes our computation of
(144). Thus under the on-mass-shell condition the renormal-
ized one-loop vertex (�ie)�R(p0; p) is given by:

(�ie)�R(p0; p) =

= (�ie)�� �q2
3�m2

�
7 + 5

6 � 3
8

�
+ i�

4�m ���q�
�
:

(162)

This completes our computation of the one-loop vertex
correction.

20 Computation of photon self-energy

To compute the Lamb shift let us then consider the one-loop
photon self energy (113). As a statistics we extend the one di-
mensional integral

R
dpE to the n-dimensional integral

R
dnp

(n ! 4) where p = (pE ;p). This is similar to the di-
mensional regularization in the existing quantum field the-
ories (However here our aim is to increase the dimension for
statistics which is different from the dimensional regulariza-
tion which is to reduce the dimension from 4 to n to avoid the
ultraviolet divergence). With this statistics the factor 2� is re-
placed by the statistical factor (2�)n. From this statistics on
(113) we have that the following statistical one-loop photon
self-energy:

(�1)i2(�i)2 e2
(2�)n �
� R 1

0 dx
R (4p2

E+4pEkE+k2
E)dnp

(p2+2pkx+k2
Ex�m2)2 ;

(163)

where p2 = p2
E �p2, and p2 is from !2 =m2 + p2; and:

pk := pEkE � p � 0 = pEkE : (164)

As a Feynman rule for space-time statistics a statistical
factor (�1) has been introduced for this photon self-energy
since it has a loop of electron particles.

By using the formulae for computing Feynman integrals
we have that (163) is equal to:

(�1)ie2
(2�)n

R 1
0 dx�

�hk2
E(4x2�4x+1)�

n
2 �(2�n2 )

�(2)(m2�k2
Ex(1�x))2�n2

+ �
n
2 �(2�1�n2 )n2

�(2)(m2�k2
Ex(1�x))2�1�n2

i
:

(165)

Let us first consider the first term in the [�] in (165). Let
� := 2� n

2 > 0. As for the one-loop vertex we have

�(�) � (m2 � k2
E x(1� x))�� =

=
� 1
� + a finite term as �!0

� � e�� log(m2�k2
Ex(1�x)) :

(166)

We have

1
� � e�� log(m2�k2

Ex(1�x)) =

= 1
� �
�
1� � log(m2 � k2

Ex(1� x)) + 0(�2)
�
:

(167)

Then we have

� 1
� � � log(m2 � k2

Ex(1� x)) =

= � logm2 � log
h
1� k2

Ex(1�x)
m2

i
:

(168)

Then the constant term � logm2 in (168) can be can-
celled by the corresponding counter term with the factor
zA � 1 in (95) and thus can be ignored. When k2

E � m2

the second term in (168) is approximately equal to:

k2
Ex(1� x)
m2 : (169)

Carrying out the integration
R 1

0 dx in (163) with

� log
�
1 � k2

Ex(1�x)
m2

�
replaced by (169), we have the follow-

ing result:Z 1

0
dx(4x2 � 4x+ 1)

k2
Ex(1� x)
m2 =

k2
E

30m2 : (170)

Thus as in the literature in QED from the photon self-
energy we have the following term which gives contribution
to the Lamb shift:

k2
E

30m2 =
(pE � qE)2

30m2 ; (171)

where kE = pE � qE and pE , qE denote the proper energies
of virtual electrons. Let us then consider statistics of a large
amount of photon self-energy (168). When there is a large
amount of photon self-energies we have the following linear
statistics of summation: P

i k
2
Ei

30m2 ; (172)

where each i represent a photon. Let us write:

k2
Ei = (pEi � qEi)2 = p2

Ei � 2pEiqEi + q2
Ei : (173)

Thus we have:P
i k

2
Ei =

P
i(pEi � qEi)2 =

=
P
i(p

2
Ei + q2

Ei)� 2
P
i pEiqEi :

(174)

Now as the statistics of the vertex correction we have the
following statistics:X

i

pEiqEi = 4(p0 � p)2 = 4q2; (175)

where 4 is a statistical factor which is the same statistical fac-
tor of case of the vertex correction and p, p0 are on-mass-shell
four vectors of electrons. As the the statistics of the vertex
correction this statistical factor cancels another statistical fac-
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tor 4. On the other hand as the statistics of the vertex correc-
tion we have the following statistics:X

i

p2
Ei = �3m2;

X
i

q2
Ei = �4m2; (176)

where �3 and �4 are two statistical factors. As the case of the
vertex correction these two sums give constant terms and thus
can be cancelled by the corresponding counter term with the
factor zA � 1 in (95). Thus from (174) we have that the lin-
ear statistics of summation

P
i k

2
Ei gives the following statis-

tical renormalized photon self-energies �R and �M (where
we follow the notations in the literature of QED for photon
self-energies �M ):

i�R(kE) = ik2
E�M (kE) =

= ik2
E
�
4�

8q2
30m2 = ik2

E
�
3�

q2
5m2 ;

(177)

where we let k2
Ei = k2

E for all i.
Let us then consider the second term in the [�] in (165).

This term can be written in the following form:

�
n
2 �(2�n2 )n2

(1�n2 )�(2)(m2�k2
Ex(1�x))2�1�n2 =

= �
n
2 �(2�n2 )n2
(1�n2 )�(2)

�
(m2 � k2

Ex(1� x)) + 0(�)
�

=

= k2
E

h
1
� � (�1)�

n
2 �(2�n2 )n2

(1�n2 )�(2) x(1� x)
i

+

+
h

1
� � �

n
2 �(2�n2 )n2
(1�n2 )�(2) m2 + 0(�))

i
(178)

Then the first term in (178) under the integration
R 1

0 dx
is of the form (k2

E � constant). Thus this term can also be
cancelled by the counter-term with the factor zA � 1 in (95).
In summary the renormalization constant zA is given by the
following equation:

(�1)3i(zA � 1) = (�i)n 1
� � e2�

n
2

(2�)n
R 1

0 dx�
� [(4x2 � 4x+ 1)� nx(1�x)

2�n
�

+ cA
o
;

(179)

where cA is a finite constant when � ! 0. From this equation
we have that zA is a very large number when � > 0 is very
small. Thus e0 = ze

�
zZz

1=2
A
��1 e = 1

ne e is a very small

constant when � > 0 is very small (and since e2
4� = � = 1

137
is small) where shall show that we can let ze = zZ .

Then the second term in (178) under the integration
R 1

0 dx
gives a parameter �3 > 0 for the photon self-energy since
� > 0 is as a parameter.

Combing the effects of the two terms in the [�] in (165)
we have the following renormalized one-loop photon self-
energy:

i (�R(kE) + �3) : (180)

Then we have the following Dyson series for photon prop-
agator:

i
k2
E��0

+ i
k2
E��0

(i�R(kE) + i�3) i
k2
E��0

+ � � � =
= i

k2
E(1+�M )�(�0��3) =:

=: i
k2
E(1+�M )��R ;

(181)

where �R is as a renormalized mass-energy parameter. This is
as the renormalized photon propagator. We have the follow-
ing approximation of this renormalized photon propagator:

i
k2
E(1 + �M )� �R �

i
k2
E � �R (1� �M ) : (182)

21 Computation of the Lamb shift: Part II

Combining the effect of vertex correction and photon self-
energy we can now compute the Lamb shift. Combining the
effect of photon self-energy (�ie�)[��M ] and vertex cor-
rection we have:

(�ie)�R(p0; p) + (�ie�)[��M ] =

= (�ie)h� �q2
3�m2

�
7 + 5

6 � 3
8 � 1

5

�
+ i�

4�m�
��q�

i
:

(183)

As in the literature of QED let us consider the states 2S 1
2

and the 2P 1
2

in the hydrogen atom [6, 72–78]. Following

the literature of QED for the state 2S 1
2

an effect of �q2
3�m2 ( 3

8 )
comes from the anomalous magnetic moment which cancels
the same term with negative sign in (183). Thus by using
the method in the computation of the Lamb shift in the lit-
erature of QED we have the following second order shift for
the state 2S 1

2
:

�E2S 1
2

=
m�5

6�

�
7 +

5
6
� 1

5

�
: (184)

Similarly by the method of computing the Lamb shift in
the literature of QED from the anomalous magnetic moment
we have the following second order shift for the state 2P 1

2
:

�E2P 1
2

=
m�5

6�

�
�1

8

�
: (185)

Thus the second order Lamb shift for the states 2S 1
2

and
2P 1

2
is given by:

�E = �E2S 1
2
��E2P 1

2
=
m�5

6�

�
7+

5
6
� 1

5
+

1
8

�
(186)

or in terms of frequencies for each of the terms in (186) we
have:

�� = 952 + 113.03� 27.13 + 16.96 =
= 1054.86 Mc/sec:

(187)

This agrees with the experimental results [6, 72–78]:

��exp = 1057.86� 0.06 Mc/sec

and = 1057.90� 0.06 Mc/sec:
(188)
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22 Computation of the electron self-energy

Let us then consider the one-loop electron self-energy (113).
As a statistics we extend the one dimensional integralR
dkE to the n-dimensional integral

R
dnk (n! 4) where

k= (kE ;k). This is similar to the dimensional regularization
in the existing quantum field theories (However here our aim
is to increase the dimension for statistics which is different
from the dimensional regularization which is to reduce the
dimension from 4 to n to avoid the ultraviolet divergence).
With this statistics the factor 2� is replaced by the statistical
factor (2�)n. From this statistics on (114) we have that the
following statistical one-loop electron self-energy �i�(pE):

�i�(pE) := i2(�i)2 e2
(2�)n

R 1
0 dx

R
dnk�

� (k2
E�4pEkE+4p2

E)dnk
(k2�2kpx+p2

Ex�xm2�(1�x)�2)2 ;
(189)

where k2 = k2
E � k2, and k2 is from !2 = m2 + k2 and

�2
0 = �2 + k2; and kp := kEpE � k � 0 = kEpE . By using

the formulae for computing Feynman integrals we have that
(189) is equal to:

ie2
(2�)n

R 1
0 dx

h
p2
E(x2�4x+4)�

n
2 �(2�n2 )

�(2)(xm2+(1�x)�2�p2
Ex(1�x))2�n2

+

+ �
n
2 �(2�1�n2 )n2

�(2)(xm2+(1�x)�2�p2
Ex(1�x))2�1�n2

i
=

= ie2
(2�)n

R 1
0 dx

n
p2
E(x2 � 4x+ 4)� n

2 �
� �( 1

� +O(�)) � e�� log(xm2+(1�x)�2�p2
Ex(1�x))��

�� n
2 n

2
1
�

�
xm2 + (1� x)�2 � p2

Ex(1� x) + 0(�)
�o

=

= ie2
(2�)n

R 1
0 dx

n
p2
E(x2 � 4x+ 4)� n

2
� 1
� � 1

� �
� � log(xm2 + (1� x)�2 � p2

Ex(1� x)) + 0(�)
��

�� n
2 n

2
1
�

�
xm2 + (1� x)�2 � p2

Ex(1� x) + 0(�)
�o

=

= ie2
(2�)n

R 1
0 dx

n
p2
E(x2 � 4x+ 4)� n

2 �
� � 1

� � log(xm2 + (1� x)�2 � p2
Ex(1� x)) + 0(�)

��
�� n

2 n
2

1
�

�
xm2 + (1� x)�2 � p2

Ex(1� x) + 0(�)
�	

=

= ie2
(2�)n

R 1
0 dx

n
p2
E(x2 � 4x+ 4)� n

2 �
� � 1

� � log(xm2 + (1� x)�2)�
� log(1� p2

Ex(1�x)
xm2+(1�x)�2 ) + 0(�)

��
�� n

2 n
2

1
�

�
xm2 + (1� x)�2 � p2

Ex(1� x) + 0(�)
�o

=:

=: ie2
(2�)n

R 1
0 dx

n
p2
E(x2 � 4x+ 4)� n

2 [ 1
� �

� log(xm2 + (1� x)�2)� log(1� p2
Ex(1�x)

xm2+(1�x)�2 ) +

+ 0(�)
�

+ p2
E � 1

��
n
2 n

2 x(1� x)
o

+ i!3 ; (190)

where !3 > 0 is as a mass-energy parameter.
Then we notice that from the expressions for �0(pE) and

�0(pE ; qE) in (114) and (115) we have the following identity:

@
@pE

�0(pE) = ��0(pE ; pE) +

+ i4e2
2�

R
dk �kE+2pE

(k2
E��2

0)((pE�kE)2�!2) :
(191)

This is as a Ward-Takahashi identity which is analogous
to the corresponding Ward-Takahashi identity in the conven-
tional QED theory [6].

From (114) and (115) we get their statistical forms by
changing

R
dk to

R
dnk. From this summation form of statis-

tics and the identity (191) we then get the following statistical
Ward-Takahashi identity:

@
@pE

�(pE) = ��(pE ; pE) +

+ i4e2
(2�)n

R 1
0 dx

R
dnk �kE+2pE

(k2�2kpx+p2
Ex�xm2�(1�x)�2)2 ;

(192)

where �(pE) denotes the statistical form of �0(pE) and is
given by (189) and �(pE ; qE) denotes the statistical form of
�0(pE ; qE) as in the above Sections.

After the differentiation of (190) with respect to pE the
remaining factor pE of the factor p2

E of (190) is absorbed
to the external spinors as the mass m and a factor �

2 is in-
troduced by space-time statistics, as the case of the statistics
of the vertex correction �0(pE ; qE) in the above Sections.
From the absorbing of a factor pE to the external spinors for
both sides of this statistical Ward-Takahashi identity we then
get a statistical Ward-Takahashi identity where the Taylor ex-
pansion (of the variable pE) of both sides of this statistical
Ward-Takahashi identity are with constant term as the begin-
ning term. From this Ward-Takahashi identity we have that
these two constant terms must be the same constant. Then
the constant term, denoted by C(�), of the vertex correction
of this Ward-Takahashi identity is cancelled by the counter-
term with the factor ze� 1 in (95), as done in the above com-
putation of the renormalized vertex correction AR(p0; p). (At
this point we notice that in computing the constant term of
the vertex correction some terms with the factor pE has been
changed to constant terms under the on-mass-shell condition
pE = m. This then modifies the definition of C(�)).

On the other hand let us denote the constant term for the
electron self-energy by B(�). Then from the above statistical
Ward-Takahashi identity we have the following equality:

B(�) + a1 � 1
�

+ b1 = C(�) ; (193)
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where a1, b1 are finite constants when � ! 0 and the term
a1 � 1

� is from the second term in the right hand side of (192).
Let us then compute the constant term B(�) for the elec-

tron self-energy, as follows. As explained in the above the
constant term for the electron self-energy can be obtained by
differentiation of (190) with respect to pE and the removing
of the remaining factor pE of p2

E . We have:

@
@pE

n
ie2

(2�)n
R 1

0 dxp
2
E(x2 � 4x+ 4)� n

2 �
� �1

� � log(xm2 + (1� x)�2 � p2
Ex(1� x))

�
+

+ p2
E � 1

��
n
2 n

2
ie2

(2�)n
R 1

0 x(1� x)dx+ i!3

o
=

= ie2
(2�)n

R 1
0 dx2pE(x2 � 4x+ 4)� n

2 �
��1

� � log(xm2 + (1� x)�2 � p2
Ex(1� x))

�
+

+ ie2
(2�)n

R 1
0 dx

p2
E(x2�4x+4)�

n
2 �2pEx(1�x)

xm2+(1�x)�2�p2
Ex(1�x) +

+ 2pE � 1
� �

n
2 n

2
ie2

(2�)n
R 1

0 x(1� x)dx :

(194)

Then by Taylor expansion of (194) and by removing a
factor 2pE from (194) the constant term for the electron self-
energy is given by:

B(�) := �e2
(2�)n

R 1
0 dx(x2 � 4x+ 4)� n

2 �
� �1

� �� log(xm2 + (1� x)�2)
��

� 1
� �

n
2 n

2
e2

(2�)n
R 1

0 x(1� x)dx :

(195)

Then as a renormalization procedure for the electron self-
energy we choose a �1 > 0 which is related to the � for the
renormalization of the vertex correction such that:

B(�1) = B(�) + a1 � 1
�

+ b1 : (196)

This is possible since B(�) has a term proportional to
1
� . From this renormalization procedure for the electron self-
energy we have:

B(�1) = C(�) : (197)

This constant term B(�1) for the electron self-energy is
to be cancelled by the counter-term with the factor zZ � 1 in
(95). We have the following equation to determine the renor-
malization constant zZ for this cancellation:

(�1)3i(zZ � 1) = (�i)B(�1) : (198)

Then from the equality (197) we have ze = zZ where ze
is determined by the following equation:

(�1)3i(ze � 1) = (�i)C(�) : (199)

Cancelling B(�1) from the electron self-energy (190) we

get the following renormalized one-loop electron self-energy:

� ip2
E�R(pE) + i!2

3 := �ip2
E
�
4� �

� R 1
0 dx(x2 � 4x+ 4) log

h
1� p2

Ex(1�x)
xm2+(1�x)�2

i
+ i!2

3 :
(200)

We notice that in (200) we can let � = 0 since there is
no infrared divergence when � = 0. This is better than the
computed electron self-energy in the conventional QED the-
ory where the computed one-loop electron self-energy is with
infrared divergence when � = 0 [6].

From this renormalized electron self-energy we then have
the renormalized electron propagator obtained by the follow-
ing Dyson series:

i
p2
E�!2 + i

p2
E�!2 (�ip2

E�R(pE) + i!2
3) i
p2
E�!2 + � � � =

= i
p2
E(1��R(pE))�(!2�!2

3) =:

=: i
p2
E(1��R(pE))�!2

R
;

(201)

where !2
R := !2 � !2

3 is as a renormalized electron mass-
energy parameter. Then by space-time statistics from the
renormalized electron propagator (201) we can get the renor-
malized electron propagator in the spin- 1

2 form, as that the
electron propagator i

�p��m in the spin- 1
2 form can be ob-

tained from the electron propagator i
p2
E�!2 .

23 New effect of QED

Let us consider a new effect for electron scattering which is
formed by two seagull vertexes with one photon loop and four
electron lines. This is a new effect of QED because the con-
ventional spin 1

2 theory of QED does not have this seagull
vertex. The Feynman integral corresponding to the photon
loop is given by

i2(i)2e4
2�

R dkE
(k2
E��2

0)((pE�qE�kE)2��2
0) =

= e4
2�

R 1
0

R dkE
(k2
E�2kE(pE�qE)x+(pE�qE)2x��2

0)2 =

= e4
2�

R 1
0

R dkE
(k2
E�2kE(pE�qE)x+(pE�qE)2x��2

0)2 :

(202)

Let us then introduce a space-time statistics. Since the
photon propagator of the (two joined) seagull vertex interac-
tions is of the form of a circle on a plane we have that the
appropriate space-time statistics of the photons is with the
two dimensional space for the circle of the photon propaga-
tor. From this two dimensional space statistics we then get a
three dimensional space statistics by multiplying the statisti-
cal factor 1

(2�)3 of the three dimensional space statistics and
by concentrating in a two dimensional subspace of the three
dimensional space statistics.

Thus as similar to the four dimensional space-time statis-
tics with the three dimensional space statistics in the above
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Sections from (202) we have the following space-time statis-
tics with the two dimensional subspace:

e4
(2�)4

R 1
0

R d3k
(k2
E�2kE(pE�qE)x+(pE�qE)2x�k2��2

4)2 =

= e4
(2�)4

R 1
0 dx

R d3k
(k2�2k�(pE�qE ;0)x+(pE�qE)2x��2

4)2 ;
(203)

where the statistical factor 1
(2�)3 of three dimensional space

has been introduced to give the factor 1
(2�)4 of the four dimen-

sional space-time statistics; and we let k = (kE ;k), k2 =
= k2

E � k2 and since the photon energy parameter �0 is a
free parameter we can write �2

0 = k2 + �2
4 for some �4.

Then a delta function concentrating at 0 of a one dimen-
sional momentum variable is multiplied to the integrand in
(203) and the three dimensional energy-momentum integral
in (203) is changed to a four dimensional energy-momentum
integral by taking the corresponding one more momentum in-
tegral.

From this we get a four dimensional space-time statistics
with the usual four dimensional momentum integral and with
the statistical factor 1

(2�)4 . After this additional momentum
integral we then get (203) as a four dimensional space-time
statistics with the two dimensional momentum variable.

Then to get a four dimensional space-time statistics with
the three dimensional momentum variable a delta function
concentrating at 0 of another one dimensional momentum
variable is multiplied to (203) and the two dimensional mo-
mentum variable of (203) is extended to the corresponding
three dimensional momentum variable. From this we then
get a four dimensional space-time statistics with the three di-
mensional momentum variable.

Then we have that (203) is equal to:

e4
(2�)4

i�
3
2 �(2� 3

2 )
�(2)

R 1
0

dx
((pE�qE)2x(1�x)��2

4)
1
2
: (204)

Then since the photon mass-energy parameter �4 is a free
parameter for space-time statistics we can write �4 in the fol-
lowing form:

�2
4 = (p� q)2x(1� x) ; (205)

where p� q denotes a two dimensional momentum vector.
Then we let p� q = (pE � qE ;p� q). Then we have:

(pE � qE)2 x(1� x)� �2
4 =

= (pE � qE)2 x(1� x)� (p� q)2 x(1� x) =
= (p� q)2 x(1� x) :

(206)

Then we have that (204) is equal to:

e4
(2�)4

i�
3
2 �(2� 3

2 )
�(2)

R 1
0

dx
((p�q)2x(1�x))

1
2

= e4
(2�)4

i��
3
2 �(2� 3

2 )
�(2)

1
((p�q)2)

1
2

=

= e4i
16�((p�q)2)

1
2

= e2�i
4((p�q)2)

1
2
:

(207)

Thus we have the following potential:

Vseagull(p� q) =
e2�i

4((p� q)2) 1
2
: (208)

This potential (208) is as the seagull vertex potential.
We notice that (208) is a new effect for electron-electron

or electron-positron scattering. Recent experiments on the de-
cay of positronium show that the experimental orthopositron-
ium decay rate is significantly larger than that computed from
the conventional QED theory [33–52]. In the following Sec-
tion 24 to Section 26 we show that this discrepancy can be
remedied with this new effect (208).

24 Reformulating the Bethe-Salpeter equation

To compute the orthopositronium decay rate let us first find
out the ground state wave function of the positronium. To
this end we shall use the Bethe-Salpeter equation. It is well
known that the conventional Bethe-Salpeter equation is with
difficulties such as the relative time and relative energy prob-
lem which leads to the existence of nonphysical solutions
in the conventional Bethe-Salpeter equation [7–32]. From
the above QED theory let us reformulate the Bethe-Salpeter
equation to get a new form of the Bethe-Salpeter equation.
We shall see that this new form of the Bethe-Salpeter equation
resolves the basic difficulties of the Bethe-Salpeter equation
such as the relative time and relative energy problem.

Let us first consider the propagator of electron. Since
electron is a spin- 1

2 particle its statistical propagator is of the
form i

�p��m . Thus before the space-time statistics the spin-
1
2 form of electron propagator is of the form i

pE�! which can

be obtained from the electron propagator i
p2
E�!2 by the fac-

torization: p2
E � !2 = (pE � !)(pE + !). Then we consider

the following product which is from two propagators of two
spin-1

2 particles:

[pE1 � !1][pE2 � !2] =

= pE1pE2 � !1pE2 � !2pE1 + !1!2 =:

=: p2
E � !2

b ;

(209)

where we define p2
E = pE1pE2 and !2

b := !1pE2 +!2pE1��!1!2. Then since !1 and !2 are free mass-energy parame-
ters we have that !b is also a free mass-energy parameter with
the requirement that it is to be a positive parameter.

Then we introduce the following reformulated relativistic
equation of Bethe-Salpeter type for two particles with spin- 1

2 :

�0(pE ; !b) = i2�0
[pE1�!1][pE2�!2] �
� R ie2�0(qE ;!b)dqE

((pE�qE)2��2
0) ;

(210)

where we use the photon propagator i
k2
E��2

0
(which is of the

effect of Coulomb potential) for the interaction of these two
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particles and we write the proper energy k2
E of this potential

in the form k2
E = (pE � qE)2; and �0 is as the coupling

parameter. We shall later also introduce the seagull vertex
term for the potential of binding.

Let us then introduce the space-time statistics. Since we
have the seagull vertex term for the potential of binding which
is of the form of a circle in a two dimensional space from the
above Section on the seagull vertex potential we see that the
appropriate space-time statistics is with the two dimensional
space. Thus with this space-time statistics from (210) we
have the following reformulated relativistic Bethe-Salpeter
equation:

�0(p) =
��0

p2 � 2
0

Z
id3q

(p� q)2 �0(q) ; (211)

where we let the free parameters !b and �0 be such that
p2 = p2

E � p2 with !2
b = p2 + 2

0 for some constant 2
0 =

= 1
a2 > 0 where a is as the radius of the binding system; and

(p� q)2 = (pE � qE)2 � (p� q)2 with �2
0 = (p� q)2. We

notice that the potential i�
(p�q)2 of binding is now of the usual

(relativistic) Coulomb potential type. In (211) the constant e2

in (210) has been absorbed into the parameter �0 in (211).
We see that in this reformulated Bethe-Salpeter equation

the relative time and relative energy problem of the conven-
tional Bethe-Salpeter equations is resolved [7–32]. Thus this
reformulated Bethe-Salpeter equation will be free of abnor-
mal solutions.

Let us then solve (211) for the relativistic bound states of
particles. We show that the ground state solution �0(p) can
be exactly solved and is of the following form:

�0(p) =
1

(p2 � 2
0)2 : (212)

We have:

1
((p�q)2)

1
(q2�2

0)2 =

= (2+1�1)!
(2�1)!(1�1)!

R 1
0

(1�x)dx
[x(p�q)2+(1�x)(q2�2

0)2]3 =

= (2+1�1)!
(2�1)!(1�1)!

R 1
0

(1�x)dx
[q2+2xpq+xp2�(1�x)2

0 ]3 =

= 2
R 1

0
(1�x)dx

[q2+2xpq+xp2�(1�x)2
0 ]3 :

(213)

Thus we have:

i
R d3q

((p�q)2)(q2�2
0)2 =

= i2
R 1

0 (1� x)dx
R d3q

[q2+2xpq+xp2�(1�x)2
0 ]3 =

= i2 2�
3
2 �(3� 3

2 )
�(3)

R 1
0

(1�x)dx

[+x(1�x)p2�(1�x)2
0 ]

3
2

=

= � 2�
3
2 �(3� 3

2 )
�(3)

R 1
0

dx
[+xp2�2

0 ][(1�x)(xp2�2
0)]

3
2

=

= � 2�
3
2 �(3� 3

2 )
�(3)

@2

@(2
0)2
R 1

0 dx
h
xp2�2

0
1�x

i 3
2

=

= � 2�
3
2 �(3� 3

2 )
�(3)

@2

@(2
0)2
R 1

0 dx
h
p2�2

0
1�x � p2

i 3
2

=

= � 2�
3
2 �(3� 3

2 )
�(3)

@2

@(2
0)2
R1

1
dt
t2
�
(p2 � 2

0)t� p2� 3
2 =

= � 2�
3
2 �(3� 3

2 )
�(3)

R1
1

dt
t2
�
(p2 � 2

0)t� p2��3
2 =

= � 2�
3
2 �(3� 3

2 )
�(3)

1
(p2�2

0)

R1
2
0
x
�3
2 dx =

= ��2

2
1

0(p2�2
0) :

(214)

Then let us choose �0 such that �0 = 20
�2 . From this

value of �0 we see that the BS equation (211) holds. Thus the
ground state solution is of the form (212). We see that when
pE = 0 and !2

b = p2 + 2
0 then this ground state gives the

well known nonrelativistic ground state of the form 1
(p2+2

0)2

of binding system such as the hydrogen atom.

25 Bethe-Salpeter equation with seagull vertex potential

Let us then introduce the following reformulated relativistic
Bethe-Salpeter equation which is also with the seagull vertex
potential of binding:

�(p) = ��0
p2�2

0
�

� R h i
(p�q)2 + i�

4((p�q)2)
1
2

i
�(q)d3q ;

(215)

where a factor e2 of both the Coulomb-type potential and
the seagull vertex potential is absorbed to the coupling con-
stant �0.

Let us solve (215) for the relativistic bound states of par-
ticles. We write the ground state solution in the following
form:

�(p) = �0(p) + ��1(p) ; (216)

where �0(p) is the ground state of the BS equation when the
interaction potential only consists of the Coulomb-type po-
tential. Let us then determine the �1(p).

From (215) by comparing the coefficients of the �j ; j =
= 0; 1 on both sides of BS equation we have the following
equation for �1(p):

�1(p) = ��0
p2�2

0

R h i
4((p�q)2)

1
2

i
�0(q)d3q+

+ ��0
p2�2

0

R h i
((p�q)2) + i�

4((p�q)2)
1
2

i
�1(q)d3q :

(217)

This is a nonhomogeneous linear Fredholm integral
equation. We can find its solution by perturbation. As a
first order approximation we have the following approxima-
tion of �1(p):
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�1(p) � ��0
p2�2

0

R i
4((p�q)2)

1
2
�0(q)d3q =

= ��0
p2�2

0

R i
4((p�q)2)

1
2

1
(q2�2

0)2 d
3q =

= ��0
p2�2

0

i�(1+ 1
2 +2�1)

4�(1+ 1
2�1)�(1+2�1)

R 1
0 y

1
2 (1� y)dy�

� R d3q
[q2�2qpy+p2y�(1�y)2

0 ]2+ 1
2

=

= ��0
p2�2

0

i�( 1
2 +2)

4�( 1
2 )�(2)

R 1
0

i�
3
2 �( 5

2� 3
2 )y

1
2 (1�y)dy

�( 5
2 )(p2y(1�y)�(1�y)2

0) =

= �0
p2�2

0

�
3
2

4�( 1
2 )

R 1
0 y

1
2 dy 1

(p2y�2
0) =

= �0�
p2�2

0

1
4jpj0

log
��� jpj�0jpj+0

��� =

= �
p2�2

0

20
�2

1
4jpj0

log
��� jpj�0jpj+0

��� =

= 1
2�(p2�2

0)jpj log
��� jpj�0jpj+0

���;

(218)

where jpj = p
p2.

Thus we have the ground state �(p) = �0(p) + ��1(p)
where p denotes an energy-momentum vector with a two di-
mensional momentum. Thus this ground state is for a two
dimensional (momentum) subspace. We may extend it to the
ground state of the form �(p) = �0(p) + ���1(p) where p
denotes a four dimensional energy-momentum vector with a
three dimensional momentum; and due to the special nature
that �1(p) is obtained by a two dimensional space statistics
the extension ��1(p) of �1(p) to with a three dimensional mo-
mentum is a wave function obtained by multiplying �1(p)
with a delta function concentrating at 0 of a one dimensional
momentum variable and the variable p of �1(p) is extended to
be a four dimensional energy-momentum vector with a three
dimensional momentum.

Let us use this form of the ground state �(p) = �0(p) +
���1(p) to compute new QED effects in the orthopositronium
decay rate where there is a discrepancy between theoretical
result and the experimental result [33–52].

26 New QED effect of orthopositronium decay rate

From the seagull vertex let us find new QED effect to the
orthopositronium decay rate where there is a discrepancy be-
tween theory and experimental result [33–52]. Let us com-
pute the new one-loop effect of orthopositronium decay rate
which is from the seagull vertex potential.

From the seagull vertex potential the positronium ground
state is modified from �(p)=�0(p) to �(p)=�0(p)+���1(p).
Let us apply this form of the ground state of positronium to
the computation of the orthopositronium decay rate.

Let us consider the nonrelativistic case. In this case we

have �0(p) = 1
(p2+2

0)2 and:

�1(p) =
�1

2�(p2 + 2
0)jpj log

���� jpj � 0

jpj+ 0

���� : (219)

Let M denotes the decay amplitude. Let M0 denotes the
zero-loop decay amplitude. Then following the approach in
the computation of the positronium decay rate [33–52] the
first order decay rate � is given by:R

8� 1
2 

5
2
0
�
�0(p) + ���1(p)

�
M0(p)d3p =:

=: �0 + ��seagull ;
(220)

where 8� 1
2 

5
2
0 is the normalized constant for the usual unnor-

malized ground state wave function �0 [33–52].
We have that the first order decay rate �0 is given

by [33–52]:

�0 := 1
(2�)3

R
8� 1

2 
5
2
0 �0(p)M0(p)d3p =

= 1
(2�)3

R 8�
1
2 

5
2
0

(p2+2
0)2M0(p)d3p �

�  0(r = 0)M0(0) =

= 8�
1
2 

5
2
0

(2�)3
R d3p

(p2+2
0)2M0(0) =

= 8�
1
2 

5
2
0

(2�)3
�2

0
M0(0) =

= 1
(�a3)

1
2
M0(0) ;

(221)

where  0(r) denotes the usual nonrelativistic ground state
wave function of positronium; and a = 1

0
is as the radius

of the positronium. In the above equation the step � holds
since �0(p) ! 0 rapidly as p ! 1 such that the effect of
M0(p) is small for p , 0; as explained in [33]- [52].

Then let us consider the new QED effect of decay rate
from ��1(p). As the three dimensional space statistics in the
Section on the seagull vertex potential we have the following
statistics of the decay rate from ��1(p):

�seagull = 1
(2�)3

R
8� 1

2 
5
2
0

��1(p)M0(p)d3p =

= 1
(2�)3

R
8� 1

2 
5
2
0 �1(p)M0(p)d2p �

� 8�
1
2 

5
2
0

(2�)3
R
�1(p)M0(0)d2p =

= �8�
1
2 

5
2
0

(2�)3
R log j jpj�0jpj+0 j

2�(p2+2
0)jpjd2pM0(0) =

= 8�
1
2 

5
2
0

(2�)32�
�3

20
M0(0) =

= 1
4(�a3)

1
2
M0(0) ;

(222)
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where the step � holds as similar the equation (221) since in
the two dimensional integral of �1(p) we have that �1(p)!0
as p ! 1 such that it tends to zero as rapidly as the three
dimensional case of �0(p)! 0.

Thus we have:

��seagull =
�
4

�0 : (223)

From the literature of computation of the orthopositron-
ium decay rate we have that the computed orthopositronium
decay rate (up to the order �2) is given by [33–52]:

�o-Ps = �0
�
1 + A�

� + �2

3 log�+B(�� )2 � �3

2� log2 �
�

=

= 7.039934(10)�s�1; (224)

where A = �10.286 606(10), B = 44.52(26) and �0 =
= 9

2 (�2 � 9)m�6 = 7.211 169�s�1.
Then with the additional decay rate from the seagull ver-

tex potential (or from the modified ground state of positron-
ium) we have the following computed orthopositronium de-
cay rate (up to the order �2):

�o-Ps + ��seagull =

= �0
�
1 + (A+ �

4 )�� + �2

3 log�+B(�� )2 � �3

2� log2 �
�

=

= 7.039934(10) + 0.01315874 �s�1 =

= 7.052092(84)�s�1: (225)

This agrees with the two Ann Arbor experimental val-
ues where the two Ann Arbor experimental values are given
by: �o-Ps(Gas) = 7.0514(14)�s�1 and �o-Ps(Vacuum) =
= 7.0482(16)�s�1 [33, 34].

We remark that for the decay rate ��seagull we have only
computed it up to the order �. If we consider the decay rate
��seagull up to the order �2 then the decay rate (225) will be
reduced since the order � of �seagull is of negative value.

If we consider only the computed orthopositronium de-
cay rate up to the order � with the term B(�� )2 omitted, then
�o-Ps = 7.038202 �s�1 (see [33–52]) and we have the fol-
lowing computed orthopositronium decay rate:

�o-Ps + ��seagull = 7.05136074�s�1: (226)

This also agrees with the above two Ann Arbor experi-
mental values and is closer to these two experimental values.

On the other hand the Tokyo experimental value given by
�o-Ps(Powder) = 7.0398(29)�s�1 [35] may be interpreted
by that in this experiment the QED effect �seagull of the seag-
ull vertex potential is suppressed due to the special two di-
mensional statistical form of �seagull (Thus the additional ef-
fect of the modified ground state � of the positronium is sup-
pressed). Thus the value of this experiment agrees with the
computational result �o-Ps. Similarly the experimental result
of another Ann Arbor experiment given by 7.0404(8)�s�1

[36] may also be interpreted by that in this experiment the
QED effect �seagull of the seagull vertex potential is sup-
pressed due to the special two dimensional statistical form
of �seagull.

27 Graviton constructed from photon

It is well known that Einstein tried to find a theory to unify
gravitation and electromagnetism [1, 79, 80]. The search for
such a theory has been one of the major research topics in
physics [80–88]. Another major research topic in physics is
the search for a theory of quantum gravity [89–120]. In fact,
these two topics are closely related. In this Section, we pro-
pose a theory of quantum gravity that unifies gravitation and
electromagnetism.

In the above Sections the photon is as the quantum Wilson
loop with the U(1) gauge group for electrodynamics. In the
above Sections we have also shown that the corresponding
quantum Wilson line can be regarded as the photon propa-
gator in analogy to the usual concept of propagator. In this
section from this quantum photon propagator, the quantum
graviton propagator and the graviton are constructed. This
construction forms the foundation of a theory of quantum
gravity that unifies gravitation and electromagnetism.

It is well known that Weyl introduced the gauge concept
to unify gravitation and electromagnetism [80]. However this
gauge concept of unifying gravitation and electromagnetism
was abandoned because of the criticism of the path depen-
dence of the gauge (it is well known that this gauge con-
cept later is important for quantum physics as phase invari-
ance) [1]. In this paper we shall use again Weyl’s gauge
concept to develop a theory of quantum gravity which uni-
fies gravitation and electromagnetism. We shall show that the
difficulty of path dependence of the gauge can be solved in
this quantum theory of unifying gravitation and electromag-
netism.

Let us consider a differential of the form g(s)ds where
g(s) is a field variable to be determined. Let us consider a
symmetry of the following form:

g(s)ds = g0(s0)ds0; (227)

where s is transformed to s0 and g0(s) is a field variable such
that (227) holds. From (227) we have a symmetry of the fol-
lowing form:

g(s)�g(s)ds2 = g0�(s0)g0(s0)ds02; (228)

where g�(s) and g0�(s) denote the complex conjugate of g(s)
and g0(s) respectively. This symmetry can be considered
as the symmetry for deriving the gravity since we can write
g(s)�g(s)ds2 into the following metric form for the four di-
mensional space-time in General Relativity:

g(s)�g(s)ds2 = g��dx�dx� ; (229)
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where we write ds2 = a��dx�dx� for some functions a��
by introducing the space-time variable x�; � = 0; 1; 2; 3 with
x0 as the time variable; and g�� = g(s)�g(s)a�� . Thus from
the symmetry (227) we can derive General Relativity.

Let us now determine the variable g(s). Let us consider
g(s) = W (z0; z(s)), a quantum Wilson line with U(1) group
where z0 is fixed. When W (z0; z(s)) is the classical Wilson
line then it is of path dependence and thus there is a diffi-
culty to use it to define g(s) = W (z0; z(s)). This is also the
difficulty of Weyl’s gauge theory of unifying gravitation and
electromagnetism. Then when W (z0; z(s)) is the quantum
Wilson line because of the quantum nature of unspecification
of paths we have that g(s) = W (z0; z(s)) is well defined
where the whole path of connecting z0 and z(s) is unspeci-
fied (except the two end points z0 and z(s)).

Thus for a given transformation s0 ! s and for any (con-
tinuous and piecewise smooth) path connecting z0 and z(s)
the resulting quantum Wilson line W 0(z0; z(s(s0))) is again
of the form W (z0; z(s)) = W (z0; z(s(s0))). Let g0(s0) =
=W 0(z0; z(s(s0))) dsds0 . Then we have:

g0�(s0)g0(s0)ds02 =

= W 0�(z0; z(s(s0)))W 0(z0; z(s(s0)))( dsds0 )2ds02 =

= W �(z0; z(s))W (z0; z(s))( dsds0 )
2ds02 =

= g(s)�g(s)ds2:

(230)

This shows that the quantum Wilson lineW (z0; z(s)) can
be the field variable for the gravity and thus can be the field
variable for quantum gravity since W (z0; z(s)) is a quantum
field variable.

Then we consider the operator W (z0; z)W (z0; z). From
this operator W (z0; z)W (z0; z) we can compute the opera-
tor W �(z0; z)W (z0; z) which is as the absolute value of this
operator. Thus this operator W (z0; z)W (z0; z) can be re-
garded as the quantum graviton propagator while the quan-
tum Wilson line W (z0; z) is regarded as the quantum pho-
ton propagator for the photon field propagating from z0 to
z. Let us then compute this quantum graviton propagator
W (z0; z)W (z0; z). We have the following formula:

W (z; z0)W (z0; z) =

= e�t̂ log[�(z�z0)]Aet̂ log[�(z0�z)] ;
(231)

where t̂=� e20
k0

for the U(1) group (k0 > 0 is a constant and

we may let k0 = 1) where the term e�t̂ log[�(z�z0)] is ob-
tained by solving the first form of the dual form of the KZ
equation and the term et̂ log[�(z0�z)] is obtained by solving
the second form of the dual form of the KZ equation.

Then we change the W (z; z0) of W (z; z0)W (z0; z) in
(231) to the second factor W (z0; z) of W (z; z0)W (z0; z) by
reversing the proper time direction of the path of connecting

z and z0 for W (z; z0). This gives the graviton propagator
W (z0; z)W (z0; z). Then the reversing of the proper time di-
rection of the path of connecting z and z0 for W (z; z0) also
gives the reversing of the first form of the dual form of the
KZ equation to the second form of the dual form of the KZ
equation. Thus by solving the second form of dual form of
the KZ equation we have that W (z0; z)W (z0; z) is given by:

W (z0; z)W (z0; z) = et̂ log[�(z�z0)]Aet̂ log[�(z�z0)] =

= e2t̂ log[�(z�z0)]A :
(232)

In (232) let us define the following constant G:

G := � 2 t̂ = 2
e2

0
k0
: (233)

We regard this constant G as the gravitational constant of
the law of Newton’s gravitation and General Relativity. We

notice that from the relation e0 =
�
z

1
2
A
��1e = 1

ne e where

the renormalization number ne = z
1
2
A is a very large num-

ber we have that the bare electric charge e0 is a very small
number. Thus the gravitational constant G given by (233)
agrees with the fact that the gravitational constant is a very
small constant. This then gives a closed relationship between
electromagnetism and gravitation.

We remark that since in (232) the factor �G log r1 =
= G log 1

r1 < 0 (where we define r1 = jz � z0j and r1 is
restricted such that r1 > 1) is the fundamental solution of
the two dimensional Laplace equation we have that this fac-
tor (together with the factor e�G log r1 = eG log 1

r1 ) is anal-
ogous to the fundamental solution �G 1

r of the three dimen-
sional Laplace equation for the law of Newton’s gravitation.
Thus the operatorW (z0; z)W (z0; z) in (232) can be regarded
as the graviton propagator which gives attractive effect when
r1 > 1. Thus the graviton propagator (232) gives the same
attractive effect of �G 1

r for the law of Newton’s gravitation.
On the other hand when r1 6 1 we have that the factor

�G log r1 = G log 1
r1 > 0. In this case we may consider that

this graviton propagator gives repulsive effect. This means
that when two particles are very close to each other then the
gravitational force can be from attractive to become repulsive.
This repulsive effect is a modification of �G1

r for the law of
Newton’s gravitation for which the attractive force between
two particles tends to1 when the distance between the two
particles tends to 0.

Then by multiplying two masses m1 and m2 (obtained
from the winding numbers of Wilson loops in (73) of two par-
ticles to the graviton propagator (232) we have the following
formula:

Gm1m2 log
1
r1
: (234)

From this formula (234) by introducing the space vari-
able x as a statistical variable via the Lorentz metric: ds2 =
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= dt2 � dx2 we have the following statistical formula which
is the potential law of Newton’s gravitation:

�GM1M2
1
r
; (235)

where M1 and M2 denotes the masses of two objects.
We remark that the graviton propagator (232) is for mat-

ters. We may by symmetry find a propagator f(z0; z) of the
following form:

f(z0; z) := e�2t̂ log[�(z�z0)]A : (236)

When jz � z0j > 1 this propagator f(z0; z) gives repul-
sive effect between two particles and thus is for anti-matter
particles where by the term anti-matter we mean particles
with the repulsive effect (236). Then since jf(z0; z)j ! 1
as jz � z0j ! 1 we have that two such anti-matter particles
can not physically exist. However in the following Section on
dark energy and dark matter we shall show the possibility of
another repulsive effect among gravitons.

As similar to that the quantum Wilson loop W (z0; z0) is
as the photon we have that the following double quantum Wil-
son loop can be regarded as the graviton:

W (z0; z)W (z0; z)W (z; z0)W (z; z0) : (237)

28 Dark energy and dark matter

By the method of computation of solutions of KZ equations
and the computation of the graviton propagator (232) we have
that (237) is given by:

W (z0; z)W (z0; z)W (z; z0)W (z; z0) =

= e2t̂ log[�(z�z0)]Age�2t̂ log[�(z�z0)] =

= R2nAg; n = 0;�1;�2;�3; : : :

(238)

where Ag denotes the initial operator for the graviton. Thus
as similar to the quantization of energy of photons we have
the following quantization of energy of gravitons:

h� = 2�e2
0n; n = 0;�1;�2;�3; : : : (239)

As similar to that a photon with a specific frequency can
be as a magnetic monopole because of its loop nature we have
that the graviton (237) with a specific frequency can also be
regarded as a magnetic monopole (which is similar to but dif-
ferent from the magnetic monopole of the photon kind) be-
cause of its loop nature. (This means that the loop nature
gives magnetic property.)

Since we still can not directly observe the graviton in ex-
periments the quantized energies (239) of gravitons can be
identified as dark energy. Then as similar to the construction
of electrons from photons we construct matter from gravitons

by the following formula:

W (z0; z)W (z0; z)W (z; z0)W (z; z0)Z ; (240)

where Z is a complex number as a state acted by the graviton.
Similar to the mechanism of generating mass of electron

we have that the mechanism of generating the mass md of
these particles is given by the following formula:

mdc2 = 2�e2
0nd = �Gnd = h�d (241)

for some integer nd and some frequency �d.
Since the graviton is not directly observable it is consis-

tent to identify the quantized energies of gravitons as dark
energy and to identify the matters (240) constructed by gravi-
tons as dark matter.

It is interesting to consider the quantum gravity effect be-
tween two gravitons. When a graviton propagator is con-
nected to a graviton we have that this graviton propagator
is extended to contain a closed loop since the graviton is
a closed loop. In this case as similar to the quantum pho-
ton propagator this extended quantum graviton propagator
can give attractive or repulsive effect. Then for stability the
extended quantum graviton propagator tends to give the re-
pulsive effect between the two gravitons. Thus the quan-
tum gravity effect among gravitons can be repulsive which
gives the diffusion of gravitons and thus gives a diffusion phe-
nomenon of dark energy. Furthermore for stability more and
more open-loop graviton propagators in the space form closed
loops. Thus more and more gravitons are forming and the re-
pulsive effect of gravitons gives the accelerating expansion of
the universe [53–57].

Let us then consider the quantum gravity effect between
two particles of dark matter. When a graviton propagator is
connected to two particles of dark matter not by connecting
to the gravitons acting on the two particles of dark matter we
have that the graviton propagator gives only attractive effect
between the two particles of dark matter. Thus as similar to
the gravitational force among the usual non-dark matters the
gravitational force among dark matters are mainly attractive.
Then when the graviton propagator is connected to two par-
ticles of dark matter by connecting to the gravitons acting on
the two particles of dark matter then as the above case of two
gravitons we have that the graviton propagator can give at-
tractive or repulsive effect between the two particles of dark
matter.

29 Conclusion

In this paper a quantum loop model of photon is established.
We show that this loop model is exactly solvable and thus
may be considered as a quantum soliton. We show that this
nonlinear model of photon has properties of photon and mag-
netic monopole and thus photon with some specific frequency
may be identified with the magnetic monopole. From the dis-
crete winding numbers of this loop model we can derive the
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quantization property of energy for the Planck’s formula of
radiation and the quantization property of electric charge. We
show that the charge quantization is derived from the energy
quantization. On the other hand from the nonlinear model
of photon a nonlinear loop model of electron is established.
This model of electron has a mass mechanism which gener-
ates mass to the electron where the mass of the electron is
from the photon-loop. With this mass mechanism for gen-
erating mass the Higgs mechanism of the conventional QED
theory for generating mass is not necessary.

We derive a QED theory which is not based on the four
dimensional space-time but is based on the one dimensional
proper time. This QED theory is free of ultraviolet diver-
gences. From this QED theory the quantum loop model of
photon is established. In this QED theory the four dimen-
sional space-time is derived for statistics. Using the space-
time statistics, we employ Feynman diagrams and Feynman
rules to compute the basic QED effects such as the vertex cor-
rection, the photon self-energy and the electron self-energy.
From these QED effects we compute the anomalous magnetic
moment and the Lamb shift. The computation is of simplic-
ity and accuracy and the computational result is better than
that of the conventional QED theory in that the computation
is simpler and it does not involve numerical approximation as
that in the conventional QED theory where the Lamb shift is
approximated by numerical means.

From the QED theory in this paper we can also derive
a new QED effect which is from the seagull vertex of this
QED theory. By this new QED effect and by a reformu-
lated Bethe-Salpeter (BS) equation which resolves the diffi-
culties of the BS equation (such as the existence of abnormal
solutions) and gives a modified ground state wave function
of the positronium. Then from this modified ground state
wave function of the positronium a new QED effect of the or-
thopositronium decay rate is derived such that the computed
orthopositronium decay rate agrees with the experimental de-
cay rate. Thus the orthopositronium lifetime puzzle is com-
pletely resolved where we also show that the recent resolu-
tion of this orthopositronium lifetime puzzle only partially
resolves this puzzle due to the special nature of two dimen-
sional space statistics of this new QED effect.

By this quantum loop model of photon a theory of quan-
tum gravity is also established where the graviton is con-
structed from the photon. Thus this theory of quantum gravity
unifies gravitation and electromagnetism. In this unification
of gravitation and electromagnetism we show that the univer-
sal gravitation constantG is proportional to e2

0 where e0 is the
bare electric charge which is a very small constant and is re-
lated to the renormalized charge e by the formula e0 = 1

ne e
where the renormalized number ne is a very large winding
number of the photon-loop. This relation of G with e0 (and
thus with e) gives a closed relationship between gravitation
and electromagnetism. Then since gravitons are not directly
observable the quantized energies of gravitons are as dark en-

ergy and the particles constructed by gravitons are as dark
matter. We show that the quantum gravity effect among par-
ticles of dark matter is mainly attractive (and it is possible to
be repulsive when a graviton loop is formed in the graviton
propagator) while the quantum gravity effect among gravi-
tons can be repulsive which gives the diffusion of gravitons
and thus gives the diffusion phenomenon of dark energy and
the accelerating expansion of the universe.
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Discussions on uncertainty relations (UR) and quantum measurements (QMS) persisted
until nowadays in publications about quantum mechanics (QM). They originate mainly
from the conventional interpretation of UR (CIUR). In the most of the QM literarure,
it is underestimated the fact that, over the years, a lot of deficiencies regarding CIUR
were signaled. As a rule the alluded deficiencies were remarked disparately and dis-
cussed as punctual and non-essential questions. Here we approach an investigation of
the mentioned deficiencies collected in a conclusive ensemble. Subsequently we expose
a reconsideration of the major problems referring to UR and QMS. We reveal that all the
basic presumption of CIUR are troubled by insurmountable deficiencies which require
the indubitable failure of CIUR and its necessary abandonment. Therefore the UR must
be deprived of their statute of crucial pieces for physics. So, the aboriginal versions of
UR appear as being in postures of either (i) thought-experimental fictions or (ii) sim-
ple QM formulae and, any other versions of them, have no connection with the QMS.
Then the QMS must be viewed as an additional subject comparatively with the usual
questions of QM. For a theoretical description of QMS we propose an information-
transmission model, in which the quantum observables are considered as random vari-
ables. Our approach directs to natural solutions and simplifications for many problems
regarding UR and QMS.

1 Introduction

The uncertainty relations (UR) and quantum measurements
(QMS) constitute a couple of considerable popularity, fre-
quently regarded as a crucial pieces of quantum mechanics
(QM). The respective crucial character is often glorified by
assertions like:

(i) UR are expression of “the most important principle of
the twentieth century physics” [1];

(ii) the description of QMS is “probably the most impor-
tant part of the theory (QM)” [2].

The alluded couple constitute the basis for the so-called
Conventional Interpretation of UR (CIUR). Discussions
about CIUR are present in a large number of early as well
as recent publications (see [1–11] and references therein).
Less mentioned is the fact that CIUR ideas are troubled by
a number of still unsolved deficiencies. As a rule, in the main
stream of CIUR partisan publications, the alluded deficien-
cies are underestimated (through unnatural solutions or even
by omission).

Nevertheless, during the years, in scientific literature were
recorded remarks such as:

(i) UR “are probably the most controverted formulae in
the whole of the theoretical physics” [12];

(ii) “the word (“measurement”) has had such a damaging
efect on the discussions that. . . it should be banned al-
together in quantum mechanics” [13];

(iii) “the idea that there are defects in the foundations of
orthodox quantum theory is unquestionable present in
the conscience of many physicists” [14];

(iv) “Many scientists have considered the conceptual
framework of quantum theory to be unsatisfactory. The
very foundations of Quantum Mechanics is a matter
that needs to be resolved in order to achieve and gain a
deep physical understanding of the underlying physical
procedures that constitute our world” [15].

The above mentioned status of things require further stud-
ies and probably new views. We believe that a promising
strategy to satisfy such requirements is to develop an investi-
gation guided by the following objectives (obj.):

(obj.1) to identify the basic presumptions of CIUR;
(obj.2) to reunite together all the significant deficiencies of

CIUR;
(obj.3) to examine the verity and importance of the respec-

tive deficiencies;
(obj.4) to see if such an examination defends or incriminate

CIUR;
(obj.5) in the latter case to admit the failure of CIUR and its

abanonment;
(obj.6) to search for a genuine reinterpretation of UR;
(obj.7) to evaluate the consequences of the UR reinterpreta-

tion for QMS;
(obj.8) to promote new views about QMS;

50 Spiridon Dumitru. Reconsideration of the Uncertainty Relations and Quantum Measurements



April, 2008 PROGRESS IN PHYSICS Volume 2

(obj.9) to note a number of remarks on some adjacent ques-
tions.

A such guided investigation we are approaching in the
next sections of this paper. The present approach try to com-
plete and to improve somewhat less elaborated ideas from few
of our previous writings. But, due to a lot of unfortunate
chances, and contrary to my desire, the respective writings
were edited in modest publications [16–18] or remained as
preprints registred in data bases of LANL and CERN libraries
(see [19]).

2 Shortly on CIUR history and its basic presumptions

The story of CIUR began with the Heisenberg’s seminal work
[20] and it starts [21] from the search of general answers to
the primary questions (q.):

(q.1) Are all measurements affected by measuring uncertain-
ties?

(q.2) How can the respective uncertainties be described
quantitatively?

In connection with the respective questions, in its subse-
quent extension, CIUR promoted the suppositions (s.):

(s.1) The measuring uncertainties are due to the perturba-
tions of the measured microparticle (system) by its in-
teractions with the measuring instrument;

(s.2) In the case of macroscopic systems the mentioned per-
turbations can be made arbitrarily small and, conse-
quently, always the corresponding uncertainties can be
considered as negligible;

(s.3) On the other hand, in the case of quantum micropar-
ticles (of atomic size) the alluded perturbations are es-
sentially unavoidable and consequently for certain
measurements (see below) the corresponding uncer-
tainties are non-negligible.

Then CIUR limited its attention only to the quantum
cases, for which restored to an amalgamation of the following
motivations (m.):

(m.1) Analysis of some thought (gedanken) measuring ex-
periments;

(m.2) Appeal to the theoretical version of UR from the ex-
isting QM.

N: In the present paper we will use the term
“observable” (introduced by CIUR literature) for denoting
a physical quantity referring to a considered microparticle
(system).

Now let us return to the begining of CIUR history. Firstly
[20, 22], for argumentation of the above noted motivation
(m.1) were imagined some thought experiments on a quan-
tum microparticle, destined to simultaneous measurements of
two (canonically) conjugated observables A and B (such are
coordinate q and momentum p or time t and energy E). The

corresponding “thought experimental” (te) uncertainties were
noted with �teA and �teB. They were found as being inter-
connected trough the following te-UR

�teA ��teB > ~ ; (1)

where ~ denotes the reduced Planck constant.
As regard the usage of motivation (m.2) in order to pro-

mote CIUR few time later was introduced [23, 24] the so-
called Robertson Schrödinger UR (RSUR):

�	A ��	B >
1
2

���
�Â; B̂��	��� : (2)

In this relation one finds usual QM notations i.e.: (i) Â
and B̂ denote the quantum operators associated with the ob-
servables A and B of the same microparticle, (ii) �	A and
�	B signify the standard deviation of the respective observ-
ables, (iii) h(: : :)i	 represents the mean value of (: : :) in the
state described by the wave function 	, (iv) [Â; B̂] depict the
commutator of the operators Â and B̂ (for some other details
about the QM notations and validity of RSUR (2) see the next
section).

CIUR was built by regarding the relations (1) and (2), as
standard (reference) elements. It started through the writings
(and public lectures) of the so-called Copenhagen School par-
tisans. Later CIUR was adopted, more or less explicitely, in a
large number of publications.

An attentive examination of the alluded publications show
that in the main CIUR is builded onthe following five basic
presumptions (P):

P1 : Quantities �teA and �	A from relations (1) and (2)
denoted by a unique symbol �A, have similar signif-
icance of measuring uncertainty for the observable A
refering to the same microparticle. Consequently the
respective relations have the same generic interpreta-
tion as UR regarding the simultaneous measurements
of observables A and B of the alluded microparticle;

P2 : In case of a solitary observable A, for a microparticle,
the quantity �A can have always an unbounded small
value. Therefore such an obvservable can be measured
without uncertainty in all cases of microparticles (sys-
tems) and states;

P3 : When two observables A and B are commutable (i.e
[Â; B̂] = 0) relation (2) allows for the quantities �A
and �B, regarding the same microparticle, to be un-
limitedly small at the same time. That is why such ob-
servables can be measured simultaneously and without
uncertainties for any microparticle (system) or state.
Therefore they are considered as compatible;

P4 : If two observables A and B are non-commutable (i.e.
[Â; B̂], 0) relation (2) shows that, for a given micro-
particle, the quantities �A and �B can be never re-
duced concomitantly to null values. For that reason
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such observables can be measured simultaneously only
with non-null and interconnected uncertainties, irres-
pective of the microparticle (system) or state. Hence
such observables are considered as incompatible;

P5 : Relations (1) and (2), Planck’s constant ~ as well as
the measuring peculiarities noted in P4 are typically
QM things which have not analogies in classical (non-
quantum) macroscopic physics.

Here it must recorded the fact that, in individual publi-
cations from the literature which promote CIUR, the above
noted presumptions P1–P5 often appear in non-explicit forms
and are mentioned separately or only few of them. Also in the
same publications the deficiencies of CIUR are omited or un-
derestimated. On the other hand in writings which tackle the
deficiencies of CIUR the respective deficiencies are always
discussed as separate pieces not reunited in some elucidative
ensembles. So, tacitly, in our days CIUR seems to remain a
largely adopted doctrine which dominates the questions re-
garding the foundation and interpretation of QM.

3 Examination of CIUR deficiencies regarded in an elu-
cidative collection

In oder to evaluate the true significance of deficiences regard-
ing CIUR we think that it must discussed together many such
deficiences reunited, for a good examination, in an elucida-
tive collection. Such a kind of discussion we try to present
below in this section.

Firstly let us examine the deficiences regarding the rela-
tion (1). For such a purpose we note the following remark (R):

R1: On the relation (1)
In reality the respective relation is an improper piece for a ref-
erence/standard element of a supposed solid doctrine such as
CIUR. This fact is due to the to the circumstance that such a
relation has a transitory/temporary character because it was
founded on old resolution criteria (introduced by Abe and
Rayleigh — see [22,25]). But the respective criteria were im-
proved in the so-called super-resolution techniques worked
out in modern experimental physics (see [26–31] and refer-
ences). Then it is possible to imagine some super-resolution-
thought-experiments (srte). So, for the corresponding srte-
uncertainties �srteA and �srteB of two observables A and
B the following relation can be promoted

�srteA ��srteB 6 ~ : (3)

Such a relation is possibly to replace the CIUR basic for-
mula (1). But the alluded possibility invalidate the presum-
tion P1 and incriminate CIUR in connection with one of its
main points.
End of R1

For an argued examination of CIUR deficiences regarding
the relation (2) it is of main importance the following remark:

R2: On the aboriginal QM elements
Let us remind briefly some significant elements, selected
from the aboriginal framework of usual QM. So we consider a
QM microparticle whose state (of orbital nature) is described
by the wave function 	. Two observables Aj (j = 1; 2)
of the respective particle will be described by the operators
Âj . The notation (f; g) will be used for the scalar product
of the functions f and g. Correspondingly, the quantities
hAji	 = (	 ; Âj	) and �	Âj = Âj � hÂji	 will depict the
mean (expected) value respectively the deviation-operator of
the observable Aj regarded as a random variable. Then, by
denoting the two observable with A1 = A and A2 = B, we
can be write the following Cauchy-Schwarz relation:�

�	Â	; �	Â	
��

�	B̂	; �	B̂	
�
>

>
�����	Â	; �	B	

����2 : (4)

For an observable Aj considered as a random variable the

quantity �	Aj =
�
�	Âj	; �	Âj	

� 1
2 signifies its standard

deviation. From (4) it results directly that the standard devi-
ations �	A and �	B of the mentioned observables satisfy
the relation

�	A ��	B >
�����	Â	; �	B	

���� ; (5)

which can be called Cauchy-Schwarz formula (CSF). Note
that CSF (5) (as well as the relation (4)) is always valid, i.e.
for all observables, paricles and states. Here it is important to
specify the fact that the CSF (5) is an aboriginal piece which
implies the subsequent and restricted RSUR (1) only in the
cases when the operators Â = Â1 and B̂ = Â2 satisfy the
conditions�

Âj	; Âk	
�

=
�

	; ÂjÂk	
�
; (j; k = 1; 2) : (6)

Indeed in such cases one can write the relation�
�	Â	; �	B̂	

�
=

= 1
2

�
	;
�
�	Â � �	B̂	 + �	B̂ � �	Â

�
	
��

� i
2

�
	; i

�
Â; B̂

�
	
�
;

(7)

where the two terms from the right hand side are purely real
and imaginary quantities respectively. Therefore in the men-
tioned cases from (5) one finds

�	A ��	B >
1
2

���
�Â; B̂��	��� (8)

i.e. the well known RSUR (2).
The above reminded aboriginal QM elements prove the

following fact. In reality for a role of standard (reference)
piece regarding the interpretation of QM aspects must be con-
sidered the CSF (5) but not the RSUR (2). But such a reality
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incriminate in an indubitable manner all the basic presump-
tions P1–P5 of CIUR.
End of R2

The same QM elenments reminded in R2, motivate the next
remark:

R3: On a denomination used by CIUR
The denomination “uncertainty” used by CIUR for quantities
like �	A from (2) is groundless because of the following
considerations. As it was noted previously in the aboriginal
QM framework, �	A signifies the standard deviation of the
observable A regarded as a random variable. The mentioned
framework deals with theoretical concepts and models about
the intrinsic (inner) properties of the considered particle but
not with aspects of the measurements performed on the re-
spective particle. Consequently, for a quantum microparticle,
the quantity �	A refers to the intrinsic characteristics (re-
flected in fluctuations) of the observable A. Moreover it must
noted the following realities:

(i) For a particle in a given state the quantity �	A has
a well defined value connected with the corresponding
wave function 	;

(ii) The value of �	A is not related with the possible mod-
ifications of the accuracy regarding the measurement of
the observable A.

The alluded realities are attested by the fact that for the
same state of the measured particle (i.e. for the same value
of �	A ) the measuring uncertainties regarding the observ-
ableA can be changed through the improving or worsening of
experimental devices/procedures. Note that the above men-
tioned realities imply and justify the observation [32] that,
for two variables x and p of the same particle, the usual CIUR
statement “as �x approaches zero, �p becomes infinite and
vice versa” is a doubtful speculation. Finally we can conclude
that the ensemble of the things revealed in the present remark
contradict the presumptions P2–P4 of CIUR. But such a con-
clusion must be reported as a serious deficience of CIUR.
End of R3

A class of CIUR conceptual deficiences regards the follow-
ing pairs of canonically conjugated observables: Lz-', N -�
and E-t (Lz = z component of angular momentum, ' = az-
imuthal angle, N = number, � = phase, E = energy, t =
time). The respective pairs were and still are considered as
being unconformable with the accepted mathematical rules
of QM. Such a fact roused many debates and motivated vari-
ous approaches planned to elucidate in an acceptable manner
the missing conformity (for significant references see below
within the remarks R4–R6). But so far such an elucidation
was not ratified (or admited unanimously) in the scientific lit-
erature. In reality one can prove that, for all the three men-
tioned pairs of observables, the alluded unconformity refers
not to conflicts with aboriginal QM rules but to serious dis-
agreements with RSUR (2). Such proofs and their conse-

quences for CIUR we will discuss below in the following re-
marks:

R4: On the pair Lz-'
The parts of above alluded problems regarding of the pair Lz-
' were examined in all of their details in our recent paper
[33]. There we have revealed the following indubitable facts:

(i) In reality the pair Lz-' is unconformable only in re-
spect with the secondary and limited piece which is
RSUR (2);

(ii) In a deep analysis, the same pair proves to be in a natu-
ral conformity with the true QM rules presented in R2;

(iii) The mentioned conformity regards mainly the CSF (5)
which can degenerate in the trivial equality 0 = 0 in
some cases rgarding the pair Lz-'.

But such facts points out an indubitable deficience of
CIUR’s basic presumption P4.
End of R4

R5: On the pair N -�
The involvement of pair N -� in debates regarding CIUR
started [35] subsequently of the Dirac’s idea [36] to transcribe
the ladder (lowering and raising) operators â and â+ in the
forms

â = ei�̂
p
N̂ ; â+ =

p
N̂e�i�̂: (9)

By adopting the relation [â; â+] = ââ+ � â+â = 1 from
(9) it follows that the operators N̂ and �̂ satisfy the commu-
tation formula

[N̂ ; �̂] = i : (10)

This relation was associated directly with the RSUR (2)
respectively with the presumption P4 of CIUR. The men-
tioned association guided to the rash impression that the
N -� pair satisfy the relation

�	N ��	� >
1
2
: (11)

But, lately, it was found that relation (11) is false — at
least in some well-specified situations. Such a situation ap-
pears in the case of a quantum oscillator (QO). The mentioned
falsity can be pointed out as follows. The Schrödinger equa-
tion for a QO stationary state has the form:

E	 =
1

2m0
p̂2	 +

1
2
m0!2x̂2	 ; (12)

where m0 and ! represent the mass and (angular) frequency
of QO while p̂=�i~ @

@x and x = x� denote the operators of
the Cartesian moment p and coordinate x. Then the operators
â, â+ and N̂ have [34] the expressions

â =
m0!x̂+ ip̂p

2m0!~
; â+ =

m0!x̂� ip̂p
2m0!~

; N̂ = â+â : (13)

The solution of the equation (12) is an eigenstate wave
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function of the form

	n(x) = 	n(�) / exp
�
��2

2

�
Hn(�) ; (14)

where � = x
pm0!

~
, while n = 0; 1; 2; 3; : : : signifies the os-

cillation quantum number andHn(�) stand for Hermite poli-
nomials of �. The noted solution correspond to the energy
eigenvalue E = En = ~!(n + 1

2 ) and satisfy the relation
N̂	n (x) = n �	n (x).

It is easy to see that in a state described by a wave function
like (14) one find the results

�	N = 0 ; �	� 6 2� : (15)

The here noted restriction �� 6 2� (more exactly
�� = �=

p
3 — see below in (19)) is due to the natural fact

that the definition range for � is the interval [0; 2�). Through
the results (15) one finds a true falsity of the presumed re-
lation (11). Then the harmonization of N -� pair with the
CIUR doctrine reaches to a deadlock. For avoiding the men-
tioned deadlock in many publications were promoted var-
ious adjustements regarding the pair N -� (see [35, 37–43]
and references therein). But it is easy to observe that all
the alluded adjustements are subsequent (and dependent) in
respect with the RSUR (2) in the following sense. The re-
spective adjustements consider the alluded RSUR as an ab-
solutely valid formula and try to adjust accordingly the de-
scription of the pair N -� for QO. So the operators N̂ and
�̂, defined in (9) were replaced by some substitute (sbs) op-
erators N̂sbs = f (N̂) and �̂sbs = g (�̂), where the func-
tions f and g are introduced through various ad hoc proce-
dures. The so introduced substitute operators N̂sbs and �̂sbs
pursue to be associated with corresponding standard devia-
tions �	Nsbs and �	�sbs able to satisfy relations resem-
bling more or less with RSUR (2) or with (11). But we ap-
preciate as very doubtful the fact that the afferent “substitute
observables” Nsbs and �sbs can have natural (or even useful)
physical significances. Probably that this fact as well as the ad
hoc character of the functions f and g constitute the reasons
for which until now, in scientific publications, it does not exist
a unanimous agreement able to guarantee a genuine elucida-
tion of true status of the N -� pair comparatively with CIUR
concepts.

Our opinion is that an elucidation of the mentioned kind
can be obtained only through a discussion founded on the
aboriginal QM elements presented above in the remark R2.
For approaching such a discussion here we add the following
supplementary details. For the alluded QO the Schrödinger
equation (12) as well as its solution (14) are depicted in a
“coordinate x-representation”. But the same equation and
solution can be described in a “phase �-representation”. By
taking into account the relation (10) it results directly that tn
the �-representation the operators N̂ and �̂ have the expres-
sions N̂ = i

� @
@�

�
and �̂ = ��. In the same representation the

Schrödinger equation (12) takes the form

E	n (�) = ~!
�
i
@
@�

+
1
2

�
	n (�) (16)

where � 2 [0; 2�). Then the solution of the above equation is
given by the relation

	n (�) =
1p
2�

exp (in�) (17)

with n = E
~! � 1

2 . If, similarly with te case of a classical
oscillator, for a QO the energy E is considered to have non-
negative values one finds n = 0; 1; 2; 3; : : : .

Now, for the case of a QO, by taking into account the
wave function (17), the operators N̂ and �̂ in the �-
representation, as well as the aboriginal QM elements pre-
sented in R2, we can note the following things. In the respec-
tive case it is verified the relation

(N̂	n; �̂	n) = (	n; N̂�̂	n) + i : (18)

This relation shows directly the circumstance that in the
mentioned case the conditions (6) are not fulfiled by the oper-
ators N̂ and �̂ in connection with the wave function (17). But
such a circumstance point out the observation that in the case
under discussion the RSUR (2)/(8) is not valid. On the other
hand one can see that CSF (5) remains true. In fact it take the
form of the trivial equality 0 = 0 because in the due case one
obtains

�	N = 0 ; �	� =
�p
3
;
�
�N̂	n; � �̂	n

�
= 0 : (19)

The above revealed facts allow us to note the following
conclusions. In case of QO states (described by the wave
functions (14) or (17)) theN -� pair is in a complete disagree-
ment with the RSUR (2)/(8) and with the associated basic pre-
sumption P4 of CIUR. But, in the alluded case, the same pair
is in a full concordance with the aboriginal QM element by
the CSF (5). Then it is completely clear that the here noted
concclusions reveal an authentic deficience of CIUR.

O: Often in CIUR literature the N -� pair is dis-
cussed in connection with the situations regarding ensembles
of particles (e.g. fuxes of photons). But, in our opinion,
such situations are completely different comparatively with
the above presented problem about the N -� pair and QO
wave functions (states). In the alluded situations the Dirac’s
notations/formulas (9) can be also used but they must be uti-
lized strictly in connection with the wave functions describing
the respective ensembles. Such utilization can offer examples
in which the N -� pair satisfy relations which are semblable
with RSUR (2) or with the relation (11). But it is less proba-
ble that the alluded examples are able to consolidate the CIUR
concepts. This because in its primary form CIUR regards on
the first place the individual quantum particles but not ensem-
bles of such particles.
End of R5
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R6: On the E-t pair
Another pair of (canonically) conjugated observables which
are unconformable in relation with the CIUR ideas is given by
energy E and time t. That is why the respective pair was the
subject of a large number of (old as well as recent) controver-
sial discussions (see [2, 44–48] and references therein). The
alluded discussions were generated by the following observa-
tions. On one hand, in conformity with the CIUR tradition,
in terms of QM, E and t regarded as conjugated observables,
ought to be described by the operators

Ê = i~
@
@t
; t̂ = t� (20)

respectively by the commutation relation�
Ê; t̂

�
= i~ : (21)

In accordance with the RSUR (2) such a description re-
quire the formula

�	E ��	t >
~

2
: (22)

On the other hand because in usual QM the time t is a
deterministic but not a random variable for any quantum sit-
uation (particle/system and state) one finds the expressions

�	E = a finite quantity ; �	t � 0 : (23)

But these expressions invalidate the relation (22) and con-
sequently show an anomaly in respect with the CIUR ideas
(especially with the presumption P4). For avoiding the al-
luded anomaly CIUR partisans invented a lot of adjusted
�	E��	t formulae destined to substitute the questionable
relation (22) (see [2, 44–48] and references). The mentioned
formulae can be written in the generic form

�vE ��vt >
~

2
: (24)

Here �vE and �vt have various (v) significances
such as:

(i) �1E = line-breadth of the spectrum characterizing the
decay of an excited state and �1t = half-life of the re-
spective state;

(ii) �2E = ~�! = spectral width (in terms of frequency
!) of a wave packet and �2t = temporal width of the
respective packet;

(iii) �3E = �	E and �3t = �	A � (d hAi	 =dt)�1, with
A = an arbitrary observable.

Note that in spite of the efforts and imagination implied in
the disputes connected with the formulae (24) the following
observations remain of topical interest.

(i) The diverse formulae from the family (24) are not mu-
tually equivalent from a mathematical viewpoint.
Moreover they have no natural justification in the
framework of usual QM (that however give a huge
number of good results in applications);

(ii) In the specific literature (see [2, 44–48] and references
therein) none of the formulas (24) is agreed unanimous-
ly as a correct substitute for relation (22).

Here it must be added also another observation regarding
the E-t pair. Even if the respective pair is considered to be
described by the operators (20), in the true QM terms, one
finds the relation�

Ê	; t̂	
�

=
�

	; Ê t̂	
�� i~ : (25)

This relation shows clearly that for theE-t pair the condi-
tion (6) is never satisfied. That is why for the respective pair
the RSUR (2)/(8) is not applicable at all. Nevertheless for
the same pair, described by the operators (20), the CSF (5) is
always true. But because in QM the time t is a determinis-
tic (i.e. non-random) variable in all cases the mentioned CSF
degenerates into the trivial equality 0 = 0.

Due to the above noted observations we can conclude that
the applicability of the CIUR ideas to the E-t pair persists in
our days as a still unsolved question. Moreover it seems to
be most probabble the fact that the respective question can
not be solved naturally in accordance with the authentic and
aboriginal QM procedures. But such a fact must be reported
as a true and serious deficience of CIUR.
End of R6

In the above remarks R1–R6 we have approached few facts
which through detailed examinations reveal indubitable de-
ficiences of CIUR.The respective facts are somewhat known
due to their relative presence in the published debates. But
there are a number of other less known things which poit
out also deficiences of CIUR. As a rule, in publications, the
respective things are either ignored or mentioned with very
rare occasions. Now we attempt to re-examine the mentioned
things in a spirit similar with the one promoted in the remarks
R1–R6 from the upper part of this section. The announced re-
examination is given below in the next remarks.

R7: On the commutable observables
For commutable observables CIUR adopt the presumtion P3

because the right hand side term from RSUR (2) is a null
quantity. But as we have shown in remark R2 the respec-
tive RSUR is only a limited by-product of the general relation
which is the CSF (5). However by means of the alluded CSF
one can find examples where two commutable observable A
andB can have simultaneously non-null values for their stan-
dard deviations �A and �B.

An example of the mentioned kind is given by the carte-
sian momenta px and py for a particle in a 2D potential well.
The observables px and py are commutable because
[p̂x; p̂y] = 0. The well is delimited as follows: the poten-
tial energy V is null for 0 < x1 < a and 0 < y1 < b respecti-
vely V =1 otherwise, where 0<a<b, x1 = (x+y)p

2
and

y1 = (y�x)p
2

. Then for the particle in the lowest energetic state
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one finds

�	px = �	py = ~
�
ab

r
a2 + b2

2
; (26)

jh(�	p̂x	; �	p̂y	)ij =
�
~�
ab

�2

�
�
b2 � a2

2

�
: (27)

With these expressions it results directly that for the con-
sidered example the momenta px and py satisfy the CSF (5)
in a non-trivial form (i.e. as an inequality with a non-null
value for the right hand side term).

The above noted observations about commutable observ-
ables constitute a fact that conflicts with the basic presump-
tion P3 of CIUR. Consequently such a fact must be reported
as an element which incriminates the CIUR doctrine.
End of R7

R8: On the eigenstates
The RSUR (2) fails in the case when the wave function 	
describes an eigenstate of one of the operators Â or B̂. The
fact was mentioned in [49] but it seems to remain unremarked
in the subsequent publications. In terms of the here devel-
oped investigations the alluded failure can be discussed as
follows. For two non-commutable observables A and B in
an eigenstate of A one obtains the set of values: �	A = 0,
0 < �	B < 1 and h[Â; B̂]i	 , 0. But, evidently, the
respective values infringe the RSUR(2). Such situations one
finds particularly with the pairs Lz-' in some cases detailed
in [33] and N -� in situations presented above in R5.

Now one can see that the question of eigenstates does not
engender any problem if the quantities �	A and �	B are re-
garded as QM standard deviations (i.e.characteristics of quan-
tum fluctuations) (see the next Section). Then the mentioned
set of values show that in the respective eigenstate A has not
fluctuations (i.e. A behaves as a deterministic variable) while
B is endowed with fluctuations (i.e. B appears as a random
variable). Note also that in the cases of specified eigenstates
the RSUR (2) are not valid. This happens because of the fact
that in such cases the conditions (6) are not satisfied. The
respective fact is proved by the observation that its opposite
imply the absurd result

a � hBi	 =

�
Â; B̂

��
	 + a � hBi	 (28)

with h[Â; B̂]i	 , 0 and a= eigenvalue of Â (i.e. Â	 = a	).
But in the cases of the alluded eigenststes the CSF (5) remain
valid. It degenerates into the trivial equality 0 = 0 (because
�	Â	 = 0).

So one finds a contradiction with the basic presumption
P4 — i.e. an additional and distinct deficiency of CIUR.
End of R8

R9: On the multi-temporal relations
Now let us note the fact RSUR (2)/(8) as well as its precur-
sor CSF (5) are one-temporal formulas. This because all the

quantities implied in the respective formulas refer to the same
instant of time. But the mentioned formulas can be general-
ized into multi-temporal versions, in which the correspond-
ing quantities refer to different instants of time. So CSF (5) is
generalizable in the form

�	1A ��	2B >
�����	1Â	1; �	2B̂	2 ;

���� (29)

where 	1 and 	2 represent the wave function for two differ-
ent instants of time t1 and t2. If in (29) one takes jt2�t1j!1
in the CIUR vision the quantities �	1A and �	2B have to
refer to A and B regarded as independent solitary observ-
ables. But in such a regard if

�
�	1Â	1; �	2B̂	2

�
, 0 the

relation (29) refute the presumption P2 and so it reveals an-
other additional deficience of CIUR. Note here our opinion
that the various attempts [50, 51], of extrapolating the CIUR
vision onto the relations of type (29) are nothing but arti-
facts without any real (physical) justification. We think that
the relation (29) does not engender any problem if it is re-
garded as fluctuations formula (in the sense which will be dis-
cussed in the next Section). In such a regard the cases when�
�	1Â	1; �	2B̂	2

�
, 0 refer to the situations in which,

for the time moments t1 and t2, the corresponding fluctua-
tions of A and B are correlated (i.e. statistically dependent).

Now we can say that, the previuosly presented discussion
on the multi-temporal relations, disclose in fact a new defi-
ciency of CIUR.
End of R9

R10: On the many-observable relations
Mathematically the RSUR (2)/(8) is only a restricted by-
product of CSF (5) which follows directly from the two-
observable true relation (4). But further one the alluded rela-
tion (4) appear to be merely a simple two-observable version
of a more general many-observable formula. Such a genaral
formula has the the form

det
h�
�	Âj	; �	Âk	

�i
> 0 : (30)

Here det [�jk] denotes the determinant with elements �jk
and j = 1; 2; : : : ; r; k = 1; 2; : : : ; r with r > 2. The for-
mula (30) results from the mathematical fact that the quanti-
ties
�
�	Âj	; �	Âk	

�
constitute the elements of a Hermitian

and non-negatively defined matrix ( an abstract presentation
of the mentioned fact can be found in [52]).

Then, within a consistent judgment of the things, for the
many-observable relations (30), CIUR must to give an inter-
pretation concordant with its own doctrine (summarized in its
basic presumptions P1–P5). Such an interpretation was pro-
posed in [53] but it remained as an unconvincing thing (be-
cause of the lack of real physical justifications). Other dis-
cussions about the relations of type (30) as in [38] elude any
interpretation of the mentioned kind. A recent attempt [54]
meant to promote an interpretation of relations like (30), for
three or more observables. But the respective attempt has not
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a helping value for CIUR doctrine. This is because instead of
consolidating the CIUR basic presumptions P1–P5) it seems
rather to support the idea that the considered relations are
fluctuations formulas (in the sense which will be discussed
bellow in the next Section). We opine that to find a CIUR-
concordant interpretation for the many-observable relations
(30) is a difficult (even impossible) task on natural ways (i.e.
without esoteric and/or non-physical considerations). An ex-
emplification of the respective difficulty can be appreciated
by investigating the case of observables A1 = p, A2 = x and
A3 = H = energy in the situations described by the wave
functions (14) of a QO.

Based on the above noted appreciations we conclude that
the impossibility of a natural extension of CIUR doctrine to
a interpretation regarding the many-observable relations (30)
rveal another deficience of the respective doctrine.
End of R10

R11: On the quantum-classical probabilistic similarity
Now let us call attention on a quantum-classical similarity
which directly contradicts the presumption P5 of CIUR. The
respective similarity is of probabilistic essence and regards
directly the RSUR (2)/(8) as descendant from the CSF (5).
Indeed the mentioned CSF is completely analogous with cer-
tain two-observable formula from classical (phenomenolgi-
cal) theory of fluctuations for thermodynamic quantities. The
alluded classical formula can be written [55, 56] as follows

�wA ��wB > jh�wA � �wBiwj : (31)

In this formula A and B signify two classical global ob-
servables which characterize a thermodynamic system in its
wholeness. In the same formula w denotes the phenomeno-
logical probability distribution, h(: : :)iw represents the mean
(expected value) of the quantity (: : :) evaluated by means of
w while �wA, �wB and h�wA � �wBiw stand for character-
istics (standard deviations respectively correlation) regarding
the fluctuations of the mentioned observables. We remind
the appreciation that in classical physics the alluded char-
acteristics and, consequently, the relations (31) describe the
intrinsic (own) properties of thermodynamic systems but not
the aspects of measurements performed on the respective sys-
tems. Such an appreciation is legitimated for example by the
research regarding the fluctuation spectroscopy [57] where
the properties of macroscopic (thermodynamic) systems are
evaluated through the (spectral components of) characteris-
tics like �wA and h�wA � �wBiw.

The above discussions disclose the groundlessness of idea
[58–60] that the relations like (31) have to be regarded as
a sign of a macroscopic/classical complementarity (similar
with the quantum complementarity motivated by CIUR pre-
sumption P4). According to the respective idea the quantities
�wA and �wB appear as macroscopic uncertainties. Note
that the mentioned idea was criticized partially in [61,62] but
without any explicit specification that the quantities �wA and

�wB are quatities which characterise the macroscopic fluctu-
ations.

The previously notified quantum-classical similarity to-
gether with the reminded significance of the quantities im-
plied in (31) suggests and consolidates the following regard
(argued also in R3). The quantities �	A and �	B from
RSUR (2)/(8) as well as from CSF (5) must be regarded as
describing intrinsic properties (fluctuations) of quantum ob-
servables A and B but not as uncertainties of such observ-
ables.

Now, in conclusion, one can say that the existence of clas-
sical relations (31) contravenes to both presumptions P1 and
P5 of CIUR. Of course that such a conclusion must be an-
nounced as a clear deficience of CIUR.
End of R11

R12: On the higher order fluctuations moments
In classical physics the fluctuations of thermodynamic ob-
servables A and B implied in (31) are described not only by
the second order probabilistic moments like �wA, �wB or
h�wA �wBiw. For a better evaluation the respective fluctua-
tions are characterized additionally [63] by higher order mo-
ments like



(�wA)r (�wB)s

�
w with r + s > 3. This fact

suggests the observation that, in the context considered by
CIUR, we also have to use the quantum higher order prob-
abilistic moments like

��
�	Âj

�r	; ��	Âk�s	�, r + s > 3.
Then for the respective quantum higher order moments CIUR
is obliged to offer an interpretation compatible with its own
doctrine. But it seems to be improbable that such an interpre-
tation can be promoted through credible (and natural) argu-
ments resulting from the CIUR own presumptions.

That improbability reveal one more deficience of CIUR.
End of R12

R13: On the so-called “macroscopic operators”
Another obscure aspect of CIUR was pointed out in connec-
tion with the question of the so called “macroscopic opera-
tors”. The question was debated many years ago (see [64,65]
and references) and it seems to be ignored in the lsat decades,
although until now it was not elucidated. The question ap-
peared due to a forced transfer of RSUR (2) for the cases of
quantum statistical systems. Through such a transfer CIUR
partisans promoted the formula

��A ���B >
1
2

���
�Â; B̂������ : (32)

This formula refers to a quantum statistical system in a
state described by the statistical operator (density matrix) �̂.

With A and B are denoted two macroscopic (global) ob-
servables associated with the operators Â and B̂. The quantity

��A =
n

Tr
h�
Â� 
A���2io 1

2

denotes the standard deviation of the macroscopic observable
A regarded as a (generalised) random variable. In its expres-
sion the respective quantity imply the notation hAi�=Tr

�
Â�̂
�
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for the mean (expected) value of the macroscopic observ-
able A.

Relation (32) entailed discussions because of the conflict
between the following two findings:

(i) On the one hand (32) is introduced by analogy with
RSUR (2) on which CIUR is founded. Then, by ex-
trapolating CIUR, the quantities ��A and ��B from
(32) should be interpreted as (global) uncertainties sub-
jected to stipulations as the ones indicated in the basic
presumption P1;

(ii) On the other hand, in the spirit of the presumption P5,
CIUR agrees the posibility that macroscopic observ-
ables can be measured without any uncertainty (i.e.
with unbounded accuracy). For an observable the men-
tioned possibility should be independent of the fact that
it is measured solitarily or simultaneously with other
observables. Thus, for two macroscopic (thermody-
namic) observables, it is senselessly to accept CIUR
basic presumptions P3 and P4.

In order to elude the mentioned conflict it was promoted
the idea to abrogate the formula (32) and to replace it with an
adjusted macroscopic relation concordant with CIUR vision.
For such a purpose the global operators Â and B̂ from (32)
were substituted [64,65] by the so-called “macroscopic oper-
ators” Â and B̂. The respective “macroscopic operators” are
considered to be representable as quasi-diagonal matrices (i.e.
as matrices with non-null elements only in a “microscopic
neighbourhood” of principal diagonal). Then one supposes
that

�Â; B̂� = 0 for any pairs of “macroscopic observables”
A and B. Consequently instead of (32) it was introduced the
formula

��A ���B > 0 : (33)

In this formula CIUR partisans see the fact that the un-
certainties ��A and ��B can be unboundedly small at the
same time moment, for any pair of observables A and B and
for any system. Such a fact constitute the CIUR vision about
macroscopic observables. Today it seems to be accepted the
belief that mentioned vision solves all the troubles of CIUR
caused by the formula (32).

A first disapproval of the mentioned belief results from
the following observations:

(i) Relation (32) cannot be abrogated if the entire mathe-
matical apparatus of quantum statistical physics is not
abrogated too. More exactly, the substitution of oper-
ators from the usual global version Â into a “macro-
scopic” variant Â is a senseless invention as long as
in practical procedures of quantum statistical physics
[66, 67] for lucrative operators one uses Â but not Â;

(ii) The substitution Â! Â does not metamorphose auto-
matically (32) into (33), because if two operators are
quasi-diagonal, in sense required by the partisans of
CIUR, it is not surely that they commute.

For an ilustration of the last observatiom we quote [68]
the Cartesian components of the global magnetization ~M of a
paramagnetic system formed of N independent 1

2 -spins. The
alluded components are described by the global operators

M̂� =
~
2
�̂(1)
� � ~

2
�̂(2)
� � � � � � ~

2
�̂(N)
� ; (34)

where � = x; y; z;  = magneto-mechanical factor and
�̂(i)
� = Pauli matrices associated to the i-th spin (particle).

Note that the operators (34) are quasi-diagonal in the sense
required by CIUR partisans, i.e. M̂� � M̂�. But, for all that,
they do not commute because

�M̂�;M̂�
�

= i~ �"��� �M̂�
( "��� denote the Levi-Civita tensor).

A second disproval of the belief induced by the substitu-
tion Â ! Â is evidenced if the relation (32) is regarded in
an ab original QM approach like the one presented in R2. In
such regard it is easy to see that in fact the formula (32) is
only a restrictive descendant from the generally valid relation

��A ���B >
���h��A � ��Bi���� ; (35)

where ��Â = Â � hAi�. In the same regard for the “macro-
scopic operators” A and B instead of the restricted relation
(33) it must considered the more general formula

��A ���B >
���h��A � ��Bi���� : (36)

The above last two relations justify the following affirma-
tions:

(i) Even in the situations when
�Â; B̂� = 0 the product

��A ���B can be lower bounded by a non-null quan-
tity. This happens because it is possible to find cases in
which the term from the right hand side of (36) has a
non-null value;

(ii) In fact the substitution Â! Â replace (35) with (36).
But for all that the alluded replacement does not guar-
anttee the validity of the relation (33) and of the corre-
sponding speculations.

The just presented facts warrant the conclusion that the
relation (32) reveal a real deficiency of CIUR. The respec-
tive deficiency cannot be avoided by resorting to the so-called
“macroscopic operators”. But note that the same relation does
not rise any problem if it is considered together with (35)
as formulas which refer to the fluctuations of macroscopic
(global) observables regarding thermodynamic systems.
End of R13

R14: On the similarities between calassical Boltzmann’s
and quantum Planck’s constants kB and ~
The quantum-classical similarity revealed in R11 entails also
a proof against the CIUR presumption P5. According to the
respective presumptions the Planck constant ~ has no analog
in classical (non-quantum) physics. The announced proof can
be pointed out as follows.
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The here discussed similarity regards the groups of classi-
cal respectively quantum relations (31) and (5) (the last ones
including their restricted descendant RSUR (2)/(8)). The re-
spective relations imply the standard deviations �wA or
�	A associated with the fluctuations of the corresponding
classical and quantum observables. But mathematically the
standard deviation indicate the randomness of an observable.
This in the sense that the alluded deviation has a positive or
null value as the corresponding observable is a random or, al-
ternatively, a deterministic (non-random) variable. Therefore
the quantities �wA and �	A can be regarded as similar in-
dicators of randomness for the classical respectively quantum
observables.

For diverse cases (of observables, systems and states) the
classical standard deviations �wA have various expressions
in which, apparently, no common element seems to be im-
plied. Nevertheless such an element can be found out [69]
as being materialized by the Boltzmann constant kB . So, in
the framework of phenomenological theory of fluctuations (in
Gaussian approximation) one obtains [69]

(�wA)2 = k� �X
�

X
�

@ �A
@ �X�

� @ �A
@ �X�

�
�

@2�S
@ �X�@ �X�

��1

: (37)

In this relation �A = hAiw, �S = �S(�X�) denotes the en-
tropy of the system written as a function of independent ther-
modynamic variables �X� , (� = 1; 2; : : : ; r) and (a��)�1

represent the elements for the inverse of matrix (a��). Then
from (37) it result that the expressions for (�wA)2 consist of
products of kB with factors which are independent of kB .
The respective independence is evidenced by the fact that
the alluded factors must coincide with deterministic (non-
random) quantities from usual thermodynamics (where the
fluctuations are neglected). Or it is known that such quantities
do not imply kB at all. See [69] for concrete exemplifications
of the relations (37) with the above noted properties.

Then, as a first aspect, from (37) it results that the fluctu-
ations characteristics (�wA)2 (i.e. dispersions = squares of
the standard deviations ) are directly proportional to kB and,
consequently, they are non-null respectively null quantities as
kB , 0 or kB ! 0. (Note that because kB is a physical
constant the limit kB ! 0 means that the quantities directly
proportional with kB are negligible comparatively with other
quantities of same dimensionality but independent of kB .) On
the other hand, the second aspect (mentioned also above) is
the fact that �wA are particular indicators of classical ran-
domness. Conjointly the two mentioned aspects show that
kB has the qualities of an authentic generic indicator of ther-
mal randomness which is specific for classical macroscopic
(thermodynamic) systems. (Add here the observation that the
same quality of kB can be revealed also [69] if the thermal
randomness is studied in the framework of classical statisti-
cal mechanics).

Now let us discuss about the quantum randomness whose

indicators are the standard deviations �	A. Based on the
relations (26) one can say that in many situations the expres-
sions for (�	A)2 consist in products of Planck constant ~
with factors which are independent of ~. (Note that a similar
situation can be discovered [33] for the standard deviations of
the observables Lz and ' in the case of quantum torsion pen-
dulum.) Then, by analogy with the above discussed classical
situations, ~ places itself in the posture of generic indicator
for quantum randomness.

In the mentioned roles as generic indicators kB and ~, in
direct connections with the quantities �wA and �	A, regard
the onefold (simple) randomness, of classical and quantum
nature respectively. But in physics is also known a twofold
(double) randomness, of a combined thermal and quantum
nature. Such a kind of randomness one encounters in cases
of quantum statistical systems and it is evaluated through the
standard deviations ��A implied in relations (32) and (35).
The expressions of the mentioned deviations can be obtained
by means of the fluctuation-dissipation theorem [70] and have
the form

(�� A)2 =
~

2�

1Z
�1

coth
�

~!
2kBT

�
�
00

(!) d! : (38)

Here �
00

(!) denote the imaginary parts of the suscepti-
bility associated with the observable A and T represents the
temperature of the considered system. Note that �

00
(!) is

a deterministic quantity which appear also in non-stochastic
framework of macroscopic physics [71]. That is why �

00
(!)

is independent of both kB and ~. Then from (38) it results that
kB and ~ considered together appear as a couple of generic
indicators for the twofold (double) randomness of thermal
and quantum nature. The respective randomness is negligi-
ble when kB ! 0 and ~ ! 0 and significant when kB , 0
and ~ , 0 respectively.

The above discussions about the classical and quantum
randomness respectively the limits kB ! 0 and ~ ! 0 must
be supplemented with the following specifications.

(i) In the case of the classical randomness it must consid-
ered the following fact. In the respective case one as-
sociates the limits kB! 0 respectively “(classical) mi-
croscopic approach” ! “(classical) macroscopic ap-
proach”. But in this context kB! 0 is concomitant
with the conditionN! 0 (N = number of microscopic
constituents (molecules) of the considered system).
The respective concomitance assures the transforma-
tion kBN! �R, i.e. transition of physical quantities
from “microscopic version” into a “macroscopic ver-
sion” (because R sidnify the macoscopic gass constant
and � denotes the macroscopic amount of substance;

(ii) On the other hand in connection with the quantum case
it must taken into account the following aspect. The
corresopnding randomness regards the cases of observ-
ables of orbital and spin types respectively;
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(iii) In the orbital cases the limit ~ ! 0 is usually associ-
ated with the quantum ! classical limit. The respec-
tive limit implies an unbounded growth of the values of
some quantum numbers so as to ensure a correct limit
for the associated observables regarding orbital move-
ments. Then one finds [72, 73] that, when ~ ! 0, the
orbital-type randomness is in one of the following two
situations:
(a) it converts oneself in a classical-type randomness
of the corresponding observables (e.g. in the cases of
' and Lz of a torsional pendulum or of x and p of a
rectilinear oscillator), or

(b) it disappears, the corresponding observables be-
coming deterministic classical variables (e.g. in the
case of the distance r of the electron in respect with
the nucleus in a hydrogen atom);

(iv) The quantum randomness of spin-type regards the spin
observables. In the limit ~! 0 such observables disap-
pear completely (i.e. they lose both their mean values
and the affined fluctuations).

In the alluded posture the Planck constant ~ has an au-
thentic classical analog represented by the Boltzmann con-
stant kB . But such an analogy contradicts strongly the pre-
sumption P5 and so it reveals a new deficience of CIUR.
End of R14

Within this section, throgh the remarks R1–R14, we exam-
ined a collection of things whose ensemble point out defi-
ciencies which incriminate all the basic presumptions P1–R5

of CIUR, considered as single or grouped pieces. In regard
to the truth qualities of the respective deficiences here is the
place to note the folloving completion remark:

R15: On the validity of the above signallized CIUR defi-
ciences
The mentioned deficiencies are indubitable and valid facts
which can not be surmounted (avoided or rejected) by solid
and verisimilar arguments taken from the inner framework of
CIUR doctrine.
End of R15

4 Consequences of the previous examination

The discussions belonging to the examination from the previ-
ous section impose as direct consequences the following re-
marks:

R16: On the indubitable failure of CIUR
In the mentioned circumstances CIUR proves oneself to be
indubitably in a failure situation which deprives it of neces-
sary qualities of a valid scientific construction. That is why
CIUR must be abandoned as a wrong doctrine which, in fact,
has no real value.
End of R16

R17: On the true significance of the relations (1) and (2)
The alluded abandonment has to be completed by a natural re-
interpretation of the basic CIUR’s relations (1) and (2). We
opine that the respective re-interpretation have to be done and
argued by taking into account the discussions from the previ-
ous Section, mainly those from the remarks R1, R2 and R3.
We appreciate that in the alluded re-interpretation must be in-
cluded the following viewpoints:

(i) On the one hand the relations (1) remain as provisional
fictions destitute of durable physical significance;

(ii) On the other hand the relations (2) are simple fluctua-
tions formulae, from the same family with the micro-
scopic and macroscopic relations from the groups (4),
(5), (29), (30) respectively (31), (32), (35);

(iii) None of the relations (1) and (2) or their adjustments
have not any connection with the description of QMS.

Consequently in fact the relations (1) and (2) must be re-
garded as pieces of fiction respectively of mathematics with-
out special or extraordinary status/significance for physics.
End of R17

R18: On the non-influences towards the usual QM
The above noted reconsideration of CIUR does not disturb in
some way the framework of usual QM as it is applied con-
cretely in the investigations of quantum microparticles. (Few
elements from the respective framework are reminded above
in the remark R2).
End of R18

5 Some considerations on the quantum and classical
measurements

The question regarding the QMS description is one of the
most debated subject associated with the CIUR history. It
generated a large diversity of viewpoints relatively to its im-
portance and/or approach (see [1–9] and references). The re-
spective diversity inserts even some extreme opinions such
are the ones noted in the Section 1 of the present paper. As a
notable aspect many of the existing approaches regarding the
alluded question are grounded on some views which presume
and even try to extend the CIUR doctrine. Such views (v.)
are:

(v.1) The descriptions of QMS must be developed as confir-
mations and extensions of CIUR concepts;

(v.2) The peculiarities of QMS incorporated in CIUR pre-
sumptions P2–P4 are connected with the correspond-
ing features of the measuring perturbations. So in the
cases of observables refered in P2–P3 respectively in
P4 the alluded perturbations are supposed to have an
avoidable respectively an unavoidable character;

(v.3) In the case of QMS the mentioned perturbations cause
specific jumps in states of the measured quantum mi-
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croparticles (systems). In many modern texts the re-
spective jumps are suggested to be described as fol-
lows. For a quantum observable A of a microparticle
in the state 	 a QMS is assumed to give as result a
single value say an which is one of the eigenvalues of
the associated operator Â. Therefore the description of
the respective QMS must include as essential piece a
“collapse” (sudden reduction) of the wave function i.e
a relation of the form:

	
�

before
measurement

�! 	n

�
after
measurement

�
; (39)

where 	n (after measurement) denotes the eigen-
function of the operator Â corresponding to the eigen-
value an;

(v.4) With regard to the observables of quantum and classical
type respectively the measuring inconveniences (per-
turbations and uncertainties) show an essential differ-
ence. Namely they are unavoidable respectively avoid-
able characteristics of measurements. The mentioned
difference must be taken into account as a main point
in the descriptions of the measurements regarding the
two types of observables;

(v.5) The description of QMS ought to be incorporated as an
inseparable part in the framework of QM. Adequately
QM must be considered as a unitary theory both of
intrinsic properties of quantum microparticles and of
measurements regarding the respective properties.

Here is the place to insert piece-by-piece the next remark:

R19: Counter-arguments to the above views
The above mentioned views about QMS must be appreciated
in conformity with the discussions detailed in the previous
sections. For such an appreciation we think that it must taken
into account the following counter-arguments (c-a):

(c-a.1) According to the remark R16, in fact CIUR is noth-
ing but a wrong doctrine which must be abandoned.
Consequently CIUR has to be omitted but not extended
in any lucrative scientific question, particularly in the
description of QMS. That is why the above view (v.1)
is totally groundless;

(c-a.2) The view (v.2) is inspired and argued by the ideas
of CIUR about the relations (1) and (2). But, accord-
ing to the discussions from the previous sections, the
respective ideas are completely unfounded. Therefore
the alluded view (v.2) is deprived of any necessary and
well-grounded justification;

(c-a.3) The view (v.3) is inferred mainly from the belief that
the mentioned jumps have an essential importance
for QMS.
But the respective belief appears as entirely unjustified
if one takes into account the following natural and in-
dubitable observation [74]: “it seems essential to the

notion of measurement that it answers a question about
the given situation existing before the measurement.
Whether the measurement leaves the measured system
unchanged or brings about a new and different state of
that system is a second and independent question”.
Also the same belief apperars as a fictitious thing if
we take into account the quantum-classical probabilis-
tic similarity presented in the remark R11. According
to the respective similarity, a quantum observable must
be regarded mathematically as a random variable.Then
a measurement of such a observable must consist not in
a single trial (which give a unique value) but in a sta-
tistical selection/sampling (which yields a spectrum of
values). For more details regarding the measurements
of random observables see below in this and in the next
sections.
So we can conclude that the view (v.3) is completely
unjustified;

(c-a.4) The essence of the difference between classical and
quantum observables supposed in view (v.4) is ques-
tionable at least because of the following two reasons:

(a) In the classical case the mentioned avoidance of
the measuring inconveniences have not a significance
of principle but only a relative and limited value (de-
pending on the performances of measuring devices and
procedures). Such a fact seems to be well known by
experimenters.

(b) In the quantum case until now the alluded unavoid-
ableness cannot be justified by valid arguments of ex-
perimental nature (see the above remark R16 and the
comments regarding the relation (3));

(c-a.5) The viev (v.5) proves to be totally unjustified if the
usual conventions of physics are considered. Accord-
ing to the respective conventions, in all the basic chap-
ters of physics, each observable of a system is regarded
as a concept “per se” (in its essence) which is denuded
of measuring aspects. Or QM is nothing but such a
basic chapter, like classical mechanics, thermodynam-
ics, electrodynamics or statistical physics. On the other
hand in physics the measurements appear as main pour-
poses for experiments. But note that the study of the
experiments has its own problems [75] and is done in
frameworks which are additional and distinct in respect
with the basic chapters of physics. The above note is
consolidated by the observation that [76]: “the proce-
dures of measurement (comparison with standards) has
a part which cannot be described inside the branch of
physics where it is used”.
Then, in contrast with the view (v.5), it is natural to
accept the idea that QM and the description of QMS
have to remain distinct scientific branches. However
the two branches have to use some common concepts
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and symbols. This happens because, in fact, both of
them also imply elements regarding the same quantum
microparticles (systems).

The here presented counter-arguments contradict all the
above oresented views (v.1)–(v.5) promoted in many of the
existing approaches regarding the QMS description.
End of R19

On the basis of discussions presented in R11 and reminded
in (c-a.3) from R19 a quantum observables must be consid-
ered as random variables having similar characteristics which
corespond to the classical random observables. Then it results
that, on principle, the description of QMS can be approached
in a manner similar with the one regarding the corresponding
classical measurements. That is why below we try to resume
a model promoted by us in [77, 78] and destined to describe
the measurement of classical random observables.

For the announced resume we consider a classical ran-
dom observable from the family discussed in R11. Such an
observable and its associated probability distribution will be
depicted with the symbols eA respectively w = w(a). The in-
dividual values a of eA belong to the spectrum a 2 (�1;1)).
For the considered situation a measurement preserve the spec-
trum of eA but change the dustribution w(a) from a “in” (in-
put) version win(a) into an “out” (output) reading wout(a).
Note thatwin(a) describes the intrinsic properties of the mea-
sured system while wout(a) incorporates the information
about the same system, but obtained on the recorder of mea-
suring device. Add here the fact that, from a general per-
spective, the distributions win(a) and wout(a) incorporate
informations referring to the measured system. That is why
a measurement appears as an “informational input ! out-
put transmision process”. Such a process is symbolized by
a transformation of the form win(a) ! wout(a). When the
measurement is done by means of a device with stationary
and linear characteristics, the the mentioned transformation
can described as follows:

wout (a) =
1Z
�1

G (a; a0)win (a0) da0: (40)

Here the kernelG (a; a0) represents a transfer probability
with the significances:

(i) G (a; a0) da enotes the (infnitesimal) probability that
by measurement the in-value a0 of eA to be recorded
in the out-interval (a; a+ da);

(ii) G (a; a0) da0 stands for the probability that the out-
value a to result from the in-values which belong to
the interval (a0; a0 + da0).

Due to the mentioned significances the kernel G (a; a0)
satisfies the conditions

1Z
�1

G (a; a0) da =
1Z
�1

G (a; a0) da0 = 1 : (41)

Add here the fact that, from a physical perspective, the
kernel G (a; a0) incorporates the theoretical description of all
the characteristics of the measuring device. For an ideal de-
vice which ensure wout(a) = win(a) it must be of the form
G (a; a0) = �(a � a0) (with �(a � a0) denoting the Dirac’s
function of argument a� a0).

By means of w�(a) (� = in; out) the corresponding
global (or numerical) characteristics of eA regarded as random
variable can be introduced. In the spirit of usual practice of
physics we refer here only to the two lowest order such char-
acteristics. They are the � — mean (expected) value hAi� and
� — standard deviations ��A defined as follows

hAi� =
1Z
�1

aw� (a) da

(��A)2 =
D�
A� 
A���2E�

9>>>>=>>>>; : (42)

Now, from the general perspective of the present paper, it
is of interest to note some observations about the measuring
uncertainties (errors). Firstly it is important to remark that
for the discussed observable A, the standard deviations �inA
and �outA are not estimators of the mentioned uncertainties.
Of course that the above remark contradicts some loyalities
induced by CIUR doctrine. Here it must be pointed out that:

(i) On the one hand �inA together with hAiin describe
only the intrinsic properties of the measured system;

(ii) On the other hand �outA and hAiout incorporate com-
posite information about the respective system and the
measuring device.

Then, in terms of the above considerations, the measur-
ing uncertainties of A are described by the following error
indicators (characteristics)

" fhAig = jhAiout � hAiinj
" f�Ag = j�outA��inAj

)
: (43)

Note that because A is a random variable for an accept-
able evaluation of its measuring uncertainties it is completely
insufficient the single indicator " fhAig. Such an evaluation
requires at least the couple " fhAigand " f�Ag or even the
differences of the higher order moments like

"
�


(�A)n
�	

=
��
(�outA)n

�
out �



(�inA)n

�
in

�� ; (44)

where ��A = eA� hAi� ; � = in; out ; n > 3).
Now we wish to specify the fact that the errors (uncertain-

ties) indicators (43) and (44) are theoretical (predicted) quan-
tities. This because all the above considerations consist in a
theoretical (mathematical) modelling of the discussed mea-
suring process. Or within such a modelling we operate only
with theoretical (mathematical) elements presumed to reflect
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in a plausible manner all the main characteristics of the re-
spective process. On the other hand, comparatively, in exper-
imental physics, the indicators regarding the measuring errors
(uncertainties) are factual entities because they are estimated
on the basis of factual experimental data. But such entities
are discussed in the framework of observational error studies.

6 An informational model for theoretical description
of QMS

In the above, (c-a.5) from R19, we argued forthe idea that QM
and the description of QMS have to remain distinct scientific
branches which nevertheless have to use some common con-
cepts and symbols. Here we wish to put in a concrete form
the respective idea by recommending a reconsidered model
for description of QMS. The announced model will assimilate
some elements discussed in the previous section in connecton
with the measuremens of classical random observables.

We restrict our considerations only to the measurements
of quantum observables of orbital nature (i.e. coordinates,
momenta, angles, angular momenta and energy). The re-
spective observables are described by the following operators
Âj (j = 1; 2; : : : ; n) regarded as generalized random vari-
ables. As a measured system we consider a spinless mi-
croparticle whose state is described by the wave function 	 =
	 (~r), taken in the coordinate representation (~r stand for mi-
croparticle position). Add here the fact that, because we con-
sider only a non-relativistic context, the explicit mention of
time as an explicit argument in the expression of 	 is unim-
portant.

Now note the observation that the wave function 	 (~r) in-
corporate information (of probabilistic nature) about the mea-
sured system. That is why a QMS can be regarded as a pro-
cess of information transmission: from the measured micro-
particle (system) to the recorder of the measuring device.
Then, on the one hand, the input (in) information described
by 	in (~r) refers to the intrinsic (own) properties of the re-
spective micropraticle (regarded as information source). The
expression of 	in (~r) is deducible within the framework of
usual QM (e.g. by solving the adequate Schrödinger equa-
tion). On the other hand, the output (out) information, de-
scribed by the wave function 	out (~r), refers to the data ob-
tained on the device recorder (regarded as information re-
ceiver). So the measuring device plays the role of the trans-
mission channel for the alluded information. Accordingly the
measurement appears as a processing information operation.
By regarding the things as above the description of the QMS
must be associated with the transformation

	in (~r)! 	out (~r) : (45)

As in the classical model (see the previous section), with-
out any loss of generality, here we suppose that the quantum
observables have identical spectra of values in both in- and
out-situations. In terms of QM the mentioned supposition

means that the operators Âj have the same mathematical ex-
pressions in both in- and out-readings. The respective ex-
pressions are the known ones from the usual QM.

In the framework delimited by the above notifications the
description of QMS requires to put the transformation (45) in
concrete forms by using some of the known QM rules. Ad-
ditionally the same description have to assume suggestions
from the discussions given in the previous section about mea-
surements of classical random obsevables. That is why, in our
opinion, the transformation (45) must be detailed in terms of
quantum probabilities carriers. Such carriers are the proba-
bilistic densities �� and currents ~J� defined by

�� = j	�j2 ; ~J� =
~

m0
j	�j2 � r�� : (46)

Here j	�j and �� represents the modulus and the argu-
ment of 	� respectively (i.e. 	� = j	�j exp(i��)) and m0
denotes the mass of microparticle.

The alluded formulation is connected with the observa-
tions [79] that the couple �– ~J “encodes the probability dis-
tributions of quantum mechanics” and it “is in principle mea-
surable by virtue of its effects on other systems”. To be added
here the possibility [80] of taking in QM as primary entity the
couple �in– ~Jin but not the wave function 	in (i.e. to start
the construction of QM from the continuity equation for the
mentioned couple and subsequently to derive the Schrödinger
equation for 	in).

According to the above observations the transformations
(45) have to be formulated in terms of �� and ~J� . But �� and
~J� refer to the position and the motion kinds of probabilities
respectively. Experimentally the two kinds can be regarded as
measurable by distinct devices and procedures. Consequently
the mentioned formulation has to combine the following two
distinct transformations

�in ! �out ; ~Jin ! ~Jout : (47)

The considerations about the classical relation (40) sug-
gest that, by completely similar arguments, the transforma-
tions (47) admit the following formulations

�out (~r) =
$

� (~r; ~r0) �in
�
*r
0�
d3~r0 (48)

Jout; � =
3X

�=1

$
��� (~r; ~r0) Jin; � (~r0) d3~r0 : (49)

In (49) J�;� with � = in; out and � = 1; 2; 3 = x; y; z
denote Cartesian components of ~J� .

Note the fact that the kernels � and ��� from (48) and
(49) have significance of transfer probabilities, completely
analogous with the meaning of the classical kernel G(a; a0)
from (40). This fact entails the following relations

$
� (~r; ~r0) d3~r =

$
� (~r; ~r0) d3~r0 = 1 ; (50)
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3X
�=1

$
��� (~r; ~r0) d3~r =

=
3X

�=1

$
��� (~r; ~r0) d3~r0 = 1 :

(51)

The kernels � and ��� describe the transformations in-
duced by QMS in the data (information) about the measured
microparticle. Therefore they incorporate some extra-QM el-
ements regarding the characteristics of measuring devices and
procedures. The respective elements do not belong to the
usual QM framework which refers to the intrinsic (own) char-
acteristics of the measured microparticle (system).

The above considerations facilitate an evaluation of the
effects induced by QMS on the probabilistic estimators of
here considered orbital observables Aj . Such observables are
described by the operators Âj whose expressions depend on ~r
and r. According to the previous discussions the mentioned
operators are supposed to remain invariant under the transfor-
mations which describe QMS. So one can say that in the situa-
tions associated with the wave functions 	� (� = in; out) the
mentioned observables are described by the following proba-
bilistic estimators/characteristics (of lower order): mean val-
ues hAji� , correlations C� (Aj ; Ak) and standard deviations
��Aj . With the usual notation (f; g) =

R
f�g d3~r for the

scalar product of functions f and g, the mentioned estimators
are defined by the relations

hAji� =
�

	�; Âj	�

�
��Âj = Âj � hAji�
C� (Aj ; Ak) =

�
��Âj 	�; ��Âk 	�

�
��Aj =

q
C� (Aj ; Aj)

9>>>>>>>>>=>>>>>>>>>;
: (52)

Add here the fact that the in-version of the estimators (52)
are calculated by means of the wave function 	in, known
from the considerations about the inner properties of the in-
vestigated system (e.g. by solving the corresponding Schrö-
dinger equation).

On the other hand the out-version of the respective esti-
mators can be evaluated by using the probability density and
current �out and ~Jout. So if Âj does not depend on r (i.e.
Âj = Aj(~r)) in evaluating the scalar products from (52) one
can use the evident equality 	�Âj 	� = Âj �� . When Âj
depends onr (i.e. Âj = Aj(r)) in the same products can be
appealed to the substitution

	��r	� =
1
2
r�� +

im
~
~J� ; (53)

	��r2	� = �
1
2
� r2 �

1
2
� +

im
~
r ~J� � m2

~2

~J2
�

��
: (54)

The mentioned usage seems to allow the avoidance of the
implications regarding [79] “a possible nonuniqueness of cur-
rent” (i.e. of the couple ��– ~J�).

Within the above presented model of QMS the errors (un-
certainties) associated with the measurements of observables
Aj can be evaluated through the following indicators

" fhAjig =
��hAjiout � hAjiin��

" fC (Aj ; Ak)g = jCout (Aj ; Ak)�Cin (Aj ; Ak)j
" f�Ajg = j�outAj ��inAj j

9>>=>>; : (55)

These quantum error indicators are entirely similar
with the classical ones (43). Of course that, mathematic-
ally, they can be completed with error indicators like
"
���

�	Âj
�r	; ��	Âk�s	�	, r+ s> 3, which regard the

higher order probabilistic moments mentioned in R12.
The above presented model regarding the description of

QMS is exemplified in the end of this paper in Annex.
Now is the place to note that the out-version of the esti-

mators (52), as well as the error indicators (55), have a theo-
retical significance.

In practice the verisimilitude of such estimators and
indicators must be tested by comparing them with their
experimental (factual) correspondents (obtained by sampling
and processing of the data collected from the recorder
of the measuring device). If the test is confirmative both
theoretical descriptions, of QM intrinsic properties of sys-
tem (microparticle) and of QMS, can be considered as ade-
quate. But if the test gives an invalidation of the results, at
least one of the mentioned descriptions must be regarded as
inadequate.

In the end of this section we wish to add the following
two observations:

(i) The here proposed description of QMS does not im-
ply some interconnection of principle between the mea-
suring uncertainties of two distinct observables. This
means that from the perspective of the respective de-
scription there are no reasons to discuss about a mea-
suring compatibility or incompatibility of two observ-
ables;

(ii) The above considerations from the present section refer
to the QMS of orbital observables. Similar considera-
tions can be also done in the case of QMS regarding the
spin observables. In such a case besides the probabili-
ties of spin-states (well known in QM publications) it is
important to take into account the spin current density
(e.g. in the version proposed recently [81]).

7 Some conclusions

We starred the present paper from the ascertained fact that in
reality CIUR is troubled by a number of still unsolved defici-
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encies. For a primary purpose of our text, we resumed the
CIUR history and identified its basic presumptions.Then, we
attempt to examine in details the main aspects as well as
the validity of CIUR deficiencies regarded in an elucidative
collection.

The mentioned examination, performed in Section 3 re-
veal the following aspects:

(i) A group of the CIUR deficiencies appear from the ap-
plication of usual RSUR (2) in situations where, math-
ematically, they are incorrect;

(ii) The rest of the deficiencies result from unnatural as-
sociations with things of other nature (e.g. with the
thought experimental relations or with the presence/

absence of ~ in some formulas);
(iii) Moreover one finds that, if the mentioned applications

and associations are handled correctly, the alluded de-
ficiencies prove themselves as being veridic and un-
avoidable facts. The ensemble of the respective facts
invalidate all the basic presumptions of CIUR.

In consensus with the above noted findings, in Section
4, we promoted the opinion that CIUR must be abandoned
as an incorrect and useless (or even misleading) doctrine.
Conjointly with the respective opinion we think that the
primitive UR (the so called Heisenberg’s relations) must be
regarded as:

(i) fluctuation formulas — in their theoretical RSUR ver-
sion (2);

(ii) fictitious things, without any physical significance —
in their thought-experimental version (1).

Abandonment of CIUR requires a re-examination of the
question regarding QMS theoretical description. To such a re-
quirement we tried to answer in Sections 5 and 6. So, by a de-
tailed investigation, we have shown that the CIUR-connected
approaches of QMS are grounded on dubitable (or even in-
correct) views.

That is why we consider that the alluded question must
be reconsidered by promoting new and more natural models
for theoretical description of QMS. Such a model, of some-
what informational concept, is developed in Section 6 and it
is exemplified in Annex.

Of course that, as regards the QMS theoretical descrip-
tion, our proposal from Section 6, can be appreciated as only
one among other possible models. For example, similarly
with the discussions regarding classical errors [77, 78], the
QMS errors can be evaluated through the informational
(Shannon) entopies.

It is to be expected that, in connection with QMS, other
models will be also promoted in the next moths/years. But
as a general rule all such models have to take into account
the indubitable fact that the usual QM and QMS theoreti-
cal description must be refered to distinct scientific questions
(objectives).

Annex: A simple exemplification for the model presented
in Section 6

For the announced exemplification let us refer to a micropar-
ticle in a one-dimensional motion along the x-axis. We take
	in (x) = j	in (x)j � exp fi�in (x)g with

j	in (x)j / exp

(
� (x� x0)2

4�2

)
; �in (x) = kx : (56)

Note that here as well as in other relations from this An-
nex we omit an explicit notation of the normalisation con-
stants which can be added easy by the interesed readers.

Correspondingly to the 	 and � from (56) we have

�in (x) = j	in (x)j2 ; Jin (x) =
~k
m0
j	in (x)j2 : (57)

So the intrinsic properties of the microparticle are de-
scribed by the parameters x0, � and k.

If the errors induced by QMS are small the kernels � and
� in (48)–(49) can be considered of Gaussian forms like

� (x; x0) / exp

(
� (x� x0)2

22

)
; (58)

� (x; x0) / exp

(
� (x� x0)2

2�2

)
; (59)

where  and � describe the characteristics of the measuring
devices. Then for �out and Jout one finds

�out (x) / exp

(
� (x� x0)2

2 (�2 + 2)

)
; (60)

Jout (x) / ~k � exp

(
� (x� x0)2

2 (�2 + �2)

)
: (61)

It can been seen that in the case when both  ! 0 and
� ! 0 the kernels �(x; x0) and �(x; x0) degenerate into the
Dirac’s function �(x�x0). Then �out ! �in and Jout ! Jin.
Such a case corresponds to an ideal measurement. Alterna-
tively the cases when  , 0 and/or � , 0 are associated with
non-ideal measurements.

As observables of interest we consider coordinate x
and momentum p described by the operators x̂=x� and
p̂=�i~ @

@x . Then, in the measurement modeled by the ex-
pressions (56),(58) and (59), for the errors (uncertainties) of
the considered observables one finds

" fhxig = 0 ; " fhpig = 0 ; " fC (x; p)g = 0 ; (62)

" f�xg =
p
�2 + 2 � � ; (63)

Spiridon Dumitru. Reconsideration of the Uncertainty Relations and Quantum Measurements 65



Volume 2 PROGRESS IN PHYSICS April, 2008

" f�pg = ~

����� k2(�2+2)p
(�2+�2)(�2+22��2)

�

� k2 + 1
4(�2+2)

i 1
2 � k

���� : (64)

If in (56) we restrict to the values x0 = 0, k = 0 and �=
=
q

~
2m0! our system is just a linear oscillator in its ground

state (m0 = mass and ! = angular frequency). This means
that the “in”-wave function (56) has the same expression with
the one from (14) for n = 0. As observable of interest we
consider the energy described by the Hamiltonian

Ĥ = � ~2

2m0

d2

dx2 +
m0 !2

2
x2: (65)

Then for the respective observable one finds

hHiin =
~!
2
; �inH = 0 ; (66)

hHiout =
!
h
~2 +

�
~+ 2m! 2�2i

4 (~+ 2m0 ! 2)
; (67)

�outH =
p

2m!2 2 �~+m! 2�
(~+ 2m! 2)

: (68)

The corresponding errors of mean value resoectively of
standard deviation of oscillator energy have the expressions

" fhHig = jhHiout � hHiinj , 0 ; (69)

" f�Hg = j�outH ��inHj , 0 : (70)
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Proceeding from the assumption that the time flow of an individual object is a real
physical value, in the framework of a physical kinetics approach we propose an analogy
between time and temperature. The use of such an analogy makes it possible to work out
a discrete-continuum model of time for a simple physical system. The possible physical
properties of time for the single object and time for the whole system are discussed.

Commonly, time is considered to be a fundamental property
of the Universe, and the origin which is not yet clear enough
for natural sciences, although it is widely used in scientific
and practical activity. Different hypotheses of temporal influ-
ence on physical reality and familiar topics have been dis-
cussed in modern scientific literature (see, e. g., [1–3] and
references therein). In particular, the conception of discrete
time-space was proposed in order to explain a number of
physical effects (e.g., the problem of asymmetry of some
physical phenomena and divergences in field theory) [2–4].
Following this theme, in the present paper we shall consider
some aspects of the pattern of discrete-continuum time for a
single object and for the whole system. We will focus on the
difference between time taken as a property of a single ob-
ject and a property of the system. We would also touch upon
the question of why the discreteness of time is not obvious in
ordinary conditions.

As a “given” property of existence time is assumed to be
an absolutely passive physical factor and the flow of time is
always uniform in ordinary conditions (here we consider the
non-relativistic case) for all objects of our world. Therefore
classical mechanics proceeds from the assumption that the
properties of space and time do not depend on the properties
of moving material objects. However even mechanics sug-
gests that other approaches are possible.

From the point of view of classical mechanics a reference
frame is in fact a geometrical reference frame of each mate-
rial object with an in-built “clock” registering time for each
particular object. So in fixing the reference frame we deal
with the time of each unique object only and subsequently
this time model is extended to all other objects of concrete
reality. Thus, we always relate time to some concrete object
(see, e. g., [5]). Here we seem to neglect the fact that such
an assumption extends the time scale as well as the time flow
of only one object onto reality in general. This approach is
undoubtedly valid for mechanical systems. In the framework
of such an approach there is no difference between the time
of an unique object and the time of the system containing a
lot of objects.

But is it really so? Will the time scale of the system taken
as a whole be the same as the time scale of each of the ele-

ments constituting the system? It is of interest to consider the
opposite case, i.e. when time for a single object and time for
the system of objects do not coincide. So we set out to try
to develop a time model for a physical system characterized
by continuum and discrete time properties which arise from
the assumption that the time flow of an individual object is a
real physical value as, for example, the mass or the charge of
the electron. In other words, following Mach, we are going to
proceed from the assumption that if there is no matter, there
is no time.

In order to show the plausibility of such an approach we
shall consider a set of material N objects, for example, struc-
tureless particles without any force-field interaction between
them. Each object is assumed to have some individual phys-
ical characteristics and each object is the carrier of its own
local time, i.e. for each i-object we shall define its own time
flow with some temporal scale �i as

dti = �idt; (1)

where t is the ordinary Newtonian time. Generally speaking,
one can expect dependence of �i on the physical characteris-
tics of the object, for example, both kinetic and potential en-
ergy of the object. However, here we shall restrict ourselves
to consideration of the simple case when �i = const.

Since we associate objects with particles we shall also as-
sume that there are collisions between particles and the value
of �i remains constant until the object comes into contact with
other objects, as �i may be changed only during the impact,
division or merger of objects. This means that the dynamics
of a single object without interaction with other objects is de-
termined only by its own time ti. If, however, we consider the
dynamics of an i-object with another j-object we have to take
into account some common time of i- and j-objects which we
are to determine.

This consideration suggests that in order to describe the
whole system (here we shall use the term “system” to denote
a set of N objects which act as a single object) one should
use something close or similar to a physical kinetics pattern
where macroscopic parameters like density, temperature etc.,
are defined by averaging the statistically significant ensemble
of objects. In particular, for the system containingN particles
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the temperature may be written as

T =
1
N

NX
i=1

v2
i �

 
1
N

NX
i=1

vi

!2

; (2)

where vi is the velocity of the i-object. For the whole system
we introduce the general time � to replace the local time of
the i-object (1) as

d� = (1 +D) dt; (3)

where D is determined by the differential relation

D (� ) =
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�i

!2 351=2

: (4)

By such a definition the general time of the system is the
sum total of its Newtonian times and some nonlinear time
D (ti) which is a function that depends on the dispersion of
the individual times dti. It is noteworthy that this simplest
possible statistical approach is similar to that of [6, 7].

It is quite evident that we have Newtonian-like time even
if D= const, 0. Indeed, from (3) it follows that

� = (1 +D) t : (5)

The pure Newtonian case in relation (3) is realized when
all objects have the same temporal scales �i = �0.

At the same time there exist a number of cases in which
the violation of the pure Newtonian case may occur. For ex-
ample, let us assume that we have got a system where some
number of objects would perish, disappear, whilst another set
of the objects might come into existence. In this case the
number N is variable and we have to consider D as an ex-
plosive step-like function with respect to N , which we ought
to integrate (3) only in some interval t0 6 t6 tx where D re-
mains constant. Here it is obvious that the value of such an
interval tx�t0 is initially unknown. Instead of the Newtonian
continuum time (5) we now get a piecewise linear continuous
time which is determined by the following recurrence relation

� = (1 +D)(t� t0) + �0 ; t0 6 t 6 tx ; (6)

where �0 = � (�0): This relation remains true whilst D is not
changed. At the moment of local time t= tx the value D
becomes D+�D, so we have to redefine �0 and other
parameters as

�0 := � (tx) = (1 +D)(tx � t0) + �0

t0 := tx ; D := D + �D

)
: (7)

Thus, instead of the linear Newtonian time for a single
object we get the broken linear dependence for the time of the
whole system if the number of objects forming this system is
continuously changing.

Since in reality the majority of objects, as a rule, form
some systems consisting of elementary units, it can be con-
cluded that the number of constituent elements might change,

as was shown above in the example considered. In this case
D becomes variable and one deals with the manifestation of
a piecewise linear dependence of time.

However, it is clear that the effects of this non-uniform
time can be revealed to best advantage in a system with a
rather small N , since in the limit N!1 the parameter D
becomes little sensitive to the changes in N . That is the basic
reason why, in ordinary conditions, we may satisfy ourselves
with the Newtonian time conception alone.

In the present paper we have tried to draw an analogy be-
tween time and temperature for the simplest possible physical
system without collective interaction of the objects constitut-
ing the system, in order to show the difference in the defini-
tion of time for unique objects and for whole systems. One
should consider this case as a basic simplified example of the
system where the discrete-continuum properties of time may
be observed. Thus one should consider it as a rather artifi-
cial case since there are no physical objects without field-like
interactions between them.

However, despite the simplified case considered above,
the piecewise linear properties of time may in fact be observ-
ed in reality (in ordinary, non-simplified conditions), though
they are by no means obvious. In order to reveal the of disper-
sion time D (� ) it is necessary to create some specific exper-
imental conditions. Temporal effects, in our opinion, are best
observed in systems characterized by numerous time scales
and a relatively small number of constituent elements.
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A quark is not a tiny sphere. The formal model idea is based on a vector group which
is constructed like an outer vector product. The vectors perform dynamic movements.
Two vectors (vector pair) which rotate in opposite directions in a plane have an increas-
ing and diminishing result vector as consequence. At the same time the vector group
rotates about the bisectrix of the vector pair. The two movements matched to each other
result in that the tip of the resultant vector draws so-called geometrical locus loops in
a plane. The u- and the d-quarks have characteristic loops. Each vector group has its
own orthogonal, hyperbolic space. By joining three such spaces each, two groups of
spaces, one group with a quasi-Euclidian and one group with a complex space are ob-
tained. Based on the u- and d-quarks characterized with their movements and spaces a
first elementary particle order is compiled.

1 Introduction

The models are presented in a comprehensive work� and
comprise a large number of aspects. Not all of these can be
reflected in the present publication. For this reason, only the
prominent aspects are presented in four short Parts I to IV.

It is clear that the answer to the question of the head-
ing cannot originate from experiments. A quark is a part
of the confinements, of the interior of the elementary parti-
cles, which are not accessible for experiments. For this rea-
son the answer in the present case is based on a model, (lex-
ically = draft, hypothetical presentation to illustrate certain
statements; hypothesis = initially unconfirmed assumption of
legitimacy with the objective of making them a guaranteed
part of our knowledge through confirmation later on) which
on the one hand is based on secured, e.g. QED, physical the-
ories (lexically = scientific presentation, system of scientific
principles). The answer is not based on one or several axioms
(lexically = immediately obvious tenet which in itself cannot
be justified).

The model or the models were developed during a journey
of thinking taking decades from the galaxies to the quarks, to
the elementary particles, back to the stars and again to the
confinement, the universe as a puzzle.

2 The vector principle

The photon contains electric and magnetic fields and is de-
scribed with appropriate vectors. This formal description pos-
sibility is utilised. Why does the photon have the electric
and magnetic vectors positioned vertically to the direction of
flight and vertically with regard to each other, the understand-
ing of this will be developed during the course of the model

�There is a homepage under the Internet address www.universum-un.de
where a book with the title “Models for Quarks and Elementary Particles”
will be displayed, having a volume of approximately 250 DIN A4 pages.

development. For this reason it is obvious that a long dis-
tance over highly formal stretches was covered which is not
re-enacted here in detail.

It is highly productive to start from the idea of the outer
vector product known from mathematics: two vectors of iden-
tical size start in a coordinate origin and open up a plane. The
resultant vector (EV) stands vertically on this plane and like-
wise starts in the coordinate origin. In the next step the three
vectors of the outer vector product are given a dynamic char-
acteristic. Two movements are introduced:

Firstly, the two identically sized vectors perform a move-
ment in opposite directions. Since the angle between the two
vectors V1 and V2 is called 2', this is described as '-rotation
or '-swivelling; see Fig. 1.

Fig. 1

If the two vectors according to Fig. 1 perform smaller and
opposing '-swivel movements, the resultant vector EV3 be-
comes greater and smaller in its orientation.

Secondly, the entire vector arrangement measured by
Fig. 1 performs a rotation about the bisectrix between the
vectors V1 and V2. Since this angle of rotation is referred
to as �, this rotation is a �-rotation or a �-swivelling. If the
vectors V1 and V2 during the �-rotation enclose a fixed angle,
the vector tip of the EV draws an arc of a circle. However,
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should the angle 2' between V1 and V2 change during the �-
rotation, the tip of the EV deviates from the arc of the circle;
see Fig. 2.

Fig. 2

Fig. 3

It is immediately obvious that there are a huge number
of possible combinations of the two '- and �-movements
in a coordinate system. In developing the models attention
was paid to ensure that only '- and �-movements that were
matched to one another were considered. If for example each
vector V1 and V2 starting from the vertical axis covers an an-
gle '= 90� and the EV at the same time covers an angle of
�= 180� in the horizontal plane, the tip of the EV draws a
loop in a plane. Assuming two vector pairs (one drawn black
and one green) with the arrangement as in Fig. 1, two loops,
see for instance Fig. 3 are obtained. Loops of this type are
called geometric loci or geometric locus loops.

3 The three types of space

The limitation to a defined few coordinated '- and
�-movements is not yet sufficient to understand quarks. It is
necessary to go beyond the Euclidian space with three orthog-
onal axes. At the same time, the principle of the vectors, espe-
cially that of the outer vector product should be maintained.
The transition is made from the Euclidian space to the hyper-
bolic space with right angles between the axes. Here, it must
be decided if the hyperbolic space should have one or two
imaginary axes. Just as in the case of the vectors only very
few models with matched '- and �-movements were found
to be carrying further, only few variants carry further with the
space as well. (It has not been possible to find a similarly
selective way from the amount of the approximately 10500

string theories and, in my opinion, will never be found either.)

Just as an outer vector product is productive as idea, it
is also productive for the outer vector product, (for the first
quark generation) to assume an orthogonal, hyperbolic space
with two real axes and one imaginary axis; Fig. 4.

Fig. 4

So as not to create any misunderstanding at this point: it
is not that several vector groups (one vector pair, VP, and one
EV each) are placed in a hyperbolic orthogonal space with
two real axes and one imaginary axis but each vector group
has its own hyperbolic space. Here, the VP can be positioned
in the real plane or in a Gaussian plane.

Various combinations of the vector groups are possible,
as a result of which individual spaces can also be combined
differently. As with the '- and �-movements and as with the
hyperbolic space, a selection has to be performed also with
the combination of individual spaces. Fig. 5 to Fig. 9 show
such a selection. The choice of words of the captions to the
Figures becomes clear only as this text progresses.

Taking into account quantum chromodynamics, which
prescribes three-quark particles, the result of the selected
combinations of such individual spaces is the following: only
two groups of combined spaces of three vector groups each
are obtained: either spaces which in each of the three ori-
entations have at least one real axis (if applicable, superim-
posed by an imaginary axis) and are therefore called “quasi-
Euclidian” (see Fig. 7 and Fig. 8), or spaces which only have
imaginary axes in one of the three orientations and are there-
fore called “complex” (see Fig. 6).

Particles of three quarks have either a quasi-Euclidian or
a complex overall space. The Euclidian space from the view
of this model is fiction.
Note for Fig. 6 to Fig. 9: Variants of three hyperbolic spaces
linked in the coordinate origin consisting of the hyperbolic
spaces of a dual-coordination and the hyperbolic space of a
singular quark in various arrangements.

4 The four quarks (of the first generation)

Taking into account the construction of a vector group, the
matched '- and �-movements, the orientation of VP and EV
in the hyperbolic space and the electric charge a geometrical
locus loop according to Fig. 10 is obtained for the d-quark
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Fig. 5: The two ideal-typically arranged hyperbolic spaces of a dual-
coordination as dd, uu, dd, uu, linked in the coordinate origin.

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12
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with negative electric charge and a loop according to Fig. 11
is obtained for the u-quark with positive electric charge.

Antiquarks are characterized by an opposite electric
charge so that the geometrical locus loop of the d-quarks with
positive electric charge is situated in a Gaussian plane and the
geometrical locus loop of the u-quark with negative electric
charge is situated in the real plane.

5 Experiment of an order of elementary particles

Fig. 1 shows two vector groups (black and green) and Fig. 5
shows two hyperbolic spaces (blue and red); the vector groups
and the hyperbolic spaces are each inter-linked in the coordi-
nate origin. These presentations stem from the realisation that
two quarks of the same type of each three-quark particle as-
sume a particularly close bond. In the text this is called “dual-
coordination”, or briefly, “Zk”. The third remaining quark of
a three-quark particle is then called a “singular” quark. The
different orientations of the quarks (VP and EV) with their
spaces result in that the geometrical locus loops can stand at
different angles relative to one another. A dd-Zk for example
has an angle zero between both �-rotation planes, see Fig. 12.
The same applies to a uu-Zk with angle zero between both �-
rotation planes. Since the planes are positioned in parallel,
the symbol k is used. If the rotation planes of two geometri-
cal loci stand vertically on top of each other, the symbol ? is
used. Table 1 is produced with this system.

Line ddd ddu duu uuu
A ddkd � ee ddku � n0 dkuu � p+ uuku � ��

B dd?d � e� dd?u � �e d?uu �?+ uu?u �
�
�++

�
C ddd � �� ddu � �0 duu � �+ uuu � �++

Table 1: The order of particles, sorted by quark flavours and the parallel
k and vertical ? orientation of the geometrical loci.

The esteemed reader will be familiar with four of the spin
1
2 ~-particles (neutron n0, proton p+, electron e� and neu-
trino �e ) and, if applicable, the �-particles with spin 3

2 ~ from
line C from high-energy physics. Because of the brevity of
the present note the individual quark compositions will not be
discussed. However, it is immediately evident that highly in-
teresting consequences for the standard model of physics are
obtained from the methodology of Table 1. This is evident on
the examples of the electron and the neutrino, which, in the
standard model, are considered as uniform particles, but here
appear to be composed of quarks. In Parts II and IV of the
publication the aspect of the electron composed of quarks is
deepened. The structural nature of the quarks in the nucleons
is another example for statements of these models that clearly
go beyond the standard model.

Submitted on December 26, 2007
Accepted on January 28, 2008

74 Ulrich K. W. Neumann. Models for Quarks and Elementary Particles — Part I: What is a Quark?



April, 2008 PROGRESS IN PHYSICS Volume 2

Models for Quarks and Elementary Particles — Part II: What is Mass?

Ulrich K. W. Neumann

Tschidererstr. 3, D-86609 Donauwörth, Germany
E-mail: Marianne-Dru.Neumann@t-online.de

It is extremely productive to give the resultant vector (EV) from the outer vector product
(Part I of this article series) a physical significance. The EV is assumed as electric flux
< with the dimensions [Vm]. Based on Maxwell’s laws this develops into the idea of
the magnetic monopole (MMP) in each quark. The MMP can be brought in relation
with the Dirac monopole. The massless MMP is a productive and important idea on the
one hand to recognise what mass is and on the other hand to develop the quark structure
of massless photon (-likes) from the quark composition of the electron. Based on the
experiments by Shapiro it is recognised that the sinusoidal oscillations of the quark can
be spiralled in the photons. In an extreme case the spiralling of such a sinusoidal arc
produces the geometric locus loop of a quark in a mass-loaded particle.

1 Introduction

Based on some characteristics of the photon mentioned in
Part I [1], vectors are introduced to describe the quarks. The
formal structures of the quarks (of the first generation) are
presented with outer vector product, its angular movements
and the corresponding space types. A first order of the ele-
mentary particles follows [2].

2 The magnetic monopole (MMP)

It is highly productive to give the vectors from the outer vec-
tor product (Part I of this series of papers) a physical meaning.
Initially, the EV is assumed as electric flux < with the dimen-
sions [Vm].

A very good model for further considerations is given
in [3] (see Fig. 7.128, p.398 therein), in which a changing
electric field with an enclosing magnetic field is shown. For
the present models this should be formulated as follows: a
vector pair (VP) generates the EV issuing from the origin of
a coordinate system, which EV is now identified with an elec-
tric flux <. When this flux is created, almost the entire electric
flux < based on Maxwell’s laws creates the magnetic flux �
located ring-shaped about the <-flux. With this linkage, the
models are put on the basis of the QED mentioned in Part I.
Feynman [22] calls the QED-theory the best available theory
in natural sciences.

The electric source flux < in turn comprises the toroidal
magnetic flux �, (like the water of a fountain overflowing on
all sides), whose maximum radius is designated MAGINPAR,
which is illustrated with Fig. 1.

The <-EV with toroidal magnetic flux � is a substantial
part of the description of a quark. With the coverage of the
toroidal magnetic flux � through the electric source flux < it
is also an obvious explanation for the magnetic flux � not ap-
pearing outside the confinement under normal circumstances.
The <-EV shown in Fig. 1 does not correspond to a dipole.

Fig. 1: Schematic section through the �- and <-fields of a (d-)quark.
In the �-tube or funnel the <-field lines created in orange are not
indicated. P designates the outer apex line of the �-flux which de-
termines the MAGINPAR at the same time. Graphically, the config-
uration is also called “fountain”. The symbolic <�-field line lies on
the funnel longitudinal axis and is discussed in Part III.

With the latter, the fields shown would be simultaneously vis-
ible on two sides of the coordinate origin, while an <-flux
trough would also have to appear opposite to a source flux <.

A Zk (see Part I) comprises two such <-source fluxes off-
set by 180� relative to each other which are merely like a
dipole. A three-quark particle according to Table 1 (see Part I)
comprises three <-source fluxes.

Dirac has stated the charge of the magnetic monopole ac-
cording to Jackson ( [3], p.319), as follows:

g2 =
1
e�
� n2

4
�4��0~c

�
V2s2� or g =

n
2
�
r

4��0~c
e�

;

g = 4.1357�10�15 [V s] with n = 1 :

If this value is multiplied with double the value of the fine
structure constant 2 e�= 1/68.518, it is identical to the value
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of the magnetic flux � = 6.03593�10�17[Vs] of the present
models. The dimension of g is likewise identical to the mag-
netic flux � of the present models, (see [2] Chapter 8.1).

The electron or the electric unit charge of q =
= 1.60219�10�19 [As] according to [1] Table 1 and accord-
ing to [2] (Chapter 7 therein), consists of three d-quarks. Con-
sequently the natural constant � does not stand for a quark
either but for a “3QT”, i.e. according to a first assumption
for the three d-quarks of the electron. Imagining the electric
flux < and the toroidal magnetic flux � of a quark accord-
ing to Fig. 1 the magnetic fluxes of a d-quark or of a u-quark
amount to:

�d =
�
3

=
6.03593�10�17

3
= 2.01198�10�17 [Vs] ;

�u =
2�
3

= 4.02396�10�17 [Vs] :

According to the present models these magnetic fluxes are
the values of the magnetic monopoles (MMPs).

Obviously this means that we, and our entire world, also
consist of the much sought-after MMPs.

The intensity of the interaction of the Dirac monopole is
estimated extremely high. Since the MMP according to the
present models is approximately 2 e� smaller, the intensity of
the interaction of the MMPs is substantially smaller as well.
The force between two charged particles corresponds to the
product of both charges:

g2

�2 =
�
4.1356�10�15�2�

6.03593�10�17�2 =

=
�
68.518�6.03593�10�17�2�

6.03593�10�17�2 =
68.5182

1
=

4695
1

:

The charge quantity g determined by Dirac thus results
in 4695 times greater a force between the charges g than be-
tween the fluxes �. A further reduction of the interaction ob-
viously results through the �

3 and 2�
3 fragments of the d- or

u-quarks. These reduction factors are not the sole cause for
the quite obviously much lower intensity of the interaction
of the MMPs than assumed by Dirac. The probably decisive
reduction factor is the construction of the quark sketched in
Fig. 1, where the magnetic flux � of a quark is shielded to the
outside by the electric flux <.

The literature sketches an MMP as follows:
• A constant magnetic field oriented to the outside on all

sides (hedgehog) not allowing an approximation of ad-
ditional MMPs;

• If two or more (anti-) MMPs attract one another, they
are unable to assume a defined position relative to one
another because of their point-symmetrical structure;

• The “literature MMP” is the logical continuation of the
current world view of the “spheres” which is moder-
ated through probability densities. Atoms are relatively

“large spheres”, nucleons are “very small spheres”
therein, and the quarks would consequently be “even
smaller spheres” in the nucleons and the electrons are
allegedly point-like. The interactions between the
“spheres” are secured by the bosons as photons or
gluons.

The aspects of these models are:

• The idea of the “sphere chain” is exploded in these
models since the swivelling and simultaneously pulsat-
ing MMPs act in all particles. Particles can be seen
highly simplified as different constellations of MMPs;

• The idea of the “fountain” according to Fig. 1 contains
the toroidal magnetic flux � as MMP;

• The structures brought about by the MMP are tempo-
rally, spatially and electromagnetically highly aniso-
tropic and asymmetrical. Without this structure our
world would not be possible. From this it can be con-
cluded that the highly symmetrical “literature
MMP” sketched above must not be seen as an elemen-
tary part of our world.

3 Some enigmas of the photon

(a) Why the photon has the electric and magnetic vectors
positioned vertically to the direction of flight and verti-
cally to each other is not answered in Part I;

(b) If the photon is created through “annihilation” of elec-
tron and positron as is well known and if the electron
according to Table 1, Part I, has the quark structure
dd ?d , the question arises if the characterisation of the
photon with the simple letter  according to the stan-
dard model is correct;

(c) If electron and positron have a basic mass m= 0.511
MeV/c2 why does the photon have the mass zero?

(d) Why does the wavelength of the light observed by us
not fit to the Compton wavelength of the electrons emit-
ting the light?

To solve the enigma, some courageous jumps have to be
performed:

First jump: The photon consists of the same quark type as the
electron, namely d according to Table 1 (of Part I);

Second jump: The photon contains its own anti-particle, i.e.
consists of the quark types d and �d according to the
models;

Third jump: Both quark groups (3 d and 3 �d) oscillate by
themselves with very similar basic frequencies. This
is explained as follows:
The Compton wavelength of the electron (3 d) or that
of the positron (3 �d) in each case results in a basic fre-
quency of approximately 1020Hz. Thus the photon has
two very similar basic frequencies. The beat resulting
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from both frequencies has a wavelength or frequency
which is greater and lower respectively by the factor
105 and with just under 1015Hz is also in the visible
range. The beat is the answer to Question (d) concern-
ing the photon.

Some consequences of the courageous jumps:

(1) The photon must be seen as a composite yet uniform
particle;

(2) Two frequencies in this uniform medium create a beat;
(3) According to Table 1 of Part I, Line B, there are three

additional leptons in addition to the electron (or its anti-
particle positron). It can be expected that from these
leptons and each of their anti-particles composite yet
uniform particles can be formed according to the same
pattern as with the photon. These particles are called
“photon-like” in the models.

In Table 1, the quark structure of the electron is intro-
duced with dd ?d . Using the anti-d-quark the positron has
the same structure. If both elementary particles in the photon
are connected it should be unsurprisingly expected that both
structures can be found again in the photon. In addition to this
it should be expected that both particles are closely connected
with each other. This is expressed in that the two singular
quarks of electron and positron in turn assume a close bond.
In the models this is called “bond coordination” or “Bk” in
brief and in the case of the photon d �d as structural element.
Consequently the overall structure of the photon appears as
dd ? d �d ? �d �d. The overall photon-like structure of the neutri-
nos would be dd ? u�u ? �d �d, etc.

In contrast with the three-quark particles of Table 1 the
photon-likes are six-quark particles. It is clear that the six-
quark structure of the photon-likes has substantial
consequences on the reaction equations of the weak interac-
tion. This is reported in Part IV. The quark structure of the
photon is the answer to Question (b) concerning the photon.

4 The “pioneering” experiments of Shapiro

Years after the discovery of the quark structure of the photons
and long after the insight, as to what mass actually is, was
gained, the experiments by Shapiro [5] were brought into re-
lation with both. Here, the experiments by Shapiro are dealt
with first in order to facilitate introduction to the subjects.

Towards the end of the nineteen-sixties, Shapiro observed
a reduced speed of light cM near the Sun. The cause is the “re-
fractive index of the vacuum”. Deviating from the interpreta-
tion through the standard model of physics and utilising new
insights through these models the following is determined in
a first jump:

Under the effect of directed electric fields the flat sinu-
soidal oscillation of the photon becomes helical (see [2],
pages 167 and 179). This results in that at constant frequency

the penetration points of the sine curve through the “x-axis”
are situated closer together and the speed of the photon in
direction of flight is no longer c but cM .

Following this thought pattern it can be determined in a
second jump: Under the effect of extremely strong highly di-
rectional electric fields the initially flat sinusoidal oscillation
of the photon is spiralled to such an extent that the geometri-
cal locus loops used for “stationary” particles appear (see [2],
page 165ff and Fig. 2 and 3).

Fig. 2: A photon with initially flat sinusoidal arcs and with schemat-
ically sketched “fountain” runs vertically to the direction of an elec-
tric field while the arrows on the sinusoidal arcs indicate the se-
quence of the amplitude.

Fig. 3: Projection of the helically deformed initially horizontal and
flat sinusoidal arcs of a photon according to Fig. 2 in the y�z plane.

Looking at the helical sinusoidal oscillation in the direc-
tion of the x-axis a sinusoidal arc presents itself as a narrower
or wider loop. If the loop is very narrow the progressive speed
cM of the photon is only a little smaller than c [5]. However if
the loop is very wide the photon is practically unable to move.
This means that the photon is then captured in an electron.

The extremely strong directional electric fields can be
found in the source fields of the “fountain”, Fig. 1, of the elec-
tron quarks. This means that an electron with suitable MAG-
INPAR is able to spiral the lateral sinusoidal oscillation of
an approaching photon to such an extent that the lateral sinu-
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soidal oscillation becomes a central-symmetrical sinusoidal
oscillation. If the amplitudes or MAGINPAR of both par-
ticles fit to each other the photon is stored in the electron.
This also means that an electron charged in this way — and
that is every electron from our environment — has central-
symmetrical sinusoidal oscillations of 3 d-quarks as well as
stored 3 d- and 3 �d-groups of the photons.

It is now evident: the flat oscillation of the photon is con-
verted to the radial oscillation in the electron or in the fermion
through the extremely strong directional electric quark source
fields. The geometrical locus loops developed from formal
aspects which are shown in Part I for instance with Fig. 3 are
sine curves or sinusoidal oscillations which are presented in
polar coordinates for a centre each.

5 What is mass?

In Table 1 the neutron and the neutrino are positioned below
each other. Both have the same types and quantities of quarks,
however with different structural signs! The mass of the neu-
tron almost amounts to 940 MeV, the mass of the neutrino
according to the standard model below one eV. The electron
and the positron each have a basic mass of 0.511 MeV, while
the photon consisting of the same quarks has no mass at all.

Quite obviously, “mass” is not a characteristic of a quark.
Mass is a characteristic which arises from the constellation
of several quarks. Only certain elementary particles have
mass! These include those where the MMPs perform central-
symmetrical sinusoidal oscillations, e.g. the three-quark par-
ticles of Table 1. The amplitude of the central-symmetrical si-
nusoidal oscillations is practically identical with the MAGIN-
PAR R. The magnitude of the MAGINPAR R is determined
by the frequency � via �= c

� = c
X�R .

In [2] (page 164), mass is defined as follows:

m =
h
c2
� =

=
�q

2 e�c2
� = 7.3726�10�51

�
VA s4

m2

�
� �

�
1
s

�
:

(1)

Conclusion: Mass is nothing other than the very, very
frequent occurrence of the MMPs � at the coordinate
centre of the particle in accordance with the frequency
� multiplied by the electric charge q divided by c2 and
also 2 e�. The constants jointly have the value
7.3726�10�51 [VAs4/m2]. These statements satisfy a
desire of physics that has remained unanswered for a
very long time. The masses of the mass-loaded ele-
mentary particles known to us that could only be exper-
imentally measured in the past can be calculated from
elementary quantities.

With a photon, the six quarks or MMPs involved describe
a lateral movement along a line. The sinusoidal oscillations
of the MMPs are not central-symmetrical. According to the

definition such particles have no mass. The lateral movement
is the answer to Question (c) regarding the photon.

The well-known relation of mass m [VAs3/m2] and in-
ertia N� [VAs3/m] becomes visible by introducing the equa-
tions h=Nh=2 e� and Nh=N�� c. (See [2], Fig. 8.3a of
Chapter 8.2.1 therein.) By this equation, equation (1) trans-
forms to

m =
N� �
2 e�c

or m =
N�

2 e�X�R
;

which is the short version of equation (8-II) on page 156
of [2].
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Electric charge is considered as a form of imaginary energy. With this consideration, the
energy of an electrically charged particle is a complex number. The real part is propor-
tional to the mass, while the imaginary part is proportional to the electric charge. The
energy of an antiparticle is given by conjugating the energy of its corresponding parti-
cle. Newton’s law of gravity and Coulomb’s law of electric force are classically unified
into a single expression of the interaction between the complex energies of two electri-
cally charged particles. Interaction between real energies (or masses) is the gravitational
force. Interaction between imaginary energies (or electric charges) is the electromag-
netic force. Since radiation is also a form of real energy, there are another two types
of interactions between real energies: the mass-radiation interaction and the radiation-
radiation interaction. Calculating the work done by the mass-radiation interaction on
a photon, we can derive the Einsteinian gravitational redshift. Calculating the work
done by the radiation-radiation interaction on a photon, we can obtain a radiation red-
shift. This study suggests the electric charge as a form of imaginary energy, so that
classically unifies the gravitational and electric forces and derives the Einsteinian grav-
itational redshift.

1 Introduction

It is well known that mass and electric charge are two fun-
damental properties (inertia and electricity) of matter, which
directly determine the gravitational and electromagnetic in-
teractions via Newton’s law of gravity [1] and Coulomb’s law
of electric force [2]. Mass is a quantity of matter [3], and the
inertia of motion is solely dependent upon the mass. Accord-
ing to Einstein’s energy-mass expression (or Einstein’s first
law) [4], mass is also understood as a form of real energy.
The real energy is always positive. It cannot be destroyed but
can be transferred from one form to another. Therefore, the
mass is understood not only based on the gravitational inter-
action but also on the quantity of matter, the inertia of motion,
and the energy

Electric charge has two varieties of either positive or neg-
ative. It appears always in association with mass to form pos-
itive or negative electrically charged particles with different
masses. The interaction between electric charges, however, is
independent of the mass. Positive and negative charges can
annihilate or cancel each other and produce in pair with the
total electric charges conserved. So far, the electric charge
is understood only based on the electromagnetic interactions.
Its own physics meaning of a pure electric charge is still un-
clear.

In this paper, the pure electric charge is suggested to be
a form of imaginary energy. With this suggestion or idea of
imaginary energy, we can express an electrically charged par-
ticle as a pack of certain amount of complex energy, in which
the real part is proportional to the mass and the imaginary part
is proportional to the electric charge. We can combine the

gravitational and electromagnetic interactions between two
electrically charged particles into the interaction between
their complex energies. We can also naturally obtain the en-
ergy of an antiparticle by conjugating the energy of its corre-
sponding particle and derive the Einsteinian gravitational red-
shift from the mass-radiation interaction, a type of interaction
between real energies.

2 Electric charge — a form of imaginary energy

With the idea that the electric charge is a form of imaginary
energy, total energy of a particle can be generally expressed
as a complex number

E = EM + iEQ; (1)

where i =
p�1 is the imaginary number. The real energy

Re(E) = EM is proportional to the particle mass

EM = Mc2; (2)

while the imaginary energy Im(E) = EQ is proportional to
the particle electric charge defined by

EQ =
Qp
G
c2 = �EM ; (3)

where G is the gravitational constant, c is the light speed, and
� is the charge-mass ratio (or the imaginary-real energy ratio)
defined by

� � EQ

EM
=

Qp
GM

; (4)

in the cgs unit system. The imaginary energy has the same
sign as the electric charge has. Including the electric charge,
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we can modify Einstein’s first law as

E = (1 + i�)Mc2: (5)

The modulus of the complex energy is

jEj = p
1 + �2Mc2: (6)

For an electrically charged particle, the absolute value of
� is a big number. For instance, proton’s � is about 1018

and electron’s � is about �2�1021. Therefore, an electrically
charged particle holds a large amount of imaginary energy
in comparison with its real or rest energy. A neutral particle
such as a neutron, photon, or neutrino has only a real energy.

3 Unification of Newton’s law of gravity and Coulomb’s
law

Considering two pointlike electrically charged objects with
masses M1, M2, electric charges Q1, Q2, and distance r, we
can unify Newton’s law of gravity and Coulomb’s law of elec-
tric force by the following single expression of the interaction
between complex energies

~F = �G E1E2

c4r3 ~r; (7)

where E1 is the energy of object one and E2 is the energy of
object two. Eq. (7) shows that the interaction between two
particles is proportional to the product of their energies and
inversely proportional to the square of the distance between
them.

Replacing E1 and E2 by using the complex energy ex-
pression (1), we obtain

~F = �G M1M2

r3 ~r +
Q1Q2

r3 ~r � ipG M1Q2+M2Q1

r3 ~r =

= ~FMM + ~FQQ + i ~FMQ : (8)

The first term of Eq. (8) represents Newton’s law for the
gravitational interaction between two masses ~FMM . The sec-
ond term represents Coulomb’s law for the electromagnetic
interaction between two electric charges ~FQQ. The third term
is an imaginary force between the mass of one object and
the electric charge of the other object i ~FMQ. This imaginary
force is interesting and may play an essential role in adhering
an electric charge on a mass or in combining an imaginary
energy with a real energy. A negative imaginary force ad-
heres a positive electric charge on a mass, while a positive
imaginary force adheres a negative electric charge on a mass.
Figure 1 sketches all of the interactions between two electri-
cally charged particles as included in Eq. (8).

Electric charges have two varieties and thus three types of
interactions: (1) repelling between positive electric charges
~F++, (2) repelling between negative electric charges ~F��,
and (3) attracting between positive and negative electric
charges ~F+�. Figure 2 shows the three types of the Coulomb
interactions between two electric charges.

Fig. 1: Interactions between two electrically charged particles. They
iclude (1) the gravitational force between masses, (2) the electric
force between charges, and (3) the imaginary force between mass
and charge.

Fig. 2: Interactions between two electric charges. They include (1)
repelling between two positive charges, (2) repelling between two
negative charges, and (3) attraction between positive and negative
charges.

4 Energy of antiparticles

The energy of an antiparticle [5, 6] is naturally obtained by
conjugating the energy of the corresponding particle

E� =
�
EM + iEQ

�� = EM � iEQ: (9)

The only difference between a particle and its correspond-
ing antiparticle is that their imaginary energies (thus their
electric charges) have opposite signs. A particle and its an-
tiparticle have the same real energy but have the sign-opposite
imaginary energy.

In a particle-antiparticle annihilation process, their real
energies completely transfer into radiation photon energies
and their imaginary energies annihilate or cancel each other.
Since there are no masses to adhere, the electric charges come
together due to the electric attraction and cancel each other
(or form a positive-negative electric charge pair (+,�)). In
a particle-antiparticle pair production process, the radiation
photon energies transfer to rest energies with a pair of imag-
inary energies, which combine with the rest energies to form
a particle and an antiparticle.
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To describe the energies of all particles and antiparticles,
we can introduce a two-dimensional energy space. It is a
complex space with two axes denoted by the real energy
Re(E) and the imaginary energy Im(E). There are two
phases in the energy space. In phase I, both real and imag-
inary energies are positive, while, in phase II, the imaginary
energy is negative. Neutral particles including massless radi-
ation photons are located on the real energy axis. Electrically
charged particles are distributed between the real and imag-
inary energy axes. A particle and its antiparticle cannot be
located in the same phase of the energy space.

5 Quantization of imaginary energy

The imaginary energy is quantized. Each electric charge
quantum e (the electric charge of proton) has the following
imaginary energy

Ee =
ep
G
c2 � 1.67�1015 ergs � 1027 eV; (10)

which is about 1018 times greater than proton’s real energy
(or the energy of proton’s mass). Dividing the size of proton
(10�15 cm) by proton’s imaginary-real energy ratio (1018),
we obtain a scale length lQ = 1033 cm.

On the other hand, Kaluza-Klein theory geometrically
unified the four-dimensional Einsteinian general theory of
relativity and Maxwellian electromagnetic theory into a five-
dimensional unification theory ([7–9] for the original studies,
[10] for an extensive review, and [11, 12] for the field solu-
tions). In this unification theory, the fifth dimension is a com-
pact (one-dimensional circle) space with radius 1033 cm [13],
which is about the order of lQ obtained above. The reason
why the fifth dimensional space is small and compact might
be due to that the imaginary energy of an electrically charged
particle is many orders of magnitude higher than its real en-
ergy. The charge is from the extra (or fifth) dimension [14],
a small compact space. A pure electric charge is not mea-
sureable and is thus reasonably represented by an imaginary
energy.

The imaginary energy of the electric charge quantum is
about the thermal energy of the particle at a temperature TQ =
= 2Ee=kB � 2.4�1031 �K. At this extremely high temper-
ature, an electrically charged particle (e.g. proton) has a real
energy in the same order of its imaginary energy. According
to the standard big bang cosmology, the temperature at the
grand unification era and earlier can be higher than about TQ
[15]. To have a possible explanation for the origin of the uni-
verse (or the origin of all the matter and energy), we suggest
that a large electric charge such as 1046 Coulombs (�1076

ergs) was burned out, so that a huge amount of imaginary
energies transferred into real energies at the temperature TQ
and above during the big bang of the universe. This sugges-
tion gives a possible explanation for the origin of the universe
from nothing to the real world in a process of transferring a

Fig. 3: Three types of gravitational interactions between real ener-
gies: (1) the mass-mass interaction, (2) the mass-radiation interac-
tion, and (3) the radiation-radiation interaction.

large amount of imaginary energy (or electric charge) to real
energy.

6 Gravitational and radiation redshifts

Real energies actually have two components: matter with
mass and matter without mass (i.e. radiation). The interac-
tions between real energies may be referred as the gravitation
in general. In this sense, we have three types of gravitations:
(1) mass-mass interaction ~FMM , (2) mass-radiation interac-
tion ~FM , and (3) radiation-radiation interaction ~F . Figure
3 sketches all these interactions between real energies.

The energy of a radiation photon is given by h�, where
h is the Planck’s constant and � is the frequency of the ra-
diation. According to Eq. (7), the mass-radiation interaction
between a mass M and a photon  is given by

~F = �G Mh�
c2r3 ~r ; (11)

and the radiation-radiation interaction between two photons
1 and 2 is given by

~F = �G (h�1)(h�2)
c4r3 ~r : (12)

Newton’s law of gravity describes the gravitational force
between two masses ~FMM . The Einsteinian general theory
of relativity has successfully described the effect of matter
(or mass) on the space-time and thus the interaction of matter
on both matter and radiation (or photon). If we appropriately
introduce a radiation energy-momentum tensor into the Ein-
stein field equation, the Einsteinian general theory of relativ-
ity can also describe the effect of radiation on the space-time
and thus the interaction of radiation on both matter and radi-
ation.

When a photon of light travels relative to an object (e.g.
the Sun) from ~r to ~r + d~r, it changes its energy or frequency
from � to � + d�. The work done on the photon by the mass-
radiation interaction (~FM � d~r) is equal to the photon energy
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change (hd�), i.e.,

�G Mh�
c2r2 dr = hd� : (13)

Eq. (13) can be rewritten as

d�
�

= � GM
c2r2 dr : (14)

Integrating Eq. (14) with respect to r from R to1 and �
from �e to �o, we have

ln
�o
�e

= � GM
c2R

; (15)

where R is the radius of the object, �e is the frequency of the
light when it is emitted from the surface of the object, �o is
the frequency of the light when it is observed by the observer
at an infinite distance from the object. Then, the redshift of
the light is

ZG =
�o � �e
�e

=
�e � �o
�o

= exp
�
GM
c2R

�
� 1 : (16)

In the weak field approximation, it reduces

ZG ' GM
c2R

: (17)

Therefore, calculating the work done by the mass-
radiation interaction on a photon, we can derive the Einstein-
ian gravitational redshift in the weak field approximation.

Similarly, calculating the work done on a photon from an
object by the radiation-radiation gravitation ~F , we obtain a
radiation redshift,

Z =
4GM
15c5

�AT 4
c +

G
c5
�AT 4

s ; (18)

where � is the Stephan-Boltzmann constant, A is the surface
area, Tc is the temperature at the center, Ts is the temperature
on the surface. Here we have assumed that the inside temper-
ature linearly decreases from the center to the surface. The
radiation redshift contains two parts. The first term is con-
tributed by the inside radiation. The other is contributed by
the outside radiation. The redshift contributed by the outside
radiation is negligible because Ts � Tc.

The radiation redshift derived here is significantly small
in comparison with the empirical expression of radiation red-
shift proposed by Finlay-Freundlich [16]. For the Sun with
Tc = 1.5�107 �K and Ts = 6�103 �K, the radiation redshift
is only about Z = 1.3�10�13, which is much smaller than
the gravitational redshift ZG = 2.1�10�6.

7 Discussions and conclusions

A quark has not only the electric charge but also the color
charge [17, 18]. The electric charge has two varieties (pos-
itive and negative), while the color charge has three values
(red, green, and blue). Describing both electric and color
charges as imaginary energies, we may unify all of the four
fundamental interactions into a single expression of the inter-

action between complex energies. Details of the study includ-
ing the color charge will be given in the next paper.

Eq. (1) does not include the self-energy — the contribu-
tion to the energy of a particle that arises from the interaction
between different parts of the particle. In the nuclear physics,
the self-energy of a particle has an imaginary part [19, 20].
The mass-mass, mass-charge, and charge-charge interactions
between different parts of an electrically charged particle will
be studied in future.

As a summary, a pure electric charge (not observable and
from the extra dimension) has been suggested as a form of
imaginary energy. Total energy of an electrically charged par-
ticle is a complex number. The real part is proportional to the
mass, while the imaginary part is proportional to the electric
charge. The energy of an antiparticle is obtained by conjugat-
ing the energy of its corresponding particle. The gravitational
and electromagnetic interactions have been classically unified
into a single expression of the interaction between complex
energies.

The interactions between real energies are gravitational
forces, categorized by the mass-mass, mass-radiation, and
radiation-radiation interactions. The work done by the mass-
radiation interaction on a photon derives the Einsteinian
gravitational redshift, and the work done by the radiation-
radiation interaction on a photon gives the radiation redshift,
which is significantly small in comparison with the gravita-
tional redshift.

The interaction between imaginary energies is electro-
magnetic force. Since an electrically charged particle con-
tains many order more imaginary energy than real energy,
the interaction between imaginary energies are much stronger
than that between real energies.

Overall, this study develops a new physics concept for
electric charges, so that classically unifies the gravitational
and electric forces and derives the Einsteinian gravitational
redshift.
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An “Earth-Planet” or “Earth-Star” Couplet as a Gravitational Wave Antenna,
wherein the Indicators are Microseismic Peaks in the Earth

Vladimir A. Dubrovskiy�

Institute of Geosperes Dynamics, Russian Academy of Science, Leninskiy pr. 38, k. 6, Moscow 117334, Russia

An “Earth-planet” or “Earth-star” couplet can be considered as a gravitational wave
antenna. There in such an antenna a gravitational wave should lead to a peak in the
microseismic background spectrum on the Earth (one of the ends of the antenna). This
paper presents numerous observational results on the Earth’s microseismic background.
The microseismic spectrum, being compared to the distribution of the relative location
of the nearest stars, found a close peak-to-peak correspondence. Hence such peaks can
be a manifestation of an oscillation in the couplet “Earth-star” caused by gravitational
waves arriving from the cosmos.

1 Introduction

Use the following simplest model. Focus on two gravitation-
ally-connected objects such as the couplets “Earth-Moon”,
“Earth-Jupiter”, “Earth-Saturn”, “Earth-Sun”, or “Earth-star”
(a near star is meant). Such a couplet can be considered as
a gravitational wave antenna. A gravitational wave, falling
down onto such an antenna, should produce an oscillation
in the system that leads to a peak in the microseismic back-
ground spectrum of the Earth (one of the ends of the antenna).

Gravitational waves radiated on different frequencies may
have an origin in gravitationally unstable objects in the Uni-
verse. For instance, a gravitationally unstable cosmic cloud
wherein a stellar form may be such a source. A mechanism
which generates gravitational waves on a wide spectrum can
be shown in such an example. There is a theorem: “if a
system is in the state of unstable equilibrium, such a sys-
tem can oscillatorily bounce at low frequencies in the stable
area of the states; the frequency decreases while the system
approaches the state of equilibrium (threshold of instability)
with a finite wavenumber at zero frequency” [1, 2]. This the-
orem is applicable exactly to the case of the gravitational in-
stability of the cosmic clouds. Such a gravitational instabil-
ity is known as Jeans’s instability, and leads to the process
of the formation of stars [3]. In this process intense gravita-
tional radiation should be produced. Besides the spectrum of
the waves should be continuously shifting on low frequency
scales as such a cloud approaches to the threshold of instabil-
ity. Hence, gravitational waves radiated on the wide spectrum
of frequencies should be presented in the Universe always as
stellar creation process.

Hence, the peaks of the microseismic background on the

�Posthumous publication prepared by Prof. Simon E. Shnoll (Institute
of Theoretical and Experimental Biophysics, Russian Academy of Sciences,
Pushino, Moscow Region, 142290, Russia), who was close to the author. E-
mail of the submitter: shnoll@iteb.ru; shnoll@mail.ru. See Afterword for
the biography and bibliography of the author, Prof. Vladimir A. Dubrovskiy
(1935–2006).

Earth (if any observed), if correlated to the parameters of the
“Earth-space body”system (such as the distance L between
them), should manifest the reaction in the “Earth-space body”
couplet of the gravitational waves arriving from the cosmos.
The target of this study is the search for such correlation
peaks in the microseismic background of the Earth.

2 Observations

Our observations were processed at the Seismic Station of
Simpheropol University (Sevastopol, Crimea Peninsula),
using a laser interferometer [4]. Six peaks were registered
at 2.3 Hz, 1 Hz, 0.9 Hz, 0.6 Hz, 0.4 Hz, 0.2 Hz (see Fig. 1a
and Fig. 1b). The graphs were drawn directly on the basis
of the records made by the spectrum analyzer SK4-72. The
spectrum analyzer SK4-72 accumulates output signals from
an interferometer, then enhances periodic components of the
signal relative to the chaotic components. 1,024 segregate
records, 40-second length each, were averaged.

Many massive gravitating objects are located near the so-
lar system at the distance of 1.3, 2.7, 3.5, 5, 8, and 11 parsecs.
All the distances L between the Earth and these objects cor-
respond to all the observed peaks (see Fig. 1a and Fig. 1b).
The calculated distribution of the gravitational potential of
the nearest stars is shown in Fig. 1c. Comparing Fig. 1a and
Fig. 1b to Fig. 1c, we reveal a close similarity between the
corresponding curves: each peak of Fig. 1a and Fig. 1b cor-
responds to a peak in Fig. 1c, and vice versa. Besides there
are small deviations, that should be pointed out for clarity.
For distances L> 4 parsecs the data were taken only for the
brightest star, and the curve of the gravitational potential cor-
responding to this distance is lower than that for the L< 4
shown in the theoretical Fig. 1c. Another deviation is the
presence of a uniform growth for the low-frequency back-
ground component in the experimental Fig. 1a and Fig. 1b,
which doesn’t appear in Fig. 1c. Such a uniform component
of the microseismic background is usually described by the
law A! � 1=!2 [5, 6].
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Fig. 1: The observed microseismic background (solid curve) after
accumulation of the background signals from the interferometer out-
put: Fig. 1a shows the range 0.1–5 Hz; Fig. 1b shows the range 0.1–
2 Hz. The dotted curve of Fig. 1a shows the calculated distribution
of the gravitational potential of the stars in common with the uniform
part of the microseismic background. This dotted curve is normal-
ized so that it is the same as that of the solid curve at 2.28 Hz. Fig. 1c
shows the calculated distribution of the gravitational potential of the
stars. The solid points correspond to all the nearest stars, a distance
to which is L < 4 parsecs, and to all the brightest stars located at
L > 4 parsecs. Masses M are expressed in the mass of the Sun.
�Aur, �Lyz, etc. mean � stars of the constellations according to
the astronomical notation [7,8]. A, B sign for the components of the
binaries. The numbers typed at the extrema are frequencies.

Moreover, the quantitative correlation between the fre-
quency peaks and the distribution of the nearest stars is found.
Namely, the sharpest peak at 2.28 Hz corresponds to the dis-
tance between the Earth and the nearest binary stars A and B,
�Centaurus [7,8]. The broader peak at 1 Hz (see Fig. 1a, and
Fig. 1b) corresponds to the distances to the stars which are
distributed over the range from 2.4 to 3.8 parsecs [7, 8]. The
spectrum analyzer SK4-72 averages all the peaks in the range
2.4–3.8 parsecs into one broad peak near 1 Hz (Fig. 1a). At
the same time the broad peak of Fig. 1a, being taken under
detailed study, is shown to be split into two peaks (Fig. 1b) if
the spectrum analyzer SK4-72 processes the frequency range
from 0.1 to 2 Hz (the exaggeration of the frequency scale).
This subdivision of the frequency range corresponds to the
division of the group of stars located as far as in the range
from 2.4 to 3.8 parsecs into two subgroups which are near 2.7
and 3.5 parsecs (Fig. 1c).

The distribution of the gravitational potential over the
subgroups, in common with the uniform background spec-
trum, is shown by the dotted curve in Fig. 1a. We see therein
both the quantitative and qualitative correlation between the
frequent spectra of the microseismic background and the dis-
tribution of the gravitational potential in the subgroups.

The Sevastopol data correlation on the frequency spectra
between the microseismic background and the distances be-
tween the Earth and the nearest stars are the same as the data
registered in Arizona. The Sevastopol and Arizona data are
well-overlapping with coincidence in three peaks [9].

It is possible to propose more decisive observations.
Namely, it would be reasonable to look for peaks which could
be corresponding to the Earth-Moon” (�240 MHz), “Earth-
Sun” (�0.6 MHz), “Earth-Venus” (�0.3–2.2 MHz), “Earth-
Jupiter” (�100–150 kHz), and “Earth-Saturn” (�58–72 kHz)
antennae. Moreover, the peaks corresponding to Venus,
Jupiter and Saturn should change their frequency in accor-
dance with the change in the distance between the Earth and
these planets during their orbital motion around the Sun. If
such a correlation could be registered in an experiment, this
would be experimentum crucis in support of the above pre-
sented results.
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Afterword by the Editor

In addition to the posthumous paper by Prof. Dubrovskiy, I should
provide an explaination why we publish it in a form substantially
trunscated to the originally version of the manuscript.

The originally Dubrovskiy manuscript, submitted by Prof. Si-
mon E. Shnoll, was based on the preprint uloaded in 2001 into the
Cornell arXiv.org, astro-ph/0106350. In that manuscript, aside for
the experimental data presented in the current publication, Dubrov-
skiy tried to use the data as a verification to the Laplace speed of
gravitation, which is many orders higher than the velocity of light.
His belief in Laplace’s theory unfortunately carried him into a few
formally errors.

Laplace supposed such a speed as a result of his soltion of the
gravitational two-body problem, which concerns the motion of two
point particles that interact only with each other, due to gravity. In
this problem a body A experiences that the force of gravitation which
acts at that point where the body A is located in the moment. Be-
cause a body B (the source of the force) is distant from the body A
and moves with respect to it with a velocity, there is incoincidence
of two directions: the line connecting both bodies in the moment
and the direction from the body A to that point where the body B
was located, due to its motion, some time ago. What line is the lo-
cation of the centre of gravity in such a system? If it is located in
the first line, a force accelerating the body A should appear. If it is
the second line, a non-compensated component of the momentum
should appear in the body B, that is the breaking of the conserva-
tion law. As a result such a system becomes unstable anyway. This
is a paradox of the two body problem of the 18th century. Using
the mathematical methods accessed in the end of the 18th century,
Laplace resolved this problem by introduction of the speed of grav-
itation, which should be, in the sample of the planets, at least ten
orders higher than the velocity of light.

The contemporary Newtonian celestial mechanics resolves the
two body problem with use of the methods of higher mathematics.
This is a classical example, which shows that two bodies orbiting
a common centre of gravity under specific conditions move along
stable elliptic orbits so that they cannot leave the system or fall onto
each other. This classical problem, known as the Kepler problem,
is described in detail in §13 of Short Course of Theoretical Physics.
Mechanics. Electrodynamics by Landau and Lifshitz (Nauka Pub-
lishers, Moscow, 1969).

The same situation takes a place in the General Theory of Rel-
ativity in a case where the physical conditions of the motion are
close to the non-relativistic Newtonian mechanics. This problem is

discussed in detail in §101 of The Classical Theory of Fields by Lan-
dau and Lifshitz (Butterworth-Heinemann, 1980). The mechanical
energy and the moment of momentum of a two body system remain
unchanged with only a small correction for the energy-momentum
loss with gravitational radiation. In a system like the solar system the
power of gravitational radiation, which is due to the orbiting plan-
ets, is nothing but only a few kilowatts. Therefore such a system is
stable with the speed of gravitation equal to the velocity of light: the
planets cannot leave the solar system or fall onto each other within
a duration compared to the age of the Universe.

Due to the aforementioned reason, I substantially corrected the
originally Dubrovskiy manuscript. I removed everything on the su-
perluminal Laplace velocity of gravitation. I also corrected minor
errors in the description of gravitational wave antennae.

I did it through the prior permission of Dr. Victor N. Sergeev
(e-mail: svn@idg.chph.ras.ru), who was a close friend of Prof. Dub-
rovskiy and a co-author of many his works.

Dr. Sergeev is in contact with Prof. Shnoll. He read the corrected
version of the manuscript, and agreed with the edition. Sergeev
wrote, in a private letter of January 29, 2008: “. . . He [Dubrovskiy]
considered the manuscript as a verification to his theory of gravita-
tion where gravitational waves travel with a superluminal velocity.
However the precense of a correlation of the microseismic spectra
to the cosmic bodies, the result itself is important independent from
interpretation given to it. Of course, it would be very good to publish
this result. Besides, the edited version has nothing of those contra-
dicting to the views of V. A. Dubrovskiy.”

In general, an idea about a free-mass gravitational wave an-
tenna whose basis is set up by an “Earth-planet” or “Earth-star”
couplet is highly original. No such an idea met in the science before
Dubrovskiy. Moreover, the correlation of the microseismic oscilla-
tions to the distances found by him gives good chances that such a
couplet can be used as a huge free-mass gravitational wave detec-
tor in the future. The interstellar distances are extremely larger to 5
mln. km of the basis of LISA — the Laser Interferometer Space An-
tenna planned by the European Space Agency to launch on the next
decade. So the displacement effect in the Dubrovskiy mass-detector
due the a falling gravitatuonal wave should be large that could result
a microseismic activity in the Earth.

With such a fine result, this paper will leave fond memories of
Prof. Dubrovskiy. May his memory live for ever!

Dmitri Rabounski, Editor-in-Chief
Progress in Physics

Vladimir A. Dubrovskiy (1935–2006)

Vladimir Anatolievich Dubrovskiy was born on March 20, 1935, in
the formerly-known Soviet Union. In 1953–1959 he was a student
in the Physics Department of Moscow University. Then he worked
on the research stuff of the Academy of Sciences of URSS (now the
Russian Academy of Sciences, RAS) all his life. During the first pe-
riod, from 1959 to 1962, he was employed as a research scientist at
the Institute of Mathematics in the Siberian Branch of the Academy
of Sciences, where he worked on the physics of elementary particles.
During the second period, from 1962 to 1965, he completed post-
graduate education at the Institute of Applied Mechanics: his theme
was a “quasi-classical approximation of the equations of Quantum
Mechanics”. During two decades, from 1966 to 1998, he worked at
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the Laboratory of Seismology of the Institute of the Physics of the
Earth, in Moscow, where he advanced from a junior scientist to the
Chief of the Laboratory. His main research at the Institute concerned
the internal constitution and evolution of the Earth.

From 1972 to 1992 Dubrovskiy was the Executive Secretary of
the “Intergovernmental Commission URSS-USA on the Prediction
for Earthquakes”. In 1986–1991 he was the Executive Secretary of
the “Commission on the Constitution, Composition, and Evaluation
of the Earth’s Interior” by the Academy of Science of URSS and the
German Research Foundation (Deutsche Forschungsgemeinschaft).
In 1997 he was elected a Professor in the Department of Mechanics
and Mathematics of Moscow University.

In the end of 1996, Dubrovskiy and all the people working with
him at his Laboratory of Seismology were ordered for discharge
from the Institute of the Physics of the Earth due to a conflict be-
tween Dubrovskiy and the Director of the Institute. Then, in Febru-
ary of 1997, Dubrovskiy accused the Director with repression in
science like those against genetics during the Stalin regime, and
claimed hungry strike. A month later, in March, his health condition
had become so poor, forcing him to be hospitalized. (Despite the ur-
gent medical treatment, his health didn’t come back to him; he was
still remaining very ill, and died nine years later.) All the story met
a resonance in the scientific community. As a result, Dubrovskiy, in
common with two his co-workers, was invited by another Institute
of the Academy of Sciences, the Institute of Geospheres Dynam-
ics in Moscow, where he worked from 1998 till death. He died on
November 12, 2006, in Moscow.

Dubrovskiy authored 102 research papers published in scientific
journals and the proceedings of various scientific conferences. A
brief list of his scientific publications attached.

Main scientific legacy of V. A. Dubrovskiy

A five dimensional approach to the quasiclassical approach of the equa-
tions of Quantum Mechanics:

• Dubrovskiy V. A. and Skuridin G. A. Asymptotic decomposition in
wave mechanics. Magazine of Computational Mathematics and
Mathematical Physics, 1964, v. 5, no. 4.

The hypothesis on the iron oxides contents of the Earth’s core:
• Dubrovskiy V. A. and Pan’kov V. L. On the composition of the

Earth’s core. Izvestiya of the Academy of Sciences of USSR, Earth
Phys., 1972, no. 7, 48–54.

Now this hypothesis has been verified by many scientists in their experimen-
tal and theoretical studies. A new idea is that the d-electrons of the transition
elements (mainly iron), being under high pressure, participate with high ac-
tivity in the formation of the additional covalent bindings. As a result the
substances become dense, so the iron oxide FeO can be seen as the main part
of the contents formation of the core of the Earth.

The theory of eigenoscillation of the elastic inhomogeneities:
• Dubrovskiy V. A. Formation of coda waves. In: The Soviet-American

Exchange in Earthquake Prediction. U.S. Geological Survey. Open-
File Report, 81–1150, 1981, 437–456.

• Dubrovskiy V. A. and Morochnik V. S. Natural vibrations of a spher-
ical inhomogeneity in an elastic medium. Izvestiya of the Academy
of Sciences of USSR, Physics of the Solid Earth, 1981, v. 17, no. 7,
494–504.

• Dubrovskiy V. A. and Morochnik V. S. Nonstationary scattering of
elastic waves by spherical inclusion. Izvestiya of the Academy of

Sciences of USSR, Physics of the Solid Earth, 1989, v. 25, no. 8,
679–685.

This presents the analytic solution of the boundary problem. The frequent
equation is derived for both radial, torsional and spheroidal vibrations. A
new method of solution for the diffraction problem is developed for a spher-
ical elastic inclusion into an infinite elastic medium. The obtained analytical
solution is checked by numerical computation. Formulae are obtained for
the coda waves envelop in two limiting cases: single scattering and diffusion
scattering. A frequency dependence on the quality factor is manifest through
the corresponding dependance on the scattering cross-section.

The mechanism of the tectonic movements:
• Artemjev M. E., Bune V. J., Dubrovskiy V. A., and Kambarov N. Sh.

Seismicity and isostasy. Phys. Earth Planet. Interiors, 1972, v. 6,
no. 4, 256–262.

• Dubrovskiy V. A. Mechanism of tectonic movements. Izvestiya of
the Academy of Sciences of USSR, Physics of the Solid Earth, 1986,
v. 22, no. 1, 18–27.

• Dubrovskiy V. A., Sergeev V. N., and Fuis G. S. Generalized condi-
tion of isostasy. Doklady of the Russian Academy of Sciences, 1995,
v. 342, no. 1.

• Dubrovskiy V. A. and Sergeev V. N. Physics of tectonic waves. Izves-
tiya of the Russian Academy of Sciences, Physics of the Solid Earth,
1997, v. 33, no. 10, 865–866.

This mechanism is seen to be at work in a “lithosphere-astenosphere” system
which has the density inversion between the lithosphere and astenosphere.
The substance of the elastic lithosphere is denser than that of the liquid as-
tenosphere. A solution for the model of the elastic layer above the incom-
pressible fluid with the density inversion is found. It is found that there is a
nontrivial, unstable equilibrium on nonzero displacement of the elastic layer.
The bifurcation point is characterized by a critical wavelength of the peri-
odic disturbance. This wavelength is that of the wave disturbance when the
Archimedian force reaches the elastic force of disturbance.

Two-level convection in Earth’s mantle:
• Dubrovskiy V. A. Two-level convection in the Earth’s mantle. Dok-

lady of the Russian Academy of Sciences, 1994, v. 334, no. 1.

• Dubrovskiy V. A. Convective instability motions in the Earth’s inte-
riors. Izvestiya of the Russian Academy of Sciences, Physics of the
Solid Earth, 1995, no. 9.

The mantle convection is considered at two levels: a convection in the lower
mantle is the chemical-density convection due to the core-mantle bound-
ary differentiation into the different compositionally light and heavy compo-
nents, while the other convection is the heat-density convection in the“elastic
lithosphere — fluid astenosphere“ system. The last one manifests itself in
different tectonic phenomena such as the tectonic waves, the oceanic plate
tectonic and continental tectonic as a result of the density inversion in the
“lithosphere-astenosphere” system. The lower mantle chemical convection
gives the heat energy flow to the upper mantle heat convection.

Generation for the magnetic, electric and vortex fields in magnetohydro-
dynamics, electrohydrodynamics and vortex hydrodynamics:

• Dubrovskiy V. A. and Skuridin G. A. The propagation of small dis-
turbances in magnetohydrodynamics. Geomagnetism and Aeronomy,
1965, v. 5, no. 2, 234–250.

• Dubrovskiy V. A. The equations of electrohydrodynamics and elec-
troelasticity. Soviet Physics Doklady, v. 29(12), December 1984
(transl. from Doklady Akademii Nauk URSS, 1984, v. 279, 857–860).

• Dubrovskiy V. A. Conditions for magnetic field Generation. Doklady
Akadmii Nauk URSS, 1986, v. 286, no. 1, 74–77.

• Dubrovskiy V. A. and Rusakov N. N. Mechanism of generation of
an elastic field. Doklady Akadmii Nauk URSS, 1989, v. 306, no. 6,
64–67.
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• Dubrovskiy V. A. On a relation between strains and vortices in hydro-
dynamic flows. Doklady Physics, 2000, v. 45, no. 2, 52–54 (transl.
from Doklady Akademii Nauk URSS, 2000, v. 370, no. 6, 754–756.

A nonlinear system of the equations is obtained, which manifests a mutual
influence between the motion of a dielectric medium and an electric field.
This theory well-describes the atmospheric electricity, including ball light-
ing. The theory proves: the motion of a magnetohydrodynamical, electro-
hydrodynamical or hydrodynamical incompressible fluid is locally unstable
everywhere relative to the disturbances of a vortex, magnetic or electric field.
A mutual, pendulumlike conversion energy of the fluid flow and energy of a
magnetic, electric or vortex field is possible. Two-dimensional motions are
stable in a case where they are large enough. The magnetic restrain of plasma
is impossible in three-dimensional case.

The elastic model of the physical vacuum:
• Dubrovskiy V. A. Elastic model of the physical vacuum. Soviet Phys-

ics Doklady, v. 30(5), May 1985 (translated from Doklady Akademii
Nauk URSS, 1985, v. 283, 83–85.

• Dubrovskiy V. A. Measurments of the gravity waves velocity. arXiv:
astro-ph/0106350.

• Dubrovskiy V. A. Relation of the microseismic background with cos-
mic objects. Vestnik MGU (Transactions of the Moscow University),
2004, no. 4.

• Dubrovskiy V. A. and Smirnov N. N. Experimental evaluation of the
gravity waves velocity. In: Proc. of the 54nd International Astronau-
tical Congress, September 29 — October 3, 2003, Bremen, Germany.

New variables in the theory of elasticity are used (e.g. the velocity, vortex,
and dilation set up instead the velocity and stress used in the standard theory).
This gives a new system of the equations describing the wave motion of
the velocity, vortex and dilation. In such a model, transversal waves and
longitudinal waves are associated to electromagnetic and gravitational waves
respectively. Such an approach realizes the field theory wherein elementary
particles are the singularities in the elastic physical vacuum.

A universal precursor for the geomechanical catastrophes:
• Dubrovskiy V. A. Tectonic waves. Izvestiya of the Academy of Sci-

ences of URSS, Earth Physics, 1985, v. 21, no. 1, 20–23.

• Dubrovskiy V. A. and Dieterich D. Wave propagation along faults
and the onset of slip instability. EOS, 1990, v. 71, no. 17, 635–636.

• Dubrovskiy V. A., McEvilly T. V., Belyakov A. S., Kuznetzov V. Y.,
and Timonov M. V. Borehole seismoacoustical emission study at the
Parkfield prognosis range. Doklady of the Russian Academy of Sci-
ences, 1992, v. 325, no. 4.

• Dubrovskiy V. A. and Sergeev V. N. The necessary precursor for a
catastrophe. In: Tectonic of Neogey: General and Regional Aspects,
GEOS, Moscow, 2001, v. 1, 222–226.

Unstable phenomena such as earthquakes can occur in a geomechanical sys-
tem, if there is an unstable state of equilibrium in a set of critical geophysical
parameters. There are two fields of the geophysical parameters, which cor-
respond to the stable and unstable states. According to Dubrovskiy (1985)
and also Dubrovskiy and Sergeev (2001), in the stable field of the parame-
ters the geosystem has vibratory eigenmotions, where the frequencies tend
to zero if the system approaches unstable equilibrium (during an earthquake
occurrence, for instance). However the critical wavelength of the vibrations
remains finite at zero frequency, and characterizes the size of the instability.
Change in the eigenfrequencies affects the spectrum of seismoacoustic emis-
sion in an area surrounding an impending earthquake. Such a change indi-
cates the fact that the geomechanical system is close to an unstable threshold,
and the critical wavelength determines the energy and space dimensions of
the developing instability sorce. Such an approach to the study of a systems
in the state of unstable equilibrium is applicable to all system, whose behav-
ior is described by hyperbolic equations in partial derivatives, i.e. not only
geomechanical systems.
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One shows how in certain model situations conformal general relativity corresponds
to a Bohmian-Dirac-Weyl theory with conformal mass and Bohmian quantum mass
identified.

The article [12] was designed to show relations between con-
formal general relativity (CGR) and Dirac-Weyl (DW) the-
ory with identification of conformal mass m̂ and quantum
mass M following [7, 9, 11, 25] and precision was added via
[21]. However the exposition became immersed in techni-
calities and details and we simplify matters here. Explic-
itly we enhance the treatment of [7] by relating M to an im-
proved formula for the quantum potential based on [21] and
we provide a specific Bohmian-Dirac-Weyl theory wherein
the identification of CGR and DW is realized. Much has
been written about these matters and we mention here only
[1–7, 9–20, 23–28] and references therein. One has an Ein-
stein form for GR of the form

SGR =
Z
d4x
p�g(R� �jr j2 + 16�LM ) (1.1)

(cf. [7, 22]) whose conformal form (conformal GR) is an in-
tegrable Weyl geometry based on

ŜGR =
Z
d4x

p�ĝ e� �
�
�
R̂�

�
�� 3

2

�
jr̂ j2 + 16�e� LM

�
= (1.2)

=
Z
d4x

p�ĝ "�̂R̂� ��� 3
2

� jr̂�̂j2
�̂

+ 16��̂2LM

#
where 
2 = exp(� ) =� with ĝab = 
2gab and �̂=
= exp( ) =��1 (note (r̂ )2 = (r̂�̂)2=(�̂)2). One sees also
that (1.2) is the same as the Brans-Dicke (BD) action when
LM = 0, namely (using ĝ as the basic metric)

SBD =
Z
d4x

p�ĝ ��̂R̂� !
�̂
jr̂�̂j2 + 16�LM

�
; (1.3)

which corresponds to (1.2) provided !=�� 3
2 and LM = 0.

For (1.2) we have a Weyl gauge vector wa � @a = @a�̂=�̂
and a conformal mass m̂ = �̂�1=2m with 
2 = �̂�1 as the
conformal factor above. Now in (1.2) we identify m̂ with
the quantum mass M of [25] where for certain model situa-
tions M � � is a Dirac field in a Bohmian-Dirac-Weyl theory
as in (1.8) below with quantum potential Q determined via
M2 = m2 exp(Q) (cf. [10, 11, 21, 25] and note that m2 / T
where 8�T ab = (1=

p�g)(�
p�g LM=�gab)). Then �̂�1 =

= m̂2=m2 = M2=m2 � 
2 for 
2 the standard conformal

factor of [25]. Further one can write (1A)
p�ĝ �̂ R̂=

= �̂�1p�ĝ �̂2 R̂ = �̂�1p�g R̂ = (�2=m2)
p�g R̂. Re-

call here from [11] that for gab = �̂ĝab one has
p�g=

= �̂2p�ĝ and for the Weyl-Dirac geometry we give a brief
survey following [11, 17]:

1. Weyl gauge transformations: gab! ~gab = e2�gab;
gab! ~gab = e�2�gab — weight e.g. �(gab) =�2.
� is a Dirac field of weight -1. Note �(

p�g) = 4;
2. �cab is Riemannian connection; Weyl connection is �̂cab

and �̂cab = �cab = gabwc � �cbwa � �cawb;
3. raBb = @aBb �Bc�cab; raBb = @aBb +Bc�bca;
4. r̂aBb = @aBb �Bc�̂cab; r̂aBb = @aBb +Bc�̂bca;
5. r̂�gab = �2gabw�; r̂�gab = 2gabw� and for 
2 =

= exp(� ) the requirementrcgab = 0 is transformed
into r̂cĝab = @c ĝab showing that wc =�@c (cf. [7])
leading to w� = �̂�=�̂ and hence via �=m�̂�1=2 one
has wc = 2�c=� with �̂c=�̂=�2�c=� and wa =
=�2�a=�.

Consequently, via �2R̂ = �2R� 6�2r�w� + 6�2w�w�
(cf. [11, 12, 16, 17]), one observes that ��2r�w� =
=�r�(�2w�) + 2�@��w�, and the divergence term will
vanish upon integration, so the first integral in (1.2) becomes

I1 =
Z
d4x
p�g

�
�2

m2R+12�@��w�+6�2w�w�
�
: (1.4)

Setting now �� 3
2 =  the second integral in (1.2) is

I2 = � 
Z
d4x

p�ĝ �̂ jr̂�̂j2j�̂j2 =

= � 4
Z
d4x

p�ĝ �̂�1�̂2 jr̂�j2
�2 = (1.5)

= � 4
m2

Z
d4x
p�gjr̂�j2;

while the third integral in the formula (1.2) becomes
(1B) 16�

R p�g d4xLM . Combining now (1.4), (1.5), and
(1B) gives then

ŜGR =
1
m2

Z
d4x
p�g ��2R+ 6�2w�w� +

+ 12�@��w� � 4jr̂�j2 + 16�m2LM
�
:

(1.6)
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We will think of r̂� in the form (1C) r̂��= @�� �
� w�� = �@��. Putting then jr̂�j2 = j@�j2 (1.6) becomes
(recall  = �� 3

2 )

ŜGR =
1
m2

Z
d4x
p�g �

� ��2R+ (3� 4�)j@�j2 + 16�m2LM
�
:

(1.7)

One then checks this against some Weyl-Dirac actions.
Thus, neglecting termsW abWab we find integrands involving
dx4p�g times

��2R+ 3(3� + 2)j@�j2 + 2��4 + LM (1.8)

(see e.g. [11,12,17,25]); the term 2��4 of weight�4 is added
gratuitously (recall � (

p�g ) = 4). Consequently, omitting
the � term, (1.8) corresponds to (1.7) times m2 for LM �� 16�LM and (1D) 9� + 4� + 3 = 0. Hence one can iden-
tify conformal GR (without �) with a Bohmian-Weyl-Dirac
theory where conformal mass m̂ corresponds to quantum
mass M.

REMARK 1.1. The origin of a �4 term in (1.8) from
ŜGR in (1.2) with a term 2

p�ĝ�̂ in the integrand would
seem to involve writing (1E) 2

p�ĝ �̂ = 2
p�ĝ �̂2
4�̂ =

= 2
p�g �4�̂=m4 so that � in (1.8) corresponds to �̂. Nor-

mally one expects �
p�g ! p�ĝ �̂2� (cf. [2]) or perhaps

�! �̂2� = 
�4� = �̂. In any case the role and nature of a
cosmological constant seems to still be undecided. �
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The equations of gravitation together with the equations of electromagnetism in terms
of the General Theory of Relativity allow to conceive an interdependence between the
gravitational field and the electromagnetic field. However the technical difficulties of
the relevant problems have precluded from expressing clearly this interdependence.
Even the simple problem related to the field generated by a charged spherical mass
is not correctly solved. In the present paper we reexamine from the outset this problem
and propose a new solution.

1 Introduction

Although gravitation and electromagnetism are distinct enti-
ties, the principles of General Relativity imply that they affect
each other. In fact, the equations of electromagnetism, con-
sidered in the spacetime of General Relativity, depend on the
gravitational tensor, so that the electromagnetic field depends
necessarily on the gravitational potentials. On the other hand,
the electromagnetism is involved in the equations of gravita-
tion by means of the corresponding energy-momentum ten-
sor, so that the gravitational potentials depend necessarily on
the electromagnetic field. It follows that, in order to bring out
the relationship between gravitation and electromagnetism,
we must consider together the equations of electromagnetism,
which depend on the gravitational tensor, and the equations of
gravitation, which depend on the electromagnetic potentials.
So we have to do with a complicated system of equations,
which are intractable in general. Consequently it is very dif-
ficult to bring out in explicit form the relationship between
gravitation and electromagnetism. However the problem can
be rigorously solved in the case of the field (gravitational and
electric) outside a spherical charged mass. The classical solu-
tion of this problem, the so-called Reissner-Nordström met-
ric, involves mathematical errors which distort the relation-
ship between gravitational and electric field. In dealing with
the derivation of this metric, H. Weyl notices that “For the
electrostatic potential we get the same formula as when the
gravitation is disregarded” [5], without remarking that this
statement includes an inconsistency: The electrostatic poten-
tial without gravitation is conceived in the usual spacetime,
whereas the gravitation induces a non-Euclidean structure af-
fecting the metrical relations and, in particular, those involved
in the definition of the electrostatic potential. The correct so-
lution shows, in fact, that the electrostatic potential depends
on the gravitational tensor.

In the present paper we reexamine from the outset the
problem related to the joint action of the gravitation and elec-
tromagnetism which are generated by a spherical charged
source. We assume that the distribution of matter and charges

is such that the corresponding spacetime metric is S�(4)-
invariant (hence also �(4)-invariant), namely a spacetime
metric of the following form [3, 4]

ds2 = f2dx2
0 + 2ff1(xdx)dx0 � `21dx2 +

+
�
`21 � `2
�2 + f2

1

�
(xdx)2;

(1.1)

(where f = f(x0; kxk), f1 = f1(x0; kxk), `1 = `1(x0; kxk),
` = `(x0; kxk), � = kxk).

It is useful to write down the components of (1.1):

g00 = f2; g0i = gi0 = xiff1 ;

gii = �`21 +
�
`21 � `2
�2 + f2

1

�
x2
i ;

gij =
�
`21 � `2
�2 + f2

1

�
xixj ; (i; j = 1; 2; 3; i , j) ;

the determinant of which equals�f2`2`41. Then an easy com-
putation gives the corresponding contravariant components:

g00 =
`2 � �2f2

1
f2`2

; g0i = gi0 = xi
f1

f`2
;

gii = � 1
`21
� 1
�2

�
1
`2
� 1
`21

�
x2
i ;

gij = � 1
�2

�
1
`2
� 1
`21

�
xixj ; (i; j = 1; 2; 3; i , j) :

Regarding the electromagnetic field, with respect to
(1.1), it is defined by a skew-symmetrical S�(4)-invariant
tensor field of degree 2 which may be expressed either by its
covariant componentsX

V��dx� 
 dx� ; (V�� = �V��) ;

or by its contravariant componentsX
V ��

@
@x�


 @
@x�

; (V �� = �V ��) :
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2 Electromagnetic field outside a spherical charged
source. Vanishing of the magnetic field

According to a known result [2], the skew-symmetrical
S�(4)-invariant tensor field

P
V��dx� 
 dx� is the direct

sum of the following two tensor fields:
(a) A �(4)-invariant skew-symmetrical tensor field

q (x0; kxk)(dx0 
 F (x)� F (x)
 dx0) ;�
F (x) =

3X
i=1

xidxi
�
;

which represents the electric field with components

V01 = �V10 = qx1 ; V02 = �V20 = qx2 ;

V03 = �V30 = qx3 :

)
; (2.1)

(b) A purely S�(4)-invariant skew-symmetrical tensor
field

q1(x0; kxk)�x1(dx2 
 dx3 � dx3 
 dx2) +

+x2(dx3 
 dx1 � dx1 
 dx3) +

+x3(dx1 
 dx2 � dx2 
 dx1)
�
;

which represents the magnetic field with components

V23 = �V32 = q1x1 ; V31 = �V13 = q1x2 ;

V12 = �V21 = q1x3 :

)
: (2.2)

Since the metric (1.1) plays the part of a fundamental ten-
sor, we can introduce the contravariant components of the
skew-symmetrical tensor field

P
V��dx�
dx� with respect

to (1.1).

Proposition 2.1 The contravariant components of theS�(4)-
invariant skew-symmetrical tensor field

P
V��dx�
dx� are

defined by the following formulae:

V 01 = �V 10 = � qx1

f2`2
; V 02 = �V 20 = � qx2

f2`2
;

V 03 = �V 30 = � qx3

f2`2
;

V 23 = �V 32 =
q1x1

`41
; V 31 = �V 13 =

q1x2

`41
;

V 12 = �V 21 =
q1x3

`41
:

Proof. The componets V 01 and V 23, for instance, result from
the obvious formulae

V 01 =
X

g0�g1�V�� = (g00g11 � g01g10)V01 +

+ (g00g12 � g02g10)V02 + (g00g13 � g03g10)V03 +

+ (g02g13 � g03g12)V23 + (g03g11 � g01g13)V31 +

+ (g01g12 � g02g11)V12

and

V 23 =
X

g2�g3�V�� = (g20g31 � g21g30)V01 +

+ (g20g32 � g22g30)V02 + (g20g33 � g23g30)V03 +

+ (g22g33 � g23g32)V23 + (g23g31 � g21g33)V31 +

+ (g21g32 � g22g31)V12

after effectuating the indicated operations.

Proposition 2.2 The functions q= q(x0; �), q1 = q1(x0; �),
(x0 = ct; �= kxk), defining the components (2.1) and (2.2)
outside the charged spherical source are given by the
formulae

q =
"f`
�3`21

; q1 =
"1

�3 ;

(" = const; "1 = const:)

(The equations of the electromagnetic field are to be con-
sidered together with the equations of gravitation, and since
these last are inconsistent with a punctual source, there exists
a length � > 0 such that the above formulae are valid only
for � > �.)

Proof. Since outside the source there are neither charges nor
currents, the components (2.1), (2.2) are defined by the clas-
sical equations

@V��
@x

+
@V�
@x�

+
@V�
@x�

= 0 ; (2.3)�
x0 =ct; (�; �; )2f(0; 1; 2); (0; 2; 3); (0; 3; 1); (1; 2; 3)g�,

3X
�=0

@
@x�

�p�GV ��� = 0 ;�
� = 0; 1; 2; 3; G = �f2`2`41

�
:

(2.4)

Taking (�; �; ) = (0; 1; 2), we have, on account of (2.3),

@(qx1)
@x2

+
@(q1x3)
@x0

� @(qx2)
@x1

= 0

and since
@q
@xi

=
@q
@�

xi
�
; (i = 1; 2; 3) ;

we obtain

x1x2
@q
@�
� x2x1

@q
@�

+ x3
@q1
@x0

= 0 ;

whence
@q1
@x0

= 0, so that q1 depends only on �, q1 = q1(�).

On the other hand, taking (�; �; ) = (1; 2; 3), the equa-
tion (2.3) is written as

@(q1x3)
@x3

+
@(q1x1)
@x1

+
@(q1x2)
@x2

= 0 ;

whence 3q1 +�q01 = 0, so that 3�2q1 +�3q01 = 0 or (�3q1)0= 0
and �3q1 = "1 = const or q1 =

"1

�3 .
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Consider now the equation (2.4) with � = 1. Since G =
=�f2`2`41,

V 11 = 0 ; V 10 =
qx1

f2`2
; V 12 =

q1x3

`41
; V 13 = �q1x2

`41
;

we have

@
@x0

�
q`21
f`

x1

�
+

@
@x2

�
q1f`
`21

x3

�
� @
@x3

�
q1f`
`21

x2

�
= 0 :

Because of

@
@x2

�
q1f`
`21

x3

�
=
x3x2

�
@
@�

�
q1f`
`21

�
=

@
@x3

�
q1f`
`21

x2

�
;

we obtain

x1
@
@x0

�
q`21
f`

�
= 0

so that
q`21
f`

depends only on � :
q`21
f`

= '(�).

Now the equation (2.4) with � = 0 is written as

@
@x1

(x1'(�)) +
@
@x2

(x2'(�)) +
@
@x3

(x3'(�)) = 0 ;

whence 3'(�) + �'0(�) = 0 and 3�2'(�) + �3'0(�) = 0 or
(�3'(�))0 = 0.

Consequently �3'(�) = " = const and q =
"f`
�3`21

.

The meaning of the constants " and "1:

Since the function q occurs in the definition of the electric
field (2.1), it is natural to identify the constant " with the
electric charge of the source. Does a similar reasoning is
applicable to the case of the magnetic field (2.2)? In other
words, does the constant "1 represents a magnetic charge of
the source? This question is at first related to the case where
" = 0, "1 , 0, namely to the case where the spherical source
appears as a magnetic monopole. However, although the ex-
istence of magnetic monopoles is envisaged sometimes as a
theoretical possibility, it is not yet confirmed experimentally.
Accordingly we are led to assume that "1 = 0, namely that
the purely S�(4)-invariant magnetic field vanishes. So we
have to do only with the electric field (2.1), which, on account

of q =
"f`
�3`21

, depends on the gravitational tensor (contrary to

Weyl’s assertion).

3 Equations of gravitation outside the charged source

We recall that, if an electromagnetic fieldX
V��dx� 
 dx� ; (V�� = �V��)

is associated with a spacetime metricX
g��dx� 
 dx� ;

then it gives rise to an energy-momentum tensorX
W��dx� 
 dx�

defined by the formulae

W�� =
1

4�

�
1
4
g��

X
V�V � �XV��V � ��

�
: (3.1)

In the present situation, the covariant and contravariant com-
ponents V� and V � are already known. So it remains to
compute the mixed components

V � �� =
X

g�V� = �X g�V� = �V �� � :
Taking into account the vanishing of the magnetic field,

an easy computation gives

V � 00 =
�2qf1

f`2
; V � k0 = �qxk

`2
; (k = 1; 2; 3) ;

V � 0k = �`2 � �2f2
1

f2`2
qxk ; (k = 1; 2; 3) ;

V � kk = � qf1

f`2
x2
k ; (k = 1; 2; 3) ;

V � 32 = � qf1

f`2
x2x3 = V � 23 ;

V � 13 = � qf1

f`2
x3x1 = V � 31 ;

V � 21 = � qf1

f`2
x1x2 = V � 12 :

It follows thatX
V�V � = �2�2q2

f2`2
;X

V0�V � �0 = ��2q2

`2
;X

V0�V � �1 = ��2f1q2

f`2
x1 ;X

V1�V � �2 =
`2 � �2f2

1
f2`2

q2x1x2 ;X
V1�V � �1 =

`2 � �2f2
1

f2`2
q2x2

1 ;

and then the formula (3.1) gives the components W00, W01,
W11, W12 of the energy-momentum tensor. The other com-
ponents are obtained simply by permuting indices.

Proposition 3.1 The energy-momentum tensor associated
with the electric field (2.1) is a �(4)-invariant tensor defined
by the following formulae

W00 = E00 ; W0i = Wi0 = xiE01 ;

Wii = E11 + x2
iE22 ; Wij = Wji = xixjE22 ;

(i; j = 1; 2; 3; i , j) ;
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where

E00 =
1

8�
�2f2E ; E01 =

1
8�

�2ff1E ;

E11 =
1

8�
�2`21E ; E22 =

1
8�

(�`21 � `2 + �2f2
1 )E

with
E =

q2

f2`2
=

"2

�2g4 :

Regarding the Ricci tensorR�� , we already know [4] that
it is a symmetric �(4)-invariant tensor defined by the func-
tions

Q00 = Q00(t; �) ; Q01 = Q01(t; �) ;

Q11 = Q11(t; �) ; Q22 = Q22(t; �)

as follows

R00 = Q00 ; R0i = Ri0 = Q01xi ; Rii = Q11 + x2
iQ22 ;

Rij = Rji = xixjQ22 ; (i; j = 1; 2; 3; i , j) :

So, assuming that the cosmological constant vanishes, we
have to do from the outset with four simple equations of grav-
itation, namely

Q00� R2 f2 +
8�k
c4

E00 = 0 ;

Q01� R2 ff1 +
8�k
c4

E01 = 0 ;

Q11 +
R
2
`21 +

8�k
c4

E11 = 0 ;

Q11 + �2Q22� R2 (�2f2
1 �`2) +

8�k
c4

(E11 +�2E22) = 0 :

An additional simplification results from the fact that the
mixed components of the electromagnetic energy-momentum
tensor satisfy the condition �W�

� = 0, and then the equations
of gravitation imply (by contraction) that the scalar curva-
tureR vanishes. Moreover, introducing as usual the functions

h = �f1, g = �`1, and taking into account that q =
"f`
�3`21

, we

obtain

E =
"2

�2g4 ; E00 =
"2

8�
f2

g4 ; E01 =
"2

8�
ff1

g4 ;

E11 =
"2

8�
`21
g4 ; E11 + �2E22 =

"2

8�
(�`2 + h2)

g4 ;

so that by setting

�2 =
k
c4
"2;

we get the definitive form of the equations of gravitation

Q00 +
�2

g4 f
2 = 0 ; (3.1)

Q01 +
�2

g4 ff1 = 0 ; (3.2)

Q11 +
�2

g4 `
2
1 = 0 ; (3.3)

Q11 + �2Q22 +
�2

g4 (�`2 + h2) = 0 : (3.4)

4 Stationary solutions outside the charged spherical
source

In the case of a stationary field, the functions Q00, Q01, Q11,
Q22 depend only on � and their expressions are already
known [3, 4]

Q00 = f
�
�f 00
`2

+
f 0`0
`3
� 2f 0g0

`2g

�
; (4.1)

Q01 =
h
�f

Q00 ; (4.2)

Q11 =
1
�2

�
�1 +

g02
`2

+
gg00
`2
� `0gg0

`3
+
f 0gg0
f`2

�
; (4.3)

Q11 + �2Q22 =
f 00
f

+
2g00
g
� f 0`0
f`
� 2`0g0

`g
+
h2

f2 Q00 : (4.4)

On account of (4.2), the equation (3.2) is written as�
Q00 +

�2

g4 f
2
�
h = 0

so that it is verified because of (3.1).
Consequently it only remains to take into account the

equations (3.1), (3.3), (3.4).
From (3.1) we obtain

�2

g4 = �Q00

f2

and inserting this expression into (3.4) we obtain the relation

f2(Q11 + �2Q22)� (�`2 + h2)Q00 = 0

which, on account of (4.1) and (4.4), reduces, after cancela-
tions, to the simple equation

g00
g0 =

f 0
f

+
`0
`

which does not contain the unknown function h and implies

f` = cg0; (c = const): (4.5)

Next, from (3.1) and (3.3) we deduce the equation

Q11 � Q00

f2 `21 = 0 (4.6)

which does not contain the function h either.
Now, from (4.5) we find

f =
cg0
`
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and inserting this expression of f into (4.6), we obtain an
equation which can be written as

d
d�

�
F 0
2g0
�

= 0

with

F = g2 � g2g02
`2

:

It follows that

F = 2A1g � A2 ; (A1 = const; A2 = const);

and

g02 = `2
�

1� 2A1

g
+
A2

g2

�
: (4.7)

On account of (4.5), the derivative g0 does not vanish. In
fact g0= 0 implies either f = 0 or `= 0, which gives rise to
a degenerate spacetime metric, namely a spacetime metric
meaningless physically. Then, in particular, it follows from
(4.7) that

1� 2A1

g
+
A2

g2 > 0 :

The constant A1, obtained by means of the Newtonian
approximation, is already known:

A1 =
km
c2

= � :

In order to get A2, we insert first

f 0
f

=
g00
g0 �

`0
`

into (4.3) thus obtaining

�2Q11 = �1 +
g02
`2

+
2gg00
`2
� 2`0gg0

`3
: (4.8)

Next by setting

Q(g) = 1� 2A1

g
+
A2

g2

we have

g0 = `
p
Q(g) ;

g00 = `0
p
Q(g) + `2

�
A1

g2 � A2

g3

�
and inserting these expressions of g0 and g00 into (4.8), we find

�2Q11 = �A2

g2 :

The equation (3.3) gives finally the value of the con-
stant A2:

A2 = �2 =
k"2

c4
:

It follows that the general stationary solution outside the
charged spherical source is defined by two equations, namely

f` = c
dg
d�
; (4.9)

dg
d�

= `

s
1� 2�

g
+
�2

g2 ; (4.10)�
� =

km
c2
; � =

p
k
c2
j"j; 1� 2�

g
+
�2

g2 > 0
�
:

The interdependence of the two fields, gravitational and
electric, in now obvious: The electric charge ", which defines
the electric field, is also involved in the definition of the grav-
itational field by means of the term

�2

g2 =
k
c4

�
"
g

�2

:

On the other hand, since

q =
"f`
�3`21

=
c"
�g2

dg
d�
;

the components of the electric field:

V01 = �V10 = qx1 =
c"
g2
dg
d�
x1

�
=

= � c" @
@x1

�
1
g

�
= �c @

@x1

�
"
g

�
;

V02 = �V20 = qx2 = �c @
@x2

�
"
g

�
;

V03 = �V30 = qx3 = � c @
@x3

�
"
g

�
result from the electric potential:

"
g

=
"

g(�)

which is thus defined by means of the curvature radius g(�),
namely by the fundamental function involved in the definition
of the gravitational field.

Note that, among the functions occurring in the space-
time metric, only the function h = �f1 does not appear in the
equations (4.9) and (4.10). The problem does not require a
uniquely defined h. Every differentiable function h satisfy-
ing the condition jhj 6 ` is allowable. And every allowable
h gives rise to a possible conception of the time coordinate.
Contrary to the Special Relativity, we have to do, in General
Relativity, with an infinity of possible definitions of the time
coordinate. In order to elucidate this assertion in the present
situation, let us denote by �1 the radius of the spherical sta-
tionary source, and consider a photon emitted radially from
the sphere kxk = �1 at an instant � . The equation of motion
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of this photon, namely

f(�)dt+ h(�)d� = `(�)d�

implies
dt
d�

=
�h(�) + `(�)

f(�)

whence � = t�  (�) with

 (�) =
�Z

�1

�h(u) + `(u)
f(u)

du :

For every value of � > �1, �(t; �) = t� (�) is the instant
of radial emission of a photon reaching the sphere kxk = �
at the instant t. The function �(t; �) will be called propaga-
tion function, and we see that to each allowable h there cor-
responds a uniquely defined propagation function. Moreover
each propagation function characterizes uniquely a concep-
tion of the notion of time. Regarding the radial velocity of
propagation of light, namely

d�
dt

=
f(�)

�h(�) + `(�)
;

it is not bounded by a barrier as in Special Relativity. In the
limit case where the allowable h equals `, this velocity be-
comes infinite.

This being said, we return to the equations (4.9) and
(4.10) which contain the remaining unknown functions f , `,
g. Their investigation necessitates a rather lengthy discussion
which will be carried out in another paper. At present we
confine ourselves to note two significant conclusions of this
discussion:

(a) Pointwise sources do not exist, so that the spherical
source cannot be reduced to a point. In particular the
notion of black hole is inconceivable;

(b) Among the solutions defined by (4.9) and (4.10), par-
ticularly significant are those obtained by introducing
the radial geodesic distance

� =
�Z

0

`(u)du :

Then we have to define the curvature radius G(�) =
= g(�(�)) by means of the equation

dG
d�

=
r

1� 2�
G

+
�2

G2

the solutions of which need specific discussion accord-
ing as �2��2> 0 or �2��2 = 0 or �2��2< 0. The
first approach to this problem appeared in the paper [1].

We note finally that the derivation of the Reissner-Nord-
ström metric contains topological errors and moreover iden-
tifies erroneously the fundamental function g(�) with a ra-

dial coordinate. This is why the Reissner-Nordström metric
is devoid of geometrical and physical meaning.
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3. Stavroulakis N. Vérité scientifique et trous noirs (troisième par-
tie) equations de gravitation relatives à une métrique �(4)-
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The low-lying collective levels in 224-234Th isotopes are investigated in the frame work
of the interacting boson approximation model (IBA-1). The contour plot of the poten-
tial energy surfaces, V (�; ), shows two wells on the prolate and oblate sides which
indicate that all thorium nuclei are deformed and have rotational characters. The levels
energy, electromagnetic transition rates B(E1) and B(E2) are calculated. Bending at
angular momentum I+ = 20 has been observed for 230Th. Staggering effect has been
calculated and beat patterns are obtained which indicate the existence of an interaction
between the ground state band, (GSB), and the octupole negative parity band, (NPB).
All calculated values are compared with the available experimental data and show rea-
sonable agreement.

1 Introduction

The level schemes of 224-234Th isotopes are characterized
by the existence of two bands of opposite parity and lie in
the region of octupole deformations. The primary evidence
for this octupole deformaton comes from the parity-doublet
bands, fast electric transition (E1) between the negative and
positive parity bands and the low-lying 1�, 0+

2 and 2+
2 excita-

tion energy states. This kind of deformation has offered a real
challenge for nuclear structure models. Even-even thorium
nuclei have been studied within the frame work of the Spdf
interacting boson model [1] and found the properties of the
low-lying states can be understood without stable octupole
deformation. High spin states in some of these nuclei suggest
that octupole deformation develops with increasing spin.

A good description of the first excited positive and neg-
ative parity bands of nuclei in the rare earth and the actinide
region has achieved [2–4] using the interacting vector boson
model. The analysis of the eigen values of the model Hamil-
tonian reveals the presence of an interaction between these
bands. Due to this interaction staggering effect has repro-
duced including the beat patterns.

Shanmugam-Kamalahran (SK) model [5] for �-decay has
been applied successfully to 226-232Th for studying their sha-
pes, deformations of the parent and daughter nuclei as well as
the charge distribution process during the decay. Also, a solu-
tion of the Bohr Hamiltonian [6] aiming at the description of
the transition from axial octupole deformation to octupole vi-
brations in light actinides 224Ra and 226Th is worked out.The
parameter free predictions of the model are in good agree-
ment with the experimental data of the two nuclei, where they
known to lie closest to the transition from octupole deforma-
tion to octupole vibrations in this region. A new frame-work
for comparing fusion probabilities in reactions [7] forming
heavy elements, 220Th, eliminates both theoretical and ex-
perimental uncertinities, allowing insights into systematic be-

havior, and revealing previously hidden characteristics in fu-
sion reactions forming heavy elements.

It is found that cluster model [8] succeeded in reproducing
satisfactorily the properties of normal deformed ground state
and super deformed excited bands [9, 10] in a wide range of
even-even nuclei, 222 6 A > 242[11]. The calculated spin
dependences [12] to the parity splitting and the electric multi
pole transition moments are in agreement with the experimen-
tal data. Also, a new formula between half-lives, decay en-
ergies and microscopic density-dependent cluster model [13]
has been used and the half-lives of cluster radioactivity are
well reproduced.

A new imperical formula [14], with only three parame-
ters, is proposed for cluster decay half-lives. The parame-
ters of the formula are obtained by making least square fit
to the available experimental cluster decay data. The cal-
culated half-lives are compared with the results of the ear-
lier proposed models models, experimental available data and
show excellent agreement. A simple description of the cluster
decay by suggesting a folding cluster-core interaction based
on a self-consistant mean-field model [15]. Cluster decay in
even-even nuclei above magic numbers have investigated.

Until now scarce informations are available about the ac-
tinide region in general and this is due to the experimental
difficulties associated with this mass region. The aim of the
present work is to:

(1) calculate the potential energy surfaces, V (�; ), and
know the type of deformation exists;

(2) calculate levels energy, electromagnetic transition rates
B(E1) and B(E2);

(3) study the relation between the angular momentum I ,
the rotational angular frequency ~! and see if there any
bending for any of thorium isotopes;

(4) calculate staggering effect and beat patterns to study the
interaction between the (+ve) and (�ve) parity bands.
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nucleus EPS PAIR ELL QQ OCT HEX E2SD(eb) E2DD(eb)
224Th 0.2000 0.000 0.0081 �0.0140 0.0000 0.0000 0.2150 �0.6360
226Th 0.2000 0.000 0.0058 �0.0150 0.0000 0.0000 0.2250 �0.6656
228Th 0.2000 0.0000 0.0052 �0.0150 0.0000 0.0000 0.1874 �0.5543
230Th 0.2000 0.0000 0.0055 �0.0150 0.0000 0.0000 0.1874 �0.5543
232Th 0.2000 0.0000 0.0055 �0.0150 0.0000 0.0000 0.1820 �0.5384
234Th 0.2000 0.0000 0.0063 �0.0150 0.0000 0.0000 0.1550 �0.4585

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

2 (IBA-1) model

2.1 Level energies

The IBA-1 model was applied to the positive and negative
parity low-lying states in even-even 224-234Th isotopes. The
proton, �, and neutron, �, bosons are treated as one boson and
the system is considered as an interaction between s-bosons
and d-bosons. Creation (sydy) and annihilation (s ~d) operat-
ors are for s and d bosons. The Hamiltonian [16] employed
for the present calculation is given as:

H = EPS � nd + PAIR � (P � P )

+
1
2
ELL � (L � L) +

1
2
QQ � (Q �Q)

+ 5OCT � (T3 � T3) + 5HEX � (T4 � T4) ;

(1)

where

P � p =
1
2

24 n(sysy)(0)
0 �

p
5(dydy)(0)

0

o
xn

(ss)(0)
0 �

p
5( ~d ~d)(0)

0

o 35(0)

0

; (2)

L � L = �10
p

3
h
(dy ~d)(1)x (dy ~d)(1)

i(0)

0
; (3)

Q �Q =
p

5

26664
�

(Sy ~d+ dys)(2) �
p

7
2

(dy ~d)(2)
�
x�

(sy ~d+ + ~ds)(2) �
p

7
2

(dy ~d)(2)
�
37775

(0)

0

; (4)

T3 � T3 = �p7
h
(dy ~d)(2)x (dy ~d)(2)

i(0)

0
; (5)

T4 � T4 = 3
h
(dy ~d)(4)x (dy ~d)(4)

i(0)

0
: (6)

In the previous formulas, nd is the number of boson; P �P ,
L �L, Q �Q, T3 �T3 and T4 �T4 represent pairing, angular mo-
mentum, quadrupole, octupole and hexadecupole interactions
between the bosons; EPS is the boson energy; and PAIR,
ELL, QQ, OCT , HEX is the strengths of the pairing, an-
gular momentum, quadrupole, octupole and hexadecupole in-
teractions.

2.2 Transition rates

The electric quadrupole transition operator [16] employed in
this study is given by:

T (E2) = E2SD � (sy ~d+ dys)(2) +

+
1p
5
E2DD � (dy ~d)(2) : (7)

The reduced electric quadrupole transition rates between
Ii ! If states are given by

B (E2; Ii � If ) =
[< If k T (E2) k Ii >]2

2Ii + 1
: (8)

3 Results and discussion

3.1 The potential energy surface

The potential energy surfaces [17], V (�, ), for thorium iso-
topes as a function of the deformation parameters � and 
have been calculated using :

EN�N� (�; ) = <N�N� ;� jH�� jN�N� ;�> =

= �d(N�N�)�2(1 + �2) + �2(1 + �2)�2�
��kN�N�[4� ( �X� �X�)� cos 3]

	
+

+
�

[ �X� �X��2] +N�(N� � 1)
�

1
10
c0 +

1
7
c2
�
�2
�
;

(9)

where

�X� =
�

2
7

�0:5

X� � = � or � : (10)

The calculated potential energy surfaces, V (�; ), for tho-
rium series of isotopes are presented in Fig. 1. It shows that
all nuclei are deformed and have rotational-like characters.
The prolate deformation is deeper than oblate in all nuclei
except 230Th.The two wells on both oblate and prolate sides
are equals and O(6) characters is expected to the nucleus. The
energy and electromagnetic magnetic transition rates ratio are
not in favor to that assumption and it is treated as a rotational-
like nucleus.
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I+i I+f
224Th 226Th 228Th 230Th 232Th 234Th

01 Exp. 21 ——- 6.85(42) 7.06(24) 8.04(10) 9.28(10) 8.00(70)

01 Theor. 21 4.1568 6.8647 7.0403 8.038 9.2881 8.0559

21 01 0.8314 1.3729 1.4081 1.6076 1.8576 1.6112

22 01 0.0062 0.0001 0.0044 0.0088 0.0105 0.0079

22 02 0.4890 0.8357 0.8647 1.0278 1.2683 1.1659

23 01 0.0127 0.0272 0.0211 0.0157 0.0122 0.0075

23 02 0.1552 0.0437 0.0020 0.0023 0.0088 0.0099

23 03 0.1102 0.0964 0.0460 0.0203 0.0079 0.0023

24 03 0.2896 0.4907 0.5147 0.6271 0.8048 0.7786

24 04 0.1023 0.0709 0.0483 0.0420 0.0385 0.0990

22 21 0.1837 0.1153 0.0599 0.0387 0.0286 0.0174

23 21 0.0100 0.0214 0.0211 0.0198 0.0178 0.0118

23 22 0.8461 1.0683 0.5923 0.2989 0.1538 0.0697

41 21 1.3733 2.0662 2.0427 2.2957 2.6375 2.2835

41 22 0.0908 0.1053 0.0764 0.0579 0.0445 0.0266

41 23 0.0704 0.0325 0.0104 0.0038 0.0018 0.0008

61 41 1.5696 2.2921 2.2388 2.4979 2.8606 2.4745

61 42 0.0737 0.0858 0.0685 0.0585 0.0493 0.0312

61 43 0.0584 0.0404 0.0198 0.0106 0.0061 0.0029

81 61 1.5896 2.3199 2.2720 2.5381 2.9105 2.5220

81 62 0.0569 0.0660 0.0554 0.0511 0.0466 0.0314

81 63 0.0483 0.0421 0.0256 0.0166 0.0109 0.0055

101 81 1.4784 2.2062 2.1948 2.4760 2.8586 2.4899

101 82 0.0448 0.0513 0.0438 0.0422 0.0407 0.0290

Table 2: Values of the theoretical reduced transition probability, B(E2) (in e2 b2).

I�i I+f
224Th 226Th 228Th 230Th 232Th 234Th

11 01 0.0428 0.0792 0.1082 0.1362 0.1612 0.1888

11 02 0.0942 0.0701 0.0583 0.0534 0.0515 0.0495

31 21 0.1607 0.1928 0.2209 0.2531 0.2836 0.3227

31 22 0.0733 0.0829 0.0847 0.0817 0.0768 0.0717

31 23 0.0360 0.0157 0.0054 0.0013 0.0002 0.0000

31 41 0.0233 0.0441 0.0652 0.0884 0.1150 0.1384

31 42 0.0170 0.0285 0.0371 0.0424 0.0460 0.0449

51 41 0.2873 0.3131 0.3363 0.3657 0.3946 —–

51 42 0.0787 0.0834 0.0868 0.0865 0.0835 —–

51 43 0.0160 0.0101 0.0051 0.0020 0.0006 —–

71 61 0.4178 0.4387 0.4581 0.4839 0.5100 —–

71 62 0.0732 0.0757 0.0798 0.0817 0.0812 —–

91 81 0.5532 0.5690 0.5848 0.6070 0.6301 —–

91 82 0.0639 0.0665 0.0707 0.0735 0.0748 —–

Table 3: Values of the theoretical reduced transition probability, B(E1) (in � e2b).
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Fig. 1: Potential Energy surfaces for 224-234Th nuclei.

Fig. 2: Comparison between experimental (Exp.) and theoretical (IBA-1) energy levels in 224-234Th.
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3.2 Energy spectra

IBA-1 model has been used in calculating the energy of the
positive and negative parity low -lying levels of thorium se-
ries of isotopes. In many deformed actinide nuclei the neg-
ative parity bands have been established and these nuclei are
considered as an octupole deformed. A simple means to ex-
amine the nature of the band is to consider the ratio R which
for octupole band , R � 1, and defined as [18]:

R =
E (I + 3)� E (I � 1)NPB
E (I)� E (I � 2)GSB

: (11)

In the present calculations all values of R for thorium se-
ries of isotopes are � 1, and we treated them as octupole
deformed nuclei.

A comparison between the experimental spectra [19–24]
and our calculations, using values of the model parameters
given in Table 1 for the ground and octupole bands, are illus-
trated in Fig. 2. The agreement between the calculated levels
energy and their correspondence experimental values for all
thorium nuclei are slightly higher especially for the higher
excited states. We believe this is due to the change of the
projection of the angular momentum which is due to band
crossing and octupole deformation.

Unfortunately there is no enough measurements of elec-
tromagnetic transition ratesB (E2) orB (E1) for these series
of nuclei. The only measured B (E2; 0+

1 ! 2+
1 )’s are pre-

sented, in Table’s 2,3 for comparison with the calculated val-
ues. The parameters E2SD and E2DD used in the pres-
ent calculations are determined by normalizing the calculated
values to the experimentally known ones and displayed in
Table 1.

For calculating B (E1) and B (E2) electromagnetic tran-
sition rates of intraband and interaband we did not introduce
any new parameters. Some of the calculated values are pre-
sented in Fig. 3 and show bending at N = 136, 142 which
means there is an interaction between the (+ve)GSB and
(�ve) parity octupole bands.

The moment of inertia I and energy parameters ~! are
calculated using equations (12, 13):

2I
~2 =

4I � 2
�E(I ! I � 2)

; (12)

(~!)2 = (I2 � I + 1)
�

�E(I ! I � 2)
(2I � 1)

�2

: (13)

All the plots in Fig. 4 show back bending at angular mo-
mentum I+ = 20 for 230Th. It means, there is a band crossing
and this is confirmed by calculating staggering effect to these
series of thorium nuclei. A disturbance of the regular band
structure has observed not only in the moment of inertia but
also in the decay properties.

Fig. 3: The calculated B(E2)’s for the ground state band of
224-234Th isotopes.

3.3 The staggering

The presence of odd-even parity states has encouraged us to
study staggering effect for 218-230Th series of isotopes [10,
12, 25, 26]. Staggering patterns between the energies of the
GSB and the (�ve) parity octupole band have been calcu-
lated, �I = 1, using staggering function equations (14, 15)
with the help of the available experimental data [19–24].

Stag (I) = 6�E (I)� 4�E (I � 1)� 4�E (I + 1)

+ �E (I + 2) + �E (I � 2) ; (14)
with

�E (I) = E (I + 1)� E (I) : (15)

The calculated staggering patterns are illustrated in Fig. 5,
where we can see the beat patterns of the staggering behavior
which show an interaction between the ground state and the
octupole bands.

3.4 Conclusions

The IBA-1 model has been applied successfully to 224-234Th
isotopes and we have got:

1. The ground state and octupole bands are successfully
reproduced;

2. The potential energy surfaces are calculated and show
rotational behavior to 224-234Th isotopes where they
are mainly prolate deformed nuclei;

3. Electromagnetic transition rates B (E1) and B (E2)
are calculated;

4. Bending for 230Th has been observed at angular mo-
mentum I+ = 20;

5. Staggering effect has been calculated and beat patterns
are obtained which show an interaction between the
ground state and octupole bands;
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Fig. 4: Angular momentum I as a function of the rotational fre-
quency (~!)2 and 2I/~2 as a function of (~!)2 for the GSB of 230Th.

Fig. 5: �I = 1, staggering patterns for the ground state and octupole
bands of 224-232Th isotope.
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Results from two optical-fiber gravitational-wave interferometric detectors are reported.
The detector design is very small, cheap and simple to build and operate. Using two de-
tectors has permitted various tests of the design principles as well as demonstrating the
first simultaneous detection of correlated gravitational waves from detectors spatially
separated by 1.1 km. The frequency spectrum of the detected gravitational waves is
sub-mHz with a strain spectral index a=�1.4�0.1. As well as characterising the wave
effects the detectors also show, from data collected over some 80 days in the latter part
of 2007, the dominant earth rotation effect and the earth orbit effect. The detectors op-
erate by exploiting light speed anisotropy in optical-fibers. The data confirms previous
observations of light speed anisotropy, earth rotation and orbit effects, and gravitational
waves.

1 Introduction

Results from two optical-fiber gravitational-wave interfero-
metric detectors are reported. Using two detectors has per-
mitted various tests of the design principles as well as demon-
strating the first simultaneous detection of correlated grav-
itational waves from detectors spatially separated by 1.1 km.
The frequency spectrum of the detected gravitational waves is
sub-mHz. As well as charactersing the wave effects the detec-
tors also show, from data collected over some 80 days in the
latter part of 2007, the dominant earth rotation effect and the
earth orbit effect. The detectors operate by exploiting light
speed anisotropy in optical-fibers. The data confirms previ-
ous observations [1–4, 6–10] of light speed anisotropy, earth
rotation and orbit effects, and gravitational waves. These ob-
servations and experimental techniques were first understood
in 2002 when the Special Relativity effects and the presence
of gas were used to calibrate the Michelson interferometer
in gas-mode; in vacuum-mode the Michelson interferome-
ter cannot respond to light speed anisotropy [11, 12], as con-
firmed in vacuum resonant-cavity experiments, a modern ver-
sion of the vacuum-mode Michelson interferometer [13]. The
results herein come from improved versions of the prototype
optical-fiber interferometer detector reported in [9], with im-
proved temperature stabilisation and a novel operating tech-
nique where one of the interferometer arms is orientated with
a small angular offset from the local meridian. The detection
of sub-mHz gravitational waves dates back to the pioneer-
ing work of Michelson and Morley in 1887 [1], as discussed
in [16], and detected again by Miller [2] also using a gas-
mode Michelson interferometer, and by Torr and Kolen [6],
DeWitte [7] and Cahill [8] using RF waves in coaxial cables,
and by Cahill [9] and herein using an optical-fiber interfer-

ometer design, which is very much more sensitive than a gas-
mode interferometer, as discussed later.

It is important to note that the repeated detection, over
more than 120 years, of the anisotropy of the speed of light
is not in conflict with the results and consequences of Special
Relativity (SR), although at face value it appears to be in con-
flict with Einstein’s 1905 postulate that the speed of light is
an invariant in vacuum. However this contradiction is more
apparent than real, for one needs to realise that the space and
time coordinates used in the standard SR Einstein formalism
are constructed to make the speed of light invariant wrt those
special coordinates. To achieve that observers in relative mo-
tion must then relate their space and time coordinates by a
Lorentz transformation that mixes space and time coordinates
— but this is only an artifact of this formalism�. Of course
in the SR formalism one of the frames of reference could
have always been designated as the observable one. Such an
ontologically real frame of reference, only in which the speed
of light is isotropic, has been detected for over 120 years,
yet ignored by mainstream physics. The problem is in not
clearly separating a very successful mathematical formalism
from its predictions and experimental tests. There has been a
long debate over whether the Lorentz 3-space and time inter-
pretation or the Einstein spacetime interpretation of observed
SR effects is preferable or indeed even experimentally distin-
guishable.

What has been discovered in recent years is that a dy-
namical structured 3-space exists, so confirming the Lorentz
interpretation of SR, and with fundamental implications for
physics — for physics failed to notice the existence of the

�Thus the detected light speed anisotropy does not indicate a breakdown
of Lorentz symmetry, contrary to the aims but not the outcomes of [13].
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Fig. 1: Schematic layout of the interferometric optical-fiber light-
speed anisotropy/gravitational wave detector. Actual detector is
shown in Fig. 2. Coherent 633 nm light from the a He-Ne Laser is
split into two lengths of single-mode polarisation preserving fibers
by the 2�2 beam splitter. The two fibers take different directions,
ARM1 and ARM2, after which the light is recombined in the 2�2
beam joiner, in which the phase differences lead to interference ef-
fects that are indicated by the outgoing light intensity, which is
measured in the photodiode detector/amplifier (Thorlabs PDA36A
or PDA36A-EC), and then recorded in the data logger. In the ac-
tual layout the fibers make two loops in each arm, but with excess
lengths wound around one arm (not shown) — to reduce effective
fiber lengths so as to reduce sensitivity. The length of one straight
section is 100 mm, which is the center to center spacing of the plas-
tic turners, having diameter = 52 mm, see Fig. 2. The relative travel
times, and hence the output light intensity, are affected by the vary-
ing speed and direction of the flowing 3-space, by affecting differ-
entially the speed of the light, and hence the net phase difference
between the two arms.

main constituent defining the universe, namely a dynamical
3-space, with quantum matter and EM radiation playing a mi-
nor role. This dynamical 3-space provides an explanation for
the success of the SR Einstein formalism. It also provides a
new account of gravity, which turns out to be a quantum ef-
fect [17], and of cosmology [16,18–20], doing away with the
need for dark matter and dark energy.

2 Dynamical 3-space and gravitational waves

Light-speed anisotropy experiments have revealed that a dy-
namical 3-space exists, with the speed of light being c, in vac-
uum, only wrt to this space: observers in motion “through”
this 3-space detect that the speed of light is in general dif-
ferent from c, and is different in different directions�. The dy-
namical equations for this 3-space are now known and involve
a velocity field v(r; t), but where only relative velocities are
observable locally — the coordinates r are relative to a non-
physical mathematical embedding space. These dynamical
equations involve Newton’s gravitational constant G and the
fine structure constant �. The discovery of this dynamical 3-
space then required a generalisation of the Maxwell, Schrö-
dinger and Dirac equations. The wave effects already de-
�Many failed experiments supposedly designed to detect this anisotropy

can be shown to have design flaws.

Fig. 2: Photograph of a detector showing the optical fibers forming
the two orthogonal arms. See Fig. 1 for the schematic layout. The
2�2 beam splitter and joiner (Thorlabs FC632-50B-FC) are the two
small stainless steel cylindrical tubes. The two FC to FC mating
sleeves (Thorlabs ADAFC1) are physically adjacent. The overall di-
mensions of the metal base plate are 160�160 mm. The 2�2 splitter
and joiner each have two input and two output fibers, with one not
used. Arm 2 is folded over the splitter and joiner, compared to the
schematic layout. The interferometer shown costs approximately
$400.

tected correspond to fluctuations in the 3-space velocity field
v(r; t), so they are really 3-space turbulence or wave effects.
However they are better known, if somewhat inappropriately,
as “gravitational waves” or “ripples” in “spacetime”. Be-
cause the 3-space dynamics gives a deeper understanding of
the spacetime formalism we now know that the metric of the
induced spacetime, merely a mathematical construct having
no ontological significance, is related to v(r; t) according
to [16, 18, 20]

ds2 = dt2 � (dr� v(r; t)dt)2

c2
= g��dx�dx� : (1)

The gravitational acceleration of matter, and of the struc-
tural patterns characterising the 3-space, are given by [16,17]

g =
@v
@t

+ (v � r)v (2)

and so fluctuations in v(r; t) may or may not manifest as
a gravitational force. The general characteristics of v(r; t)
are now known following the detailed analysis of the experi-
ments noted above, namely its average speed, and removing
the earth orbit effect, is some 420�30 km/s, from direction
RA = 5.5�2hr, Dec = 70�10�S — the center point of the
Miller data in Fig. 12b, together with large wave/turbulence
effects. The magnitude of this turbulence depends on the
timing resolution of each particular experiment, and here we
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Fig. 3: (a) Detector 1 (D1) is located inside a sealed air-filled bucket
inside an insulated container (blue) containing some 90 kg of wa-
ter for temperature stabilisation. This detector, in the School of
Chemistry, Physics and Earth Sciences, had an orientation of 5� anti-
clockwise to the local meridian. Cylindrical He-Ne laser (Melles-
Griot 0.5 mW 633 nm 05-LLR-811-230) is located on LHS of bench,
while data logger is on RHS. Photodiode detector/pre-amplifier is lo-
cated atop aluminium plate. (b) Detector 2 (D2) was located 1.1 km
North of D1 in the Australian Science and Mathematics School. This
detector had an orientation of 11� anti-clockwise to the local merid-
ian. The data was logged on a PC running a PoScope USB DSO
(PoLabs http://www.poscope.com).

characterise them at sub-mHz frequencies, showing that the
fluctuations are very large, as also seen in [8].

3 Gravitational wave detectors

To measure v(r; t) has been difficult until now. The early ex-
periments used gas-mode Michelson interferometers, which
involved the visual observation of small fringe shifts as the
relatively large devices were rotated. The RF coaxial ca-
ble experiments had the advantage of permitting electronic
recording of the RF travel times, over 500m [6] and 1.5 km
[7], by means of two or more atomic clocks, although the ex-
periment reported in [8] used a novel technique that enable
the coaxial cable length to be reduced to laboratory size�.
�The calibration of this technique is at present not well understood in

view of recent discoveries concerning the Fresnel drag effect in optical fibers.

Fig. 4: (a) Detectors are horizontally located inside an air-filled
bucket. The plastic bag reduces even further any air movements,
and thus temperature differentials. The blue crystals are silica gel to
reduce moisture. (b) Bucket located inside and attached to bottom
of the insulated container prior to adding water to the container.

The new optical-fiber detector design herein has the advan-
tage of electronic recording as well as high precision because
the travel time differences in the two orthogonal fibers em-
ploy light interference effects, but with the interference ef-
fects taking place in an optical fiber beam-joiner, and so no
optical projection problems arise. The device is very small,
very cheap and easily assembled from readily available
opto-electronic components. The schematic layout of the de-
tector is given in Fig. 1, with a detailed description in the
figure caption. The detector relies on the phenomenon where
the 3-space velocity v(r; t) affects differently the light travel
times in the optical fibers, depending on the projection of
v(r; t) along the fiber directions. The differences in the light
travel times are measured by means of the interference
effects in the beam joiner. The difference in travel times is
given by

�t = k2 Lv2
P

c3
cos
�
2�
�
; (3)

where

k2 =
(n2 � 1)(2� n2)

n
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Fig. 5: D1 photodiode output voltage data (mV), recorded every 5
secs, from 5 successive days, starting September 22, 2007, plotted
against local Adelaide time (UT = local time + 9.5 hrs). Day se-
quence is indicated by increasing hue. Dominant minima and max-
ima is earth rotation effect. Fluctuations from day to day are evident
as are fluctuations during each day — these are caused by wave ef-
fects in the flowing space. Changes in RA cause changes in timing
of min/max, while changes in magnitude are caused by changes in
declination and/or speed. Blurring effect is caused by laser noise.
Same data is plotted sequentially in Fig. 7a.

is the instrument calibration constant, obtained by taking ac-
count of the three key effects: (i) the different light paths, (ii)
Lorentz contraction of the fibers, an effect depending on the
angle of the fibers to the flow velocity, and (iii) the refrac-
tive index effect, including the Fresnel drag effect. Only if
n , 1 is there a net effect, otherwise when n = 1 the various
effects actually cancel. So in this regard the Michelson inter-
ferometer has a serious design flaw. This problem has been
overcome by using optical fibers. Here n= 1.462 at 633 nm is
the effective refractive index of the single-mode optical fibers
(Fibercore SM600, temperature coefficient 5�10�2fs/mm/C).
Here L � 200 mm is the average effective length of the two
arms, and vP (r; t) is the projection of v(r; t) onto the plane
of the detector, and the angle � is that of the projected velocity
onto the arm.

The reality of the Lorentz contraction effect is experimen-
tally confirmed by comparing the 2nd order in v=c Michel-
son gas-mode interferometer data, which requires account be
taken of the contraction effect, with that from the 1st order
in v=c RF coaxial cable travel time experiments, as in De-
Witte [7], which does not require that the contraction effect
be taken into account, to give comparable values for v.

For gas-mode Michelson interferometers k2�n2�1, be-
cause then n� 1+ is the refractive index of a gas. Operat-
ing in air, as for Michelson and Morley and for Miller, n=
= 1.00029, so that k2 = 0.00058, which in particular means
that the Michelson-Morley interferometer was nearly 2000
times less sensitive than assumed by Michelson, who used
Newtonian physics to calibrate the interferometer — that
analysis gives k2 =n3� 1. Consequently the small fringe

Fig. 6: Schematic of earth and spatial flow at approximate local
sidereal times (RA) of 5 hrs and 17 hrs. The detector arms, D, of
D1 and D2 are operated at small offset angles from the local merid-
ian. The long straight lines indicate the spatial flow velocity vector,
with declination �. The large earth-rotation induced minima/maxima
are caused by the inclination angle varying from a maximum � to a
minimum �, respectively. Wave effects are changes in the velocity
vector.

shifts observed by Michelson and Morley actually correspond
to a light speed anisotropy of some 400 km/s, that is, the earth
has that speed relative to the local dynamical 3-space. The
dependence of k on n has been checked [11, 18] by compar-
ing the air gas-mode data against data from the He gas-mode
operated interferometers of Illingworth [3] and Joos [4].

The above analysis also has important implications for
long-baseline terrestrial vacuum-mode Michelson interfero-
meter gravitational wave detectors — they have a fundamen-
tal design flaw and will not be able to detect gravitational
waves.

The interferometer operates by detecting changes in the
travel time difference between the two arms, as given by (3).
The cycle-averaged light intensity emerging from the beam
joiner is given by

I(t) / �
Re(E1 + E2ei!(�+�t))

�2
=

= 2jEj2 cos
�
!(� + �t)

2

�2
�

� a+ b�t : (4)

Here Ei are the electric field amplitudes and have the
same value as the fiber splitter/joiner are 50%–50% types,
and having the same direction because polarisation preserv-
ing fibers are used, ! is the light angular frequency and � is
a travel time difference caused by the light travel times not
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Fig. 7: (a) Plot of 5 days of data from Fig. 5 shown sequentially. The
Fourier Transform of this data is shown in Fig. 12a. (b) Plot shows
data after filtering out earth-rotation frequencies (f < 0.025 mHz)
and laser noise frequencies (f > 0.25 mHz, Log10[0.25] =�0.6).
This shows wave/turbulence effects. Note that the magnitude of the
wave component of the signal is some 10% of full signal in this
bandwidth.

being identical, even when �t = 0, mainly because the var-
ious splitter/joiner fibers will not be identical in length. The
last expression follows because �t is small, and so the detec-
tor operates, hopefully, in a linear regime, in general, unless
� has a value equal to modulo(T ), where T is the light pe-
riod. The main temperature effect in the detector, so long
as a temperature uniformity is maintained, is that � will be
temperature dependent. The temperature coefficient for the
optical fibers gives an effective fractional fringe shift error of
��=T = 3�10�2/mm/C, for each mm of length difference.
The photodiode detector output voltage V (t) is proportional
to I(t), and so finally linearly related to �t. The detector
calibration constants a and b depend on k, � and the laser
intensity and are unknown at present.

4 Data analysis

The data is described in detail in the figure captions.

• Fig. 5 shows 5 typical days of data exhibiting the earth-
rotation effect, and also fluctuations during each day
and from day to day, revealing dynamical 3-space tur-
bulence — essentially the long-sort-for gravitational
waves. It is now known that these gravitational waves

were first detected in the Michelson-Morley 1887 ex-
periment [16], but only because their interferometer
was operated in gas-mode. Fig. 12a shows the fre-
quency spectrum for this data;

• Fig. 7b shows the gravitational waves after removing
frequencies near the earth-rotation frequency. As dis-
cussed later these gravitational waves are predominate-
ly sub-mHz;

• Fig. 8 reports one of a number of key experimental
tests of the detector principles. These show the two
detector responses when (a) operating from the same
laser source, and (b) with only D2 operating in inter-
ferometer mode. These reveal the noise effects coming
from the laser in comparison with the interferometer
signal strength. This gives a guide to the S/N ratio of
these detectors;

• Fig. 9 shows two further key tests: 1st the time delay
effect in the earth-rotation induced minimum caused by
the detectors not being aligned NS. The time delay dif-
ference has the value expected. The 2nd effect is that
wave effects are simultaneous, in contrast to the 1st ef-
fect. This is the first coincidence detection of gravita-
tional waves by spatially separated detectors. Soon the
separation will be extended to much larger distances;

• Figs. 10 and 11 show the data and calibration curves
for the timing of the daily earth-rotation induced min-
ima and maxima over an 80 day period. Because D1 is
orientated away from the NS these times permit the de-
termination of the Declination (Dec) and Right Ascen-
sion (RA) from the two running averages. That the run-
ning averages change over these 80 days reflects three
causes (i) the sidereal time effect, namely that the 3-
space velocity vector is related to the positioning of the
galaxy, and not the Sun, (ii) that a smaller component is
related to the orbital motion of the earth about the Sun,
and (iii) very low frequency wave effects. This analysis
gives the changing Dec and RA shown in Fig. 12b, giv-
ing results which are within 13� of the 1925/26 Miller
results, and for the RA from the DeWitte RF coaxial
cable results. Figs. 10a and 11a also show the turbu-
lence/wave effects, namely deviations from the running
averages;

• Fig. 12a shows the frequency analysis of the data. The
fourier amplitudes, which can be related to the strain
h = v2=2c2, decrease as fa where the strain spectral
index has the value a = �1.4� 0.1, after we allow for
the laser noise.

5 Conclusions

Sub-mHz gravitational waves have been detected and partial-
ly characterised using the optical-fiber version of a Michel-
son interferometer. The waves are relatively large and were
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Fig. 8: Two tests of the detectors. (a) The left plot shows data from
D1 and D2 when co-located, parallel and operating from the same
laser. The data from one has been rescaled to match the data from
the other, as they have different calibrations. Both detectors show
a simultaneous gravitational wave pulse of duration � 0.5 hrs. (b)
The right plot shows data from D2 (blue) and from a direct feed of
the common laser source to the photodiode detector of D1 (red), i.e
bypassing the D1 interferometer. This data has been rescaled so that
high frequency components have the same magnitude, to compen-
sate for different feed amplitudes. The laser-only signal (red) shows
the amplitude and frequency noise level of the laser. The signal from
D2 (blue) shows the same noise effects, but with additional larger
variations — these are wave effects detected by D2 operating in in-
terferometer mode. This data shows that the laser noise is dominant
above approximately 1 mHz.

first detected, though not recognised as such, by Michelson
and Morley in 1887. Since then another 6 experiments
[2,6–9], including herein, have confirmed the existence of this
phenomenon. Significantly three different experimental tech-
niques have been employed, all giving consistent results. In
contrast vacuum-mode Michelson interferometers, with me-
chanical mirror support arms, cannot detect this phenomenon
due to a design flaw. A complete characterisation of the waves
requires that the optical-fiber detector be calibrated for speed,
which means determining the parameter b in (4). Then it will
be possible to extract the wave component of v(r; t) from
the average, and so identify the cause of the turbulence/wave
effects. A likely candidate is the in-flow of 3-space into the
Milky Way central super-massive black hole — this in-flow
is responsible for the high, non-Keplerian, rotation speeds of
stars in the galaxy.

The detection of the earth-rotation, earth-orbit and gravi-
tational waves, and over a long period of history, demonstrate
that the spacetime formalism of Special Relativity has been
very misleading, and that the original Lorentz formalism is
the appropriate one; in this the speed of light is not an invari-
ant for all observers, and the Lorentz-Fitzgerald length con-
traction and the Lamor time dilation are real physical effects
on rods and clocks in motion through the dynamical 3-space,
whereas in the Einstein formalism they are transferred and
attributed to a perspective effect of spacetime, which we now
recognise as having no ontological significance — merely a

Fig. 9: Photodiode data (mV) on October 4, 2007, from de-
tectors D1 (red plot) and D2 (blue plot) operating simultaneously
with D2 located 1.1 km due north of D1. A low-pass FFT filter
(f 6 0.25 mHz, Log10[f (mHz)] 6 �0.6) was used to remove laser
noise. D1 arm is aligned 5� anti-clockwise from local meridian,
while D2 is aligned 11� anti-clockwise from local meridian. The
alig nment offset between D1 and D2 causes the dominant earth-
rotation induced minima to occur at different times, with that of D2
at t = 7.6 hrs delayed by 0.8 hrs relative to D1 at t = 6.8 hrs, as ex-
pected from Figs.10b and 11b for Dec = 77�. This is a fundamental
test of the detection theory and of the phenomena. As well the data
shows a simultaneous sub-mHz gravitational wave correlation at t �
8.8 hrs and of duration � 1 hr. This is the first observed correlation
for spatially separated gravitational wave detectors. Two other wave
effects (at t � 6.5 hrs in D2 and t � 7.3 hrs in D1) seen in one de-
tector are masked by the stronger earth-rotation induced minimum
in the other detector.

mathematical construct, and in which the invariance of the
speed of light is definitional — not observational.
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Fig. 12: (a) Log-Log plot of the frequency spectrum jh(f)j of the
data from the five days shown in Fig. 7a. h(f) is the strain v2=2c2 at
frequency f , normalised to v = 400 km/s at the 24 hr frequency. The
largest component (large red point) is the 24 hr earth rotation fre-
quency. The straight line (blue) is a trend line that suggests that the
signal has two components — one indicated by the trend line having
the form jh(f)j / fa with strain spectral index a = �1.4 � 0.1,
while the second component, evident above 1 mHz, is noise from
the laser source, as also indicated by the data in Fig. 8. (b) Southern
celestial sphere with RA and Dec shown. The 4 blue points show the
results from Miller [2] for four months in 1925/1926. The sequence
of red points show the daily averaged RA and Dec as determined
from the data herein for every 5 days. The 2007 data shows a direc-
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Derivation of Maxwell’s Equations Based on a Continuum Mechanical Model
of Vacuum and a Singularity Model of Electric Charges

Xiao-Song Wang
E-mail: wangxs1999@yahoo.com

The main purpose of this paper is to seek a mechanical interpretation of electromagnetic
phenomena. We suppose that vacuum is filled with a kind of continuously distributed
material which may be called 
(1) substratum. Further, we speculate that the 
(1)
substratum might behave like a fluid with respect to translational motion of large bod-
ies through it, but would still posses elasticity to produce small transverse vibrations.
Thus, we propose a visco-elastic constitutive relation of the 
(1) substratum. Further-
more, we speculate that electric charges are emitting or absorbing the 
(1) substratum
continuously and establish a fluidic source and sink model of electric charges. Thus,
Maxwell’s equations in vacuum are derived by methods of continuum mechanics based
on this mechanical model of vacuum and the singularity model of electric charges.

1 Introduction

Maxwell’s equations in vacuum can be written as [1]

r � E =
�e
�0
; (1)

r� E = �@B
@t

; (2)

r � B = 0 ; (3)

1
�0
r� B = j + �0

@E
@t

; (4)

where E is the electric field vector, B is the magnetic induc-
tion vector, �e is the density field of electric charges,
j is the electric current density, �0 is the dielectric constant
of vacuum, �0 is magnetic permeability of vacuum, t is time,
r = i @@x + j @@y + k @

@z is the Hamilton operator.
The main purpose of this paper is to derive the aforemen-

tioned Maxwell equations in vacuum based on a continuum
mechanics model of vacuum and a singularity model of elec-
tric charges.

The motivation for this paper was looking for a mecha-
nism of electromagnetic phenomena. The reasons why new
mechanical models of electromagnetic fields are interesting
may be summarized as follows.

First, there exists various electromagnetic phenomena
which could not be interpreted by the present theories of elec-
tromagnetic fields, e.g., the spin of an electron [1, 2], the
Aharonov-Bohm effect [3, 4], etc. New theories of of elec-
tromagnetic phenomena may consider these problems from
new sides.

Second, there exists some inconsistencies and inner diffi-
culties in Classical Electrodynamics, e.g., the inadequacy of
the Liéenard-Wiechert potentials [5–7]. New theories of elec-
tromagnetic phenomena may overcome such difficulties.

Third, there exists some divergence problems in Quantum
Electrodynamics [8]. By Dirac’s words, “I must say that I
am very dissatisfied with the situation, because this so-called
good theory does involve neglecting infinities which appear in
its equations, neglecting them in an arbitrary way. This is just
not sensible mathematics”. New theories of electromagnetic
phenomena may open new ways to resolve such problems.

Fourth, since the quantum theory shows that vacuum is
not empty and produces physical effects, e.g., the Casimir ef-
fect [9–12], it is valuable to reexamine the old concept of
electromagnetic aether.

Fifth, from the viewpoint of reductionism, Maxwell’s the-
ory of electromagnetic fields can only be regarded as a phe-
nomenological theory. Although Maxwell’s theory is a field
theory, the field concept is different from that of continuum
mechenics [13–16] due to the absence of a medium. Thus,
from the viewpoint of reductionism, the mechanism of elec-
tromagnetic phenomena is still remaining an unsolved prob-
lem of physics [17].

Sixth, one of the puzzles of physics is the problem of dark
matter and dark energy (refer to, for instance, [18–26]). New
theories of electromagnetic phenomena may provide
new ideas to attack this problem.

Finally, one of the tasks of physics is the unification of the
four fundamental interactions in the Universe. New theories
of electromagnetic phenomena may shed some light on this
puzzle.

To conclude, it seems that new considerations for elec-
tromagnetic phenomena is needed. It is worthy keeping an
open mind with respect to all the theories of electromagnetic
phenomena before the above problems been solved.

Now let us briefly review the long history of the mechan-
ical interpretations of electromagnetic phenomena.

According to E. T. Whittaker [17], Descartes was the first
person who brought the concept of aether into science by sug-
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gested mechanical properties to it. Descartes believed that ev-
ery physical phenomenon could be interpreted in the frame-
work of a mechanical model of the Universe. William Wat-
son and Benjamin Franklin (independently) constructed the
one-fluid theory of electricity in 1746 [17]. H. Cavendish at-
tempted to explain some of the principal phenomena of elec-
tricity by means of an elastic fluid in 1771 [17]. Not con-
tented with the above mentioned one-fluid theory of electric-
ity, du Fay, Robert Symmer and C. A. Coulomb developed a
two-fluid theory of electricity from 1733 to 1789 [17].

Before the unification of both electromagnetic and light
phenomena by Maxwell in 1860’s, light phenomena were in-
dependent studied on the basis of Descartes’ views for the
mechanical origin of Nature. John Bernoulli introduced a flu-
idic aether theory of light in 1752 [17]. Euler believed in
an idea that all electrical phenomena are caused by the same
aether that moves light. Furthermore, Euler attempted to ex-
plain gravity in terms of his single fluidic aether [17].

In 1821, in order to explain polarisation of light,
A. J. Frensnel proposed an aether model which is able to
transmit transverse waves. After the advent of Frensnel’s
successful transverse wave theory of light, the imponderable
fluid theories were abandoned. In the 19th century, Fren-
snel’s dynamical theory of a luminiferous aether had an im-
portant influence on the mechanical theories of Nature [17].
Inspired by Frensnel’s luminiferous aether theory, numerous
dynamical theories of elastic solid aether were established by
Stokes, Cauchy, Green, MacCullagh, Boussinesq, Riemann
and William Thomson. (See, for instance, [17]).

Thomson’s analogies between electrical phenomena and
elasticity helped to James Clark Maxwell to establish a me-
chanical model of electrical phenomena [17]. Strongly im-
pressed by Faraday’s theory of lines of forces, Maxwell com-
pared the Faraday lines of forces with the lines of flow of a
fluid. In 1861, in order to obtain a mechanical interpretation
of electromagnetic phenomena, Maxwell established a me-
chanical model of a magneto-electric medium. The Maxwell
magneto-electric medium is a cellular aether, looks like a
honeycomb. Each cell of the aether consists of a molecu-
lar vortex surrounded by a layer of idle-wheel particles. In a
remarkable paper published in 1864, Maxwell established a
group of equations, which were named after his name later,
to describe the electromagnetic phenomena.

In 1878, G. F. FitzGerald compared the magnetic force
with the velocity in a quasi-elastic solid of the type first sug-
gested by MacCullagh [17]. FitzGerald’s mechanical model
of such an electromagnetic aether was studied by A. Sommer-
feld, by R. Reiff and by Sir J. Larmor later [17].

Because of some dissatisfactions with the mechanical
models of an electromagnetic aether and the success of the
theory of electromagnetic fields, the mechanical world-view
was removed with the electromagnetic world-view gradually.
Therefore, the concepts of a luminiferous aether and an elas-
tic solid aether were removed with the concepts of an electro-

magnetic aether or an electromagnetic field. This paradigm
shift in scientific research was attributed to many scientists,
including Faraday, Maxwell, Sir J. Larmor, H. A. Lorentz,
J. J. Thomson, H. R. Hertz, Ludwig Lorenz, Emil Wiechert,
Paul Drude, Wilhelm Wien, etc. (See, for instance, [17].)

In a remarkable paper published in 1905, Einstein aban-
doned the concept of aether [27]. However, Einstein’s asser-
tion did not cease the exploration of aether (refer to, for in-
stance, [17,28–37,68,69]). Einstein changed his attitude later
and introduced his new concept of aether [38, 39]. In 1979,
A. A. Golebiewska-Lasta observed the similarity between the
electromagnetic field and the linear dislocation field [28].
V. P. Dmitriyev have studied the similarity between the elec-
tromagnetism and linear elasticity since 1992 [32,35,37,40].
In 1998, H. Marmanis established a new theory of turbu-
lence based on the analogy between electromagnetism and
turbulent hydrodynamics [34]. In 1998, D. J. Larson derived
Maxwell’s equations from a simple two-component solid-
mechanical aether [33]. In 2001, D. Zareski gave an elas-
tic interpretation of electrodynamics [36]. I regret to admit
that it is impossible for me to mention all the works related to
this field of history.

A. Martin and R. Keys [41–43] proposed a fluidic cos-
monic gas model of vacuum in order to explain the physical
phenomena such as electromagnetism, gravitation, Quantum
Mechanics and the structure of elementary particles.

Inspired by the above mentioned works, we show that
Maxwell’s equations of electromagnetic field can be derived
based on a continuum mechanics model of vacuum and a sin-
gularity model of electric charges.

2 Clues obtained from dimensional analysis

According to Descartes’ scientific research program, which
is based on his views about the mechanical origin of Nature,
electromagnetic phenomena must be (and can be) interpreted
on the basis of the mechanical motions of the particles of
aether.

Therefore, all the physical quantities appearing in the the-
ory of electromagnetic field should be mechanical quantities.

Thus, in order to construct a successful mechanical model
of electromagnetic fields, we should undertake a careful di-
mensional analysis (refer to, for instance, [44]) for physical
quantities in the theory of electromagnetism (for instance,
electric field vector E, magnetic induction vector B, the den-
sity field of electric charges �e, the dielectric constant of vac-
uum �0, the magnetic permeability of vacuum �0, etc.).

It is known that Maxwell’s equations (1-4) in vacuum can
also be expressed as [1]

r2�+
@
@t

(r � A) = ��e
�0
; (5)

r2A�r(r � A)� �0�0
@
@t

�
r�� @A

@t

�
= �j ; (6)
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where � is the scalar electromagnetic potential, A is the vec-
tor electromagnetic potential, r2 = @2

@x2 + @2

@y2 + @2

@z2 is the
Laplace operator.

In 1846, W. Thomson compared electric phenomena with
elasticity. He pointed out that the elastic displacement u of
an incompressible elastic solid is a possible analogy to the
vector electromagnetic potential A [17].

Noticing the similarity between the Eq. (6) and the equa-
tion (39) of momentum conservation of elastic solids, it is
natural to judge that vacuum is filled with a kind of elastic
substratum. Further, we may say that the dimension of the
electromagnetic vector potential A of such an elastic substra-
tum is the same that of the displacement vector u of an elastic
solid. Thus, the dimension of the vector electromagnetic po-
tential A of the elastic substratum is [L0M0T 0], where L, M
and T stands for the dimensions of length, mass, and time,
respectively. Therefore, we can determine the dimensions of
the rest physical quantities of the theory of electromagnetism,
for instance, the electric field vector E, the magnetic induc-
tion vector B, the electric charge qe, the dielectric constant
of vacuum �0, the magnetic permeability of vacuum �0, etc.
For instance, the dimension of an electric charge qe should be
[L0M1T�1].

Inspired by this clue, we are going to produce, in the next
Sections, an investigation in this direction.

3 A visco-elastic continuum model of vacuum

The purpose of this Section is to establish a visco-elastic con-
tinuum mechanical model of vacuum.

In 1845–1862, Stokes suggested that aether might behave
like a glue-water jelly [45–47]. He believed that such an
aether would act like a fluid on the transit motion of large
bodies through it, but would still possessing elasticity to pro-
duce a small transverse vibration.

Following Stokes, we propose a visco-elastic continuum
model of vacuum.
Assumption 1. Suppose that vacuum is filled with a kind of
continuously distributed material.

In order to distinguish this material with other substra-
tums, we may call this material as 
(1) substratum, for con-
venience. Further, we may call the particles that constitute
the 
(1) substratum as 
(1) particles (for convenience).

In order to construct a continuum mechanical theory of
the 
(1) substratum, we should take some assumptions based
on the experimental data about the macroscopic behavior of
vacuum.
Assumption 2. We suppose that all the mechanical quantities
of the 
(1) substratum under consideration, such as the den-
sity, displacements, strains, stresses, etc., are piecewise con-
tinuous functions of space and time. Furthermore, we sup-
pose that the material points of the 
(1) substratum remain
be in one-to-one correspondence with the material points be-
fore a deformation appears.

Assumption 3. We suppose that the material of the 
(1) sub-
stratum under consideration is homogeneous, that is @�

@x =
= @�

@y = @�
@z = @�

@t = 0; where � is the density of the 
(1)
substratum.

Assumption 4. Suppose that the deformation processes of
the 
(1) substratum are isothermal. So we neglect the ther-
mal effects.

Assumption 5. Suppose that the deformation processes are
not influenced by the gradient of the stress tensor.

Assumption 6. We suppose that the material of the 
(1) sub-
stratum under consideration is isotropic.

Assumption 7. We suppose that the deformaton of the 
(1)
substratum under consideration is small.

Assumption 8. We suppose that there are no initial stress
and strain in the body under consideration.

When the 
(1) substratum is subjected to a set of external
forces, the relative positions of the 
(1) particles form the
body displacement.

In order to describe the deformation of the 
(1) substra-
tum, let us introduce a Cartesian coordinate system fo;x;y;zg
or fo; x1; x2; x3g which is static relative to the 
(1) substra-
tum. Now we may introduce a definition to the displacement
vector u of every point in the 
(1) substratum:

u = r� r0; (7)

where r0 is the position of the point before the deformation,
while r is the position after the deformation.

The displacement vector may be written as u = u1i +
+u2j +u3k or u = ui + vj +wk, where i, j, k are three unit
vectors directed along the coordinate axes.

The gradient of the displacement vector u is the relative
displacement tensor ui;j = @ui

@xj .
We decompose the tensor ui;j into two parts, the sym-

metric "ij and the skew-symmetric 
ij (refer to, for instance,
[14, 48, 49])

ui;j =
1
2

(ui;j + uj;i) +
1
2

(ui;j � uj;i) = "ij + 
ij ; (8)

"ij =
1
2

(ui;j + uj;i) ; 
ij =
1
2

(ui;j � uj;i) : (9)

The symmetric tensor "ij manifests a pure deformation of
the body at a point, and is known the strain tensor (refer to,
for instance, [14,48,49]). The matrix form and the component
notation of the strain tensor "ij are

"ij =

0BBBB@
@u
@x

1
2

�
@u
@y + @v

@x

�
1
2

�@u
@z + @w

@x

�
1
2

�
@v
@x + @u

@y

�
@v
@y

1
2

�
@v
@z + @w

@y

�
1
2

�@w
@x + @u

@z

� 1
2

�
@w
@y + @v

@z

�
@w
@z

1CCCCA; (10)
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"ij =

0@ "11 "12 "13
"21 "22 "23
"31 "32 "33

1A : (11)

The strain-displacements equations come from Eq. (10)

"11 =
@u
@x

; "12 = "21 =
1
2

�
@u
@y

+
@v
@x

�
"22 =

@v
@y

; "23 = "32 =
1
2

�
@v
@z

+
@w
@y

�
"33 =

@w
@z

; "31 = "13 =
1
2

�
@w
@x

+
@u
@z

�
9>>>>>>>=>>>>>>>;
: (12)

For convenience, we introduce the definitions of the mean
strain deviator "m and the strain deviator eij as

"m =
1
3

("11 + "22 + "33) ; (13)

eij = "ij � "m =

0@ "11�"m "12 "13
"21 "22�"m "23
"31 "32 "33�"m

1A: (14)

When the 
(1) substratum deforms, the internal forces
arise due to the deformation. The component notation of the
stress tensor �ij is

�ij =

0@ �11 �12 �13
�21 �22 �23
�31 �32 �33

1A : (15)

For convenience, we introduce the definitions of mean
stress �m and stress deviator sij as

�m =
1
3

(�xx + �yy + �zz) ; (16)

sij = �ij � �m =

0@�11��m �12 �13
�21 �22��m �23
�31 �32 �33��m

1A: (17)

Now let us turn to study the constitutive relation.
An elastic Hooke solid responds instantaneously with re-

spect to an external stress. A Newtonian viscous fluid re-
sponds to a shear stress by a steady flow process.

In 19th century, people began to point out that fact that
some materials showed a time dependence in their elastic re-
sponse with respect to external stresses. When a material like
pitch, gum rubber, polymeric materials, hardened cement and
even glass, is loaded, an instantaneous elastic deformation
follows with a slow continuous flow or creep.

Now this time-dependent response is known as viscoelas-
ticity (refer to, for instance, [50–52]). Materials bearing both
instantaneous elastic elasticity and creep characteristics are
known as viscoelastic materials [51,52]. Viscoelastic materi-
als were studied long time ago by Maxwell [51–53], Kelvin,
Voigt, Boltzamann [51, 52, 54], etc.

Inspired by these contributors, we propose a visco-elastic
constitutive relation of the 
(1) substratum.

It is natural to say that the constitutive relation of the 
(1)
substratum may be a combination of the constitutive relations
of the Hooke-solid and the Newtonian-fluid.

For the Hooke-solid, we have the generalized Hooke law
as follows (refer to, for instance, [14, 48, 49, 55]),

�ij = 2G"ij + ���ij ; "ij =
�ij
2G
� 3�
Y
�m �ij ; (18)

where �ij is the Kronecker symbol, �m is the mean stress,
where Y is the Yang modulus, � is the Poisson ratio, G is the
shear modulus, � is Lamé constant, � is the volume change
coefficient. The definition of � is � = "11 + "22 + "33 =
= @u

@x + @v
@y + @w

@z .
The generalized Hooke law Eq. (18) can also be written

as [55]
sij = 2Geij ; (19)

where sij is the stress deviator, eij is the strain deviator.
For the Newtonian-fluid, we have the following constitu-

tive relation
deij
dt

=
1
2�

sij ; (20)

where sij is the stress deviator, deijdt is the strain rate deviator,
� is the dynamic viscocity.

The 
(1) substratum behaves like the Hooke-solid during
very short duration. We therefore differentiate both sides of
Eq. (19), then obtain

deij
dt

=
1

2G
dsij
dt

: (21)

A combination of Eq. (21) and Eq. (20) gives

deij
dt

=
1
2�

sij +
1

2G
dsij
dt

: (22)

We call the materials behaving like Eq. (22) “Maxwell-
liquid” since Maxwell established such a constitutive relation
in 1868 (refer to, for instance, [50–53]).

Eq. (22) is valid only in the case of infinitesimal defor-
mation because the presence of the derivative with respect to
time. Oldroyd recognized that we need a special definition
for the operation of derivation, in order to satisfy the princi-
ple of material frame indifference or objectivity [51,56]. Un-
fortunately, there is no unique definition of such a differential
operation fulfil the principle of objectivity presently [51].

As an enlightening example, let us recall the description
[50] for a simple shear experiment. We suppose

d�t
dt

=
@�t
@t

;
det
dt

=
@et
@t

; (23)

where �t is the shear stress, et is the shear strain.
Therefore, Eq. (22) becomes

@et
@t

=
1
2�

�t +
1

2G
@�t
@t

: (24)
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Integration of Eq. (24) gives

�t = e�G� t
�
�0 + 2G

Z t

0

det
dt

e
G
� dt
�
: (25)

If the shear deformation is kept constant, i.e. @et@t = 0, we
have

�t = �0 e�
G
� t : (26)

Eq. (26) shows that the shear stresses remain in the
Maxwell-liquid and are damped in the course of time.

We see that �
G must have the dimension of time. Now

let us introduce the following definition of Maxwellian relax-
ation time �

� =
�
G
: (27)

Therefore, using Eq. (27), Eq. (22) becomes

sij
�

+
dsij
dt

= 2G
deij
dt

: (28)

Now let us introduce the following hypothesis

Assumption 9. Suppose the constitutive relation of the 
(1)
substratum satisfies Eq. (22).

Now we can derive the the equation of momentum con-
servation based on the above hypotheses 9.

Let T be a characteristic time scale of an observer of the

(1) substratum. When the observer’s time scale T is of the
same order that the period of the wave motion of light, the
Maxwellian relaxation time � is a comparigly large number.
Thus, the first term of Eq. (28) may be neglected. Therefore,
the observer concludes that the strain and the stress of the

(1) substratum satisfy the generalized Hooke law.

The generalized Hooke law (18) can also be written
as [14, 55]

�11 = �� + 2G"11

�22 = �� + 2G"22

�33 = �� + 2G"33

�12 = �21 = 2G"12 = 2G"21

�23 = �32 = 2G"23 = 2G"32

�31 = �13 = 2G"31 = 2G"13

9>>>>>>>>>>>=>>>>>>>>>>>;
; (29)

where �= Y �
(1+�)(1�2�) is Lamé constant, � is the volume

change coefficient. By its definition, �= "11 + "22 + "33 =
= @u

@x + @v
@y + @w

@z .
The following relationship are useful

G =
Y

2(1 + �)
; K =

Y
3(1� 2�)

; (30)

where K is the volume modulus.

It is known that the equations of the momentum conser-
vation are (refer to, for instance, [14, 48, 49, 55, 57, 58]),

@�11

@x
+
@�12

@y
+
@�13

@z
+ fx = �

@2u
@t2

; (31)

@�21

@x
+
@�22

@y
+
@�23

@z
+ fy = �

@2v
@t2

; (32)

@�31

@x
+
@�32

@y
+
@�33

@z
+ fz = �

@2w
@t2

; (33)

where fx, fy and fz are three components of the volume force
density f exerted on the 
(1) substratum.

The tensor form of the equations (31-33) of the momen-
tum conservation can be written as

�ij;j + fi = �
@2ui
@t2

: (34)

Noticing Eq. (29), we write Eqs. (31-33) as

2G
�
@"11

@x
+
@"12

@y
+
@"13

@z

�
+ �

@�
@x

+ fx = �
@2u
@t2

; (35)

2G
�
@"21

@x
+
@"22

@y
+
@"23

@z

�
+ �

@�
@y

+ fy = �
@2v
@t2

; (36)

2G
�
@"31

@x
+
@"32

@y
+
@"33

@z

�
+ �

@�
@z

+ fz = �
@2w
@t2

: (37)

Using Eq. (12), Eqs. (35-37) can also be expressed by
means of the displacement u

Gr2u+(G+�) @
@x

�
@u
@x + @v

@y + @w
@z

�
+fx = � @

2u
@t2

Gr2v+(G+�) @
@y

�
@u
@x + @v

@y + @w
@z

�
+fy = � @

2v
@t2

Gr2w+(G+�) @
@z

�
@u
@x + @v

@y + @w
@z

�
+fz = � @

2w
@t2

9>>>>=>>>>;: (38)

The vectorial form of the aforementioned equations (38)
can be written as (refer to, for instance, [14,48,49,55,57,58]),

Gr2u + (G+ �)r(r � u) + f = �
@2u
@t2

: (39)

When no body force in the 
(1) substratum, Eqs. (39)
reduce to

Gr2u + (G+ �)r(r � u) = �
@2u
@t2

: (40)

From Long’s theorem [48, 59], there exist a scalar func-
tion  and a vector function R such that u is represented by

u = r +r� R (41)

and  and R satisfy the following wave equations

r2 � 1
cl

@2 
@t2

= 0 ; (42)

r2R� 1
ct

@2R
@t2

= 0 ; (43)
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where cl is the velocity of longitudinal waves, ct is the veloc-
ity of transverse waves. The definitions of these two elastic
wave velocities are (refer to, for instance, [48, 49, 57, 58]),

cl =

s
�+ 2G
�

; ct =

s
G
�
: (44)

 and R is usually known as the scalar displacement potential
and the vector displacement potential, respectively.

4 Definition of point source and sink

If there exists a velocity field which is continuous and finite
at all points of the space, with the exception of individual
isolated points, then, usually, these isolated points are called
velocity singularities. Point sources and sinks are examples
of such velocity singularities.
Assumption 10. Suppose there exists a singularity at a point
P0 = (x0; y0; z0) in a continuum. If the velocity field of the
singularity at a point P = (x; y; z) is

v(x; y; z; t) =
Q

4�r2 r̂; (45)

where r =
p

(x� x0)2 + (y � y0)2 + (z � z0)2, r̂ is the
unit vector directed outward along the line from the singular-
ity to this point P = (x; y; z), we call such a singularity a
point source in the case of Q > 0 or a point sink in the case
of Q < 0. Here Q is called the strength of the source or sink.

Suppose that a static point source with the strength Q lo-
cates at the origin (0; 0; 0). In order to calculate the volume
leaving the source per unit of time, we may enclose the source
with an arbitrary spherical surface S of the radius a. Calcula-
tion shows thatZZ

S
 u � n dS =

ZZ
S
 Q

4�a2 r̂ � n dS = Q ; (46)

where n is the unit vector directed outward along the line from
the origin of the coordinates to the field point
(x; y; z). Equation (46) shows that the strength Q of a source
or sink evaluates the volume of the fluid leaving or entering a
control surface per unit of time.

For the case of continuously distributed point sources or
sinks, it is useful to introduce a definition for the volume den-
sity �s of point sources or sinks. The definition is

�s = lim4V!0

4Q
4V ; (47)

where4V is a small volume,4Q is the sum of the strengthes
of all the point sources or sinks in the volume4V .

5 A point source and sink model of electric charges

The purpose of this Section is to propose a point source and
sink model of electric charges.

Let T be the characteristic time of a observer of an elec-
tric charge in the 
(1) substratum. We may suppose that the
observer’s time scale T is very large to the Maxwellian relax-
ation time � . So the Maxwellian relaxation time � is a rel-
atively small, and the stress deviator sij changes very slow.
Thus, the second term in the left side of Eq. (28) may be ne-
glected. For such an observer, the constitutive relation of the

(1) substratum may be written as

sij = 2�
deij
dt

: (48)

The observer therefore concludes that the 
(1) substra-
tum behaves like a Newtonian-fluid on his time scale.

In order to compare fluid motions with electric fields,
Maxwell introduced an analogy between sources or sinks and
electric charges [17].

Einstein, Infeld and Hoffmann introduced an idea by
which all particles may be looked as singularities in fields
[60, 61].

Recently [62], we talked that the universe may be filled
with a kind fluid which may be called “tao”. Thus, Newton’s
law of gravitation is derived by methods of hydrodynamics
based on a point sink flow model of particles.

R. L. Oldershaw talked that hadrons may be considered
as Kerr-Newman black holes if one uses appropriate scaling
of units and a revised gravitational coupling factor [63].

Inspired by the aforementioned works, we introduce the
following

Assumption 11. Suppose that all the electric charges in the
Universe are the sources or sinks in the 
(1) substratum. We
define such a source as a negative electric charge. We define
such a sink as a positive electric charge. The electric charge
quantity qe of an electric charge is defined as

qe = � kQ�Q ; (49)

where � is the density of the 
(1) substratum, Q is called the
strength of the source or sink, kQ is a positive dimensionless
constant.

A calculation shows that the mass m of an electric charge
is changing with time as

dm
dt

= � �Q =
qe
kQ

; (50)

where qe is the electric charge quantity of the electric charge.
We may introduce a hypothesis that the masses of electric

charges are changing so slowly relative to the time scaler of
human beings that they can be treaten as constants approxi-
mately.

For the case of continuously distributed electric charges,
it is useful to introduce the following definition of the volume
density �e of electric charges

�e = lim4V!0

4qe
4V ; (51)
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where4V is a small volume,4qe is the sum of the strengthes
of all the electric charges in the volume4V .

From Eq. (47), Eq. (49) and Eq. (51), we have

�e = � kQ��s : (52)

6 Derivation of Maxwell’s equations in vacuum

The purpose of this Section is to deduce Maxwell’s equations
based on the aforementioned visco-elastic continuum model
of vacuum and the singularity model of electric charges.

Now, let us deduce the continuity equation of the 
(1)
substratum from the mass conservation. Consider an arbitrary
volume V bounded by a closed surface S fixed in space. Sup-
pose that there are electric charges continuously distributed
in the volume V . The total mass in the volume V is

M =
ZZZ

V
� dV ; (53)

where � is the density of the 
(1) substratum.
The rate of the increase of the total mass in the vol-

ume V is @M
@t

=
@
@t

ZZZ
V
�dV : (54)

Using the Ostrogradsky–Gauss theorem (refer to, for in-
stance, [16, 64–67]), the rate of the mass outflow through the
surface S isZZ

S
 �(v � n)dS =

ZZZ
V
r � (� v)dV ; (55)

where v is the velocity field of the 
(1) substratum.
The definition of the velocity field v is

vi =
@ui
@t

; or v =
@u
@t
: (56)

Using Eq. (52), the rate of the mass created inside the
volume V is ZZZ

V
��s dV =

ZZZ
V
� �e
kQ

dV: (57)

Now according to the principle of mass conservation, and
making use of Eq. (54), Eq. (55) and Eq. (57), we have

@
@t

ZZZ
V
� dV =

ZZZ
V
� �e
kQ

dV �
ZZZ

V
r � (� v) dV: (58)

Since the volume V is arbitrary, from Eq. (58) we have

@�
@t

+r � (� v) = � �e
kQ

: (59)

According to Assumption 3, the 
(1) substratum is ho-
mogeneous, that is @�

@x = @�
@y = @�

@z = @�
@t = 0. Thus, Eq. (59)

becomes
r � v = � �e

kQ�
: (60)

According to Assumption 11 and Eq. (50), the masses
bearing positive electric charges are changing since the
strength of a sink evaluates the volume of the 
(1) substra-
tum entering the sink per unit of time. Thus, the momentum
of a volume element 4V of the 
(1) substratum containing
continuously distributed electric charges, and moving with an
average speed ve, changes. The increased momentum 4P
of the volume element 4V during a time interval 4t is the
decreased momentum of the continuously distributed electric
charges contained in the volume element 4V during a time
interval4t, that is,

4P = �(�s4V4t) ve = � �e
kQ
4V4t ve : (61)

Therefore, the equation of momentum conservation
Eq. (39) of the 
(1) substratum should be changed as

Gr2u + (G+ �)r(r � u) + f = �
@2u
@t2
� �eve

kQ
: (62)

In order to simplify the Eq. (62), we may introduce an
additional assumption as

Assumption 12. We suppose that the 
(1) substratum is al-
most incompressible, or we suppose that � is a sufficient small
quantity and varies very slow in the space so that it can be
treaten as �= 0.

From Assumption 12, we have

r � u =
@u
@x

+
@v
@y

+
@w
@z

= � = 0 : (63)

Therefore, the vectorial form of the equation of momen-
tum conservation Eq. (62) reduces to the following form

Gr2u + f = �
@2u
@t2
� �eve

kQ
: (64)

According to the Stokes-Helmholtz resolution theorem
(refer to, for instance, [48, 57]), which states that every suf-
ficiently smooth vector field may be decomposed into irrota-
tional and solenoidal parts, there exist a scalar function  and
a vector function R such that u is represented by

u = r +r� R: (65)

Now let us introduce the definitions

r� = kE
@
@t

(r ) ; A = kE r� R ; (66)

E = � kE @u
@t
; B = kE r� u ; (67)

where � is the scalar electromagnetic potential, A is the vec-
tor electromagnetic potential, E is the electric field intensity,
B is the magnetic induction, kE is a positive dimensionless
constant.

From Eq. (65), Eq. (66) and Eq. (67), we have

E = �r�� @A
@t
; B = r� A (68)
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and

r� E = �@B
@t

; (69)

r � B = 0 : (70)

Based on Eq. (66) and noticing that

r2u = r(r � u)�r� (r� u) ; (71)

r2A = r(r � A)�r� (r� A) ; (72)

and r � u = 0,r � A = 0, we have

kE r2u = r2A : (73)

Therefore, using Eq. (73), Eq. (64) becomes

G
kE
r2A + f = �

@2u
@t2
� �eve

kQ
: (74)

Using Eq. (72), Eq. (74) becomes

� G
kE
r� (r� A) + f = �

@2u
@t2
� �eve

kQ
: (75)

Now using Eq. (68), Eq. (75) becomes

� G
kE
r� B + f = � �

kE
@E
@t
� �eve

kQ
: (76)

It is natural to say that there are no other body forces or
surface forces exerted on the 
(1) substratum. Thus, we have
f = 0. Therefore, Eq. (76) becomes

kQG
kE

r� B =
kQ�
kE

@E
@t

+ �eve : (77)

Now let us introduce the following definitions

j = �eve ; �0 =
kQ�
kE

;
1
�0

=
kQG
kE

: (78)

Therefore, Eq. (77) becomes

1
�0
r� B = j + �0

@E
@t

: (79)

Noticing Eq. (67) and Eq. (78), Eq. (60) becomes

r � E =
�e
�0
: (80)

Now we see that Eq. (69), Eq. (70), Eq. (79) and Eq. (80)
coincide with Maxwell’s equations (1–4).

7 Mechanical interpretation of electromagnetic waves

It is known that, from Maxwell’s equations (1-4), we can ob-
tain the following equations (refer to, for instance, [1])

r2E� 1
�0�0

@2E
@t2

=
1
�0
r�e + �0

@j
@t
; (81)

r2H� 1
�0�0

@2H
@t2

= � 1
�0
r� j : (82)

Eq. (81) and Eq. (82) are the electromagnetic wave equa-
tions with sources in the 
(1) substratum. In the source free
region where �e = 0 and j = 0, the equations reduce to the
following equations

r2E� 1
�0�0

@2E
@t2

= 0 ; (83)

r2H� 1
�0�0

@2H
@t2

= 0 : (84)

Eq. (83) and Eq. (84) are the electromagnetic wave equations
without the sources in the 
(1) substratum.

From Eq. (83), Eq. (84) and Eq. (78), we see that the ve-
locity c0 of electromagnetic waves in vacuum is

c0 =
1p�0�0

=
r
G
� : (85)

From Eq. (44) and Eq. (85), we see that the velocity c0
of electromagnetic waves in the vacuum is the same as the
velocity ct of the transverse elastic waves in the 
(1) sub-
stratum.

Now we may regard electromagnetic waves in the vacuum
as the transverse waves in the 
(1) substratum. This idea was
first introduced by Frensnel in 1821 [17].

8 Conclusion

We suppose that vacuum is not empty and may be filled with
a kind continuously distributed material called 
(1) substra-
tum. Following Stokes, we propose a visco-elastic constitu-
tive relation of the 
(1) substratum. Following Maxwell, we
propose a fluidic source and sink model of electric charges.
Thus, Maxwell’s equations in vacuum are derived by methods
of continuum mechanics based on this continuum mechan-
ical model of vacuum and the singularity model of electric
charges.

9 Discussion

Many interesting theoretical, experimental and applied prob-
lems can be met in continuum mechanics, Classical Electro-
dynamics, Quantum Electrodynamics and also other related
fields of science involving this theory of electromagnetic phe-
nomena. It is an interesting task to generalize this theory of
electromagnetic phenomena in the static 
(1) substratum to
the case of electromagnetic phenomena of moving bodies.
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On the Geometry of Background Currents in General Relativity
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E-mail: spherical symmetry@yahoo.com

In this preliminary work, we shall reveal the intrinsic geometry of background currents,
possibly of electromagnetic origin, in the space-time of General Relativity. Drawing a
close analogy between the object of our present study and electromagnetism, we shall
show that there exists an inherent, fully non-linear, conservative third-rank radiation
current which is responsible for the irregularity in the curvature of the background
space(-time), whose potential (generator) is of purely geometric origin.

1 Introduction

Herein we attempt to study, in a way that has never been fully
explored before, the nature of background radiation fields
from a purely geometric point of view. One may always ex-
pect that empty (matter-free) regions in a space(-time) of non-
constant sectional curvature are necessarily filled with some
kind of pure radiation field that may be associated with a class
of null electromagnetic fields. As is common in practice, their
description must therefore be attributed to the Weyl tensor
alone, as the only remaining geometric object in emptiness
(with the cosmological constant neglected). An in-depth de-
tailed elaboration on the nature of the physical vacuum and
emptiness, considering space(-time) anisotropy, can be seen
in [6, 7].

Our present task is to explore the geometric nature of the
radiation fields permeating the background space(-time). As
we will see, the thrilling new aspect of this work is that our
main stuff of this study (a third-rank background current and
its associates) is geometrically non-linear and, as such, it can-
not be gleaned in the study of gravitational radiation in weak-
field limits alone. Thus, it must be regarded as an essential
part of Einstein’s theory of gravity.

Due to the intended concise nature of this preliminary
work, we shall leave aside the more descriptive aspects of
the subject.

2 A third-rank geometric background current in a gen-
eral metric-compatible manifold

At first, let us consider a general, metric-compatible manifold
MD of arbitrary dimension D and coordinates x�. We may
extract a third-rank background current from the curvature as
follows:

J��� = J�[��] = r�R���� ;
where square brackets on a group of indices indicate anti-
symmetrization (similarly, round brackets will be used to in-
dicate symmetrization). Of course, r is the covariant deriva-
tive, and, with @� = @

@ x� ,

R���� = @����� � @����� + �����
�
�� � ��������

are the usual components of the curvature tensor R of the
metric-compatible connection � whose components are
given by

���� =
1
2
g�� (@�g�� � @�g�� + @�g��) + ��[��]�

� g�� �g����[��] + g����[��]

�
:

Here g�� are the components of the fundamental sym-
metric metric tensor g and ��[��] are the components of the
torsion tensor. The (generalized) Ricci tensor and scalar are
then given, as usual, by the contractions R�� =R���� and
R=R��, respectively.

We may introduce the traceless Weyl curvature tensor W
through the decomposition

R��� = K�
�� +

+
1

D � 2
�
���R� + g�R

�
� � ��R�� � g��R�� ;

K�
�� = W�

�� +

+
1

(D � 1) (D � 2)
�
�� g�� � ���g��R ;

K�� = K(��) = K�
��� = � 1

D � 2
g��R ;

for which D> 2. In particular, we shall take into account the
following useful relation:

R���R
��� = W�

��W
��� +

+
1

D � 2
�
K� �

� �R
��+K����R���K����R[��]

�
+

+
1

D�2
�
2RR��+g��R��R���R��R���R �

� R
���+

+
2

D�2

�
R(��)R[�

�] +R
(��)R �

� �R��R(��)
��

� 2
(D�2)2 RR

�� :
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Now, for an arbitrary tensor field T , we have, as usual,

(r�r� �r�r�)T���������� =

= R����T
�����
����� +R����T

�����
����� + � � � �R����T���������� �

�R����T���������� � 2��[��]r�T���������� :

For a complete set of general identities involving the cur-
vature tensor R and their relevant physical applications in
Unified Field Theory, see [1–5].

At this point, we can define a second-rank background
current density (field strength) f through

f�� = f [��] = r�J��� = r�r�R���� = �r[�r�]R���� :

An easy calculation gives, in general,

f�� = �1
2
�
R���R

��� �R���R���� �
�R[��]R���� � ��[��]r�R���� :

In analogy to the electromagnetic source, we may define
a first-rank current density through

j� = r�f�� :
Then, a somewhat lengthy but straightforward calculation

shows that
r� j� = R[��]f�� + ��[��]r�f�� :

We may also define the field strength f through a sixth-
rank curvature tensor F whose components are given by

F������ = F[��][��]�� =

=
1
2

�
R����R

�
��� �R����R����

�
+

+
1
2

�
R����R

�
��� �R����R����

�
+

+
1
2

�
R����R

�
��� �R����R����

�
+

+
1
2

�
R����R

�
��� �R����R����

��R����R���� :
where R���� = R���� .

If we define a second-rank anti-symmetric tensor B by

B�� = F ��
���� =

=
1
2
�
R���R��� �R���R�����R����R[��] ;

we then obtain

f�� = B�� + ��[��]r�R���� ;
such that in the case of vanishing torsion, the quantities f and
B are completely equivalent.

3 A third-rank radiation current relevant to General
Relativity

Having defined the basic geometric objects of our theory, let
us adhere to the standard Riemannian geometry of General
Relativity in which the torsion vanishes, that is ��[��] = 0, and
so the connection is the symmetric Levi-Civita connection.
However, let us also take into account discontinuities in the
first derivatives of the components of the metric tensor in or-
der to take into account discontinuity surfaces correspond-
ing to any existing background energy field. As we will see,
we shall obtain a physically meaningful background current
which is strictly conservative.

Now, in connection with the results of the preceding sec-
tion, if we employ the simplified relation (which is true in the
absence of torsion)

R���R
��� = W�

��W
��� +

+
1

D � 2
�
K� �

� � R
�� +K����R��

�
+

+
1

D � 2
�
2RR�� + g��R��R�� � 4R��R

��� �
� 2

(D � 2)2 RR
�� ;

as well as the relations

K�
��K

��� = W�
��W

��� +
1

(D�1) (D�2)2 g
��R2;

K����R�� = W����R�� +

+
1

(D � 1) (D � 2)
(R�� � g��R)R ;

we obtain the desired relation

f�� = �1
2
�
W�

��W
��� �W �

��W
�����

� 1
D � 2

�
W� �

� � �W � �
� �

�
R�� :

If the metric tensor is perfectly continuous, it is obvious
that

f�� = 0 :

In deriving this relation we have used the symmetry
W���� =W���� . This shows that, in the presence of met-
ric discontinuity, the field strength f depends on the Weyl
curvature alone which is intrinsic to the background space(-
time) only when matter and non-null electromagnetic fields
are absent. We see that, in spaces of constant sectional cur-
vature, we will strictly have J���= 0 and f��= 0 since the
Weyl curvature vanishes therein. In other words, in the sense
of General Relativity, the presence of background currents is
responsible for the irregularity (anisotropy) in the curvature
of the background space(-time). Matter, if not elementary
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particles, in this sense, can indeed be regarded as a form of
perturbation with respect to the background space(-time).

Furthermore, it is now apparent that

J��� + J��� + J��� = 0 :

This relation is, of course, reminiscent of the usual Bian-
chi identity satisfied by the components of the Maxwellian
electromagnetic field tensor.

Also, we obtain the conservation law

r�j� = 0 :

which becomes trivial when the metric is perfectly continu-
ous.

Hence, the formal correspondence between our present
theory and the ordinary theory of electromagnetism may be
completed, in the simplest way, through the relation

J��� = r�R���� = r���� ;

where the anti-symmetric field tensor � given by

��� = @�A� � @�A�
plays a role similar to that of the electromagnetic field
strength. However, it should be emphasized that it exists in
General Relativity’s fully non-linear regime. In addition, it
vanishes identically in the absence of curvature anisotropy.
Interestingly, if one is willing to regard electromagnetism as
a kind of non-linear gravity, one may alternatively regard �
as being the complete equivalent of Maxwell’s electromag-
netic field strength. However, we shall not further pursue this
interest here.

Furthermore, we obtain the relation

f�� = ���� ;

where �=r�r�. That is, the wave equation

���� = �1
2
�
W���W��

� �W���W��
�
��

� 1
D � 2

(W���� �W����)R�� :

In the absence of metric discontinuity, we obtain

���� = 0 :

Let us now introduce a vector potential � such that the
curl of which gives us the field strength f . Instead of writ-
ing f�� = @���� @��� and instead of expressing the field
strength f in terms of the Weyl tensor, let us write its compo-
nents in the following equivalent form:

f�� = �1
2
�
R���R��� �R���R���� =

= r��� �r��� :

In order for the potential � to be purely geometric, we
shall have

r��� = �1
2
R���R��� ;

from which an “equation of motion” follows somewhat ef-
fortlessly:

D��
Ds

= �1
2
R���R���

dx�

ds
;

where D��
Ds = dx�

ds r���.
Note that, in the absence of metric discontinuity, the vec-

tor potential � is a mere gradient of a smooth scalar field �:
�� = r�� .

Now, it remains to integrate the equation

@��� = �1
2
R���R��� + ������

by taking a closed contour P associated with the surface area
dS spanned by infinitesimal displacements in two different
directions, that is,

dS�� = d1x�d2x� � d1x�d2x� :

An immediate effect of this closed-loop integration is that,
by using the generally covariant version of Stokes’ theorem
and by explicitly assuming that the integration factor Z
given by

Z�� =
1
2

ZZ

S

�r����� �r�����
�
dS�� =

=
1
2

ZZ

S

�
R���� + �������� � ��������

�
dS�� =

=
1
2

ZZ

S

�
R���� + 2��������

�
dS��

does not depend on �, the integral
H
P

������dx� shall indeed
vanish identically.

Hence, we are left with the expression

��� = �1
2

I
P

R���R���dx
� :

By introducing a new integration factor X satisfying
X�� +X�� +X�� = 0 as follows:

X�� = X [��] =
I
P

R���dx
� =

=
1
2

ZZ

S

�r�R��� �r�R����dS�� ;
we obtain, through direct partial integration,

��� = �1
2

�
R���X�� �

Z
X��dR���

�
:
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Simplifying, by keeping in mind that X =X (R; dR), we
finally obtain

��� =
1
2

Z
R���dX�� :

The simplest desired result of this is none other than

��� =
1
2
R���X�� ;

which, expressed in terms of the Weyl tensor, the Ricci tensor,
and the Ricci scalar, is

���=
1
2
W���X��+

1
D�2

�
X� �

� R���X� �
� R��

�
+

+
1

(D � 1) (D � 2)
X �
� �R :

Hence, through Einstein’s field equation (i.e. through the
energy-momentum tensor T )

R�� = � 8�G
c4

�
T�� � 1

2
g��T

�
;

where G is Newton’s gravitational constant and c is the speed
of light, we may see how the presence of (distributed) matter
affects the potential �.

4 Final remarks

At this point, having outlined our study in brief, it remains
to be seen whether our fully geometric background current
may be associated with any type of conserved material cur-
rent which is already known in the literature. It is also tempt-
ing to ponder, from a purely physical point of view, on the
possibility that the intrinsic curvature of space(-time) owes its
existence to null (light-like) electromagnetic fields or simply
pure radiation fields.

In this case, let the null electromagnetic (pure radiation)
field of the background space(-time) be denoted by ', for
which

'��'�� = 0 :

Then we may express the components of the Weyl ten-
sor as

W���� = '��'�� � '��'�� + '��'�� ;

such that the relation W �
��� = 0 is satisfied.

If this indeed is the case, then we shall have a chance to
better understand how matter actually originates from such a
pure radiation field in General Relativity. This will hopefully
also open a new way towards the full geometrization of matter
in physics.

Finally, as a pure theory of gravitation, the results in the
present work may be compared to those given in [8] and [9],
wherein, based on the theory of chronometric invariants [7], a

new geometric formulation of gravity (which is fully equiva-
lent to the standard form of General Relativity) is presented in
a way very similar to that of the electromagnetic field, based
solely on a second-rank anti-symmetric field tensor.
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The argument of twins’ asymmetry, essentially put forward in the common solution of
the Twin Paradox, is revealed to be inoperative in some asymptotic situations in which
the noninertial effects are insignificant. Consequently the respective solution proves
itself as unreliable thing and the Twin Paradox is re-established as an open problem
which require further investigations.

1 Introduction

Undoubtely that, in connection with Special Relativity, one
of the most disputed subjects was (and still remaining) the
so-called the Twin Paradox. Essentially this paradox consists
in a contradiction between time-dilatation (relativistic trans-
formations of time intervals) and the simple belief in sym-
metry regarding the ageing degrees of two relatively moving
twins. The idea of time-dilattation is largely agreed in sci-
entific literature (see [1–5] and references therein) as well
as in various (more or less academic) media. However the
experimental convincingness of the respective idea still re-
mains a subject of interest even in the inverstigations of the
last decades (see for examples [6–9]).

It is notable the fact that, during the last decades, the dis-
putes regarding the Twin Paradox were diminished and dis-
imulated owing to the common solution (CS), which seems
to be accredited with a great and unimpeded popularity. In
the essence, CS argues that the twins are in completely asym-
metric ageing situations due to the difference in the noniner-
tial effects which they feel. Such noninertial effects are con-
nected with the nonuniform motion of only one of the two
twins. Starting from the mentioned argumentation, without
any other major and credible proof, CS states that the Twin
Paradox is nothing but an apparent and fictitious problem.

But even in the situations considered by CS a kind of
symmetry between the twins can be restored if the nonin-
ertial effects are adequately managed. Such a management
is possible if we take into account an asymptotic situation
when the motions of the traveling twin is prevalently uniform
or, in addition, the nonuniform motions are symmetrically
present for both of the twins. Here we will see that the exis-
tence of the mentioned asymptotic situations have major con-
sequences/implications for the reliability of CS. Our search
is done in the Special Relativity approach (without appeals to
General Relativity). This is because we consider such an ap-
proach to be sufficiently accurate/adequate for the situations
under discussion.

In the end we shall conclude that the existence of the
alluded asymptotic situations invalidate the CS and restores
the Twin Paradox as a real (non-apparent, non-fictitious) and
open problem which requires further investigations.

2 Asymptotic situations in which the noninertial effects
are insignificant

In order to follow our project let us reconsider, in a quan-
titative manner, the twins arrangement used in CS. We con-
sider two twins A and B whose proper reference frames are
KA and KB respectively. The situations of the two twins A
and B are reported in comparison with an inertial reference
frame K.

2.1 Discusions about an asymptotic asymmetric situa-
tion

Within the framework of a first approach, we consider the
twin A remaining at rest in the coordinate origin O of the
frame K while the twin B moves forth and back along the
positive part of the x-axis of K. The motion of B passes
throgh the points O, M , N and P whose x-positions are:
xO = 0, xM =D, xN =D+L, xP = 2D+L. The motion
starts and finishes at O, while P is a turning point — i.e.
the velocity of B is zero at O and P . Along the segments
OM and NP the motion is nonuniform (accelerated or de-
celerated) with a time t dependent velocity v(t). On the other
hand, along the segmentMN , the motion is uniform with the
velocity of v0 = const. In the mentioned situation KA coin-
cides with K, while KB moves (nonuniformly or uniformly)
with respect to K. The time variables describing the degrees
of ageeing of the two twins will be indexed respective to A
and B. Also the mentioned time variables will be denoted re-
spective to � and t as they refer to the proper (intrinsic) time
of the considered twin or, alternatively, to the time measured
(estimed) in the reference frame of the other twin. The in-
finitesimal or finite intervals of � and t will be denoted by d�
and dt respectively by �� and �t.

With the menioned specifications, according to the rela-
tivity theory, for the time interval from the start to the finish
of the motion of the twin B, one can write the relations

��A = (�tB)n + (�tB)u ; (1)

��B =
Z

(�tB)n

r
1� v2 (tB)

c2
� dtB + (�tB)u

r
1� v2

0
c2

: (2)
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In these equations the indices n and u refer to the nonuni-
form respectively uniform motions, while c denotes the light
velocity. In (2) it was used the fact (accepted in the relativity
theory [10]) that instantaneously, at any moment of time, an
arbitrarily moving reference frame can be considered as in-
ertial. Because v(tB) 6 v0 6 c, from (1) and (2) a formula
follows:

��A > ��B : (3)

On the other hand, in the framework of a simple concep-
tion (naive belief) these two twins must be in symmetric age-
ing when B returns at O. This means that, according to the
respective conception, the following supposed relation (s.r)
have to be taken into account

��A = ��B (s.r.) : (4)

Moreover, for the same simple conception, by invoking
the relative character of the twins’ motion, the roles of A and
B in (3) might be (formally) inverted. Then one obtains an-
other supposed relation, namely

��A < ��B (s.r.) : (5)

This obvious disagreement between the relativistic for-
mula (3) and the supposed relations (4) and (5) represents
just the Twin Paradox.

For resolving of the Twin Paradox, CS invokes [1–3]
(as essential and unique argument) the assertion that the
twins ageing is completely asymmetric. The respective as-
sertion is argued with an idea that, in the mentioned arrange-
ment of twins, B feels non-null noninertial effects during its
nonuniform motions, while A, being at rest, does not feel
such effects. Based on the alluded argumentation, without
any other major and credible proof, CS rejects the supposed
relations (4) and (5) as unfounded and fictitious. Then, ac-
cording to CS only the relativistic formula (3) must be re-
garded as a correct relation. Consequently CS inferes the
conclusion: the Twin Paradox is nothing but a purely and ap-
parent fictitious problem.

But now we have to notify the fact that CS does not ap-
proach any discussion on the comparative importance (signif-
icance) in the Twin Paradox problem of the respective nonuni-
form and uniform motions. Particularly, it is not taken into
discussions the asymptotic situatios where, comparatively,
the effects of the noninertial motions become insignificant.
Or, it is clear that, as it is considered by CS, the asymmetry of
the twins is generated by the nonuniform motions, while the
uniform motions have nothing to do on the respective asym-
metry. That is why we discuss that the alluded comparative
importance is absolutely necessary. Moreover such a discus-
sion should refer (in a quantitative manner) to the compara-
tive value/ratio of L and D. This is because

(�tB)u =
2L
v0

; (6)

while, on the other hand, (�tB)n depends onD, — e.g. when
the nonuniformity of B motions is caused by constant forces,
the relativity theory gives

(�tB)n =
4v0D

c2
�

1�
q

1� v2
0
c2

� : (7)

Then with the notation � = D
L one obtains

(�tB)n
(�tB)u

= �
2v2

0

c2
�

1�
q

1� v2
0
c2

� � 4� (for v0�c) : (8)

This means that, in the mentioned circumstances, the ratio
� = D

L has a property which gives a quantitative description
to the comparative importance (significance) of the respective
nonuniform and uniform motions. It is natural to consider �
as the bearing the mentioned property in the circumstances
that are more general than those refered in (7) and (8). That
is why we will conduct our discussions in terms of the param-
eter �.

S: The quantitiesD and v0 are considered as bing
nonnull and constant, while L is regarded as an adjustable
quantity. So we can consider situations where � � 1 or even
where � ! 0.

Now let us discuss the cases where � � 1. In such a case the
twin B moves predominantly uniform, and the noninertiel ef-
fects on it are prevalently absent. The twins’ positions are
prevalently symmeric or even become asymptotically symet-
ric when � ! 0. That is why we regard/denote the respective
cases as asymptotic situations. In such situations the role of
the accelerated motions (and of associated noninertial effects)
becomes insignifiant (negligible).

These just alluded situations should be appreciated by
consideration (prevalently or even asymptotically) of Ein-
stein’s posulate of relativity, which states [3] that the inertial
frames of references are equivalent to each other, and they
cannot be distinguished by means of investigation of physical
phenomena. Such an appreciation materializes itself in the
relations

��A � ��B ; (�� 1)

lim
�!0

��A = lim
�!0

��B

9>=>; : (9)

Also, from (1) and (2) one obtains

��B � ��A

r
1� v2

0
c2
< ��A ; (�� 1) : (10)

By taking into account the mentioned Einstein postulate
in (10), the roles of A and B might be inverted and one finds

��A � ��B

r
1� v2

0
c2
< ��B ; (�� 1) : (11)
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Note that, in the framework of the discussed case, the rela-
tions (9) and (11) are not supposed (or fictitious) pieces as (4)
and (5) are, but they are true formulae like (10). This means
that for � � 1 the mentioned arrangement of the twins leads
to a set of incompatible relations (9)–(11). Within CS the
respective incompatibility cannot be avoided by any means.

2.2 Discusions about an asymptotic completely symmet-
ric situation

Now let us consider a new arrangement of the twins as fol-
lows. The twin B preserves exactly his situation previously
presented. On the other hand, the twin A moves forward and
backward in the negative part of the x-axis in K, symmetric
to as B moves with respect to the point O. All the men-
tioned notations remain unchanged as the above. Evidently
that, in the framework of the new arrangement, the situations
of these two twins A and B, as well as their proper frames
KA and KB , are completely symmetric with respect to K.
From this fact, for the time intervals between start and finish
of the motions, it results directly the relation

��A = ��B : (12)

In addition, for asymptotic situations where �� 1, one
obtains

��A = ��B � 2L
v0

r
1� v2

0
c2
; (� � 1) : (13)

On the other hand, by taking into account Einstein’s pos-
tulate of relativity, similarly to the relations (10) and (11) for
the new arrangement in the asymptotic situations (i.e., where
� � 1 and the noninertial effects are insignificant), one finds

��B � ��A

r
1� w2

0
c2

< ��A ; (� � 1) ; (14)

��A � ��B

r
1� w2

0
c2

< ��B ; (� � 1) ; (15)

with
w0 =

2v0

1 + v2
0
c2

: (16)

It should be noted that fact that, with respect to the rel-
ativity theory, the relations (12), (14) and (15) are true for-
mulae: they are not supposed and/or fictitious. On the other
hand, one finds that the mentioned relations are incompatible
to each other. The respective incompatibility cannot be re-
solved or avoided in a rational way by CS whose solely major
argument is the asymmetry of the twins.

3 Some final comments

The above analysed facts show that, in the mentioned
“asymptotic situations”, the noninertial effects are insignif-
icant for the estimation of the time intervals evaluated (felt)

by the two twins. Consequently in such situations the inertial-
noninertial asymmetry between such two twins cannot play a
significant role. Therefore the respective asymmetry cannot
be considered a reliable proof in the resolving of
the Twin Paradox. This means that the CS loses its essential
(and solely) argument. So, the existence of the above men-
tioned asymptotic situations appears as a true incriminating
test for CS.

Regarding to its significance and implications, the men-
tioned test has to be evaluated/examined concurently with the
“approvingly ilustrations” invoked and preached by the sup-
porters of CS. At this point it seems to be of some profit to
remind the Feynmann’s remark [11] that, in fact, a concep-
tion/theory is invalidated (proved to be wrong) by the real
and irrefutable existence of a single incriminating test, indif-
ferently of the number of approving illustrations. Some scien-
tists consider that such a test must be only of experimental but
not of theoretical nature. We think that the role of such tests
can be played also by theoretical consequences rigurously de-
rived from a given conception. So thinking, it is easy to see
that for CS the existence of the above discussed asymptotic
situations has all the characteristics of an irrefutable incrimi-
nating test. The respecrtive existence invalidate the CS which
must be abandoned as a wrong and unreliable approach of the
Twin Paradox.

But even if CS is abandoned the incompatibility regardig
the relations (9)–(11) or/and the formulae (12), (14) and (15)
remains as an unavoidable and intriguing fact. Then what is
the significance and importance of the respective fact? We
think that it restores the Twin Paradox as an authentic un-
solved problem which is still waiting for further investiga-
tions. Probably that such investigations will involve a large
variety of facts/arguments/opinions.

In connection to the alluded further investigations the fol-
lowing first question seems to be non-trivially interesting: can
the investigations on the Twin Paradox be done in a credible
manner withot troubling the Special Theory of Relativity? If a
negative answer, a major importance goes to the second ques-
tion: can the Twin Paradox, restored as mentioned above, be
an incriminating test for the Special Theory of Relativity, in
the sense of the previously noted Feynmann’s remark, or not?
Can the second question be connected to the “sub-title” of the
volume mentioned in the reference [9], or not?

This paper was prepared on the basis of an earlier manu-
script of mine [12].
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The paper presents design, principles of operation, and examples of registrations carried
out by original device developed and constructed by V. N. Smirnov. The device man-
ifested the possibility to register very weak gravitational perturbations of non-seismic
kind both from celestial bodies and from the internal processed in the terrestrial globe.

Given all hypotheses of the possible, do choice for
such one which doesn’t limit your further thinking on
the studied phenomenon. J. C. Maxwell

1 Introduction

At present day, we have many working properly gravitational
wave detectors such as LIGO (USA), GEO-600 (Great Britain
and Germany), VIRGO (Italy), TAMA-300 (Japan), mini-
GRAIL (the Netherlands) and so on. The physical principles
of measurement, on a basis of which all the detectors work,
lie in the theory of deviation of two particles in the field of a
falling gravitational wave meant as a wave of the space met-
ric (so called deformation gravitational waves [1, 2]). The
first of such devices was a solid-body (resonant) detector — a
1.500 kg aluminum pig, which is approximated by two parti-
cles connected by an elastic force (spring). It was constructed
and armed in the end of 1960’s by Joseph Weber, the pioneer
of these measurements [3–5]. Later there were constructed
also free-mass gravitational detectors, built on two mirrors,
distantly located from each other and equipped by a laser
range-finder to measure the distance between them. Once
a gravitational wave falls onto both solid-body or free-mass
detector, the detector should have smallest deformation that
could be registered as piezo-effect in a solid-body detector or
the change of the distance between the mirrors in a free-mass
detector [1]. For instance, LIGO (USA) is a free-mass detec-
tor, while miniGRAIL (the Netherlands) is a solid-body de-
tector built on a 65-cm metallic sphere, cooled down to liquid
Helium. (A spherical solid-body detector is especially good,
because it easily registers the direction of the falling gravita-
tional wave that manifests the source of the gravitational ra-
diation.) A device similar to miniGrail will soon be launched
at Saõ-Paolo, Brasil. Moreover, it is projected a “big Grail”
which mass expects to be 110 tons.

As supposed, the sources of gravitational radiation should
be the explosions of super-novae, stellar binaries, pulsars, and
the other phenomena in the core of which lies the same pro-
cess: two masses, which rotate round the common centre of
inertia, loose the energy of gravitational interaction with time
so shorten the distance between them; the lost energy of grav-

itational interaction exceeds into space with gravitational ra-
diation [1]. In the same time, we may expect the sources of
gravitational radiation existing in not only the far cosmos, but
also in the solar system and even in the Earth. The nearest
cosmic source of gravitational waves should be the system
Earth-Moon. Besides, even motion of tectonic masses should
generate gravitational radiation. Timely registering gravita-
tional radiation produced by such tectonic masses, we could
reach a good possibility for the prediction of earthquakes.

Here we represent a device, which could be considered
as a gravitational wave detector of a new kind, which is a
resonant-dynamic system. The core of such a detector is a
rotating body (made from metal or ceramics) in the state of
negative acceleration. Besides the advantage of the whole
system is that is gives a possibility for easy registration of the
direction of the gravitation wave moved through it.

2 The dynamical scheme of the device

Fig. 1 shows the dynamical scheme of the device, where the
rotating body is a 200 g cylindrical pig made from brass and
shaped as a cup (it is marked by number 1). The rotor is fixed
up on the axis of a micro electrical motor of direct current
(number 2). In the continuation of the axis 3 of the motor
a thick disc made from aluminum (number 4) is located; the
other side of the disc is painted by a light-absorbing black
color ink, except of the small reflecting sector 5. There over
the disc, an azimuth circle 6 is located, it is for orientation
of the device to the azimuth coordinates (they can further be
processed into the geographical coordinates of the sources of
a registered signal, or the celestial coordinates of it if it is lo-
cated in the cosmos). The azimuth circle has a optical pair
consisting of semiconductor laser as emitter and photodiode
as receiver 7. A laser beam, reflected by the sector 5, acts
onto the photodiode. The electrical motor 2 is fixed on the
rectangular magnetic platform 8, which is suspended by the
strong counter-field 0.3 Tesla of the stationary fixed mag-
net 9. There between the magnetic platforms an inductive
detector 10 is located.

We consider the functional dependencies between the el-
ements of this device. The rotor 1 turns into rotation by the
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Fig. 1: Dynamical scheme of the device.

electric motor to 4.000 rpm; the disc 4 rotates synchronically
with the rotor. Once the reflected laser beam falls onto the
photodiode, it produces an electric current. The pulse signal,
produced by the photodiode, goes into the control electronic
block which produces a rectangular pulse of voltage with the
regulated duration in the scale from 1.5 to 4.0�sec. Next
time these impulses go into the input of the motor driver. If
the output of the driver had a stable voltage with the polarity
(+;�), the inverts to (�;+) in the moment when the electric
pulse acts. For this moment the motor’s rotation is under ac-
tion of a negative acceleration: the rotation is braking for a
short time. During the braking a reverse pulse current is in-
ducted in the motor circuit, that is a “braking current” appears
a form of which is under permanent control on the screen of
an control oscilloscope.

Fig. 2 shows the block diagram of the control block.
There are: the rectangular magnetic platform 1, in common
with the rotor and the motor 3 located on it; the stationary
fixed magnetic platform 2; the inductive detector 4; selective
amplifier 5 working in the range from 10 Hz to 20 kHz; plot-
ter 6; the source of the power for the electrical motor (num-
ber 7); the driver 8; the electronic block for processing of the
electric pulse coming out from the photodiode (number 9);
the inductive detector of the pulse current (number 10); the
indicator of the angular speed of the rotor (number 11); oscil-
loscope 12.

At the end of braking pulse finishes (if to be absolutely
exact — on falling edge of pulse) the electrical motor rotat-
ing with inertia re-starts, so a positive acceleration appears in

Fig. 2: Diagram of the control block.

the system. The starting pulse is due to the strong starting cur-
rents in the power supply circuit. According to Ampere’s law,
the occurred starting current leads to a mechanical impact ex-
perienced by the electrical motor armature (it is the necessary
condition for the work of the whole device as a detector of
gravitational perturbation). During the rotor’s rotation, the
whole spectrum of the low frequent oscillations produced by
this mechanical impact are transferred to the mechanical plat-
form 1, which induces electromotive force on the detector 4.
This signal is transferred to the selective amplifier 5, wherein
a corresponding harmonic characterizing the rotor’s state is
selected. This harmonic, converted into analogous signal, is
transferred to the plotter 6.

3 The peculiarities of the experiment

The impulsive mechanical impact experienced by the motor
armature is actually applied to the centre of the fixation of the
rotor at the axis of electrical motor. The rotor, having a form
of cylindrical resonator, reach excitation with low frequency
due to this impact. In order to increase the excitation effect,
a brass bush seal was set up on the motor’s axis: the contact
surface between the axis and the rotor became bigger than be-
fore that. As a result in the rotor a standing sonar wave occurs
which has periodically excited, while all the time between the
excitations it dissipates energy. The rotor, as a low frequent
resonator, has its own resonant frequency, which was mea-
sured with special equipment by the method of the regulated
frequent excitation and laser diagnostics. (The necessity to
know the resonator frequency of the rotor proceeded from the
requirement to choose the frequency of its rotation and also
the frequency of its excitation.

Effect produced in the rotor due to a gravitational pertur-
bation consist of the change of the period of its rotation that
leads to the change in the initially parameters of the whole
system: the shift of the operating point on frequency response
function of selective amplifier and also the signal’s amplitude
changed at the output of the selective amplifier. Besides the
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Fig. 3: Diagram of the device orientation at the supposed source of
gravitational perturbation.

change of the angular speed of the rotation, due to the mo-
mentum conservation law, produces a reaction in the mag-
netic platform. Because the magnetic has rectangular form,
the magnetic field between the platforms 1 and 2 (see Fig. 2)
is non-uniform so the derivative of the density of the mag-
netic flow is substantial. All these lead to the fast change in
the level of the signal’s amplitude, and are defining the sensi-
tivity of the whole device.

Plotter registered such a summarized change of the sig-
nal’s amplitude.

Thus the sensitivity of the device is determined by the
following parameters: (1) the choice for the required reso-
nant frequency of the rotor; (2) the choice of the angular
speed of its rotation; (3) the duration of the braking pulse;
(4) the choice for the information sensor which gives infor-
mation about the rotor; (5) the factor of the orientation of the
device at the supposed source of gravitational perturbation.

The vector of the device orientation is the direction of the
impulsive braking force F or, that is the same, the negative
acceleration vector applied to the rotor. In the moment of
braking there a pair of forces F appears, which are applied
to the rotor. The plane where the forces act is the antennae
parameter of the system. Fig. 3 represent a fragment of the
device, where 1 is the rotor, 2 is the azimuth circle, 3 are the

indicators of direction, where the angular scale has the origin
of count (zero degree) pre-defined to the Southern pole. If
we suppose that the source of gravitational perturbation (it
is pictured by gray circle, 4) is a cosmic object, the device
should be oriented to the projection of this source onto the
horizontal plane (this projection is marked by number 5, and
pictured by small gray circle). The plane 6 is that for the
acting forces of braking.

4 Experimental results

Here are typical experimental results we got on the device
over a years of investigations.

The fact that such a device works as an antenna permits to
turn it so that it will be directed in exact at the selected space
objects in the sky or the earthy sources located at different
geographical coordinates.

First, we were looking for the gravitational field pertur-
bations due to the tectonic processes that could be meant the
predecessors of earthquakes. Using the geographic map of
the tectonic breaks, we set up an experiment on the orien-
tation of the device to such breaks. Despite the fact that
exact measurement of such directions is possible by a sys-
tem of a few devices (or in that case where the device is lo-
cated in area of a tectonic brake), the measurement of the
azimuth direction by our device was as precise as �2�. The
azimuthal directions were counted with respect to the South
pole. All measurement represented on the experimental di-
agrams (Fig. 4–9) are given with Moscow time, because the
measurement were done at Moscow, Russia. The period of
the rotation of the gyro changed in the range from 75�sec
to 200�sec during all the measurements produced on: the
rises and sets of the planets of the solar system (including
the Moon) and also those of the Sun; the moments when the
full moon and new moon occurs; the solar and lunar eclipses;
the perihelion and aphelion of the Earth, etc. In some ex-
periments (Fig. 6) extremely high gravitational perturbations
were registered, during which the period of the rotation of the
gyro was changed till 400�sec and even more (the duration
of such extremely high perturbations was 5–10 minutes on
the average). Further we found a correlation of the registered
signals to the earthquakes. The correlation showed: the per-
turbations of the earthy gravitational field, registered by our
device, predesecced the earthquakes in the range from 3 to 15
days in the geographic areas whereto the device was directed
(Fig. 4–6).

Examples of records in Fig. 7–8 present transit of Venus
through the disc of the Sun (Fig. 7) and solar eclipse at
Moscow, which occur at November 03, 2005.

Aside for such single signals as presented in Fig. 4–8, our
device registered also periodic signals. The periodic signals
were registered twice a year, in October and May, that are two
points in the chord of the orbit of the Earth which connects
the directions to Taurus and Virgo. The time interval between
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Fig. 4: June 30, 2005. The azimuth of the signal is �53� to East.
The predecessing signal of the earthquake in the Indian Ocean near
Sumatra Island, Indonesia, July 05, 2005.

Fig. 5: March 29, 2006. The azimuth of the signal is �9� to East:
the predecessor of the earthquake in the Western Iran, which oc-
curred on April 02, 2006.

Fig. 6: May 05, 2007. A high altitude gravitational perturbation.
The azimuth of the signal is 122� to West. The central states of
the USA became under action of 74 destructing tornados two days
later, on May 08, 2007.

Fig. 7: June 08, 2004. Transit of Venus through the disc of the Sun,
09h51min.

Fig. 8: November 03, 2005. The solar eclipse at Moscow city,
Russia. The eclipse phase is �0.18.

Fig. 9: May 31, 2003. Periodical signals.
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the signals growing with the motion of the Earth along its
orbit during 5 days then deceased. A fragment of the graph is
represented in Fig. 9.

It should be noted that when Joseph Weber claimed about
a gravitational wave signal registered with his solid-body de-
tector [3–5], he pointed out that fact that the solely registered
signal came from Taurus.

5 Conclusion

The core of the device is a rotating body (in our case it is a
rotating brass resonator), which sensitivity to gravitational ra-
diation lies in its excitation expected in the field of a falling
gravitational wave. Despite the physical state of the gyro-
resonator corresponds, in main part, to the wave-guide solid-
body gyros, its internal construction and the principles of
work are substantially different from those [6].

The device manifested the possibility to register gravi-
tational perturbations of non-seismic kind from the internal
processed in the terrestrial globe, and locate the terrestrial co-
ordinates of the sources of the perturbations.

An auxiliary confirmation of such a principle for the reg-
istration of gravitational perturbation is that fact that one of
the gyros CMG-3 working on board of the International
Space Station “experienced an unusual high vibration” on
March 28, 2005 (it was registered by the space station com-
mander Leroy Chiao and the astronaut Salizhan Sharipov [7]),
in the same time when a huge earthquake occurred near Nias
Island (in the shelf of Indian Ocean, close to Sumatra, In-
donesia).

This device is a really working instrument to be used for
the aforementioned tasks. In the same time, a lack of attention
to it brakes the continuation of the experiments till the stop of
the whole research program in the near future.
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We present the third quantization of Bergmann-Wagoner scalar-tensor and Brans Dicke
solvable toy models. In the first one we used an exponential cosmological term, for the
second one we considered vanishing cosmological constant. In both cases, it is found
that the number of the universes produced from nothing is very large.

1 Introduction

The Wheeler-DeWitt (WDW) equation is a result of quan-
tization of a geometry and matter (second quantization of
gravity), in this paper we consider the third quantization of
a solvable inflationary universe model, i.e., by analogy with
the quantum field theory, it can be done the second quanti-
zation of the universe wavefunction  expanding it on the
creation and annihilation operators (third quantization) [1].
Because in the recent years there has been a great interest
in the study of scalar-tensor theories of gravitation, owing
that of the unified theories [2, 3], we choose to work with
the most general scalar-tensor theory examined by Bergmann
and Wagoner [4, 5], in this theory the Brans-Dicke parameter
! and cosmological function � depend upon the scalar gravi-
tational field �. The Brans-Dicke theory can be obtained set-
ting ! = const and � = 0.

The WDW equation is obtained by means of canonical
quantization of Hamiltonian H according to the standard ca-
nonical rule, this leads to a difficulty known as the problem
of time [6]. Also, this equation has problems in its proba-
bilistic interpretation. In the usual formulation of quantum
mechanics a conserved positive-definite probability density is
required for a consistent interpretation of the physical prop-
erties of a given system, and the universe in the quantum
cosmology perspective, do not satisfied this requirement, be-
cause the WDW equation is a hyperbolic second order differ-
ential equation, there is no conserved positive-definite proba-
bility density as in the case of the Klein-Gordon equation, an
alternative to this, is to regard the wavefunction as a quantum
field in minisuperspace rather than a state amplitude [7].

The paper is organized as follows. In Section 2 we obtain
the WDW equation. In Section 3 we show third quantization
of the universe wavefunction using two complete set of modes
for the most easy choice of factor ordering. Finally, Section 4
consists of conclusions.

2 Canonical formalism

Our starting point is the action of Bergmann-Wagoner scalar
tensor theory

S=
1
l2p

Z
M

p�g
�
�R(4)�!(�)

�
g���;��;�+2��(�)

�
d4x+

+
2
l2p

Z
@M

p
h�hijKij d3x ; (1)

where g = det(g�;�), �(t) is the conventional real scalar
gravitational field, while lp is the Planck length and �(�) is
the cosmological term. The quantity R(4) is the scalar cur-
vature of the Friedmann-Robertson-Walker theory, which is
given, according to the theory, by

R(4) = �6k
a2 � 6

_a2

N2a2 � 6
�a

N2a
+ 6

_a _N
N3a

: (2)

The second integral in (1) is a surface term involving the
induced metric hij and second fundamental form Kij on the
boundary, needed to cancel the second derivatives in R(4)

when the action is varied with the metric and scalar field, but
not their normal derivatives, fixed on the boundary. Substi-
tuting (2) in (1) and integrating with respect to space coordi-
nates, we have

S =
1
2
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a�
N
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N
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where dot denotes time derivative with respect to the time t,
now introducing a new time d� = � 1

2 dt and the following
independent variables

� = a2� cosh
Z �

2!(�) + 3
3

�1
2 d�
�
; (4)

� = a2� sinh
Z �

2!(�) + 3
3

�1
2 d�
�
; (5)

�(�) = 3�
�
�1 cosh

Z �
2!(�) + 3

3

�1
2 d�
�

+

+ �2 sinh
Z �

2!(�) + 3
3

�1
2 d�
�

�
; (6)
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where �1 and �2 are constants, with gaugeN = 1, then action
(3) transforms into a symmetric form

S =
1
2

Z �
1
4
�
�02 � �02�+ �1�+ �2� � k

�
d�; (7)

here prime denotes time derivative with respect to � . The
Hamiltonian of the system is

H = 2�2
� � 2�2

� +
1
2

(k � �1�� �2�): (8)

After canonical quantization of H , the WDW equation is�
@2
� + A��1@� � @2

� �B��1@� +

+
1
4

(�1�+ �2� � k)
�
 (�; �) = 0; (9)

where A and B are ambiguity ordering parameters. The gen-
eral universe wavefunction for this model can be given in
terms of Airy functions.

3 Third quantization

The procedure of the universe wavefunction  quantization is
called third quantization, in this theory we consider  as an
operator acting on the state vectors of a system of universes
and can be decomposed as

 ̂(�; �) = Ĉi  +
i (�; �) + Ĉyi  �i (�; �) ; (10)

where  �i (�; �) form complete orthonormal sets of solutions
to WDW equation. This is in analogy with the quantum field
theory, where Ĉi and Ĉyi are creation and annihilation opera-
tors. Thus, we expect that the vacuum state in a third quan-
tized theory is unstable and creation of universes from the
initial vacuum state takes place. In this view, the variable
� plays the role of time, and variable � the role of space.
 (�; �) is interpreted as a quantum field in the minisuper-
space.

We assume that the creation and annihilation operators of
universes obey the standard commutation relations�

C(s); Cy(s0)
�

= �(s� s0); (11)�
C(s); C(s0)

�
=
�
Cy(s); Cy(s0)

�
= 0 : (12)

The vacuum state j0i is defined by

C(s)j0i for 8C ; (13)

and the Fock space is spanned by Cy(s1)Cy(s2):::j0i. The
field  (�; �) can be expanded in normal modes  s as

 (�; �) =
+1Z
�1

�
C(s) s(�; �) + Cy(s) �s(�; �)

�
ds ; (14)

here, the wave number s is the momentum in Planck units and
is very small.

3.1 General model

Let us consider the quantum model (9) for the most easy fac-
tor ordering A = B = 0, with �2 = 0 and closed universe
k = 1. Then, the WDW equation becomes�

@2
� � @2

� +
1
4

(�1�� 1)
�
 (�; �) = 0; (15)

the third-quantized action to yield this equation is

S3Q=
1
2

Z �
(@� )2�(@� )2� 1

4
(�1��1) 2

�
d�d� ; (16)

this action can be canonically quantized and we impose the
equal time commutation relations�

i @� (�; �);  (�; �0)
�

= �(� � �0) ; (17)�
i @� (�; �); i @� (�; �0)

�
= 0 ; (18)�

 (�; �);  (�; �0)
�

= 0 : (19)

A suitable complete set of normalized positive frequency
solutions to equation (15) are:

 outs (�; �) =
eis�

(16�1) 1
16

�
Ai
h
(2�1)� 2

3 (1� 4s2 � �1�)
i

+

+ iBi
h
(2�1)� 2

3 (1� 4s2 � �1�)
i�
; (20)

and

 ins (�; �) =
p

2 eis�

(16�1) 1
16
�

�
�
e

(1�4s2)
3
2

3�1 Ai
h
(2�1)� 2

3 (1� 4s2 � �1�)
i

+

+
i
2
e�

(1�4s2)
3
2

3�1 Bi
h
(2�1)� 2

3 (1� 4s2 � �1�)
i�
; (21)

 outs (�; �) and  ins (�; �) can be seen as a positive frequency
out going and in going modes, respectively, and these solu-
tions are orthonormal with respect to the Klein-Gordon scalar
product

h s;  s0i = i
Z
 s
$
@ �  �s0d� = �(s� s0) : (22)

The expansion of  (�; �) in terms of creation and anni-
hilation operators for the in-mode and out-mode is

 (�; �) =
Z �

Cin(s) ins (�; �) +

+ Cyin(s) in�r (�; �)
�
ds ; (23)

and

 (�; �) =
Z �

Cout(s) outs (�; �) +

+ Cyout(s) out�r (�; �)
�
ds : (24)
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As both sets (20) and (21) are complete, they are related
to each other by the Bogoliubov transformation defined by

 outs (�; �) =
Z �

C1(s; r) inr (�; �) +

+ C2(s; r) in�r (�; �)
�
dr ; (25)

and

 ins (�; �) =
Z �

C1(s; r) outr (�; �) +

+ C2(s; r) out�r (�; �)
�
dr : (26)

Then, we obtain that the Bogoliubov coefficients C1(s; r)
= �(s� r)C1(s) and C2(s; r) = �(s+ r)C2(s) are

C1(s; r) = �(s� r) 1p
2
�

�
 

1
2
e�

(1�4s2)
3
2

3�1 + e
(1�4s2)

3
2

3�1

!
;

(27)

and

C2(s; r) = �(s+ r)
1p
2
�

�
 

1
2
e�

(1�4s2)
3
2

3�1 + e
(1�4s2)

3
2

3�1

!
:

(28)

The coefficients C1(s; r) and C2(s; r) are not equal to
zero. Thus, two Fock spaces constructed with the help of the
modes (20) and (21) are not equivalent and we have two dif-
ferent third quantized vacuum states (voids): the in-vacuum
j 0; in i and out-vacuum j 0; out i (which are the states with
no Friedmann Robertson Walker-like universes) defined by

Cin(s) j 0; ini = 0 and Cout(s) j 0; out i = 0; (29)

where s2R. Since the vacuum states j 0; in i and j 0; out i
are not equivalent, the birth of the universes from nothing
may have place, where nothing is the vacuum state j 0; in i.
The average number of universes produced from nothing, in
the s-tn mode N(s) is

N(s) =
D

0; in j Cyout(s)Cout(s) j 0; in
E
; (30)

as follows from equation (25) we get

N(s) =
1
2

 
1
2
e�

(1�4s2)
3
2

3�1 � e (1�4s2)
3
2

3�1

!2

; (31)

considering Coleman’s wormhole mechanism [8] for the van-
ishing cosmological constant and the constraint �1 6 1

8 ��
10�120m4

p , with jsj � 1, then the number of state N(s) is

N(s) � 1
2
e

2
3�1

(1�4s2)
3
2 : (32)

This result from third quantization shows that the number
of the universes produced from nothing is exponentially large.

3.2 Particular model

An interesting model derived from Bergmann Wagoner action
(1) with !(�) =!0 = const, �(�) = 0 andN = 1 is the Brans-
Dicke theory

S=
1
l2p

Z p�g ��R(4)�!(�)
�

g���;��;�+2��(�)
�
dt: (33)

By means of new variables

x = ln(a2�) ; y = ln�
1
� ; dt = ad� ; (34)

where �2 = 3
2!0+3 , action (33) transforms into

S =
1
2

Z �
x02
4
� y02

4
� 1
�
exd � ; (35)

the WDW equation for this model is�
x�A@x(xA@x)� @2

y � e2x

4

�
 (x; y) = 0 ; (36)

the ambiguity of factor ordering is encoded in the A param-
eter. The third quantized action to yield the WDW equation
(36) is

S3Q =
1
2

Z �
(@x )2 � (@y )2 +

e2x

4
 2
�
dx dy : (37)

Again, in order to quantize this toy model, we impose
equal time commutation relations given by (17–19), and by
means of normal mode functions  p we can expand the field
 (x; y). A suitable normalized out-mode function with posi-
tive frequency for large scales, is

 outp (x; y) =
1

2
p

2
e��2 jpjH(2)�q

iex

2
eipy; (38)

whereH(2)�q is a Hankel function and q=�i jp j. The normal-
ized in-mode function is

 inp (x; y) =
e �2 jpj

2 sinh
1
2 (� jp j) Jq

iex

2
eipy; (39)

where Jq is a first class Bessel function. In the classically al-
lowed regions the positive frequency modes correspond to the
expanding universe [9]. As both wavefunctions (38) and (39)
are complete, they are related to each other by a Bogoliubov
transformation. The corresponding coefficients are

C1(p; q) = �(p� q) 1p
1� e�2�jpj ; (40)

and
C2(p; q) = �(p+ q)

1p
e2�jpj � 1

: (41)

The coefficients C1(p) and C2(p) are not equal to zero
and satisfy the probability conservation condition

jC1(p) j2 � jC2(p) j2 = 1 :
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In this way, it can be constructed two not equivalent Fock
spaces by means of (38) and (39). These two different third
quantized vacuum states, the in-vacuum j 0; ini and out-
vacuum j 0; outi are defined by (29). The average number
of universes created from nothing, i.e., the in-vacuum in the
p-th N(p), is

N(p) =


0; in j Cyout(p)Cout(p) j 0; in� =

= j C2(p) j2 =

=
1

e2�jpj � 1
: (42)

This expresion corresponds to a Planckian distribution of uni-
verses.

4 Conclusions

By means of a suitable choice of lapse function and inde-
pendent variables, we have solved the WDW equation in the
Bergmann-Wagoner gravitational theory for a cosmological
function of the form �(�)=�1 cosh[2y(�)]+�2 sinh[2y(�)],
this kind of cosmological term is important because of new
scenario of extended inflation [10]. Also, we have studied
on the third quantization of Bergmann-Wagoner and Brans-
Dicke models, in which time is related by the scalar fac-
tor of universe and the space coordinate is related with the
scalar field. The universe is created from stable vacuum ob-
tained by the Bogoliubov-type transformation just as it is in
the quantum field theory.

One of the main results of third quantization is that the
number of universes produced from nothing is exponentially
large. We calculated the number density of the universes cre-
ating fron nothing and found that the initial state j 0; ini is
populated by a Planckian distribution of universes.
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Gravity Model for Topological Features on a Cylindrical Manifold

Igor Bayak

E-mail: bayak@mail.ru

A model aimed at understanding quantum gravity in terms of Birkhoff’s approach is
discussed. The geometry of this model is constructed by using a winding map of
Minkowski space into a R3 � S1-cylinder. The basic field of this model is a field
of unit vectors defined through the velocity field of a flow wrapping the cylinder. The
degeneration of some parts of the flow into circles (topological features) results in in-
homogeneities and gives rise to a scalar field, analogous to the gravitational field. The
geometry and dynamics of this field are briefly discussed. We treat the intersections be-
tween the topological features and the observer’s 3-space as matter particles and argue
that these entities are likely to possess some quantum properties.

1 Introduction

In this paper we shall discuss a mathematical construction
aimed at understanding quantum gravity in terms of Birk-
hoff’s twist Hamiltonian diffeomorphism of a cylinder [1].
We shall also use the idea of compactification of extra dimen-
sions due to Klein [2]. To outline the main idea behind this
model in a very simple way, we can reduce the dimensional-
ity and consider the dynamics of a vector field defined on a
2-cylinder R1 � S1. For this purpose we can use the velocity
field u(x; � ) of a two-dimensional flow of ideal incompress-
ible fluid moving through this manifold.

Indeed, the dynamics of the vector field u(x; � ) with the
initial condition u(x; 0) is defined by the evolution equation

�
Z

��

Z
�x
dx ^ u(x; � )d� ! 0 ; (1.1)

where we use the restriction of the vector field onto an arbi-
trary cylinder’s element; �� is the evolution (time) interval,
and �x is an arbitrary segment of the cylinder’s element. In
other words, we assume the variation of the integral of the
mass carried by the flow through the segment during a finite
time interval to be vanishing. That is, as a result of the field
evolution, u(x; 0)!u(x;1), the functional of the flow mass
approaches to its maximal value. If, at the initial moment of
time, the regular vector field u(x; 0) corresponds to a unit
vector forming an angle ' with the cylinder’s element, then
the evolution of this field is described by the equation

�
Z

��

Z
�x
dx ^ u(x; � )d� =

= �
Z

��

Z
�x

sin'(� )dxd� = cos'(� )���x! 0 : (1.2)

Therefore, the case of '(0) = 0 corresponds to the ab-
solute instability of the vector field. During its evolution,
u(x; 0)!u(x;1), the field is relatively stable at
0<'(� )< �

2 , achieving the absolute stability at the end of
this evolution, when '(1) = �

2 . If, additionally, we fix the

vector field u(x; � ) at the endpoints of the segment �x by
imposing some boundary conditions on the evolution equa-
tion (1.1), we would get the following dynamical equation:

�
Z

��

Z
�x
dx ^ u(x; t)d� = 0 : (1.3)

Let some flow lines of the vector field u(x; � ) be degener-
ated into circles (topological features) as a result of the abso-
lute instability of the field and fluctuations during the initial
phase of its evolution. Since the dynamics of such topological
features is described by (1.3), the features would tend to move
towards that side of �x where the field u(x; � ) is more sta-
ble. Thus, the topological features serve as attraction points
for each other and can be used for modelling matter particles
(mass points).

We must emphasise that the plane (x; � ), in which our
variational equations are defined, has the Euclidean metric.
That is, in the case of the Euclidean plane (x; �) wrapping
over a cylinder we can identify the azimuthal parameter �
with the evolution parameter � . By choosing the observer’s
worldline coinciding with a cylinder’s element we can speak
of a classical limit, whereas by generalising and involving
also the azimuthal (angular) parameter we can speak of the
quantisation of our model. So, when the observer’s worldline
is an arbitrary helix on the cylinder, the variational equation
(1.3) reads

�
Z

�x0

Z
�x1

dx1 ^ g(x)dx0 = 0 ; (1.4)

where the varied is the vector field g(x) defined on the
pseudo-Euclidean plane (x0; x1) oriented in such a way that
one of its isotropic lines covers the cylinder-defining circle
and the other corresponds to a cylinder’s element. In this case
we can speak of a relativistic consideration. If the observer’s
worldline corresponds to a curved line orthogonal to the flow
lines of the vector field g(x), where g2(x)> 0, then we have
to use the variational equation defined on a two-dimensional
pseudo-Riemann manifold M induced by the vector field
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g(x), namely,

�
Z

�M
g2(x0)

p�det gij dx00 ^ dx01 = 0 ; (1.5)

where �M = �x00 ��x01 is an arbitrary region of the man-
ifold M ; x00(�) is the flow line of the vector field g(x) pa-
rameterised by the angular coordinate �; x01(r) is the spa-
tial coordinate on the cylinder (orthogonal to the observer
worldline) parameterised by the Euclidean length r; gij is
the Gram matrix corresponding to the pair of tangent vec-
tors

�dx00
d� ;

dx01
dr

�
. In this case the dynamics of the vector field

is described through the geometry of its flow lines [3–5].
Thus, we can say that our approach to the dynamics of the

vector field is based on maximisation of the mass carried by
the flow [6, 7], which is not exactly what is typically used in
the ergodic theory [8–10]. However, this principle is likely to
be related to the the minimum principle for the velocity field
[13–15], which is a special case of the more general principle
of minimum or maximum entropy production [11, 12].

Before a more detailed discussion of this model we have
to make a few preliminary notes. First, throughout this pa-
per we shall use a somewhat unconventional spherical coordi-
nates. Namely, latitude will be measured modulo 2� and lon-
gitude – modulo �. In other words, we shall use the following
spherical (�, ', �1; : : : ; �n�2) to Cartesian (x1; : : : ; xn) coor-
dinate transformation in Rn:

x1 = � cos';
x2 = � sin' cos �1;
x3 = � sin' sin �1;
: : : : : : : : : : : : : : : : : : : : :
xn�1 = � sin' : : : sin �n�3 cos �n�2;
xn = � sin' : : : sin �n�3 sin �n�2;

where 06 �<1, 06'< 2� and 06 �i<�. We shall also
be interpreting the projective space RPn as the space of cen-
trally symmetric lines in Rn+1, that is, as a quotient space
Rn+1nf0g under the equivalence relation x� rx, where
r 2 Rnf0g.

2 The geometry of the model

We can describe the geometry of our model in terms of the
mapping of the Euclidean plane into a 2-sphere, S2, by wind-
ing the former around the latter. We can also use similar
winding maps for the pseudo-Euclidean plane into a cylin-
der, R�S1, or a torus, S1�S1. More formally this could be
expressed in the following way [16]. Take the polar coordi-
nates ('; �) defined on the Euclidean plane and the spherical
coordinates (�; �) on a sphere. We can map the Euclidean
plane into sphere by using the congruence classes modulo �
and 2�. That is,

� = j' j mod �; � = j � �� j mod 2�; (2.1)

where the positive sign corresponds to the interval 0 6 ' < �
and negative — to the interval � 6 ' < 2�. If the projective
lines are chosen to be centrally symmetric then the Euclidean
plane can be generated as the product RP 1 � R. Here the
components of R are assumed to be Euclidean, i.e., rigid and
with no mirror-reflection operation allowed. Similarly, we
can define a space based on unoriented lines in the tangent
plane to the sphere. Therefore, the sphere can be generated by
the product RP 1�S1, the opposite points of the circle being
identified with each other. In this representation all centrally
symmetric Euclidean lines are mapped as

R! S1 : ei�x = e�i�� (2.2)

by winding them onto the corresponding circles of the sphere.
The winding mapping of Euclidean space onto a sphe-re

can be extended to any number of dimensions. Here we are
focusing mostly on the case of Euclidean space, R3, generated
as the productRP 2�R and also on the case of a 3-sphere gen-
erated as RP 2 � S1. In both cases we assume the Euclidean
rigidity of straight lines and the identification of the opposite
points on a circle. Euclidean space, R3, can be mapped into a
sphere, S3, by the winding transformation analogous to (2.1).
Indeed, for this purpose we only have to establish a relation
between the length of the radius-vector in Euclidean space
and the spherical coordinate (latitude) measured modulo 2�.
The relevant transformations are as follows:

�1 = # ; �2 = j' j mod �; � = j��� j mod 2�; (2.3)

where the sign is determined by the quadrant of '.
Let (e0; e1) be an orthonormal basis on a pseudo-

Euclidean plane with coordinates (x0; x1). Let the cylindrical
coordinates of R � S1 be (�; r). Then the simplest mapping
of this pseudo-Euclidean plane to the cylinder would be

� = j�(x0 + x1)j mod 2�; r = x0 � x1 : (2.4)

That is, the first isotropic line is winded here around the
cylinder’s cross-section (circle) and the second line is iden-
tified with the cylinder’s element. In this way one can make
a correspondence between any non-isotropic (having a non-
zero length) vector in the plane and a point on the cylinder.
For instance, if a vector x having coordinates (x0; x1) forms
a hyperbolic angle ' with the e0 or �e0, then

� = j � �e�'� j mod 2� = j�(x0 + x1)j mod 2�: (2.5)

If this vector forms the hyperbolic angle ' with the e1 or
�e1, then

r = �e'� = x0 � x1 ; (2.6)

where ' = � ln
���x0+x1

�

���; � = j(x0 + x1)(x0 � x1)j1=2.
By analogy, one can build a winding map of the pseudo-

Euclidean plane into the torus, with the only difference that in
the latter case the second isotropic line is winded around the
longitudinal (toroidal) direction of the torus.
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Now let us consider a 6-dimensional pseudo-Euclidean
space R6 with the signature (+;+;+;�;�;�). In this case
the analogue to the cylinder above is the product R3 � S3,
in which the component R3 is Euclidean space. In order to
wind the space R6 over the cylinder R3 � S3 we have to take
an arbitrary pseudo-Euclidean plane in R6 passing through
the (arbitrary) orthogonal lines xk, xp that belong to two Eu-
clidean subspaces R3 of the space R6. Each plane (xk; xp)
has to be winded onto a cylinder with the cylindrical coordi-
nates (�k; rp); the indices k; p correspond to the projective
space RP 2. We can take all the possible planes and wind
them over the corresponding cylinders. The mapping trans-
formation of the pseudo-Euclidean space R6 into the cylinder
R3 � S3 is similar to the expressions (2.5) and (2.6):

�k = j � �e�'�j mod 2� =
= j�(xk + xp)j mod 2� ; (2.7)

rp = �e'� = xk � xp : (2.8)

By fixing the running index k and replacing it with zero
we can get the winding map of the Minkowski space R4 into
the cylinder R3�S1, which is a particular case (reduction) of
(2.7) and (2.8). Conversely, by winding R3 over a 3-sphere,
S3, we can generalise the case and derive a winding map from
R6 into S3 � S3.

Let us consider the relationship between different ortho-
normal bases in the pseudo-Euclidean plane, which is winded
over a cylinder. It is known that all of the orthonormal bases
in a pseudo-Euclidean are equivalent (i.e., none of them can
be chosen as privileged). However, by defining a regular field
c of unit vectors on the pseudo-Euclidean plane it is, indeed,
possible to get such a privileged orthonormal basis (c; c1). In
turn, a non-uniform unitary vector field g(x), having a hyper-
bolic angle '(x) with respect to the field c, would induce a
non-orthonormal frame (g0(x); g01(x)). Indeed, if we assume
that the following equalities are satisfied:

� = j � �e�'�(e'g)j mod 2� =
= j � �e�'�(g0)j mod 2�; (2.9)

�1 = �e'�(e�'g1) = �e'�(g01) ; (2.10)

we can derive a non-orthonormal frame (g0(x); g01(x)) by us-
ing the following transformation of the orthonormal frame
(g(x); g1(x)):

g0(x) = e'g(x); g01(x) = e�'g1(x): (2.11)

Then the field g(x) would induce a 2-dimensional pseudo-
Riemann manifold with a metric tensor fg0ijg (i; j = 0; 1),
which is the same as the Gram matrix corresponding to the
system of vectors (g0(x); g01(x)). A unitary vector field g(x)
defined in the Minkowski space winded onto the cylinder
R3�S1 would induce a 4-dimensional pseudo-Riemann man-
ifold. Indeed, take the orthonormal frame (g; g1; g2; g3) de-
rived by hyperbolically rotating the Minkowski space by

the angle '(x) in the plane (g(x); c). Then the Gram ma-
trix g0ij (i; j= 0; 1; 2; 3) corresponding to the set of vectors
fe'g; e�'g1; g2; g3g would be related to the metric of the
pseudo-Riemann manifold. Note, that, since the determinant
of the Gram matrix is unity [17, 18], the induced metric pre-
serves the volume. That is, the differential volume element of
our manifold is equal to the corresponding volume element of
the Minkowski space.

3 The dynamics of the model

As we have already mentioned in Section 1, the dynamics of
the velocity field u(x; � ) of an ideal incompressible fluid on
the surface of a cylinder R3 � S1 can be characterised by
using the minimal volume principle, i.e., by assuming that the
4-volume of the flow through an arbitrary 3-surface � � R3

during the time T is minimal under some initial and boundary
conditions, namely:

�
Z T

0

Z
�
dV ^ u(x; � ) d� = 0 ; (3.1)

where dV is the differential volume element of a 3-surface �.
This is also equivalent to the minimal mass carried by the flow
through the measuring surface during a finite time interval.

In a classical approximation, by using the winding pro-
jection of the Minkowski space into a cylinder R3 � S1, we
can pass from the dynamics defined on a cylinder to the stat-
ics in the Minkowski space. Let the global time t be param-
eterised by the length of the flow line of the vector field c
in the Minkowski space corresponding to some regular vec-
tor field on the cylinder and let the length of a single turn
around the cylinder be h. Let us take in the Minkowski space
a set of orthogonal to c Euclidean spaces R3 in the Minkowski
space. The distance between these spaces is equal to hz,
where z 2Z. The projection of this set of spaces into the
cylinder is a three-dimensional manifold, which we shall re-
fer to as a global measuring surface. Then we can make
a one-to-one correspondence between the dynamical vector
field u(x; � ) and the static vector field g(x), defined in the
Minkowsky space. Thus, in a classical approximation there
exists a correspondence between the minimisation of the 4-
volume of the flow u(x; � ) on the cylinder and the minimisa-
tion of the 4-volume of the static flow defined in the Minkow-
ski space by the vector field g(x), namely:

�
Z x0

0

Z
�0
dV ^ g(x) dx0 = 0 ; (3.2)

where the first basis vector e0 coincides with the vector c, and
the 3-surfaces, �0, lie in the Euclidean sub-spaces orthogonal
to the vector c. Let f(cig) = (c0; c1; c2; c3) be an orthonor-
mal basis in R4 such that c0 = c. Let the reference frame
bundle be such that each non-singular point of R4 has a corre-
sponding non-orthonormal frame (gi(x)) = (g0; g1; g2; g3),
where g0 = g(x), g1 = c1, g2 = c2, g3 = c3. Let us form
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a matrix fgijg of inner products (ci; gj) of the basis vectors
fcig and the frame fgig. The absolute value of its determi-
nant, det(gij), is equal to the volume of the parallelepiped
formed by the vectors (g0; g1; g2; g3). It is also equal to the
scalar product, (g(x); c). On the other hand, the equation
(g(x); c)2 = jdetG(x)j holds for the Gram matrix, G(x),
which corresponds to the set of vectors fgi(x)g [21]. Then,
according to the principle (3.2), the vector field g(x) satisfies
the variational equation

�
Z



(g(x); c) dx4 = �

Z


jdetG(x)j 12 dx4 = 0 ; (3.3)

where dx4 is the differential volume element of a cylindri-
cal 4-region 
 of the Minkowski space, having the height
T . The cylinder’s base is a 3-surface � with the bound-
ary condition g(x) = c. In order to derive the differential
equation satisfying the integral variational equation (3.3), we
have to find the elementary region of integration, 
. Let
�� be an infinitesimal parallelepiped spanned by the vec-
tors �x0;�x1;�x2;�x3, with ! being a tubular neighbour-
hood with the base spanned by the vectors �x1;�x2;�x3.
This (vector) tubular neighbourhood is filled in with the vec-
tors j�x0jg(x) obtained from the flow lines of the vector
field g(x) by increasing the natural parameter (the pseudo-
Euclidean length) by the amount j�x0j. Then the localisation
expression of the equation (3.3) gives [19]:

�
Z

��
jdetG(x; t)j 12 dx4 = �Vol! = 0 : (3.4)

Since the field lines of a nonholonomy vector field g(x) are
nonparallel even locally, any variation of such a field (i.e, the
increase or decrease of its nonholonomicity) wo-uld result in
a non-vanishing variation of the volume Vol!. Conversely,
in the case of a holonomy field its variations do not affect the
local parallelism, so that the holonomicity of the field g(x)
appears to be the necessary condition for the zero variation
of Vol!. Given a vector field g(x) with an arbitrary absolute
value, the sufficient conditions for the vanishing variation of
the volume of the tubular neighbourhood ! are the potential-
ity of this field and the harmonic character of its potential. In
terms of differential forms these conditions correspond to a
simple differential equation:

d ? g(x) = 0 ; (3.5)

where d is the external differential; ? is the Hodge star oper-
ator; g(x) = d'(x); and '(x) is an arbitrary continuous and
smooth function defined everywhere in the Minkowski space,
except for the singularity points (topological features). Sub-
stituting the unitary holonomy fi-eld g(x) = k(x)d'(x) in
(3.5), where k(x) = 1=jd'(x)j, we shall find that the unitary
vector field g(x) must satisfy the minimum condition for the
integral surfaces of the co-vector field dual to g(x). In this
case the magnitude of the scalar quantity '(x) will be equal
to the hyperbolic angle between the vectors g(x) and c. We

can also note that the potential vector field g(x) = d'(x)
represented by the harmonic functions '(x) is the solution to
the following variational equation:

�
Z T

0

Z
�

"�
@'(x; t)
@t

�2
�r2'(x; t)

#
dx3dt = 0 ; (3.6)

in which � is a region in Euclidean space of the “global”
observer; the function '(x; t) is defined in the Minkowski
space. Thus, the stationary scalar field '(x) induced by a
topological feature in the global space is identical to the New-
tonian gravitational potential of a mass point.

We have to bear in mind that the space of a “real” observer
is curved, since the line for measuring time and the surface for
measuring the flux is defined by the vector field g(x), and not
by the field c as in the case of the global observer. Therefore,
if we wish to derive a variational equation corresponding to
the real observer, we have to define it on the pseudo-Riemann
manifold M induced in the Minkowski space by the holon-
omy field g(x), whose flux is measured through the surfaces
orthogonal to its flow lines and whose flow lines serve for
measuring time. The metric on M is given by the Gram ma-
trix of four tangent vectors, one of which corresponds to the
flow line x00(�) parameterised by the angular coordinate of
the cylindrical manifold, and the three others are tangent to
the coordinate lines of the 3-surface x01(r); x02(r); x03(r) pa-
rameterised by the Euclidean length. The following varia-
tional equation holds for an arbitrary region �M of M :

�
Z

�M
g2(x0) dV = 0 (3.7)

(under the given boundary conditions) where dV is the differ-
ential volume element of M . Note that the norm of the vec-
tor g(x) coincides with the magnitude of the volume-element
deformation of the pseudo-Riemann ma-nifold, which allows
making the correspondence between our functional and that
of the Hilbert-Einstein action.

Returning to the global space, let us consider some prop-
erties of the vector field g(x). Let a point in the Minkowski
space has a trajectory X(� ) and velocity _X . Its dynamics is
determined by the variational equation:

�
Z T

0

�
g(x); _X

�
d� = 0 : (3.8)

The varied here is the trajectory X(� ) in the Minkowski
space where the vector field g(x) is defined and where the
absolute time � plays the role of the evolution parameter.
For small time intervals the integral equation (3.8) can be re-
duced to

�
�
g(x); _X

�
= 0 ; (3.9)

which is satisfied by the differential equation

�X = g(X) : (3.10)

Igor Bayak. Gravity Model for Topological Features on a Cylindrical Manifold 141



Volume 2 PROGRESS IN PHYSICS April, 2008

Taking the orthogonal projection �(� ) = prR3 X(� ) of the
trajectory of a given topological feature in Euclidean space
of the global observer, as well as the projection r'(X) =
= prR3 g(X) of the vector field g(x) at the point X(� ) gives
a simple differential equation

��(� ) = r'(x); (3.11)

which (as in Newtonian mechanics) expresses the fact that the
acceleration of a mass point in an external gravitational field
does not depend on the mass.

4 Some implications

Let us consider some implications of our model for a real
observer in a classical approximation (by the real observer
we mean the reference frame of a topological feature). First,
we can note that a real observer moving uniformly along a
straight line in the Minkowski space cannot detect the “rel-
ative vacuum” determined by the vector c and, hence, can-
not measure the global time t. By measuring the velocities
of topological features (also uniformly moving along straight
lines) our observer would find that for gauging space and time
one can use an arbitrary unitary vector field c0 defined on the
Minkowski space. Therefore, the observer would conclude
that the notion of spacetime should be relative. It is seen
that the real observer can neither detect the unitary vector
field g(x) nor its deviations from the vector c. However, it
would be possible to measure the gradient of the scalar (grav-
itational) field and detect the pseudo-Riemann manifold in-
duced by g(x).

Indeed, in order to gauge time and distances in different
points of space (with different magnitudes of the scalar field)
one has to use the locally orthonormal basis fg0ig defined on
the 4-dimensional pseudo-Riemann manifold with its metric
tensor fg0ijg. Thus, for the real observer, the deformations of
the pseudo-Euclidean space could be regarded as if induced
by the scalar field. Locally, the deformations could be can-
celled by properly accelerating the mass point (topological
feature), which implies that its trajectory corresponds to a
geodesics of the manifold.

We can see that the dynamics of a topological feature in
our model is identical to the dynamics of a mass point in
the gravitational field. Indeed, the scalar field around a topo-
logical feature is spherically symmetric. At distance r from
the origin the metric will be e2'dt2 � e�2'dr2, which cor-
responds to the metric tensor of the gravitational field of a
point mass, given e2' � 1 + 2' for small '. If ' = H� ,
i.e., hyperbolic angle ' linearly depends from the evolution-
ary parameter � , then we can compare the constant H with
the cosmological factor.

Let us now consider some quantum properties of our
model. Let the absolute value of the vector field c be a con-
tinuous function jc(x)j in the Minkowski space. Then the
angular velocity of the flow will be:

_�(x) =
d�(x)
dt

=
�
h
jc(x)j ; (4.1)

where the angular function �(x) can be identified with the
phase action of the gauge potential in the observer space. On
the other hand, it is reasonable to associate the angular veloc-
ity X(� ) of the topological feature with the Lagrangian of a
point mass in the Minkowski space:

_�(X) =
d�(X)
d�

=
�
h
L(x) : (4.2)

Let us consider the random walk process of the topolog-
ical feature in the cylinder space R3 � S1. Let a probability
density function �(x) be defined on a line, such that �(x),Z +1

�1
�(x) dx = 1 : (4.3)

Let us calculate the expectation value for the random vari-
able ei�x, which arises when a line is compactified into a
circe:

M(ei�x) =
Z +1

�1
�(ei�x) dx =

=
Z +1

�1
ei�x�(x) dx = pei��: (4.4)

Here the quantity pei�� can be called the complex prob-
ability amplitude. It characterises two parameters of the ran-
dom variable distribution, namely, the expectation value it-
self, ei��, and the probability density, p, i.e. the magnitude
of the expectation value. If �(x) = �(�), then M(ei�x) =
= 1 � ei��. Conversely, if �(x) is uniformly distributed along
the line then the expectation value isM(ei�x) = 0. It follows
from these considerations that a distribution in R3 of a com-
plex probability amplitude is related to random events in the
cylinder space R3 � S1.

In order to specify the trajectoriesX(� ) in the Minkowski
space with an external angular potential �(x) we shall use the
procedure proposed by Feynman [22]. Let the probabilistic
behaviour of the topological feature be described as a Markov
random walk in the cylinder space R3 � S1. An elementary
event in this space is a free passage. In the Minkowski space
such an event is characterised by two random variables, dura-
tion, �� , and the random path vector, �X , whose projection
into Euclidean space of the absolute observer is ��. The ratio
��
�� is a random velocity vector, _�. On the other hand, the free
passage of a topological feature corresponds to an increment
in the phase angle ��(X) = _�(X)�� (phase action) in the
cylinder space R3 � S1.

Let the probability distribution of the phase action has an
exponential form, say, �(��) = e��� (neglecting the nor-
malisation coefficient). Then, the corresponding probability
density for the random variable ei�� will be

�(ei��) = e���ei��: (4.5)

Using the properties of a Markov chain [20], we can de-
rive the probability density for an arbitrary number of random
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walks:

�(ei�) =
TY
0

e� _�d�ei _�d� : (4.6)

To get the expectation value of the random variable ei�
we have to sum up over the all possible trajectories, that is, to
calculate the quantity

M(ei�) =
X TY

0

e� _�d�ei _�d� : (4.7)

It is known that any non-vanishing variation of the phase
action has a vanishing amplitude of the transitional proba-
bility and, on the contrary, that the vanishing variation cor-
responds to a non-vanishing probability amplitude [23–25].
Then it is seen that the integral action corresponding to the
topological feature must be minimal. It follows that the “pro-
babilistic trap” of a random walk [26] in the cylinder space
R3�S1 is determined by the variational principle — the same
that determines the dynamics of a mass point in classical me-
chanics.

5 Conclusions

In conclusion, we have made an attempt to describe the dy-
namics of spacetime (as well as of matter particles) in terms
of the vector field defined on a cylindrical manifold and based
on the principle of maximum mass carried by the field flow.
The analysis of the observational implications of our model
sheds new light on the conceptual problems of quantum
gravity.

Still many details of our model are left unexplored. For
example, it would be instructive to devise the relationship
between the vector field g(x) and the 4-potential of electro-
magnetic field A(x) and to consider the local perturbations
of g(x) as gravitons or/and photons. We also expect that the
most important properties of our model would be revealed by
extending it to the cylindrical manifold R3�S3. In particular,
we hope that within such an extended version of our frame-
work it would be possible to find a geometric interpretation
of all known gauge fields. It is also expected that studying
the dynamics of the minimal unit vector field on a 7-sphere
should be interesting for cosmological applications of our ap-
proach.

Submitted on February 23, 2008
Accepted on March 07, 2008

References

1. Birkhoff G. D. Flat space–time and gravitation. Proc. Nat.
Acad. Sci. USA, 1944, v. 30, 324–334.

2. Klein O. Quantentheorie und funfdimensionale Relativitatsthe-
orie. Zeits. Phys., 1926, v. 37, 895.

3. Johnson D. L. Volume of flows. Proc. Amer. Math. Soc., 1988,
v. 104, 923–931.

4. Aminov Yu. The geometry of vector fields. Gordon & Breach
Publ., 2000.

5. Yampolsky A. On the mean curvature of a unit vector field.
Math. Publ. Debrecen, 2002, v. 60, 131–155.

6. Gibbons G. W. The maximum tension principle in general rela-
tivity. Found. Phys., 2002, v. 32, 1891–1901.

7. Schiller C. General relativity and cosmology derived from prin-
ciple of maximum power or force. Intern. J. Theor. Phys., 2005,
v. 44, 1629–1647.

8. Birkhoff G. D. Proof of the ergodic theorem. Proc. Nat. Acad.
Sci. USA, 1931, v. 17, 656–660.

9. Hopf E. Ergodentheorie. Springer-Verlag, Berlin, 1937.

10. Sinai Ya. G. Introduction to ergodic theory. Princeton Univ.
Press, Princeton, 1976.

11. Jaynes E. T. Information theory and statistical mechanics. Phys.
Rev., 1957, v. 106, 620–630.

12. Hamann J. R. and Bianchi L. M. A note on the relations among
prior probabilistic decisions, the path probability method, opti-
mal entropy inference and statistical mechanics. Progr. Theor.
Phys., 1969, v. 42, 982–983.

13. Reiser B. Real Processing I: The principle of minimal entropy
production of irreversible thermodynamics and the principle of
minimal deformation of hydrodynamics, their dependence and
applications. Physica A, 1996, v. 229, 127–142.

14. Bejan A., Lorente S. The constructal law and the thermody-
namics of flow systems with configuration. Int. J. of Heat and
Mass Transfer, 2004, v. 47, 3203–3214.

15. Montassar S., P. de Buhan Minimum principle and related nu-
merical scheme for simulating initial flow and subsequent prop-
agation of liquified ground. Intern. J. Numer. Anal. Meth. Ge-
omech., 2005, v. 29, 1065–1086.

16. Bialy M. , Polterovich L. Hamiltonian diffeomorphisms and La-
grangian distributions. Geom. Func. Anal., 1992, v. 2, 173–210.

17. Gram J. P. On Raekkeudviklinger bestemmte ved Hjaelp of de
mindste Kvadraters Methode. Copenhagen, 1879.

18. Everitt W. N. Some properties of Gram matrices and determi-
nants. Quant. J. Math., 1958, v. 9, 87–98.

19. Møller C. Further remarks on the localization of the energy in
the general theory of relativity. Ann. Phys., 1961, v. 12, 118–
133.

20. Meyn S. P. and Tweedie R. L. Markov chains and stochastic sta-
bility. Springer, London, 1993.

21. Vinberg E. B. Course of algebra. Factorial, Moscow, 1999.

22. Feynman R. P. and Hibbs A. R. Quantum physics and path inte-
grals. Mc Craw–Hill, New York, 1965.

23. Erdelyi A. Asymptotic expansions. Dover Publ. Inc., New
York, 1956, 51–57.

24. Jones D. S. Fourier transforms and the method of stationary
phase. J. Inst. Math. Applics., 1966, v. 2, 197–222.

25. Poston T. and Stewart I. Catastrophe theory and its applications.
Pitman, London 1978.

26. Feller W. An introduction to probability theory and its applica-
tions. Vol. I. John Willey & Sons, 1968.

Igor Bayak. Gravity Model for Topological Features on a Cylindrical Manifold 143



Volume 2 PROGRESS IN PHYSICS April, 2008

Kaluza-Klein-Carmeli Metric from Quaternion-Clifford Space, Lorentz’ Force,
and Some Observables

Vic Christianto� and Florentin Smarandachey
�Sciprint.org — a Free Scientific Electronic Preprint Server, http://www.sciprint.org

E-mail: admin@sciprint.org
yDepartment of Mathematics, University of New Mexico, Gallup, NM 87301, USA

E-mail: smarand@unm.edu

It was known for quite long time that a quaternion space can be generalized to a Clifford
space, and vice versa; but how to find its neat link with more convenient metric form
in the General Relativity theory, has not been explored extensively. We begin with a
representation of group with non-zero quaternions to derive closed FLRW metric [1],
and from there obtains Carmeli metric, which can be extended further to become 5D
and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric). Thereafter
we discuss some plausible implications of this metric, beyond describing a galaxy’s
spiraling motion and redshift data as these have been done by Carmeli and Hartnett
[4, 5, 6]. In subsequent section we explain Podkletnov’s rotating disc experiment. We
also note possible implications to quantum gravity. Further observations are of course
recommended in order to refute or verify this proposition.

1 Introduction

It was known for quite long time that a quaternion space can
be generalized to a Clifford space, and vice versa; but how to
find its neat link to more convenient metric form in the Gen-
eral Relativity theory, has not been explored extensively [2].

First it is worth to remark here that it is possible to find
a flat space representation of quaternion group, using its al-
gebraic isomorphism with the ring division algebra [3, p.3]:

EiEj = � �ij + fijkEk : (1)

Working for Rdim, we get the following metric [3]:

ds2 = dx�dx�; (2)

imposing the condition:

x�x� = R2: (3)

This rather elementary definition is noted here because it
was based on the choice to use the square of the radius to
represent the distance (x�), meanwhile as Riemann argued
long-time ago it can also been represented otherwise as the
square of the square of the radius [3a].

Starting with the complex n = 1, then we get [3]:

q = x0 + x1E1 + x2E2 + x3E3 : (4)

With this special choice of x� we can introduce the spe-
cial metric [3]:

ds2 = R2(�ij@�i@�j): (5)

This is apparently most direct link to describe a flat metric
from the ring division algebra. In the meantime, it seems very
interesting to note that Trifonov has shown that the geometry
of the group of nonzero quaternions belongs to closed FLRW
metric. [1] As we will show in the subsequent Section, this

approach is more rigorous than (5) in order to describe neat
link between quaternion space and FLRW metric.

We begin with a representation of group with non-zero
quaternions to derive closed FLRW metric [1], and from there
we argue that one can obtain Carmeli 5D metric [4] from this
group with non-zero quaternions. The resulting metric can
be extended further to become 5D and 6D metric (which we
propose to call Kaluza-Klein-Carmeli metric).

Thereafter we discuss some plausible implications of this
metric, beyond describing a galaxy’s spiraling motion and
redshift data as these have been done by Carmeli and Hartnett
[4–7]. Possible implications to the Earth geochronometrics
and possible link to coral growth data are discussed. In the
subsequent Section we explain Podkletnov’s rotating disc ex-
periment. We also note a possible near link between Kaluza-
Klein-Carmeli and Yefremov’s Q-Relativity, and also possi-
ble implications to quantum gravity.

The reasons to consider this Carmeli metric instead of the
conventional FLRW are as follows:
• One of the most remarkable discovery from WMAP

is that it reveals that our Universe seems to obey Eu-
clidean metric (see Carroll’s article in Nature, 2003);

• In this regards, to explain this observed fact, most ar-
guments (based on General Relativity) seem to agree
that in the edge of Universe, the metric will follow Eu-
clidean, because the matter density tends to approach-
ing zero. But such a proposition is of course in contra-
diction with the basic “assumption” in GTR itself, i.e.
that the Universe is homogenous isotropic everywhere,
meaning that the matter density should be the same too
in the edge of the universe. In other words, we need
a new metric to describe the inhomogeneous isotropic
spacetime.
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g�� =

0BBBB@
� (�)( _R

R )2 0 0 0
0 �� (�) 0 0
0 0 �� (�) sin2(�) 0
0 0 0 �� (�) sin2(�) sin2(#)

1CCCCA : (6)

• Furthermore, from astrophysics one knows that spiral
galaxies do not follow Newtonian potential exactly.
Some people have invoked MOND or modified (Post-)
Newton potential to describe that deviation from New-
tonian potential [8, 9]. Carmeli metric is another pos-
sible choice [4], and it agrees with spiral galaxies, and
also with the redshift data [5–7].

• Meanwhile it is known, that General Relativity is strict-
ly related to Newtonian potential (Poisson’s equation).
All of this seems to indicate that General Relativity is
only applicable for some limited conditions, but it may
not be able to represent the rotational aspects of gravi-
tational phenomena. Of course, there were already ex-
tensive research in this area of the generalized gravita-
tion theory, for instance by introducing a torsion term,
which vanishes in GTR [10].

Therefore, in order to explain spiral galaxies’ rotation
curve and corresponding “dark matter”, one can come up with
a different route instead of invoking a kind of strange matter.
In this regards, one can consider dark matter as a property of
the metric of the spacetime, just like the precession of the first
planet is a property of the spacetime in General Relativity.

Of course, there are other methods to describe the inho-
mogeneous spacetime, see [15, 16], for instance in [16] a
new differential operator was introduced: �

�� = 1
Ho

1
c
�
�t , which

seems at first glance as quite similar to Carmeli method. But
to our present knowledge Carmeli metric is the most con-
sistent metric corresponding to generalized FLRW (derived
from a quaternion group).

Further observations are of course recommended in order
to refute or verify this proposition.

2 FLRW metric associated to the group of non-zero
quaternions

The quaternion algebra is one of the most important and well-
studied objects in mathematics and physics; and it has natural
Hermitian form which induces Euclidean metric [1]. Mean-
while, Hermitian symmetry has been considered as a method
to generalize the gravitation theory (GTR), see Einstein paper
in Ann. Math. (1945).

In this regards, Trifonov has obtained that a natural exten-
sion of the structure tensors using nonzero quaternion bases
will yield formula (6). (See [1, p.4].)

Interestingly, by assuming that [1]:

� (�)
� _R
R

�2
= 1 ; (7)

then equation (6) reduces to closed FLRW metric [1, p.5].
Therefore one can say that closed FLRW metric is neatly as-
sociated to the group of nonzero quaternions.

Now consider equation (7), which can be rewritten as:

� (�)( _R)2 = R2: (8)

Since we choose (8), then the radial distance can be ex-
pressed as:

dR2 = dz2 + dy2 + dx2: (9)

Therefore we can rewrite equation (8) in terms of (9):

� (�)(d _R)2 = (dR)2 = dz2 + dy2 + dx2; (10)

and by defining

� (�) = � 2 =
1

H2
0 (�)

=
1

�(H2
0 )n

: (11)

Then we can rewrite equation (10) in the form:

� (�)(d _R)2 = � 2(dv)2 = dz2 + dy2 + dx2; (12)

or �� 2(dv)2 + dz2 + dy2 + dx2 = 0 ; (13)

which is nothing but an original Carmeli metric [4, p.3, equa-
tion (4)] and [6, p.1], where H0 represents Hubble constant
(by setting �=n= 1, while in [12] it is supposed that �= 1:2,
n = 1). Further extension is obviously possible, where equa-
tion (13) can be generalized to include the (icdt) component
in the conventional Minkowski metric, to become (Kaluza-
Klein)-Carmeli 5D metric [5, p.1]:

�� 2(dv)2 + dz2 + dy2 + dx2 + (icdt)2 = 0 : (14)

Or if we introduce equation (13) in the general relativistic
setting [4, 6], then one obtains:

ds2 = � 2(dv)2 � e� � dr2 �R2 � (d#2 + sin2# � d�2): (15)

The solution for (15) is given by [6, p.3]:

dr
dv

= � � exp
�
��

2

�
; (16)

which can be written as:

d _r
dr

=
dv
dr

= ��1 � exp
�
�
2

�
: (17)

This result implies that there shall be a metric deforma-
tion, which may be associated with astrophysics observation,
such as the possible AU differences [11, 12].
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Furthermore, this proposition seems to correspond neatly
to the Expanding Earth hypothesis, because [13]:

“In order for expansion to occur, the moment of inertia
constraints must be overcome. An expanding Earth would
necessarily rotate more slowly than a smaller diameter planet
so that angular momentum would be conserved.” (Q.1)

We will discuss these effects in the subsequent Sections.
We note however, that in the original Carmeli metric,

equation (14) can be generalized to include the potentials to
be determined, to become [5, p.1]:

ds2 =
�

1 +
	
� 2

�
� 2 (dv)2 � dr2 +

�
1 +

�
c2

�
c2dt2; (18)

where
dr2 = dz2 + dy2 + dx2: (19)

The line element represents a spherically symmetric inho-
mogeneous isotropic universe, and the expansion is a result of
the spacevelocity component. In this regards, metric (18) de-
scribes funfbein (“five-legs”) similar to the standard Kaluza-
Klein metric, for this reason we propose the name Kaluza-
Klein-Carmeli for all possible metrics which can be derived
or extended from equations (8) and (10).

To observe the expansion at a definite time, the (icdt)
term in equation (14) has been ignored; therefore the met-
ric becomes “phase-space” Minkowskian. [5, p.1]. (A simi-
lar phase-space Minkowskian has been considered in various
places, see for instance [16] and [19].) Therefore the metric
in (18) reduces to (by taking into consideration the isotropic
condition):

dr2 +
�

1 +
	
� 2

�
� 2 (dv)2 = 0 : (20)

Alternatively, one can suppose that in reality this assump-
tion may be reasonable by setting c ! 0, such as by consid-
ering the metric for the phonon speed cs instead of the light
speed c; see Volovik, etc. Therefore (18) can be rewritten as:

ds2
phonon =

�
1 +

	
� 2

�
� 2 (dv)2 � dr2 +

+
�

1 +
�
c2s

�
c2s dt

2:
(21)

To summarize, in this Section we find out that not only
closed FLRW metric is associated to the group of nonzero
quaternions [1], but also the same group yields Carmeli met-
ric. In the following Section we discuss some plausible im-
plications of this proposition.

3 Observable A: the Earth geochronometry

One straightforward implication derived from equation (8) is
that the ratio between the velocity and the radius is directly
proportional, regardless of the scale of the system in question:

� _R
R

�2
= � (�)�1 ; (22)

or �
R1
_R1

�
=
�
R2
_R2

�
=
p
� (�) : (23)

Therefore, one can say that there is a direct proportion-
ality between the spacevelocity expansion of, let say, Virgo
galaxy and the Earth geochronometry. Table 1 displays the
calculation of the Earth’s radial expansion using the formula
represented above [17]:

Therefore, the Earth’s radius increases at the order of
� 0.166 cm/year, which may correspond to the decreasing
angular velocity (Q.1). This number, albeit very minute, may
also correspond to the Continental Drift hypothesis of A. We-
gener [13, 17]. Nonetheless the reader may note that our cal-
culation was based on Kaluza-Klein-Carmeli’s phase-space
spacevelocity metric.

Interestingly, there is a quite extensive literature suggest-
ing that our Earth experiences a continuous deceleration rate.
For instance, J. Wells [14] described a increasing day-length
of the Earth [14]:

“It thus appears that the length of the day has been in-
creasing throughout geological time and that the number of
days in the year has been decreasing. At the beginning of the
Cambrian the length of the day would have been 21h.” (Q.2)

Similar remarks have been made, for instance by
G. Smoot [13]:

“In order for this to happen, the lunar tides would have to
slow down, which would affect the length of the lunar month.
. . . an Earth year of 447 days at 1.9 Ga decreasing to an Earth
year of 383 days at 290 Ma to 365 days at this time. However,
the Devonian coral rings show that the day is increasing by
24 seconds every million years, which would allow for an
expansion rate of about 0.5% for the past 4.5 Ga, all other
factors being equal.” (Q.3)

Therefore, one may compare this result (Table 1) with the
increasing day-length reported by J. Wells [13].

4 Observable B: the Receding Moon from the Earth

It is known that the Moon is receding from the Earth at a
constant rate of � 4cm/year [17, 18].

Using known values: G = 6.6724�10�8 cm2/(g � sec2)
and � = 5.5�106 g/m3, and the Moon’s velocity�7.9 km/sec,
then one can calculate using known formulas:

Vol =
4
3
� � (R+ �R)3; (24)

M + �M = Vol � � ; (25)

r + �r =
G � (M + �M)

v2 ; (26)

where r, v, M each represents the distance from the Moon to
the Earth, the Moon’s orbital velocity, and the Earth’s mass,
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Nebula Radial velocity
(mile/s)

Distance
(103 kly)

Ratio
(10�5 cm/yr)

the Earth dist.
(R, km)

Predicted the Earth exp.
(�R, cm/year)

Virgo 750 39 2.617 6371 0.16678

Ursa Mayor 9300 485 2.610 6371 0.166299

Hydra 38000 2000 2.586 6371 0.164779

Bootes 2 86000 4500 2.601 6371 0.165742

Average 2.604 0.1659

Table 1: Calculation of the radial expansion from the Galaxy velocity/distance ratio. Source: [17].

respectively. Using this formula we obtain a prediction of the
Receding Moon at the rate of 0.00497 m/year. This value is
around 10% compared to the observed value 4 cm/year.

Therefore one can say that this calculation shall take into
consideration other aspects. While perhaps we can use other
reasoning to explain this discrepancy between calculation and
prediction, for instance using the “conformal brane” method
by Pervushin [20], to our best knowledge this effect has neat
link with the known paradox in astrophysics, i.e. the observed
matter only contributes around �1–10% of all matter that is
supposed to be “there” in the Universe.

An alternative way to explain this discrepancy is that there
is another type of force different from the known Newtonian
potential, i.e. by taking into consideration the expansion of
the “surrounding medium” too. Such a hypothesis was pro-
posed recently in [21]. But we will use here a simple argu-
ment long-time ago discussed in [22], i.e. if there is a force
other than the gravitational force acting on a body with mass,
then it can be determined by this equation [22, p.1054]:

d(mv0)
dt

= F + Fgr; (27)

where v0 is the velocity of the particle relative to the absolute
space [22a]. The gravitational force can be defined as before:

Fgr = �mrV ; (28)

where the function V is solution of Poisson’s equation:

r2 V = 4�K� ; (29)

and K represents Newtonian gravitational constant. For sys-
tem which does not obey Poisson’s equation, see [15].

It can be shown, that the apparent gravitational force that
is produced by an aether flow is [22]:

Fgr = m
@v
@t

+mr
�
v2

2

�
�mv0 �r� v+ v

dm
dt

; (30)

which is an extended form of Newton law:

~F =
d
dt

(~m~v) = m
�
d~v
dt

�
+ v

�
d~m
dt

�
: (31)

If the surrounding medium be equivalent to Newton’s the-
ory, this expression shall reduce to that given in (27). Suppos-
ing the aether be irrotational relative to the particular system

of the coordinates, and m= const, then (29) reduces [22]:

Fgr = �m
�
�@v
@t
�r

�
v2

2

��
; (32)

which will be equivalent to equation (27) only if:

rV =
@v
@t

+r
�
v2

2

�
: (33)

Further analysis of this effect to describe the Receding
Moon from the Earth will be discussed elsewhere. In this Sec-
tion, we discuss how the calculated expanding radius can de-
scribe (at least partially) the Receding Moon from the Earth.
Another possible effect, in particular the deformation of the
surrounding medium, shall also be considered.

5 Observable C: Podkletnov’s rotation disc experiment

It has been discussed how gravitational force shall take into
consideration the full description of Newton’s law. In this
Section, we put forth the known equivalence between New-
ton’s law (31) and Lorentz’ force [23], which can be written
(supposing m to be constant) as follows:

~F =
d
dt

( ~m~v) = m
�
d~v
dt

�
= q

�
~E +

1
c
~v � ~B

�
; (34)

where the relativistic factor is defined as:

 = �
r

1
1� �2 : (35)

while we can expand this equation in the cylindrical coordi-
nates [23], we retain the simplest form in this analysis. In
accordance with Spohn, we define [24]:

E = �rA : (36)

B = r� A : (37)

For Podkletnov’s experiment [26–28], it is known that
there in a superconductor E = 0 [25], and by using the mass
m in lieu of the charge ratio e

c in the right hand term of (34)
called the “gravitational Lorentz force”, we get:

m
�
d~v
dt

�
=
m


�
~v � ~B

�
=

1


�
~p� ~B

�
: (38)
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Let us suppose we conduct an experiment with the weight
w= 700 g, the radius r= 0.2 m, and it rotates at f = 2 cps
(cycle per second), then we get the velocity at the edge of
the disc as:

v = 2� � f r = 2.51 m/sec; (39)

and with known values forG= 6.67�10�11, c' 3�108m/sec,
Mearth = 5.98�1024 kg, rearth = 3�106 m, then we get:

Fgr =
G
c2r

Mv � 3.71�10�9 newton/kgm sec: (40)

Because B=F=meter, then from (39), the force on the
disc is given by:

Fdisc = ~Bearth � ~pdisc � Bearth �
�
m
c


�
: (41)

High-precision muon experiment suggests that its speed
can reach around � 0.99 c. Let us suppose in our disc, the
particles inside have the speed 0.982 c, then �1 = 0.1889.
Now inserting this value into (40), yields:

Fdisc = (3.71�10�9) � (0.7) � (3�108) � 0.189 =
= 0.147 newton = 14.7 gr:

(42)

Therefore, from the viewpoint of a static observer, the
disc will get a mass reduction as large as 14:7

700 = 2.13%, which
seems quite near with Podkletnov’s result, i.e. the disc can
obtain a mass reduction up to 2% of the static mass.

We remark here that we use a simplified analysis using
Lorentz’ force, considering the fact that superconductivity
may be considered as a relativistic form of the ordinary elec-
tromagnetic field [25].

Interestingly, some authors have used different methods to
explain this apparently bizarre result. For instance, using Taj-
mar and deMatos’ [29] equation: 0 = a


2 = 0:2�2
2 = 0:2. In

other words, it predicts a mass reduction around � 0:2
9:8 = 2%,

which is quite similar to Podkletnov’s result.
Another way to describe those rotating disc experiments

is by using simple Newton law [33]. From equation (31) one
has (by setting F = 0 and because g = dv

dt ):
dm
dt

= �m
v
g = � m

!R
g ; (43)

Therefore one can expect a mass reduction given by an
angular velocity (but we’re not very how Podkletnov’s exper-
iment can be explained using this equation).

We end this section by noting that we describe the rotating
disc experiment by using Lorentz’ force in a rotating system.
Further extension of this method in particular in the context
of the (extended) Q-relativity theory, will be discussed in the
subsequent Section.

6 Possible link with Q-Relativity. Extended 9D metric

In the preceding Section, we have discussed how closed
FLRW metric is associated to the group with nonzero quater-
nions, and that Carmeli metric belongs to the group. The only

problem with this description is that it neglects the directions
of the velocity other than against the x line.

Therefore, one can generalize further the metric to be-
come [1, p.5]:

� � 2(dvR)2 + dz2 + dy2 + dx2 = 0 ; (44)

or by considering each component of the velocity vector [23]:

(i� dvX)2 + (i� dvY )2 + (i� dvZ)2 +

+ dz2 + dy2 + dx2 = 0 :
(45)

From this viewpoint one may consider it as a generaliza-
tion of Minkowski’s metric into biquaternion form, using the
modified Q-relativity space [30, 31, 32], to become:

ds = (dxk + i� dvk) qk: (46)

Please note here that we keep using definition of Yefre-
mov’s quaternion relativity (Q-relativity) physics [30], albeit
we introduce dv instead of dt in the right term. We propose
to call this metric quaternionic Kaluza-Klein-Carmeli metric.

One possible further step for the generalization this equa-
tion, is by keep using the standard Q-relativistic dt term, to
become:

ds = (dxk + icdtk + i� dvk) qk ; (47)

which yields 9-Dimensional extension to the above quater-
nionic Kaluza-Klein-Carmeli metric. In other words, this
generalized 9D KK-Carmeli metric is seemingly capable to
bring the most salient features in both the standard Carmeli
metric and also Q-relativity metric. Its prediction includes
plausible time-evolution of some known celestial motion in
the solar system, including but not limited to the Earth-based
satellites (albeit very minute). It can be compared for instance
using Arbab’s calculation, that the Earth accelerates at rate
3.05 arcsec/cy2, and Mars at 1.6 arcsec/cy2 [12]. Detailed
calculation will be discussed elsewhere.

We note here that there is quaternionic multiplication rule
which acquires the compact form [30–32]:

1qk = qk1 = qk ; qjqk = ��jk + "jknqn ; (48)

where �kn and "jkn represent 3-dimensional symbols of Kro-
necker and Levi-Civita, respectively [30]. It may also be
worth noting here that in 3D space Q-connectivity has clear
geometrical and physical treatment as movable Q-basis with
behavior of Cartan 3-frame [30].

In accordance with the standard Q-relativity [30, 31], it
is also possible to write the dynamics equations of Classical
Mechanics for an inertial observer in the constant Q-basis, as
follows:

m
d2

dt2
(xkqk) = Fkqk : (49)

Because of the antisymmetry of the connection (the gen-
eralized angular velocity), the dynamics equations can be
written in vector components, by the conventional vector no-
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tation [30, 32]:

m
�
~a+ 2~
� ~v + ~
� ~r + ~
� (~
� ~r)� = ~F ; (50)

which represents known types of classical acceleration, i.e.
the linear, the Coriolis, the angular, and the centripetal acce-
leation, respectively.

Interestingly, as before we can use the equivalence be-
tween the inertial force and Lorentz’ force (34), therefore
equation (50) becomes:

m
�
d~v
dt

+ 2~
� ~v + ~
� ~r + ~
� (~
� ~r)
�

=

= q

�
~E +

1
c
~v � ~B

�
;

(51)

or �
d~v
dt

�
=
q

m

�
~E +

1
c
~v � ~B

�
�

� 2~
� ~v + ~
� ~r + ~
� (~
� ~r)
m

:
(52)

Please note that the variable q here denotes electric
charge, not quaternion number.

Therefore, it is likely that one can expect a new effects
other than Podkletnov’s rotating disc experiment as discussed
in the preceding Section.

Further interesting things may be expected, by using (34):

~F = m
�
d~v
dt

�
= q

�
~E +

1
c
~v � ~B

�
)

) m (d~v) = q
�
~E +

1
c
~v � ~B

�
dt :

(53)

Therefore, by introducing this Lorentz’ force instead of
the velocity into (44), one gets directly a plausible extension
of Q-relativity:

ds =
�
dxk + i�

q
m

�
~Ek +

1
c
~vk � ~Bk

�
dtk
�
qk : (54)

This equation seems to indicate how a magnetic worm-
hole can be induced in 6D Q-relativity setting [16, 19]. The
reason to introduce this proposition is because there is known
link between magnetic field and rotation [34]. Nonetheless
further experiments are recommended in order to refute or
verify this proposition.

7 Possible link with quantum gravity

In this Section, we remark that the above procedure to de-
rive the closed FLRW-Carmeli metric from the group with
nonzero quaternions has an obvious advantage, i.e. one can
find Quantum Mechanics directly from the quaternion frame-
work [35]. In other words, one can expect to put the gravita-
tional metrical (FLRW) setting and the Quantum Mechanics
setting in equal footing. After all, this may be just a goal
sought in “quantum gravity” theories. See [4a] for discussion

on the plausible quantization of a gravitational field, which
may have observable effects for instance in the search of ex-
trasolar planets [35a].

Furthermore, considering the “phonon metric” described
in (20), provided that it corresponds to the observed facts,
in particular with regards to the “surrounding medium” vor-
tices described by (26–29), one can say that the “surrounding
medium” is comprised of the phonon medium. This proposi-
tion may also be related to the superfluid-interior of the Sun,
which may affect the Earth climatic changes [35b]. Therefore
one can hypothesize that the signatures of quantum gravity,
in the sense of the quantization in gravitational large-scale
phenomena, are possible because the presence of the phonon
medium. Nonetheless, further theoretical works and observa-
tions are recommended to explore this new proposition.

8 Concluding remarks

In the present paper we begun with a representation of a group
with non-zero quaternions to derive closed FLRW metric [1],
and we obtained Carmeli 5D metric [4] from this group. The
resulting metric can be extended further to become 5D and
6D metric (called by us Kaluza-Klein-Carmeli metric).

Thereafter we discussed some plausible implications of
this metric. Possible implications to the Earth geochrono-
metrics and possible link to the coral growth data were dis-
cussed. In subsequent Section we explained Podkletnov’s
rotating disc experiment. We also noted possible neat link
between Kaluza-Klein-Carmeli metric and Yefremov’s
Q-Relativity, in particular we proposed a further extension
of Q-relativity to become 9D metric. Possible implications to
quantum gravity, i.e. possible observation of the quantization
effects in gravitation phenomena was also noted.

Nonetheless we do not pretend to have the last word on
some issues, including quantum gravity, the structure of the
aether (phonon) medium, and other calculations which re-
main open. There are also different methods to describe the
Receding Moon or Podkletnov’s experiments. What this pa-
per attempts to do is to derive some known gravitational phe-
nomena, including Hubble’s constant, in a simplest way as
possible, without invoking a strange form of matter. Further-
more, the Earth geochronometry data may enable us to verify
the cosmological theories with unprecedented precision.

Therefore, it is recommended to conduct further observa-
tions in order to verify and also to explore the implications of
our propositions as described herein.
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As initially experimental material of this paper serves sets of histograms built on the
base of short samples which provided the daily time series of the �-decay rate fluctu-
ations and the p-n junction current fluctuations. Investigations of the histograms simi-
larity revealed the palindrome effect, which is: two sets of histograms built on the base
of two consecutive 12-hours time series are most similar if one set of the histograms is
rearranged in inverse order, and the start time of the series is exact six hours later the
local noon.

1 Introduction

As was shown in our previous works, the similarity of his-
tograms built on the base of short samples of the time series
of fluctuations measured on the processes of different nature,
changes the regularly with time. These changes can be char-
acterized by different periods equal the solar (1440 min) and
sidereal (1436 min) days, several near 27-day periods, and
yearly periods [1–5]. At different geographical locations the
shapes of the histograms are similar to each other with high
probability for the coincident moments of the local time [6].
Also it was found the dependence of the histogram patterns on
the spatial directions of outgoing �-particles [5] and the mo-
tion specific to the measurement system [7]. Aforementioned
phenomena led us to an idea that the histogram patterns can
be dependent on also the sign of the projection obtained from
the velocity vector of the measurement system projected onto
the Earth’s orbital velocity vector. As was found, this suppo-
sition is true.

2 The method

A raw experimental data we used for this paper were sets of
the histograms built on the base of short samples which pro-
vided the daily time series of 239Pu �-decay rate fluctuations
and the p-n junction current fluctuations. The experimental
data processing and histogram sets analyzing are given in de-
tails in [1, 2].

We use the daily time series of fluctuations in the study.
Every time series started six hours later the local noon. Af-
ter the data acquisition, we divided the 24-hours record into
two 12-hours ones. On the base of these two consecutive
12-hours time series two sets of histograms (so-called “direct
sets”) were obtained for further analysis. The sign of the mea-
surement system’s velocity projected onto the Earth’s orbital
velocity is positive for one set, while the sign is negative for
the other. Proceeding from the direct sets, by rearranging in
inverse order, we obtained two “inverse” sets of histograms.

The histograms themselves were built on the base of the
60 of 1-sec measurements. So, one histogram durations was
1 min, while the 12-hours time series we used in the present
work formed the sets consisting of 720 such histograms. The
similarity of the histogram was studied for couplets (“direct-
direct” and “direct-inverse”) along the 720-histogram sets.
Here we present the results in the form of interval distribu-
tion: the number of similar pairs of the histograms is present
as a function on the time interval between them.

3 Experimental results

Fig. 1 shows the interval distributions for two couplets of the
sets built on the base of the daily time series of 239Pu �-decay
rate fluctuations, obtained on April 23, 2004. The left dia-
gram, Fig. 1a, shows the interval distribution for the “direct-
inverse” histogram sets. From the right side of the diagram,
we get the “direct-direct” histogram sets.

A peak shown in Fig. 1a means that the histograms with
the coincident numbers in the “direct-inverse” sets are similar
with very high probability. These sets of similar histograms
constitute about 20% from the total number (720) of the pairs.
In contrast to the “direct-inverse” sets, the interval distribu-
tions in the “direct-direct” histogram sets (Fig. 1b) achieve
only 5% of the total number of the pairs for the same zero
interval.

We call the palindrome effect� such a phenomenon, where
two sets of the histograms built on the base of two consecutive
12-hours time series are most similar in the case where one of
the sets is rearranged in inverse order, while the daily record
starts six hours later the local noon.

The palindrome effect doesn’t depend from the annual
motion of the Earth. This effect is actually the same for all
the seasons. This statement is illustrated by Fig. 2, where
the palindrome effect is displayed for the measurements car-
ried out on the autumnal equinox, September 22–23, 2005.
�This comes from the Greek word ����̀���o�o& , which means there

and back.
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Fig. 1: The palindrome effect in the daily time series of the 239Pu �-decay rate fluctuations, registered on April
23, 2004. The interval distribution for the “direct-inverse” histogram sets are shown in Fig. 1a, while those for
the “direct-direct” histograms sets are shown in Fig. 1b.

Fig. 2: The palindrome effect in the daily time series of the 239Pu �-decay rate fluctuations, registered on the
autumnal equinox, September 22-23, 2005. The interval distribution for the “direct-inverse” histogram sets are
shown in Fig. 1a, while those for the “direct-direct” histogram sets are shown in Fig. 2b.

Fig. 3: The palindrome effect.
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As easy to see, Fig. 2a and Fig. 2b are similar to Fig. 1a and
Fig. 1b respectively. Similarly to Fig. 1 and Fig. 2, the inter-
val distribution was obtained also for the winter and summer
solstice.

The aforementioned results mean that, for different loca-
tions of the Earth in its circumsolar orbit, we have the same
appearance of the palindrome effect.

4 Discussions

It is important to note that the 12-hours time series used in
the present work were measured in such a way that the pro-
jection of the tangential velocity vector V� (Fig. 3) of the mea-
surement system (which is due to the rotatory motion of the
Earth) onto the vector of the orbital velocity of the Earth Vo
has the same sign. So, two moments of time or, in another
word, two singular points a and � exist in the 24-hours daily
circle where the sign of the projection changes. The sign of
the projection is showed in Fig. 3 by gray circles. The palin-
drome effect can be observed, if the 12-hours time series start
exact at the moments a and �. For the aforementioned re-
sults, these moments are determined within a 1-min accuracy
by zero peaks shown in Fig. 1–2.

A special investigation on the time series measured within
the 20-min neighborhood of the a and � moments was carry
out with use of a semiconductor source of fluctuations (fluc-
tuations of p-n junction current). The interval distribution
obtained on the base of two sets of the 2-sec histograms con-
structed from this time series showed these moments to within
the 2-sec accuracy. If we get a symmetric shift of the start-
point of the time series relative to the a and � points, we find
that the peak on the interval distribution (like those shown in
Fig. 1–2) has the same time shift relative to zero interval.

The importance of two singular points a and � for the
palindrome effect leads us to an idea about the significance of
the tangential velocity vector V� and its projection onto the
vector Vo. If consider the numerical value of the projection,
we see that the set 10–70 is symmetric to the �7–�1. In such a
case the interval distributions (a) and (b) in Fig. 1–2 should be
the same. Because they are different in real, just given sup-
position is incorrect. We also can consider our measurement
system as oriented. In this case the 1 and 10 histograms should
be the same. This means that zero peaks should be located in
the “direct-direct” interval distributions, and be absent on the
“direct-inverse” one. As seen in Fig. 1–2, this is not true.

On the other hand, it is possible to formulate a supposition
which is qualitatively agreed with the obtained experimental
results. This supposition is as follows. There is an external
influence unshielded by the Earth, and this influence is or-
thogonal to Vo. In such a case the inversion of one set of the
histograms is understood, and leads to the interval distribu-
tions like those of Fig. 1-2. As easy to see, in such an inver-
sion rearrange order of the histograms, the histograms whose
location is the same orthogonal line have the same numbers.

This is because we have zero-peak in the “direct-inverse” in-
terval distribution.

The origin of such lines can be the Sun. The only prob-
lem in this case is the orbital motion of the Earth. We cannot
be located in the same line after 24-hours. As probable, we
should suppose that this structure of the lines, which are or-
thogonal to Vo, moves together with the Earth.

Now we continue this bulky research on the palindrome
effect. Detailed description of new results and the verifica-
tions to the aforementioned suppositions will be subjected in
forthcoming publications.
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The paper presents experimental investigations of a local-time peak splitting right up
to a second-order splitting. The splitting pattern found in the experiments has a fractal
structure. A hypothesis about the possibility of high order splitting is proposed. The
obtained experimental result leads to a supposition that the real space possesses a fractal
structure.

1 Introduction

The main subject of this paper is a local-time effect, which
is one of manifestations of the phenomenon of macroscopic
fluctuations. The essence of this phenomenon is that the pat-
tern (shape) of histograms, which are built on the base of short
samples of the time series of the fluctuations measured in the
processes of different nature, are non-random. Many-years of
investigations of such histograms carried out by the method
of macroscopic fluctuations [1] revealed a variety of phenom-
ena [2–4]. The most important among the phenomena is the
local-time effect [5–8].

The local-time effect consists of the high probability of
the similarity of the histogram pairs, which are divided by a
time interval equal to the local-time difference between the
points of measurement. This effect was registered in the scale
of distances from the maximal distance between the loca-
tions of measurement which are possble on the Earth’s sur-
face (about 15,000 km) to the distances short as 1 meter. Be-
sides, this effect can be observed on the processes of very
different nature [2–4].

The idea of a typical local-time experiment is illustrated
by Fig. 1. There in the picture we have two spaced sources
of fluctuations 1 and 2, which are fixed on the distance L
between them, and synchronously moved with a velocity V
in such a way that the line which connects 1 and 2 is parallel
to the vector of the measurement system’s velocity V . In this
case, after a time duration �t0

�t0 =
L
V
; (1)

the source of fluctuations 1 appear in the same position that
the source 2 was before. In Fig. 1 these new places are pre-
sented as 10 and 20. According to the local-time effect, co-
incident spatial positions cause similar histograms patterns.
In the interval distribution built on the base of the measure-
ments carried out by the system displayed in Fig. 1 (the num-
ber of similar pairs of the histograms as a function of the time
interval between them), a single peak in the interval �t0 is
observed.

In our previous works [6-8], we showed that there within

Fig. 1: This diagram illustrates the appearance of the local-
time effect.

Fig. 2: The sketch of the solar (1440 min) and stellar (1446
min) splitting of the daily period.

the time resolution enhancement (with use histograms, short-
est in time) the local-time peak splits onto two sub-peaks. It
was found that the ratio between the splitting �t1 and the
local-time value �t0 is k= 2.78�10�3. This numerical value
is equal, with high accuracy, to the ratio between the daily pe-
riod splitting 240 sec and the daily period value T = 86400
sec [7, 8]. This equality means that the local-time effect
and the daily period are originated in the same phenomenon.
From this viewpoint, the daily period can be considered as
the maximum value of the local-time effect, which can be ob-
served on the Earth.

In our recent work [8], we suggested that the sub-peaks of
the local-time peak can also be split with resolution enhance-
ment, and, in general, we can expect an n-order splitting with
the value �tn

�tn = kn �t0 ; n = 1; 2; 3; : : : (2)

154 V. A. Panchelyuga and S. E. Shnoll. On the Second-Order Splitting of the Local-Time Peak



April, 2008 PROGRESS IN PHYSICS Volume 2

Fig. 3: The interval distributions for the 10-sec histograms (a), 2-sec histograms (b)–(c), and 0.2-sec histograms (d–e).
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Preliminary results obtained in [8] verified this suggestion
in part. The present work provides further investigation on the
second-order splitting of the local-time peak.

As easy to see, from (2), every subsequent value of the
local-time peak splitting �tn needs more than two orders of
resolution enhancement. Therefore, most easy way to study
�tn is to use the maximum value of �t0. Such a value, as
stated above, is the daily period �t0 = 86400 sec.

2 Experimental results

To study the second-order splitting of the daily period, we use
the known positions of the “solar peak” (1440 min) and the
“sidereal peak” (1436 min), which are the first-order split-
tings of the daily period. The peaks are schematically dis-
played in Fig. 2. To find the position of the second-order split-
ting peaks, we used the method of consecutive refinements
of the positions of the solar and sidereal peaks. The peaks
displayed in Fig. 2 are determined with one-minute accuracy.
Since the positions of the solar and stellar peaks are well-
known, we can study its closest neighborhood by shortest (to
one minute) histograms. In Fig. 2, such a neighborhood is
displayed by gray bars (they mean 10-sec histograms). After
obtaining the intervals distribution for the 10-sec histograms,
the procedure was repeated, while the rôle of the 1-min his-
tograms was played by the 10-sec histograms, and those were
substituted for the 2-sec histograms. After this, the procedure
was on the 2-sec and 0.2-sec histograms.

Zero interval (Fig. 2) marked by black colour corresponds
to the start-point of the records. We used two records, started
in the neighboring days at the same moments of the local
time. So, the same numbers of histograms were divided by
the time interval equal to the duration of solar day: 86400
sec. The interval values shown in Fig. 2 are given relative to
zero interval minus 86400 sec.

The time series of the fluctuations in a semiconductor
diode were registered on November 2–4, 2007. Each of the
measurement consisted of two records with a length of 50000
and 19200000 points measured with the sampling rate 5 Hz
and 8 kHz. On the base of these time series, we built the sets
of the 10-sec, 2-sec, and 0.2-sec histograms. We used these
sets in our further analysis.

The 10-second set of histograms was built on the base of
the records, obtained with the sampling rate 5 Hz. Each 10-
sec histogram was built from 50 points samples of the time
series of fluctuation. The 2-sec and 0.2-sec sets were built
on the base of the 50-point samples of the 25 Hz and 250 Hz
time series (they were recount from the 8 kHz series).

It is important to note, that the solar day duration is not
equal exactly to 86400 sec, but oscillates along the year. Such
oscillations are described by the time equation [8]. To provide
our measurements, we choose the dates when the time equa-
tion has extrema. Due to this fact, the day duration for all the
measurements can be considered as the same, and we can

Fig. 4: The daily period splitting. Gray color marks the experimen-
tally found splittings. The splitting displayed below were calculated
on the base of the formula (2) for n= 3. . . 5.

average the interval distributions obtained on the base of the
time series measured on November 2–4, 2007.

The interval distributions obtained after the comparison of
the histograms are given in Fig. 3. The upper graph, Fig. 3a,
displays the interval distribution for the 10-sec histograms.
As follows from Fig. 3a, the interval distribution in the neigh-
borhood of the 1-min peaks consists of two sharp peaks (dis-
played by gray bars) which are separated by a time interval
of 240�10 sec giving the positions of the solar and sidereal
peaks with 10-sec accuracy.

The interval distributions in the neighborhood of the 10-
sec peaks (Fig. 3a), for the 2-sec histograms, are displayed in
Fig. 3b–3c. Gray bars in Fig. 3b–3c correspond to the new
positions of the solar and sidereal peaks with 2-sec accuracy.
Considering the neighboring of the 2-sec peaks (Fig. 3b–3c)
to the 0.2-sec histograms, we obtain the interval distributions
displayed in Fig. 3d–3e. As easy to see, instead of the more
precise position of the 2-sec solar and sidereal peaks, we ob-
tain the splitting of the aforementioned peaks onto two cou-
plets of new distinct peaks. So, from Fig. 3d–3e, we state the
second-order splitting of the daily period.

3 Discussion

On the base of the formula (2), for n= 2 with use of �t0 =
= 86400 sec and k= 2.78�10�3 for the second-order split-
ting �t2, we get the value �t2 = 0.67 sec. From the ex-
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perimentally obtained interval distribution (Fig. 3d–3e), we
have �t2 = 0.8�0.2 sec. So, the experimental value agrees
with the theoretical estimations made on the base of the for-
mula (2).

Such an agreement leads us to a suppositon that there is
a high-order splitting, which can be obtained from the for-
mula (2). In Fig. 4, we marked by gray colour the experi-
mentally found splitting. The splitting displayed below was
calculated on the base of (2) for n= 3. . . 5, �t0 = 86400 sec,
and k= 2.78�10�3. This splitting will be a subject of our
further studies, and only this splitting is accessed to be stud-
ies now. For n> 5, we will need to get measurements with a
sampling rate of about 7.5 THz. Such a sampling rate is out
of the technical possibilities for now.

As was stated in Introduction, the local-time effect exists
in the scale from the maximal distances, which are possible
on the Earth’s surface, to the distances close to one meter.
Besides, the local-time effect doesn’t depend on the origin
(nature) of the fluctuating process. In the case, where the spa-
tial basis of the measurements is about one meter, the time
required for obtaining of the long-length time series (that is
sufficient for further analysis) is about 0.5 sec. Any exter-
nal influences of geophysical origin, which affect the sources
of the fluctuations synchronously, cannot be meant a source
of the experimentally obtained results. Only the change we
have is the changing of the spatial position due to the motion
of whole system with a velocity V originated in the rotatory
motion of the Earth (see formula 1). From this, we can con-
clude that the local-time effect originates in the heterogeneity
of the space itself. The results presented in Fig. 3 lead us to a
supposition that such an heterogeneity has a fractal structure.
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Interpretations are given herein regarding the very visionary and important Pu-239 his-
togram work of Shnoll, and calling attention to background research which was not fully
described in that paper. In particular, this Letter gives results of our theoretical and ex-
perimental research of gravitational anomalies during total solar eclipses and planetary
line-up, and compares interpretations of the data with the work of Shnoll.

I am writing this Letter-to-the-Editor in reference to the very
luminary paper authored by S. Shnoll [1], published in this
journal, because of the far-reaching impact of the implica-
tions of this paper in describing nature, and because I have
corresponded scientifically with the author on the subject of
his repeat-pattern histogram work [2, 3] since 2001 when I
first conveyed to Shnoll that his very meritorious radioactive
decay findings of periodicities was an element of a larger and
more ubiquitous external-particle net-transfer-of-momenta
model and theory in which the origin of gravity due to
collision-induced phenomena, was the initial cornerstone [4].
At that time Shnoll reported that the cause of the periodicities
in his radioactive decay histograms was unknown but must
be due to “profound cosmophysical phenomena” [2, 3]. The
cited references within [1] do not convey the full background
of the work leading to that paper [1] which Shnoll refers to as
a survey, but in my opinion is far beyond a simple review-of-
the-literature paper, and is instead a very significant archival
work. Additionally, within the text itself [1] there are no ref-
erences to the private communications References 40 and 41
cited in the list of references in [1]. For these above reasons,
I wish to clarify various elements of the paper [1].

I also advised Shnoll in 2003 and 2004 to search out his
earlier Pu-239 alpha decay data that were taken at the time
of a total solar eclipse [5], doing so because I was impressed
with his work during 2003 on characteristic histograms dur-
ing the New Moon, observed simultaneously independent of
location and latitude [6]. As stated, although my work, and
that of colleague, Frank Lucatelli, is referenced as private
communications in Shnoll’s paper [1], as Refs. 40 and 41,
those references are not cited in the text, but instead only in
the bibliography, and thus most readers would be unaware of
our input into Shnoll’s paper of [1]. I also conveyed to Dr.
Shnoll our own work whereby at my request, colleagues had
measured a dip in the radioactive decay of Co-60 in southeast-
ern Kansas, and in Po-210 in the Boston area at the time of the
total solar eclipse of 4 December, 2002, when the “umbra”
passed closest to the isotope sources [7]. We predicted that

this effect would be observed based on the data of Allais [8],
and of Saxl and Allen [9] showing decreases in gravity asso-
ciated with the eclipses of 1954 and 1959, and the eclipse of
1970, respectively, and also based on the dip in gravity which
I observed using a dual Newton-cradle pendula system during
the planetary line-up of Earth-Sun-Jupiter’s/magnetosphere-
Saturn on 18 May 2001 [10]. This prediction was based on
my postulate that if gravity were a result of external particle
impingement on mass particles, then the other three axiomatic
“forces” should also depend upon, or be influenced by the ex-
ternal particle flux.

In this Letter-to-the-Editor, I wish to address points re-
garding Dr. Shnoll’s interpretation of his decades of data, and
of the data of others.

Shnoll has conducted very excellent collimator studies,
which showed that when the collimator was pointed north to-
ward the pole star, the near-daily-periods in the repeat his-
togram patterns of Pu-239 decay were not observed, con-
trasting the data showing repeat histograms when the colli-
mators were oriented east, and when they were oriented west.
Shnoll interprets these data stating that . . . “Such a depen-
dence, in its turn, implies a sharp anisotropy of space.” I
suggest that a better and more correct manner to interpret
these data is in terms of the Earth-Moon-Sun system, spin-
ning and orbiting in the east-west ecliptic plane interrupting,
through capture and/or scattering, elementary particles (prob-
ably neutrinos) that would otherwise impinge upon the ra-
dioactive source and perturb the weak interaction in unstable
nuclei. This is not a proof of heterogeneity and anisotropy of
space time in a general sense, but indication of celestial body
orbits that exist in the general plane of the ecliptic — the ex-
ternal particles being omnidirectional, and the heterogeneity
arising generally from supernovae explosions and their con-
sequences. Shnoll earlier in the paper rightfully states, refer-
ring to daily, monthly, and yearly periods in repeat forms of
the histograms, that “All these periods imply the dependence
of the obtained histogram pattern on two factors of rotation
— (1) rotation of the Earth around its axis, and (2) move-
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ment of the Earth along its circumsolar orbit”, thus support-
ing the above explanation. Shnoll alludes to this explana-
tion by stating that a heterogeneity in the gravitational field
results from the existence of “mass thicknesses” of celestial
bodies, and this then must relate to the capture cross-section
between nucleons of the mass bodies. Stanley [11] has de-
scribed in detail the properties of mass that relate to gravity,
and treated mathematically the flux of externally impinging
neutrinos [11] as related to gravitational interactions. Shnoll
invokes a “wave interference” and relates it to a gravitational
effect (which associates with our use of interruption and cap-
ture, but in our case the phenomenon is particle-based rather
than wave-based).

In Section 10 of [1], the author describes the observa-
tions of characteristic histogram patterns for the occurrence
of the New Moon, and the total solar eclipse. The author
writes that the specific patterns do not “depend on position
on the Earth’s surface where the Moon’s shadow falls during
the eclipse or the New Moon.” We have found, however, that
the decrease in gravity signature during a total solar eclipse
does depend upon the latitude of the location of totality and
of the measurements [12], and this is clearly proven in com-
paring the different data signatures during eclipses in different
locations, most notably the work of Wang et al. [13, 14] dur-
ing the eclipse of March 1997 in China. The work of Stanley
and Vezzoli [12] has been able to mathematically describe
from first principles the detailed gravimeter data of Wang et
al. [13, 14] for the above eclipse, including the parabolic dips
in gravity at first contact, and at last contact. The dependence
upon latitude of the location of the measurements and of total-
ity is due to the elastic scattering properties of the three-body
problem. Shnoll then interprets the overall data in associa-
tion with the fractality of space-time — a conclusion that we
have also reached in our gravity research [11, 15] and that is
also described very recently by Loll [16]. Shnoll notes that he
also observes a chirality in histograms, which we have shown
is fundamental in the nature of materials and the aggregation
of mass to form compounds [17].

It is interesting to note that in [1], Shnoll concludes that
there is a spatial heterogeneity on the scale of 10�13 cm.
This is the value that we calculate for the inter-neutrino spac-
ing of the neutrino flux, corresponding to a collision cross-
section with nucleons of �10�38 cm2, and a particle density
3.7�1028–1034 particles per cm3.

Our work, and our interpretation of the Shnoll work
[1–3], and many other works by Shnoll, correlates very well
with the positron annihilation work of Vikin [19] showing that
the production of positronium from Na-22 undergoes a max-
imum near the time of the New Moon, and a minimum near
the time of the Full Moon. At the time of the New Moon, the
Earth laboratory (whether measurements are of gravitational
interactions or of radioactive decay phenomena) faces in the
general direction of the line of the Moon and the Sun for a
short period of the day, and then rotates such that the labo-

ratory faces free and open space and distant stars during the
duration of the day, so that a large complement of neutrinos
falls uninterrupted onto the measuring device; also neutrinos
that are emitted by the Sun may be scattered by the Moon to
affect the data. During the Full Moon, however, the Earth lab-
oratory is always between the Moon and the Sun, and hence
the overall collision physics is considerably different.

Shnoll sums the interpretation of the work that he de-
scribes within [1] by stating “Taken together, all these facts
can mean that we deal with narrowly directed wave fluxes”,
which he refers to as beams that are more narrow than the
aperture of the collimators of the apparatus (0.9 mm). Our
model and theory of gravity [11] is based on a flux of par-
ticles, and the “narrow beam” is interpreted due to very low-
angle elastic scattering of external particles by the nucleons of
the celestial bodies [11,12], particularly the Moon (near body
in [12]) and Sun (far body), such that some particles never
reach the detecting apparatus such as pendula, gravimeter, or
radioactive source-detector system.

Fundamental to Shnoll’s work is his assertion that these
periodic characteristic histograms relate to a wide variety of
phenomena ranging from bio-chemical phenomena, to the
noise in a gravitational antenna, to alpha decay. This is in
agreement with my own work and that of others, and I have
found that anomalies in gravity, radioactive decay of Po-210
(and Co-60), and changes in plant growth, orientation, and
physiology, as well as embryonic centriole-centriole separa-
tion phenomena, and even DNA and its sheathing H2O, are
affected by the Earth-Moon-Sun relationship [10–12, 14, 17,
19, 20]. It has been shown by Gershteyn et al. [21] that the
value of G varies at least 0.054% with the orientation of the
torsion pendula masses with the stars, and that G is periodic
over the sidereal year [21] — this periodicity arguing for a
strong link between the Shnoll radioactive decay data and
gravity. Furthermore the Shnoll work [1] cites the possibil-
ity of a space-time anisotropy in a preferential direction, and
refers to the drift of the solar system toward the constellation
Hercules. Our theoretical work in collision-induced gravity
shows that G is a function of collision cross-section of the
neutrino-nucleon interaction [11], and experimental work in-
dicates thatG is a function also of at least temperature, phase,
and shape [10, 22]. Our very recent experimental work deter-
mined that G= 6.692�10�11 cubic meters per kg sec2 [15]
which compares very favorably with the slightly earlier work
of Fixler et al [22] using precision a interferrometric method
in conjunction with cold Cs atoms and a known Pb mass,
yielding G= 6.693�10�11 cubic meters per kg sec2 — these
values being considerably larger than the normally utilized
value of 6.67�10�11. These data are in accord with an in-
creasing trend in G that could possibly be related to other
trends such as that cited by Shnoll [1].

Shnoll reports [1] that the subject histograms have a fine
structure that shows what he refers to as “macroscopic fluc-
tuations”. We have reported gravitational fluctuations [10]
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that appear at random, and are associated with time intervals
of �0.13 sec, indicating another correlation between gravity
data and radioactive decay data. The gravitational fluctua-
tions that we detected were observed in the form of two New-
ton cradle pendula dwelling near each other for prolonged pe-
riods of time, but occurring in an unpredictable manner. We
tentatively correlated these events with signals arriving from
supernovae events that had occurred somewhere in the vast-
ness of the universe. We also had detected on 27 August 2001
a peak in the radioactive decay of our Po-210 source, far in
excess of two-sigma Poisson statistics, and later correlated
with the arrival of radiation from supernovae explosion SN
2001 dz in UGC 47, emitting energy in all neutrinos of the
order of 1046 joules.

All of the above points to the ubiquity of a model of na-
ture based on elementary impinging momentum-transferring
external particles that can be interrupted by mass particles,
rather than nature being based on the conventional four ax-
iomatic forces and their respective field theory. Furthermore,
in an external particle based model for gravity, there is no
need to invoke a purely mathematical “fabric” to space-time
curvilinearity according to geodesics or warping, nor is it nec-
essary to invoke Riemanian space, nor Minkowski space, but
instead space-time is considered to be of a fractal geometry,
and the trajectory of mass particles and photons through space
is curved because of collisions with neutrinos (WIMPS). Al-
though the collision cross-section of the neutrino with the
photon is extremely low, the flux density of the neutrino in our
region of the universe is extremely high, and we postulate that
the bending of light is due to that interaction. It seems that as-
trophysics is now poised to affirm modifications to Einstein’s
theory of General Relativity, and this is not unexpected in
that many recent findings have indicated that gravity is quan-
tized [15, 16, 24–26]. Understanding the nature and details
of this quantization is one of the very major challenges and
objectives in physics of this new century.

See also [27] for corroboration by private communication
of periodic behavior of radioactive decay data during New
Moon.
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In a letter published by Dr. Vezzoli in the current issue of your journal, he claims priority
back to 2001 for an explanation to certain gravitational phenomena, which were first
recorded by me and my co-workers at my laboratory. He claims priority to me on
the basis of the fact that he shared his results and plans with me in 2001 in private
communication. However, I and my co-workers understood the phenomena in the same
terms as much as 20 years before that, in the 1980’s, and discussed by us in numerous
publications during the 1980’s, in the Soviet (now Russian) scientific journals. I provide
a list of my early publications, refuting Dr. Vezzoli’s claim to priority.

Dear Sir,
I refer a letter published by Dr. Vezzoli in the current issue

of your journal he claims priority back to 2001 for an expla-
nation to certain gravitational phenomena, which were first
recorded by me and my co-workers at my laboratory. Clearly,
Dr. Vezzoli is mistaken to think that he was the first person to
propose, in 2001, an explanation of the gravitational phenom-
ena recorded by me and my co-workers, at my laboratory. We
in fact understood the phenomena in the same terms as much
as 20 years before that, in the 1980’s, as numerous publica-
tions [1–17] testify. For instance, an explanation of the exper-
iments was given by me in 1989 at the International Congress
on Geo-Cosmic Relations, in Amsterdam [4, 5]. This ex-
planation was repeated in the other papers, published by us
in 1989, 1995, and 2001. Our data, obtained during solar
eclipses, began with the eclipse of July 31, 1981, when a large
series of measurements was processed by 30 experimentalists
connected to my laboratory, located at 10 geographical points
stretching from the Atlantic to the Pacific (Sakhalin Island)
along the corridor of the eclipse. We got more than 100,000
single measurements of the speed of chemical reactions dur-
ing that eclipse. Our results were published in 1985 and 1987
[2, 3]. Since 1981 we processed measurements obtained dur-
ing many solar and lunar eclipses, and also Full Moon and
New Moon phases. The results were published in part only
because a detailed analysis was required. In 1989 I published
a paper wherein I claimed an observed change in the form of
histograms obtained from a radioactive decay which was de-
pendent upon the position of the Moon over the horizon [6].
This effect was observed at different geographical points. In
the same paper [6] I suggested a gravitational origin of the
observed effects.

I was pleased by the fact that a suggestion similar to that
of mine was given by our American colleagues (Dr. Vezzoli,
Dr. Lucatelli, and others), 20 years subsequent to me. This is
despite that fact that their conclusions were made on the basis
of scanty experimental data, in contrast to our own.

Dr. Vezzoli’s claim to priority in this research, and hence
his intellectual property, is I feel due to the following circum-
stance: the absence of information in the West about most
publications made by us during the 1980’s in the Soviet (now
Russian) scientific journals.

My belief is that I, being a purely experimental physicist,
should represent neither theoretical interpretations of the ob-
served phenomena nor hypotheses on the subject given by the
other authors. They may do that in their own papers; such a
policy would be most reasonable from any standpoint.

Unfortunately, no definite theoretical explanation of the
phenomenon we observed [1–16] was published in the scien-
tific press until now. The authors of a series of papers, pub-
lished in 2001 in Biophysics, v. 46, no. 5, presented different
hypotheses on the subject. Not one of those hypotheses re-
sulted in a calculation which could be verified by experiment.

I am responsible for a huge volume of experimental
data, resulting from decades of continuous experimental re-
search carried out by myself and dozens of my co-workers.
I wouldn’t like to dilute the data with a survey on hypotheses
and theoretical propositions given by the theoretical physi-
cists. Frankly speaking, I have no obligation to give such
a survey. I am prepared to provide references to published
papers on the subject, if it is suitable according to contents.
However I feel that it is wrong to refer any information ob-
tained in private communications before they publish their
views on their own account.

I give below a list of my early publications, which refute
the claim made by Dr. Vezzoli. Even a cursory inspection
of the publications reveals the fact that the information pro-
vided to me by Dr. Vezzoli and Dr. Lucatelli wasn’t news to
me. I do not wish to be embroiled in any quarrel with them.
However, having the list of my early publications, it would be
strange to raise the issue of priority.
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In this work, the presence of substantial microwave power in the atmosphere of the
Earth is discussed. It is advanced that this atmospheric microwave power constitutes
pools of scattered photons initially produced, at least in substantial part, by the �3 K
microwave background. The existence of these microwave pools of photons can serve to
explain how the Earth, as an anisotropic source, is able to produce an Earth Microwave
Background (EMB) at �3 K which is isotropic.

The �3 K microwave background [1] has always been asso-
ciated with the primordial universe [2]. Conversely, I have
advanced an oceanic origin for this signal [3–7], a scenario
supported by Rabounski and Borissova [8–10]. The Earth
has an anisotropic surface comprised of water and solid mat-
ter. However, the microwave background is isotropic. As
a result, if the Earth is the emitter of the �3 K signal [1],
isotropy must be achieved by scattering oceanic photons in
the atmosphere.

Initially, I invoked a Compton process in the atmosphere
in order to generate isotropy from an anisotropic oceanic
source [3]. Yet, given the nature of the scattering required
and the energies involved, such a mechanism is not likely. I
therefore proposed that Mie scattering should be present [4].
Finally, I discussed both Rayleigh and Mie scattering [6].
Rayleigh scattering should be more important at the lower
frequencies, while directional Mie scattering would prevail at
the higher frequencies [6].

Currently [2], the microwave background is believed to
be continuously striking the Earth from all spatial directions.
Under steady state, any photon initially absorbed by the atmo-
sphere must eventually be re-emitted, given elastic interac-
tions. Since the incoming microwave background is isotropic
[1, 2], then even scattering effects associated with absoption/

emission should not reduce the signal intensity on the ground,
because of steady state [6]. Thus, there should be no basis for
signal attenuation by the atmosphere, as I previously stated
[6]. Nonetheless, current astrophysical models of the atmo-
sphere assume that such attenuations of the microwave back-
ground occur [i.e. 11, 12]. These models also appear to ne-
glect atmospheric scattering [i.e. 11, 12].

I have mentioned that scattering processes are a central as-
pect of the behavior of our atmosphere at microwave frequen-
cies [6]. In addition, since steady state assumptions should
hold, any scattering of radiation, should build up some kind
of reservoir or pool of scattered photons in the atmosphere.

Scattering is known to become more pronounced with in-
creasing frequencies. Consequently, larger photon reservoirs
might be seen at the shorter wavelengths.

It is known that the atmosphere interferes with the mea-
surements of the microwave background [11]. However, this
interference has been attributed to atmospheric emissions [i.e.
11, 12], not to scattering. Experimental measurements have
demonstrated that atmospheric emissions increase substan-
tially with frequency [11, 12]. For instance, emissions at-
tributed to the water continuum tend to increase with the
square of the frequency [12]. Atmospheric contributions are
so pronounced at the elevated frequencies, that they can con-
tribute in excess of 15 K to the microwave background tem-
perature measurements at wavelengths below 1 cm [see table
4.2 in ref 11]. At a wavelength of 23.2 cm, Penzias and Wil-
son [1] obtained a 2.3 K contribution to their measurement
just from the atmosphere [see table 4.2 in ref 11]. Even at
a wavelength of 75 cm, an atmospheric contribution of 1K
can be expected [see table 4.2 in ref 11]. Atmospheric mod-
eling used in microwave background studies confirms the in-
crease in interference with frequency and its decrease with
altitude [i.e. 11, 12].

A pronounced increase in emission with frequency is ex-
pected if scattering is present. As such, it is reasonable to
postulate that astrophysics is dealing with scattering in this
instance [6], not with simple emission [11, 12]. Microwave
background measurements at the elevated frequencies are
therefore primarily complicated not by a lack of absolute sig-
nal, as I previously believed [6], but rather, by the tremen-
dous interference from the scattered signal reservoirs in the
atmosphere. In order to eliminate this effect, we are there-
fore forced to study the elevated frequencies from mountains
top or at higher altitudes using balloons, rockets and satel-
lites [11].

Should the microwave background arise from the universe
[2], the atmosphere of the Earth would still generate the same
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reservoirs of scattered radiation. The atmosphere cannot dis-
tinguish whether a photon approaches from space [2] or from
the oceanic surface [6]. Thus, establishing the presence of
the scattered pool of photons in the atmosphere cannot recon-
cile, by itself, whether the microwave background originates
from the cosmos, or from the oceans. Nonetheless, since a
steady state process is involved, if a �3 K signal is indeed
produced by the oceans, then a �3 K signal will be detected,
either on Earth [1] or above the atmosphere [13]. The Planck-
ian nature of this signal will remain unaltered precisely be-
cause of steady state. This is a key feature of the steady
state regimen. Importantly, experimental measures of emis-
sion [11, 12] do confirm that substantial microwave power
appears to be stored in the scattering reservoirs of the at-
mosphere. Consequently, a mechanism for creating isotropy
from an anisotropic oceanic signal [5] is indeed present for
the oceanic �3 K Earth Microwave Background.

Dedication: This work is dedicated to my three sons, Jacob,
Christophe and Luc.
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This paper answers twelve most common questions on the basics of Einstein’s theory
of relativity. The answers remove most key problems with a real, solid understanding
of the theory.

Since its inception, Progress in Physics, has maintained the
importance of freedom of expression in science [1]. As a re-
sult, the journal has sometimes published works even though
the editorial staff differred either with the premise or with the
conclusions of a paper. The editorial board maintains that it is
best to disseminate works, rather than to unknowlingly sup-
press seminal ideas. The validity of all scientific arguments
will eventually be discovered. For this reason, the journal
strongly upholds the rights of individual scientists relative to
publication. At the same time, many questions focusing on
fundamental aspects of Einstein’s theory of relativity have
been submitted to the journal. Most of these letters were
not published as they were concieved by authors who did not
properly grasp the concepts outlined within the classic text-
books on this subject, such as The Classical Theory of Fields
by Landau and Lifshitz [2] and others [3].

Recently, the editorial board made the decision to publish
a work by Stephen J. Crothers [4] even though some ques-
tions remained relative to its basic premise. We chose to
move to publication for two reasons. First, Crothers is a ca-
pable scientist who has already demonstrated substantial in-
sight into General Relativity [5]. Indeed, the editorial board
has written in support of these ideas [6]. Second, the journal
has received substantial correspondance from both amateurs
and established scientists. These letters have focused on per-
ceived problems with Einstein’s theory of relativity. The edi-
tors therefore feels compelled to address these concerns, both
relative to Crothers [4] and to other serious scientists who had
previously worked, with success, on numerous applications
of the theory of relativity.

In general, the correspondance we have received has ex-
pressed doubt concerning the validity of some key points in
Einstein’s theory. We found that these questions originated in
the fact that the scientists asking the questions were educated
as physicists, while the base of Einstein’s theory is Rieman-
nian geometry. It is therefore not suprising that some confu-
sion might arise. The meaning of Einstein’s theory is the ge-
ometrization of physics, the expression of all physics through
the geometrical properties of the four-dimensional pseudo-
Riemannian space (the basic space-time of the theory of rel-
ativity) or its extensions. Many physicists came to the the-

ory of relativity from the other fields of physics; they learned
Einstein’s theory through brief courses which gave the the-
ory in its historical sense, often with artifically introduced
principles and postulates. When the meaning of Einstein’s
theory, the geometrization of physics, was finally understood
through the joint intellectual powers of Albert Einstein and
Marcel Grossmann, all the physical principles came out from
the consideration; they all became covered by the particular
properties of the geometry within four-dimensional pseudo-
Riemannian space. Such a “historical” approach, which is
very common in most brief courses on the theory of relativ-
ity for physicists, often carries a student away with specu-
lations on the principles and postulates, instead of studying
Riemannian geometry itself. As a result, serious physicists
erred relative to simple questions which remained open af-
ter their brief education. Only a small minority of physicists,
who devoted their life to understanding the theory of relativ-
ity, were lucky enough to be able to study the special (more
advanced) courses on this subject.

Here we collected twelve of the most common questions
on the basics of Einstein’s theory, asked by the readers and
some of our colleagues. We hope the answers will remove
most key problems with a real, solid understanding of the
theory.
First. Naturally, each term in Einstein’s equations in empti-
ness (i.e. with zero right-hand-side) vanishes. This is due
to that fact that, in such a case, the scalar curvature is zero
R= 0, so Einstein’s equations become the vanishing condi-
tion for Ricci’s tensor: R�� = 0. In the same time, Ricci’s
tensor R�� isn’t a number, but a 2nd-rank tensor whose com-
ponents are 16 (only 10 of whom are independent). The for-
mula R�� = 0, i.e. Einstein’s equations in emptiness, means
10 different differential equations with zero elements on the
right-hand-side. These are differential equations with respect
to the components of the fundamental metric tensor g�� : each
of 10 equations R�� = 0 is expressed in the terms containing
the components of g�� and their derivatives according to the
definition of Ricci’s tensor R�� . Nothing more. (With non-
zero elements on the right-hand-side, these would be Ein-
stein’s equations in a space filled with distributed matter, e.g.
electromagnetic field, dust, liquid, etc. In such a case these
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would be 10 differential equations with a free term.)
Therefore the vanishing of each term of Einstein’s equa-

tions in emptiness doesn’t matter with respect to the validity
of the equations in both general and particular cases.
Second. A common mistake is that a gravitational field is de-
scribed by Einstein’s equations. In fact, a gravitational field is
described not by Einstein’s equations, but the components of
the fundamental metric tensor g�� of which only 10 are sub-
stantial (out of 16). To find the components, we should solve
a system of 10 Einstein’s equations, consisting of g�� and
their derivatives: the differential equations with zero right-
hand-side (in emptiness) or non-zero right-hand-side (with
distributed matter).
Third. The condition R�� = 0 doesn’t mean flateness, the
pseudo-Euclidean space (g00 = 1, i.e. the absence of grav-
itational fields), but only emptiness (see the first point that
above). Only a trivial case means flatness when R�� = 0.
Fourth. A mass, the source of a gravitational field, is con-
tained in the time-time component g00 of the fundamental
metric tensor g�� : the gravitational potential expresses as
w = c2

p
1�g00. Therefore Einstein’s equations in emptiness,

R�� = 0, satisfy a gravitational field produced by a mass
(g00 , 1). The right-hand-side terms (the energy-momentum
tensor T�� of matter and the �-term which describes physical
vacuum) describe distributed matter. There is no contradic-
tion between Einstein’s equations in emptiness and the equiv-
alence principle.
Fifth. In the case of geometrized matter, the most known
of which are isotropic electromagnetic fields (such fields are
geometrized due to Rainich’s condition and Nortvedt-Pagels’
condition), the energy-momentum tensor of the field express-
es itself through the components of the fundamental met-
ric tensor. In such a case, we can also construct Einstein’s
equations containing only the “geometrical” left-hand-side by
moving all the right side terms (they consist of only g�� and
their functions) to the left-hand-side so the right-hand-side
becomes zero. But such equations aren’t Einstein’s equations
in emptiness because R�� , 0 therein.
Sixth. Minkowski’s space, the basic space-time of Special
Relativity, permits test-masses, not point-masses. A test-mass
is one which is so small that the gravitational field produced
by it is so negligible that it doesn’t have any effect on the
space metric. A test-mass is a continous body, which is ap-
proximated by its geometrical centre; it has nothing in com-
mon with a point-mass whose density should obviously be
infinite.

The four-dimensional psedo-Riemannian space with Min-
kowski’s signature (+���) or (�+++), the space-time of
General Relativity, permits continuosly gravtating masses
(such a mass can be approximated by the centre of its grav-
ity) and test-masses which move in the gravitational field. No
point-masses are present in the space-time of both Special
Relativity and General Relativity.

Seventh. Einstein’s theory of relativity doesn’t work on in-
finite high density. According to Einstein, the theory works
on densities up to the nuclear density. When one talks about
a singular state of a cosmological solution, one means a so-
called singular object. This is not a point, but a compact ob-
ject with a finite radius and high density close to the nuclear
density. Infinite high density may occur on the specific con-
ditions within a finite radius (this is described in the modern
relativistic cosmology [7]), but Einstein’s theory does con-
sider only the states before and after that transit, when the
density lowers to that in atomic nuclei. Such a transit itself is
out of consideration in the framework of Einstein’s theory.

Eighth. Einstein’s pseudotensor isn’t the best solution for
elucidating the energy of a gravitational field, of course. On
the other hand, the other solutions proposed to solve this
problem aren’t excellent as well. Einstein’s pseudotensor of
the energy of a gravitational field permits calculation of real
physical problems; the calculation results meet experiment
nicely. See, for intance, Chapter XI of the famous The Clas-
sical Theory of Fields by Landau and Lifshitz [2]. This man-
ifests the obvious fact that Einstein’s pseudotensor, despite
many drawbacks and problems connected to it, is a good ap-
proximation which lies in the right path.

Bel’s tensor of superenergy, which is constructed in anal-
ogy to the tensor of the electromagnetic field, is currently the
best of the attempts to solve the problem of the energy of the
gravitational field in a way different from that of Einstein. See
the original publications by Louis Bel [8]. More can be found
on Bel’s tensor in Debever’s paper [9] and also in Chapter 5 of
Gravitational Waves in Einstein’s Theory by Zakharov [10].

Besides Bel’s tensor, a few other solutions were proposed
to the problem of the energy of the gravitational field, with
less success. Einstein’s theory of relativity isn’t fosilized,
rather it is under active development at the moment.

Nineth. Another very common mistake is the belief that Ein-
stein’s equations have no dynamical solution. There are dif-
ferent dynamical solutions, Peres’ metric for instance [11].
Peres’s metric, one of the empty space metrics, being applied
to Einstein’s equations in emptiness (which are R�� = 0),
leads to a solely harmonic condition along the x1 and x2 di-
rections. One can read all these in detail, for instance, in
Chapter 9 of the well-known book Gravitational Waves in
Einstein’s Theory by Zakharov [10].

Tenth. The main myths about Einstein’s theory proceed in
a popular misconception claiming the principal impossibil-
ity of an exceptional (absolute) reference frame in the theory
of relativity. This is naturally impossible in the space-time
of Special Relativity (Minkowski’s space, which is the four-
dimensional pseudo-Euclidean space with Minkowski’s sig-
nature) due to that fact that, in such a space, all space-time
(mixed) components g0i of the fundamental metric tensor are
zero (the space is free of rotation), and also all non-zero com-
ponents of the metric are independent from time (the space
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deformation is zero). This however isn’t true in the space-
time of General Relativity which is pseudo-Riemannian, so
any components of the metric can be non-zero therein. It was
shown already in the 1940’s, by Abraham Zelmanov, a promi-
nent scientist in the theory of relativity and cosmology, that
the space-time of General Relativity permits absolute refer-
ence frames connected to the anisotropy of the fields of the
space rotation or deformation of the whole Universe, i. e. con-
nected to globally polarized (dipole-fit) fields which are as a
global background gyro. See Chapter 4 in his book of 1944,
Chronometric Invariants [7], for detail.

Eleventh. Another popular myth claims that an experiment,
which manifests the anisotropy of the distribution of the ve-
locity of light, is in contradiction to the basics of the the-
ory of relativity due to the world-invariance of the velocity
of light. This myth was also completely shattered [12]. Ac-
cording to the theory of physical observables in General Rel-
ativity [7], the observable velocity of light lowers from the
world-invariance of the velocity by the gravitational potential
and the linear velocity of the space rotation at the point of
observation. The vector of the observable velocity of light di-
rected towards an attracting body is carried into the direction
of our motion in the space. As a result, the distribution of the
vectors of the velocity of light beams has a preferred direction
in space, depending on the motion, despite the fact that the
world-invariance of the velocity of light remains unchanged.
In such a case the field of the observable velocities of light is
distributed anisotropically. If the space is free from rotation
and gravitation (for instance, Minkowski’s space of Special
Relativity), the anisotropic effect vanishes: the spatial vectors
of the observable velocity of light are distributed equally in all
directions in the three-dimensional space. The anisotropic ef-
fect hence is due to only General Relativity. Here is nothing
contradictory to the basics of Einstein’s theory.

Twelfth. About Friedmann’s models of a homogeneous uni-
verse, including the Big Bang scenario. It was already shown
in the 1930’s [7] that Friedmann’s models have substantial
drawbacks both in its principal and mathematical approaches.
Friedmann’s models are empty (free of distributed matter),
homogeneous, and isotropic. They were only the first, histor-
ical step made by the scientists in the attempt to create physi-
cally and mathematically valid models of relativistic cosmol-
ogy. There are hundreds of thousands of solutions to Ein-
sten’s equations. True relativistic cosmology should be stated
by models of an inhomogeneous, anisotropic universe, which
meet the real physical conditions of the cosmos, and can be
applied to only a local volume, not the whole Universe [7].
A classification of the cosmological models, which are the-
oretically thinkable on the basis of Einstein’s equations, was
given in the 1940’s. See Chapter 4 of Chronometric Invari-
ants by Zelmanov [7], for detail. Many different cosmolog-
ical scenarios are listed there, including such exotics as the
transits through the states of infinite rarefraction and infinite

density on a finite volume (that is possible under special phys-
ical conditions). The Big Bang model, the model of expan-
sion of a compact object of a finite radius and nuclear density,
where the space is free of gravitating bodies, rotation, and de-
formation, is just one of many. Aside for this model, many
other models of an expanding universe can be conceived on
the basis of the solutions of Einstein’s equations.

Relativistic cosmology is based on the time functions of
the density, volume and others obtained from solutions to
Einstein’s equations. Therefore, only those states are under
consideration, which are specific to Einstein’s equations (they
work up to only the nuclear density). Relativistic cosmology
points out only the possibility of the state of infinite density as
a theoretically extrem of the density function, while the equa-
tions of the theory are valid up to only the nuclear density. It
is a very common mistake that Einstein’s theory studies the
state of infinite density, including a singular point-state.
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The usual concept of space and time, based on Aristotle’s principle of contemplation
of the world and of the absoluteness of time, is a product of rational thinking. At
the same time, in philosophy, rational thinking differs from reasonable thinking; the
aim of logic is to distinguish finite forms from infinite forms. Agreeing that space
and time are things of infinity in this work, we shall show that, with regard to these
two things, it is necessary to apply reasonable thinking. Spaces with non-Euclidean
geometry, for example Riemannian and Finslerian spaces, in particular, the space of the
General Theory of the Relativity (four-dimensional pseudo-Riemannian geometry) and
also the concept of multi-dimensional space-time are products of reasonable thinking.
Consequently, modern physical experiment not dealing with daily occurrences (greater
speeds than a low speed to the velocity of light, strong fields, singularities, etc.) can be
covered only by reasonable thinking.

In studying the microcosm, the microcosm or any extreme
conditions in physics, we deal with neo-classical, unusual
physics. For example, the uncertainty principle in quantum
physics and the relativity principle in relativistic physics are
really unusual to our logic. We may or may not desire such
things, but we shall agree with physical experiments in which
there is no exact localization of micro-particles or in which,
in all inertial systems, light has the same speed and, hence,
time is not absolute. Our consent with such experiments, the
results of which are illogical from the view-point of ordinary
consciousness, means that we accept to start to operate at an-
other level of consciousness which is distinct from the level of
consciousness necessary for the acceptance of experimental
results of classical physics. The fundamental difference con-
sists of the human consciousness at such a new level which
operates with other categories — forms of infinity.

The world is a thing of infinity. Hence, a logic which in-
cludes forms of infinity is necessary for its cognition. The
logic in itself considers the thinking in its activity and in its
product. This product shall then be used by all sciences. The
one and only philosophy, underlining that problem of logic is
to distinguish finite forms from infinite forms, and to show
some necessity to consider thinking in its activity. This activ-
ity is supra-sensory activity; though it may look like sensual
perception, such as contemplation. Therefore the content of
logic is the supra-sensory world and in studying it we will
stay (i.e., remain) in this world. Staying in this world, we
find the universal. For instance, the general laws of the mo-
tion of planets, are invisible (they are not “written in the sky”)
and inaudible; they exist only as a process of activity of our
thinking. Hence, we arrive at Hegel’s slogan “what is reason-
able, is real” [1] by which the status of thinking is raised to
the status of truth. As a result, it is possible not only to as-
sume that our real world has a tie with unusual geometries,

but, in fact, it is true.
From this point of view, it is possible to agree with many

mathematicians [2–6], that Euclid could direct natural sci-
ences. In another way, at the same time, he could have taken
not space as primary concept, but time.

Aristotle, having proclaimed the general principle of a
world-contemplation of motions occurring simultan-
eously [7], has come to a conclusion (which is only natural
to that epoch) that the duration of any phenomenon does not
depend on a condition of rest or motion of a body in which
this motion is observed, i.e. time is absolute and does not
depend on the observer. This principle satisfied requirements
of the person for the cognition of the world for such a very
time. Why? Because, what is reasonable, is necessarily real.
In reasoning itself, there is everything that it is possible to
find in experience. Aristotle said, “There is nothing existent
in (man’s) experience that would not be in reason”. Hence,
in reasoning, there exist many constructions which can be ad-
justed to the experience.

Prior to the beginning of the 20th century, the Aristo-
tle’s principle of contemplation of world was sufficient for
understanding our experiencing the world. The experiment
of Michelson-Morley on measuring the velocity of light had
not yet surfaced. This experiment appeared only later when
there also appeared other experiments confirming relativity
theory and quantum mechanics. The new principle of the
contemplation of the world, explaining these experiments,
has proclaimed things, which are “monstrous” from the point
of view of rational thinking. Instead of time, it is the ve-
locity of light which turns out to be the absolute magnitude.
The observed duration of events (the perception of time) de-
pends on the rest and motion of the observer. The under-
standing of this fact hasn’t come from rational thinking, but
from reasonable thinking. Rational thinking, which can ex-
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plain only finite things, has become insufficient for a crucial
explanation of new experimental data. Only reasonable think-
ing can realize such infinite things as, for example, the world,
time, space. And only reasonable thinking can understand
Aristotle’s question whether time (related to that which di-
vides the past and the future) is uniform or not, whether time
remains always identical and invariable, or whether it con-
stantly changes. Strict rational thinking protests against such
a question, but reasonable thinking answers it. Furthermore,
it depends on the level of our thinking (the level of conscious-
ness of the observer). One may object: it depends not on
one’s level of consciousness, but from one’s level of physi-
cal experiment. But experiment itself depends on the level
of our knowledge and therefore depends on the level of our
consciousness. Any principle of contemplation of the world
exists in our reasoning. Our reasoning the chooses necessary
principle for a concrete case. Really, our reasoning is infinite.

As it is known, after the experiments confirming relativity
theory our relation to the real world has changed. Rieman-
nian geometry has played a huge role in understanding the
structure of physical reality. It was a victory of “reason over
mind”. Relativity theory and Riemannian geometry (and its
special case — pseudo-Euclidian geometry of Minkowski’s
space which is the basis of the Special Theory of Relativity)
are products of reasoning.

We ask ourselves, why is there no unusual geometry re-
lated to the ordinary representation of the observer? This re-
sults from the fact that in life, in usual experiment, we deal
with small speeds and weak fields. In such conditions, the
differences among geometries are insignificant. As a simple
example, in seeing that bodies are in motion as a result of
some action-force, our mind has decided, that it will be car-
ried out in any case. That is, motion is force. It is an example
of naive thinking. Newton’s first law has finished with this
kind of knowledge because, as it became known at some later
stage in the history of physics, bodies can move with constant
velocity without influence of any force. There are many such
examples. Perhaps, among various possible representations,
one may further revise the geometries of Lobachevsky, Rie-
mann, and Finsler.

In receiving abnormal results, the mind will treat them
somehow, but not in the direction of revision of “obvious”
geometrical properties. Thus, if we can overcome the resis-
tance of the mind and reconsider “obvious” things, then our
thinking can reproduce from itself new sensations and con-
templations.

For example, let’s consider multi-dimensional time.
Within the limits of existenting models that assume multi-
dimensional time, there is a set of the parallel worlds (various
spatial sections intersecting each other at the same point of a
given space-time). It is like a set of possible states of a body
in Euclidean space. Let’s notice, that our reason at all does
not resist to this new sensation in order to construct a new
principle of the contemplation of the world.

Even if concepts of multi-dimensional space and time,
constructed via reasonable thinking, demand confirmation by
physical experiment (which at present seems far-fetched), it
is still possible to confirm it in other ways. As Hegel has
spoken, experience is done for the cognition of phenomena
but not for the cognition of truth itself. One experience is
not enough for the cognition of truth. Empirical supervision
gives us numerous identical perceptions. However, general-
ity is something different from a simple set. This generality
is found only by means of reasoning.

This Letter is based on a talk given at the XIIIth Interna-
tional Meeting “Physical Interpretations of Relativity The-
ory” (PIRT-2007, July 2–5, 2007, Moscow State Technical
University, Russia).

I would like to express my sincere gratitude to the Editor-
in-Chief of this journal Dmitri Rabounski for his help in my
scientific work and for valuable discussions.
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This paper discusses the nature of a hypothetical super-luminal observer who, as well as
a real (sub-light speed) observer, perceives the world by light waves. This consideration
is due to that fact that the theory of relativity permits different frames of reference,
including light-like and super-luminal reference frames. In analogy with a blind pilot on
board a supersonic jet aeroplane (or missile), perceived by blind people, it is concluded
that the light barrier is observed in the framework of only the light signal exchange
experiment.

We outline a few types of the frames of reference which may
exist in the space-time of General Relativity — the four-
dimensional pseudo-Riemannian space with Minkowski’s
signature (+���) or (�+++). Particles, including the ob-
server himself, that travel at sub-luminal speed (“inside” the
light cone), bear real relativistic mass. In other words, the
particles, the body of reference and the observer are in the
state of matter commonly referred to as “substance”. There-
fore any observer whose frame of reference is one of this kind
is referred to as a sub-luminal speed observer, or as a substan-
tial observer.

Particles and the observer that travel at the speed of light
(i. e. over the surface of a light hypercone) bear zero rest-mass
m0 = 0 but their relativistic mass (mass of motion) is nonzero
m, 0. They are in the light-like state of matter. In other
words, such an observer accompanies the light. We therefore
call such an observer a light-like observer.

Accordingly, we will call particles and the observer that
travel at a super-luminal speed super-luminal particles and
observer respectively. They are in the state of matter for
which rest-mass is definitely zero m0 = 0 but the relativistic
mass is imaginary.

It is intuitively clear who a sub-luminal speed observer is:
this term requires no further explanation. The same more or
less applies to a light-like observer. From the point of view of
a light-like observer the world around looks like a colourful
system of light waves. But who is a super-light observer? To
understand this let us give an example.

Imagine a new supersonic jet aeroplane (or missile) to be
commissioned into operation. All members of the ground
crew are blind, and so is the pilot. Thus we may assume that
all information about the surrounding world the pilot and the
members of the ground crew gain is from sound, that is, from
transverse waves traveling in air. It is sound waves that build
a picture that those people will perceive as their “real world”.

The aeroplane takes off and begins to accelerate. As long
as its speed is less than the speed of sound in air, the blind
members of the ground crew will match its “heard” position
in the sky to the one we can see. But once the sound bar-
rier is overcome, everything changes. The blind members

of the ground crew will still perceive the speed of the plane
equal to the speed of sound regardless of its real speed. The
speed of propagation of sound waves in air will be the maxi-
mum speed of propagation of information, while the real su-
personic jet plane will be beyond their “real world”, in the
world of “imaginary objects”, and all its properties will be
imaginary too. The blind pilot will hear nothing as well. Not
a single sound will reach him from his past reality and only
local sounds from the cockpit (which also travels at the super-
sonic speed) will break his silence. Once the speed of sound
is overcome, the blind pilot leaves the subsonic world for a
new supersonic one. From his new viewpoint (the supersonic
frame of reference) the old subsonic fixed world that contains
the airport and the members of the ground crew will simply
disappear to become a realm of “imaginary quantities”.

What is light? — Transverse waves that run across a
certain medium at a constant speed. We perceive the world
around through eyesight, receiving light waves from other ob-
jects. It is waves of light that build our picture of the “truly
real world”.

Now imagine a spaceship that accelerates faster and faster
to eventually overcome the light barrier at still growing speed.
From the purely mathematical viewpoint this is quite possi-
ble in the space-time of General Relativity. For us the speed
of the spaceship will be still equal to the speed of light what-
ever is its real speed. For us the speed of light will be the
maximum speed of propagation of information, and the real
spaceship for us will stay in another “unreal” world of super-
light speeds where all properties are imaginary. The same is
true for the spaceship’s pilot. From his viewpoint, overcom-
ing the light barrier brings him into a new super-light world
that becomes his “true reality”. And the old world of sub-light
speeds is banished to the realm of “imaginary reality”.

I am thankful to Prof. Brian Josephson and Dr. Elmira Isaeva
for discussion and comments.
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Detection of the Relativistic Corrections to the Gravitational Potential
using a Sagnac Interferometer
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E-mail: ioannis@yorku.ca
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General Relativity predicts the existence of relativistic corrections to the static Newto-
nian potential which can be calculated and verified experimentally. The idea leading
to quantum corrections at large distances is that of the interactions of massless parti-
cles which only involve their coupling energies at low energies. In this short paper we
attempt to propose the Sagnac intrerferometric technique as a way of detecting the rela-
tivistic correction suggested for the Newtonian potential, and thus obtaining an estimate
for phase difference using a satellite orbiting at an altitude of 250 km above the surface
of the Earth.

1 Introduction

The potential acting between to masses M and m that sepa-
rated from their centers by a distance r is:

V (r) = �GMm
r

; (1)

where s the Newton’s constant of gravitation. This potential
is of course only approximately valid [1]. For large masses
and or large velocities the theory of General Relativity pre-
dicts that there exist relativistic corrections which can be cal-
culated and also verified experimentally [2]. In the micro-
scopic distance domain, we could expect that quantum me-
chanics, would predict a modification in the gravitational po-
tential in the same way that the radiative corrections of quan-
tum electrodynamics leads to a similar modification of the
Coulombic interaction [3].

Even though the theory of General Relativity constitutes
a very well defined classical theory, it is still not possible to
combine it with quantum mechanics in order to create a sat-
isfied theory of quantum gravity. One of the basic obstacles
that prevent this from happening is that General Relativity
does not actually fit the present paradigm for a fundamental
theory that of a renormalizable quantum field theory. Gravita-
tional fields can be successfully quantized on smooth-enough
space-times [4], but the form of gravitational interactions is
such that they induce unwanted divergences which can not
be absorbed by the renormalization of the parameters of the
minimal General Relativity [5]. Somebody can introduce new
coupling constants and absorb the divergences then, one is
unfortunately led to an infinite number of free parameters.
In spite the difficulty above quantum gravity calculations can
predict long distance quantum corrections.

The main idea leading to quantum corrections at large dis-
tances is due to the interactions of massless particles which

only involve their coupling energies at low energies, some-
thing that it is known from the theory of General Relativity,
even though at short distances the theory of quantum grav-
ity differs resulting to finite correction of the order, O

� G~
c3r3

�
.

The existence of a universal long distance quantum correction
to the Newtonian potential should be relevant for a wide class
of gravity theories. It is well known that the ultraviolet be-
haviour of Einstein’s pure gravity can be improved, if higher
derivative contributions to the action are added, which in four
dimensions take the form:

�R��R�� + �R2; (2)

where � and � are dimensionless coupling constants. What
makes the difference is that the resulting classical and quan-
tum corrections to gravity are expected to significantly alter
the gravitational potential at short distances comparable to

that of Planck length `P =
q

G~
c3 = 10�35 m, but it should not

really affect its behaviour at long distances. At long distances
is the structure of the Einstein-Hilbert action that actually de-
termines that. At this point we should mentioned that some
of the calculation to the corrections of the Newtonian gravi-
tational potential result in the absence of a cosmological con-
stant � which usually complicates the perturbative treatment
to a significant degree due to the need to expand about a non-
flat background.

In one loop amplitude computation one needs to calculate
all first order corrections in G, which will include both the
relativistic O

�G2m2

c2
�

and the quantum mechanical O
�G~
c3
�

corrections to the classical Newtonian potential [6].

2 The corrections to the potential

Our goal is not to present the details of the one loop treat-
ment that leads to the corrections of the Newtonian gravita-
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tional potential but rather sate the result and then use it in our
calculations. Valid in order of G2 we have that the corrected
potential now becomes [6]:

V (r) = �GMm
r

�
1� G (M +m)

2c2r
� 122G ~

15�c3r2

�
: (3)

Observing (3) we see that in the correction of the static
Newtonian potential two different length scales are involved.

First, the Planck length `P =
q

G~
c3 =10�35 m and second the

Schwarzschild radii of the heavy sources rsch = 2GMn
c2 . Fur-

thermore there are two independent dimensionless parame-
ters which appear in the correction term, and involve the ratio
of these two scales wit respect to the distance r. Presumably
for meaningful results the two length scales are much smaller
than r.

3 Perturbations due to oblateness J2

Because the Earth’s gravitational potential is not that of a
perfect spherical body, we can approximate its potential as
a spherical harmonic expansion of the following form:

V (r; �) = �GMm
r

"
1�

1X
n=2

Jn
�
Re
r

�n
Pn (sin�)

#
=

=
GMm
r

[Vo + VJ2 + VJ3 + : : : ] ; (4)

where:

r = geocentric distance,

� = geocentric latitude.

Re = means equatorial radius of the Earth,

Pn = Legendre polynomial of degree n and order zero,

Jn = Jn0 jonal harmonics of order zero, that depend
on the latitude � only,

and the first term GMm=r now describes the potential of a
homogeneous sphere and thus refers to Keplerian motion, the
remaining part represents the Earth’s oblateness via the zonal
harmonic coefficients and [7]

V0 = �1

VJ2 =
J2

2

�
Re
r

�2 �
3 sin2 �� 1

�
VJ3 =

J3

2

�
Re
r

�3 �
5 sin3 �� 3 sin�

�
9>>>>>>=>>>>>>;

(5)

similarly [8]
J2 = 1,082.6�10�6

J3 = �2.53�10�6

)
: (6)

Therefore equation (4) can be further written:

V (r; �) = �GMm
r
�

�
�
1�

1X
n=2

Jn
�
Re
r

�n
Pn(sin�)�G (M +m)

2rc2

�
=

=
GMm
r

[Vo + VJ2 + VJ3 + : : : � VRelativistic] :

(6a)

Since J2 is 400 larger that any other Jn coefficients, we
can disregard them and write the following expression for the
Earth’s potential function including only the relativistic cor-
rection and omitting the quantum corrections as being very
small we have:

V (r; �) = �GMem
r

+
GMemR2

eJ2

r3

�
3
2

sin2�� 1
2

�
+

+
G2Mem (Me +m)

c2r2 : (7)

Since we propose a satellite in orbit that carries the
Sagnac instrument it will of a help to express equation (7) for
the potential in terms of the orbital elements. We know that
sin�= sin i sin(f+!) where i is the inclination of the orbit,
f is the true anomaly and ! is the argument of the perigee. Ig-
noring long and short periodic terms (those containing ! and
f) we write (7) in terms of the inclination as follows:

V (r; �) = �GMem
r

+
3GMemR2

eJ2

2r3

�
sin2i

2
� 1

3

�
+

+
G2Mem (Me +m)

c2r2 (8)

therefore the corresponding total acceleration that a mass m
at r >Re has becomes:

gtot = � 1
m

@
@r

�
�GMem

r
+

3GMemR2
eJ2

2r3 �

�
�

sin2i
2
� 1

3

�
+
G2Mem (M +m)

r2c2

�
(9)

so that:

gtot = �GMe

r2 +
9GMeR2

eJ2

2r4

�
sin2 i

2
� 1

3

�
+

+
G2Me (Me +m)

c2r3 : (10)

4 Basic Sagnac interferometric theory

The Sagnac interferometer is based on the Sagnac effect, re-
ported by G. Sagnac in 1913 [8]. Two beams are sent in op-
posite directions around the interferometer until they meet
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��rs =
8�2R2

sN
s�
�
Rs
s + ��2vorb

�
(c2 �R2

s
2
s)
h
1� Rs

c2

��GMe
r2 + 9GMeR2

eJ2
2r4

�
sin2i

2 � 1
3

�
+ G2M2

e
r3c2

� h
1� cos

h
2�Rs
s

c

�
1 + Rs
s

c

��1
iii (15)

��rs =
8�2R2

sN
s�
�
Rs
s + ��2

q
GMe

(Re+zorb)

�
(c2 �R2

s
2
s)
h
1 + Rs

c2

�
GMe
r2 � 3GMeR2

eJ2
4r4 � G2M2

e
r3c2

� h
1� cos

h
2�Rs
s

c

�
1 + Rs
s

c

��1
iii (16)

��rs =
8�2R2

sN
s�
�

1 + R2
s


2
s

c2

��
Rs
s + ��2

r
GMe
Re

�
1� zorb

Re

��
c2
h
1+Rs

�
GMe
c2R2

e

�
1� 2zorb

Re

�� 3GMeR2
eJ2

4c2R4
e

�
1� 4zorb

Re

��G2M2
e

R3
ec4

�
1� 3zorb

Re

��h
1� cos

h
2�Rs
s

c

�
1+ Rs
s

c

��1
iii (17)

again to create a phase pattern. By rotating the interferom-
eter in the direction of either the clockwise (CW) or counter-
clockwise (CCW) beam, a phase difference results between
the two beams that its given by:

��rs =
8�2R2

sagN
�
(c2 � a2
2)

; (11)

where 
 is the angular velocity of the interferometer, Rsag is
the radius of the interferometer, N is the number of turns of
fiber around the radius and � is the frequency of light in the
fiber.

Let us now assume that the Sagnac interferometer and its
light laser beams are in the region of space around the Earth
where the gravitational potential is given by equation (3) and
let us further assume that the quantum correction to the po-
tential is really negligible. If the Sagnac light loop area has
a unit vector that is perpendicular to the acceleration of grav-
ity vector, then the motion of the interferometer will exhibit a
red-shift that will be given by:

frs =
f

1� �V
c2

=
f

1� gcorz
c2

; (12)

where �V is the difference in the potential between to differ-
ent points P1 and P2, and gcor is the corrected or total accel-
eration of gravity and z is the difference in vertical distance
between the two beams as the interferometer coil rotates. This
distance z that the laser beams see is given by:

z = Rsag

8<:1� cos

24 2�
Rsag
c
�

1 + Rsag

c

�359=; : (13)

This Sagnac effect can also be amplified by an interfer-
ometer that is in orbit, where the orbital velocity of the in-
terferometer with respect to the Earth’s surface produces an
increased phase shift. Both terms involved in the acceleration
of gravity in the first one:

��rs =
8�2R2

sagN
�
�
Rsag
 + vorb

�2

��
c2 �R2

sag
2
� �

1� gtotzc2
� (14)

using (14) and taking into account that M � m we further
obtain (15), where M is the source of the gravitational field
= the mass of the Earth in our caseMe, andR is the radius of
the massive body = Re, and r = Re + zorb it’s orbital height
plus Earth radius for an Earth-based satellite.

This Sagnac effect can also be amplified by an interfer-
ometer that is in orbit, where the orbital velocity of the in-
terferometer with respect to the Earth’s surface produces an
increased phase shift. Both terms involved in the acceleration
of gravity in the first one:

5 Sagnac in circular orbit of known inclination

Let now a Sagnac interferometer be aboard a satellite in a
circular polar orbit of inclination i= 90 degrees. If the incli-
nation is 90 degrees the term sin2 i

2 � 1
3 = 1

6 and the orbital
velocity at some height z above the surface of the Earth is
vorb =

q
GMe

(Re+Zorb) and (6) takes the form (16) can be finally
written as (17).

6 Sagnac in elliptical orbit of known inclination

If now a satellite is carrying a Sagnac device is in an elliptical
orbit of eccentricity e and semi-major axis a we have that the
radial orbital vector and the orbital velocity are given by:

r (f) =
a
�
1� e2�

1 + e cos f
; (18)

v2 = GMe

�
2
r
� 1
a

�
=
GMe

a

�
2 (1+e cos f)

(1�e2)
� 1
�
; (19)

where f is the true anomaly of the orbit. Substituting now in
(8) we obtain (20).

If we use the fact that GMe =n2a3 where n is the mean
motion of the satellite, equation (20) can be further
written as (21).

When the satellite approaches perigee its orbital velocity
will increase, so we will expect to see a higher phase differ-
ence than any other point of the orbit, and similarly the effect
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��rs =
8�2R2

sN
s�
�

1 + R2
s


2
s

c2

��
Rs
s + ��2

r
GMe
a

�
1+e2+2e cos f

1�e2
��

c2
h
1+Rs

�
GMe(1+e cos f)2

c2a2(1�e2)2 � 3GMeR2
eJ2(1+e cos f)4

4c2a4(1�e2)4 �G2M2
e (1+e cos f)3

c4a3(1�e2)3

�h
1� cos

h
2�Rs
s

c

�
1+Rs
s

c

��1
iii (20)

��rs =
8�2R2

sN
s�
�

1 + R2
s


2
s

c2

��
Rs
s + ��2na

r�
1+e2+2e cos f

1�e2
��

c2
h
1 +Rs

�
n2a(1+e cos f)2

c2(1�e2)2 � 3n2R2
eJ2(1+e cos f)4

4c2a(1�e2)4 � n4a3(1+e cos f)3

c4(1�e2)3

�h
1� cos

h
2�Rs
s

c

�
1 + Rs
s

c

��1
iii (21)

��rs (perigee) =
8�2R2

sN
s�
�

1 + R2
s


2
s

c2

��
Rs
s + ��2

r
GMe
a

�
1+e
1�e
��

c2
h
1 +Rs

�
GMe

c2a2(1�e)2 � 3GMeR2
eJ2

4c2a4(1�e)4 � G2M2
e

c4a3(1�e)3
� h

1� cos
h

2�Rs
s
c

�
1 + Rs
s

c

��1
iii (24)

��rs (perigee) =
8�2R2

sN
s�
�

1 + R2
s


2
s

c2

��
Rs
s + ��2na

q
1+e
1�e
�

c2
h
1 +Rs

�
n2a

c2(1�e)2 � 3n2R2
eJ2

4c2a(1�e)4 � n4a3
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will be minimum at the point of apogee because the satellite’s
velocity is minimal. The distance at perigee and apogee are
given by the equations below:

rpg = a (1� e)
rapg = a (1 + e)

)
(22)

also the corresponding velocities are:

v2
pg =

GM
a

�
1 + e
1� e
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�
1� e
1 + e

�
9>>>=>>>; ; (23)

therefore the phase difference detected by the Sagnac due to
the contribution of the Earth’s oblateness plus relativistic cor-
rection to the potential at perigee and apogee can be written
as (24) or again (25).

Similarly the phase difference at apogee can be written as
(26) or again (27).

For this last case of the elliptical orbit in (25) and (26)
where the Sagnac interferometer is on the satellite and we as-
sume Rs = 1 m, �= 2�1014 Hz, N = 106, 
s = 400 rad/sec,
a= 8�106 m, e= 0.2, Re = 6.378�106 meters we arrive at
the following values for ��:

�� (perigee) = 3.57�10�16 radians,

�� (apogee) = 2.44�10�16 radians.

These values are based on the dominant potential correc-
tion in (11) of section 3 which is the first term in (11) or the
Newtonian correction:

Newtonian correction = 2.17�10�16 radians.

In comparison, the second and third terms in (11) are the
oblateness and relativistic corrections respectively and they
produce the following values based on the given parameters:

Oblateness correction = 8.52�10�20,

Relativistic correction = 7.91�10�26.

So by comparison of the values above, the Newtonian cor-
rection is much easier to measure.
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The �� values given above may be more easily measured
using a QPSK-modulator inserted in the CCW or CW beam
path to improve phase resolution. Also, the use of higher
wavelengths (factor of 10 higher in frequency) will increase
resolution.

7 We suggest a Sagnac with an elliptic fiber loop

To attempt increasing the resolution of the phase difference of
the Sagnac interferometer let us now propose a Sagnac loop,
that has the shape of an ellipse that rotates with an angular
velocity 
. In this case it can be shown that the height dif-
ference between two points on the ellipse can be given by:

z = a

"
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�
e2 + e� 1

�
cos �

1 + e cos �

#
: (28)

To check the validity of the formula we derived we can set
e=0 which is the case of a circular Sagnac fiber optical path
we can see that the (13) in now retrieved since

Rsag = aloop(sag) = as is the semi major axis of the ellip-
tical fiber loop. When the ellipse spins with angular velocity

 that would force it to trace out a circle whose radius r, will
be that of the semi-major axis a of the ellipse, and therefore

we can finally write for (13):
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8 Circular orbit formula for the phase difference of
the Sagnac

Let now as before have a Sagnac interferometer be aboard a
satellite in a circular polar orbit of inclination i= 90 degrees.
If the inclination is 90 degrees the term sin2 i

2 � 1
3 = 1

6 and
the orbital velocity at some height z above the surface of the
Earth is vorb(circ) =

q
GMe

(Re+zorb) and (6) takes the form (30)
that can be finally written as (31).

9 Sagnac in elliptical orbit of known inclination

If now a satellite is carrying a Sagnac device is in an elliptical
orbit of eccentricity e and semi-major axis a we have that the
radial orbital vector and the orbital velocity are given by (32).

At perigee the equation (32) becomes (33) and also (34).
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For (33) and (34) above the following values are com-
puted assuming e= 0.2, �= 2�1014 Hz, a= 8�106 meters,
N = 1 (because the orbit is the Sagnac loop),Rsag =Rperigee
or Rapogee as determined by (22), 
perigee = 0.001 rad/sec,
and 
apogee = 6�10�4 rad/sec we find,

�� (perigee) = 6.05�1010 radians,
�� (apogee) = 2.36�1010 radians.

These values are for measuring the dominant Newtonian
contribution as described in Section 6. To detect relativis-
tic contribution which is 3.64�10�10 smaller than the New-
tonian contribution the corresponding phase-shifts from (33)
and (34) are:

�� (perigee) = 22 radians,
�� (apogee) = 8.59 radians.

Thus, the relativistic contribution in (11) of Section 3 is
easily measurable using a Sagnac interferometer where the
satellites in orbit are the Sagnac loop. In this scenario, the
light path can be implemented by transmitting laser beams
from one satellite to the next satellite in orbit ahead of it.
Also, by using the maximum spacing possible between satel-
lites in orbit this will allow line of site transmission while re-
ducing the number of satellites required for the Sagnac loop.
With the potential to measure such small relativistic correc-
tions, the merit of using satellites to implement a large Sagnac
loop of radius Rs =Rap or Rper is well worth considering.
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Resolving Spacecraft Earth-Flyby Anomalies with Measured
Light Speed Anisotropy

Reginald T. Cahill
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Doppler shift observations of spacecraft, such as Galileo, NEAR, Cassini, Rosetta and
MESSENGER in earth flybys, have all revealed unexplained speed “anomalies” — that
the Doppler-shift determined speeds are inconsistent with expected speeds. Here it is
shown that these speed anomalies are not real and are actually the result of using an
incorrect relationship between the observed Doppler shift and the speed of the space-
craft — a relationship based on the assumption that the speed of light is isotropic in all
frames, viz invariant. Taking account of the repeatedly measured light-speed anisotropy
the anomalies are resolved ab initio. The Pioneer 10/11 anomalies are discussed, but
not resolved. The spacecraft observations demonstrate again that the speed of light is
not invariant, and is isotropic only with respect to a dynamical 3-space. The existing
Doppler shift data also offers a resource to characterise a new form of gravitational
waves, the dynamical 3-space turbulence, that has also been detected by other tech-
niques. The Einstein spacetime formalism uses a special definition of space and time
coordinates that mandates light speed invariance for all observers, but which is easily
misunderstood and misapplied.

1 Introduction

Planetary probe spacecraft (SC) have their speeds increased,
in the heliocentric frame of reference, by a close flyby of the
Earth, and other planets. However in the Earth frame of ref-
erence there should be no change in the asymptotic speeds
after an earth flyby, assuming the validity of Newtonian grav-
ity, at least in these circumstances. However Doppler shift
observations of spacecraft, such as Galileo, NEAR, Cassini,
Rosetta and MESSENGER in earth flybys, have all revealed
unexplained speed “anomalies” — that the Doppler-shift de-
termined speeds are inconsistent with expected speeds [1–6].
Here it is shown that these speed anomalies are not real and
are actually the result of using an incorrect relationship be-
tween the observed Doppler shift and the speed of the space-
craft — a relationship based on the assumption that the speed
of light is isotropic in all frames, viz invariant. Taking ac-
count of the repeatedly measured light-speed anisotropy the
anomalies are resolved ab initio.

The speed of light anisotropy has been detected in at least
11 experiments [7–17], beginning with the Michelson-
Morley 1887 experiment [7]. The interferometer observa-
tions and experimental techniques were first understood in
2002 when the Special Relativity effects and the presence
of gas were used to calibrate the Michelson interferometer
in gas-mode; in vacuum mode the Michelson interferome-
ter cannot respond to light speed anisotropy [18, 19], as con-
firmed in vacuum resonant cavity experiments, a modern ver-
sion of the vacuum-mode Michelson interferometer [20]. So
far three different experimental techniques have given consis-
tent results: gas-mode Michelson interferometers [7–11, 16],

coaxial cable RF speed measurements [12–14], and optical-
fiber Michelson interferometers [15, 17]. This light speed
anisotropy reveals the existence of a dynamical 3-space, with
the speed of light being invariant only with respect to that 3-
space, and anisotropic according to observers in motion rela-
tive to that ontologically real frame of reference — such a mo-
tion being conventionally known as “absolute motion”, a no-
tion thought to have been rendered inappropriate by the early
experiments, particularly the Michelson- Morley experiment.
However that experiment was never null — they reported a
speed of at least 8km/s [7] using Newtonian physics for the
calibration. A proper calibration of the Michelson-Morley ap-
paratus gives a light speed anisotropy of at least 300km/s. The
spacecraft Doppler shift anomalies are shown herein to give
another technique that may be used to measure the anisotropy
of the speed of light, and give results consistent with previous
detections.

The numerous light speed anisotropy experiments have
also revealed turbulence in the velocity of the 3-space rela-
tive to the Earth. This turbulence amounts to the detection
of sub-mHz gravitational waves — which are present in the
Michelson and Morley 1887 data, as discussed in [21], and
also present in the Miller data [8, 22] also using a gas-mode
Michelson interferometer, and by Torr and Kolen [12], De-
Witte [13] and Cahill [14] measuring RF speeds in coaxial
cables, and by Cahill [15] and Cahill and Stokes [17] using
an optical-fiber interferometer. The existing Doppler shift
data also offers a resource to characterise this new form of
gravitational waves.

There has been a long debate over whether the Lorentz 3-
space and time interpretation or the Einstein spacetime inter-

Reginald T. Cahill. Resolving Spacecraft Earth-Flyby Anomalies with Measured Light Speed Anisotropy 9
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Earth

9

V

ª

V

Fig. 1: Spacecraft (SC) earth flyby trajectory, with initial and fi-
nal asymptotic velocity V, differing only by direction. The Doppler
shift is determined from Fig. 2 and (1). Assuming, as convention-
ally done, that the speed of light is invariant in converting mea-
sured Doppler shifts to deduced speeds, leads to the so-called flyby
anomaly, namely that the incoming and outgoing asymptotic speeds
appear to be differ, by �V1. However this effect is yet another
way to observe the 3-space velocity vector, as well as 3-space wave
effects, with the speed of light being c and isotropic only with re-
spect to this structured and dynamical 3-space. The flyby anomalies
demonstrate, yet again, that the invariance of the speed of light is
merely a definitional aspect of the Einstein spacetime formalism,
and is not based upon observations. A neo-Lorentzian 3-space and
time formalism is more physically appropriate.

pretation of observed SR effects is preferable or indeed even
experimentally distinguishable. What has been discovered
in recent years is that a dynamical structured 3-space exists,
so confirming the Lorentz interpretation of SR [22, 24, 25],
and with fundamental implications for physics. This dynam-
ical 3-space provides an explanation for the success of the
SR Einstein formalism. Indeed there is a mapping from the
physical Lorentzian space and time coordinates to the non-
physical spacetime coordinates of the Einstein formalism —
but it is a singular map in that it removes the 3-space ve-
locity with respect to an observer. The Einstein formalism
transfers dynamical effects, such as length contractions and
clock slowing effects, to the metric structure of the spacetime
manifold, where these effects then appear to be merely per-
spective effects for different observers. For this reason the
Einstein formalism has been very confusing. Developing the
Lorentzian interpretation has lead to a new account of gravity,
which turns out to be a quantum effect [23], and of cosmol-
ogy [21,22,26,27], doing away with the need for dark matter
and dark energy. So the discovery of the flyby anomaly links
this effect to various phenomena in the emerging new physics.

2 Absolute motion and flyby Doppler shifts

The motion of spacecraft relative to the Earth are measured by
observing the direction and Doppler shift of the transponded
RF transmissions. As shown herein this data gives another
technique to determine the speed and direction of the dynam-
ical 3-space, manifested as a light speed anisotropy. Up to
now the repeated detection of the anisotropy of the speed of

Earth -
¾

SC

I

¾
Vc� vi

c + vi

v

�i

Fig. 2: Asymptotic flyby configuration in Earth frame-of-reference,
with spacecraft (SC) approaching Earth with velocity V. The de-
parting asymptotic velocity will have a different direction but the
same speed, as no force other than conventional Newtonian gravity
is assumed to be acting upon the SC. The Dynamical 3-space ve-
locity is v(r; t), which causes the outward EM beam to have speed
c� vi, and inward speed c+ vi, where vi = v cos(�i), with �i the
angle between v and V.

light has been ignored in analysing the Doppler shift data,
causing the long-standing anomalies in the analysis [1–6].

In the Earth frame of reference, see Fig. 2, let the trans-
mitted signal from earth have frequency f , then the corre-
sponding outgoing wavelength is �0 = (c � vi)=f , where
vi = v cos(�i). This signal is received by the SC to have pe-
riod Tc = �0=(c�vi+V ) or frequency fc = (c�vi+V )=�0.
The signal is re-transmitted with the same frequency, and so
has wavelength �i = (c+vi�V )=fc, and is detected at earth
with frequency fi = (c+ vi)=�i. Then overall we obtain�

fi =
c+ vi

c+ vi � V �
c� vi + V
c� vi f : (1)

Ignoring the projected 3-space velocity vi, that is, assum-
ing that the speed of light is invariant as per the usual literal
interpretation of the Einstein 1905 light speed postulate, we
obtain instead

fi =
c+ V
c� V f : (2)

The use of (2) instead of (1) is the origin of the putative
anomalies. The Doppler shift data is usually presented in the
form of speed anomalies. Expanding (2) we obtain

�fi
f

=
fi � f
f

=
2V
c

+ : : : (3)

From the observed Doppler shift data acquired during a
flyby, and then best fitting the trajectory, the asymptotic hy-
perbolic speeds Vi1 and Vf1 are inferred, but incorrectly so,
as in [1]. These inferred asymptotic speeds may be related to
an inferred asymptotic Doppler shift:

�fi
f

=
fi � f
f

=
2Vi1
c

+ : : : (4)

�In practice the analysis is more complex as is the doppler shift technol-
ogy. The analysis herein is sufficient to isolate and quantify the light-speed
anisotropy effect.
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Parameter GLL-I GLL-II NEAR Cassini Rosetta M’GER

Date Dec 8, 1990 Dec 8, 1992 Jan 23, 1998 Aug 18, 1999 Mar 4, 2005 Aug 2, 2005
V1 km/s 8.949 8.877 6.851 16.010 3.863 4.056
�i deg 266.76 219.35 261.17 334.31 346.12 292.61
�i deg �12.52 �34.26 �20.76 �12.92 �2.81 31.44
�f deg 219.97 174.35 183.49 352.54 246.51 227.17
�f deg �34.15 �4.87 �71.96 �20.7 �34.29 �31.92

�v deg(hrs) 108.8(7.25) 129.0(8.6) 108.8(7.25) 45.0(3.0) 130.5(8.7) 168.0(11.2)
�v deg �76 �80 �76 �75 �80 �85
v km/s 420 420 450 420 420 420
�i deg 90.5 56.4 81.8 72.6 95.3 124.2
�f deg 61.8 78.2 19.6 76.0 60.5 55.6

(O) �V1 mm/s 3.92�0.3 �4.6�1.0 13.46�0.01 �2�1 1.80�0.03 0.02�0.01
(P) �V1 mm/s 3.92�0.1 �4.60�0.6 13.40�0.1 �0.99�1.0 1.77�0.3 0.025�0.03

Table 1: Earth flyby parameters from [1] for spacecraft Galileo (GLL: flybys I and II), NEAR, Cassini, Rosetta and MESSENGER
(M’GER). V1 is the average osculating hyperbolic asymptotic speed, � and � are the right ascension and declination of the incoming
(i) and outgoing (f) osculating asymptotic velocity vectors, and (O) �V1 is the putative “excess speed” anomaly deduced by assuming that
the speed of light is isotropic in modeling the doppler shifts, as in (4). The observed (O) �V1 values are from [1], and after correcting for
atmospheric drag in the case of GLL-II, and thruster burn in the case of Cassini. (P) �V1 is the predicted “excess speed”, using (7), taking
account of the known light speed anisotropy and its effect upon the doppler shifts, using �v and �v as the right ascension and declination of
the 3-space flow velocity, having speed v, which has been taken to be 420 km/s in all cases, except for NEAR, see Fig. 3. The � values on
(P) �V1 indicate changes caused by changing the declination by 5% — a sensitivity indicator. The angles �i and �f between the 3-space
velocity and the asymptotic initial/final SV velocity V are also given. The observed doppler effect is in exceptional agreement with the
predictions using (7) and the previously measured 3-space velocity. The flyby doppler shift is thus a new technique to accurately measure
the dynamical 3-space velocity vector, albeit retrospectively from existing data. Note: By fine tuning the �v and �v values for each flyby a
perfect fit to the observed (O) �V1 is possible. But here we have taken, for simplicity, the same values for GLL-I and NEAR.

However expanding (1) we obtain, for the same Doppler
shift�
Vi1 � �fi

f
� c

2
=
fi � f
f
� c

2
=
�

1 +
v2
i
c2

�
V + : : : (5)

where V is the actual asymptotic speed. Similarly after the
flyby we obtain

Vf1 � ��ff
f
� c
2

= �ff � f
f
� c
2

=
�

1+
v2
f

c2

�
V + : : : (6)

and we see that the “asymptotic” speeds Vi1 and Vf1 must
differ, as indeed first noted in the data by [3]. We then obtain
the expression for the so-called flyby anomaly

�V1 = Vf1 � Vi1 =
v2
f � v2

i

c2
V + : : :

=
v2

c2
�
cos(�f )2 � cos(�i)2�V1 + : : : (7)

where here V � V1 to sufficient accuracy, where V1 is the
average of Vi1 and Vf1, The existing data on v permits
�We ignore terms of order vV=c2 within the parentheses, as in practice

they are much smaller than the v2=c2 terms.

ab initio predictions for �V1, and as well a separate least-
squares-fit to the individual flybys permits the determination
of the average speed and direction of the 3-space velocity,
relative to the Earth, during each flyby. These results are all
remarkably consistent with the data from the 11 previous lab-
oratory experiments that studied v. Note that whether the
3-space velocity is +v or �v is not material to the analysis
herein, as the flyby effect is 2nd order in v.

3 Earth flyby data analaysis

Eqn. (7) permits the speed anomaly to be predicted as the
direction and speed v of the dynamical 3-space is known,
as shown in Fig. 3. The first determination of its direction
was reported by Miller [8] in 1933, and based on extensive
observations during 1925/1926 at Mt.Wilson, California, us-
ing a large gas-mode Michelson interferometer. These ob-
servations confirmed the previous non-null observations by
Michelson and Morley [7] in 1887. The general characteris-
tics of v(r; t) are now known following the detailed analysis
of the experiments noted above, namely its average speed,
and removing the Earth orbit effect, is some 420�30km/s,
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Fig. 3: Southern celestial sphere with RA and Dec shown. The 4 dark blue points show the consolidated results from the Miller gas-mode
Michelson interferometer [8] for four months in 1925/1926, from [22]. The sequence of red points show the running daily average RA and
Dec trend line, as determined from the optical fiber interferometer data in [17], for every 5 days, beginning September 22, 2007. The light-
blue scattered points show the RA and Dec for individual days from the same experiment, and show significant turbulence/wave effects.
The curved plots show iso-speed �V1 “anomalies”: for example for v= 420 km/s the RA and Dec of v for the Galileo-I flyby must lie
somewhere along the “Galileo-I 420” curve. The available spacecraft data in Table 1, from [1], does not permit a determination of a unique
v during that flyby. In the case of “Galileo-I” the curves are also shown for 420�30 km/s, showing the sensitivity to the range of speeds
discovered in laboratory experiments. We see that the “Galileo-I” December flyby has possible directions that overlap with the December
data from the optical fiber interferometer, although that does not exclude other directions, as the wave effects are known to be large. In
the case of NEAR we must have v > 440 km/s otherwise no fit to the NEAR �V1 is possible. This demonstrates a fluctuation in v of at
least +20 km/s on that flyby day. This plot shows the remarkable concordance in speed and direction from the laboratory techniques with
the flyby technique in measuring v, and its fluctuation characteristics. The upper-left coloured disk (radius = 8�) shows concordance for
September/August interferometer data and Cassini flyby data ( MESSENGER data is outside this region — but has very small �V1 and
large uncertainty), and the same, lower disk, for December/January/February/March data (radius = 6�). The moving concordance effect is
undertsood to be caused by the earth’s orbit about the Sun, while the yearly average of 420�30 km/s is a galaxy related velocity. Directions
for each flyby v were selected and used in Table 1.
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from direction right ascension �v = 5.5 � 2hr, declination
�v = 70� 10�S — the center point of the Miller data in Fig. 3,
together with large wave/turbulence effects, as illustrated in
Fig. 4. Miller’s original calibration technique for the inter-
ferometer turned out to be invalid [22], and his speed of ap-
proximately 208 km/s was recomputed to be 420�30 km/s
in [19,22], and the value of 420 km/s is used here as shown in
Table 1. The direction of v varies throughout the year due to
the Earth-orbit effect and low frequency wave effects. A more
recent determination of the direction was reported in [17] us-
ing an optical-fiber version of the Michelson interferometer,
and shown also in Fig. 3 by the trend line and data from indi-
vidual days. Directions appropriate to the date of each flyby
were approximately determined from Fig. 3.

The SC data in Table 1 shows the values of V1 and �V1
after determining the osculating hyperbolic trajectory, as dis-
cussed in [1], as well as the right ascension and declination of
the asymptotic SC velocity vectors Vi1 and Vf1. In com-
puting the predicted speed “anomaly” �V1 using (7) it is
only necessary to compute the angles �i and �f between the
dynamical 3-space velocity vector and these SC incoming and
outgoing asymptotic velocities, respectively, as we assume
here that jvj = 420 kms, except for NEAR as discussed in
Fig. 3 caption. So these predictions are essentially ab initio in
that we are using 3-space velocities that are reasonably well
known from laboratory experiments. The observed Doppler
effects are in exceptional agreement with the predictions us-
ing (7) and the previously measured 3-space velocity. The
flyby anomaly is thus a new technique to accurately measure
the dynamical 3-space velocity vector, albeit retrospectively
from existing data.

4 New gravitational waves

Light-speed anisotropy experiments have revealed that a dy-
namical 3-space exists, with the speed of light being c, in vac-
uum, only with respect to to this space: observers in motion
“through” this 3-space detect that the speed of light is in gen-
eral different from c, and is different in different directions.
The dynamical equations for this 3-space are now known and
involve a velocity field v(r; t), but where only relative veloc-
ities are observable locally — the coordinates r are relative
to a non-physical mathematical embedding space. These dy-
namical equations involve Newton’s gravitational constant G
and the fine structure constant �. The discovery of this dy-
namical 3-space then required a generalisation of the Max-
well, Schrödinger and Dirac equations. The wave effects al-
ready detected correspond to fluctuations in the 3-space ve-
locity field v(r; t), so they are really 3-space turbulence or
wave effects. However they are better known, if somewhat in-
appropriately, as “gravitational waves” or “ripples” in “space-
time”. Because the 3-space dynamics gives a deeper under-
standing of the spacetime formalism we now know that the

Fig. 4: Speeds vP , of the 3-space velocity v projected onto the hori-
zontal plane of the Miller gas-mode Michelson interferometer, plot-
ted against local sidereal time in hours, for a composite day, with
data collected over a number of days in September 1925. The data
shows considerable fluctuations, from hour to hour, and also day to
day, as this is a composite day. The dashed curve shows the non-
fluctuating best-fit variation over one day, as the Earth rotates, caus-
ing the projection onto the plane of the interferometer of the velocity
of the average direction of the space flow to change. The maximum
projected speed of the curve is 417 km/s, and the min/max occur at
approximately 5 hrs and 17 hrs sidereal time (right ascension); see
Fig. 3 for September. Analysing Millers’s extensive data set from
1925/26 gives average speed, after removing earth orbit effect, of
420�30 km/s, and the directions for each month shown in Fig. 3.

metric of the induced spacetime, merely a mathematical con-
struct having no ontological significance, is related to v(r; t)
according to [21, 22, 27]

ds2 = dt2 � (dr� v(r; t)dt)2

c2
= g�� dx�dx� : (8)

The gravitational acceleration of matter, a quantum effect,
and of the structural patterns characterising the 3-space, are
given by [21, 23]

g =
@v
@t

+ (v � r)v (9)

and so fluctuations in v(r; t) may or may not manifest as a
gravitational acceleration. The flyby technique assumes that
the SC trajectories are not affected — only the light speed
anisotropy is significant. The magnitude of this turbulence
depends on the timing resolution of each particular experi-
ment, and was characterised to be sub-mHz in frequency by
Cahill and Stokes [14]. Here we have only used asymptotic
osculating hyperbolic trajectory data from [1]. Nevertheless
even this data suggests the presence of wave effects. For ex-
ample the NEAR data requires a speed in excess of 440 km/s,
and probably closer to 450 km/s, whereas the other flybys are
consistent with the average of 420 km/s from laboratory ex-
periments. So here we see flyby evidence of fluctuations in
the speed v.
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Data exists for each full flyby, and analysis of that data
using the new Doppler shift theory will permit the study and
characterisation of the 3-space wave turbulence during each
flyby: essentially the flybys act as gravitational wave detec-
tors. These gravitational waves are much larger than pre-
dicted by general relativity, and have different properties.

5 Pioneer 10/11 anomalies

The Pioneer 10//11 spacecraft have been exploring the outer
solar system since 1972/73. The spacecraft have followed
escape hyperbolic orbits near the plane of the ecliptic, after
earlier planet flybys. The Doppler shift data, using (2), have
revealed an unexplained anomaly beyond 10 AU [28]. This
manifests as an unmodelled increasing blue shift d

dt (
�f
f ) =

= (2.92 � 0.44)�10�18 s/s2, corresponding to a constant in-
ward sun-directed acceleration of a = dV

dt = (8.74 � 1.33)
�10�8 cm/s2, averaged from Pioneer 10 and Pioneer 11 data.
However the Doppler-shift data from these spacecraft has
been interpreted using (2), instead of (1), in determining the
speed, which in turn affects the distance data. Essentially this
implies that the spacecraft are attributed with a speed that is
too large by v2

c2 VD, where VD is the speed determined using
(2). This then implies that the spacecraft are actually closer
to the Sun by the distance v2

c2RD, where RD is the distance
determined using (2). This will then result in a computed
spurious inward acceleration, because the gravitational pull
of the Sun is actually larger than modelled, for distance RD.
However this correction to the Doppler-shift analysis appears
not to be large enough to explain the above mention acceler-
ation anomaly. Nevertheless re-analysis of the Pioneer 10/11
data should be undertaken using (1).

6 Conclusions

The spacecraft earth flyby anomalies have been resolved.
Rather than actual relative changes in the asymptotic inward
and outward speeds, which would have perhaps required the
invention of a new force, they are instead direct manifesta-
tions of the anisotropy of the speed of light, with the Earth
having a speed of some 420�30 km/s relative to a dynami-
cal 3-space, a result consistent with previous determinations
using laboratory experiments, and dating back to the
Michelson-Morley 1887 experiment, as recently reanalysed
[18, 19, 21]. The flyby data also reveals, yet again, that the 3-
space velocity fluctuates in direction and speed, and with re-
sults also consistent with laboratory experiments. Hence we
see a remarkable concordance between three different labo-
ratory techniques, and the newly recognised flyby technique.
The existing flyby data can now be re-analysed to give a de-
tailed charaterisation of these gravitational waves. The de-
tection of the 3-space velocity gives a new astronomical win-
dow on the galaxy, as the observed speeds are those relevant

to galactic dynamics. The dynamical 3-space velocity effect
also produces very small vorticity effects when passing the
Earth, and these are predicted to produce observable effects
on the GP-B gyroscope precessions [29].

A special acknowledgement to all the researchers who
noted and analysed the spacecraft anomalies, providing the
excellent data set used herein. Thanks also to Tom Goodey
for encouraging me to examine these anomalies.
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16. Munéra H.A., et al. In: Proceedings of SPIE, 2007,
v. 6664, K1-K8, eds. Roychoudhuri C. et al.

17. Cahill R.T. and Stokes F. Correlated detection of sub-
mHz gravitational waves by two optical-fiber interferom-
eters. Progress in Physics, 2008, v. 2, 103–110.

18. Cahill R.T. and Kitto K. Michelson-Morley experiments
revisited. Apeiron, 2003, v. 10(2), 104–117.

19. Cahill R.T. The Michelson and Morley 1887 experi-
ment and the discovery of absolute motion. Progress in
Physics, 2005, v. 3, 25–29.

20. Braxmaier C. et al. Phys. Rev. Lett., 2002, 88, 010401;
Müller H. et al. Phys. Rev. D, 2003, 68, 116006-1-17;
Müller H. et al. Phys. Rev. D, 2003, v. 67, 056006; Wolf
P. et al. Phys. Rev. D, 2004, v. 70, 051902-1-4; Wolf P. et
al. Phys. Rev. Lett., 2003, v. 90, no. 6, 060402; Lipa J.A.,
et al. Phys. Rev. Lett., 2003, v. 90, 060403.

21. Cahill R.T. Dynamical 3-space: a review. arXiv:
0705.4146.

22. Cahill R.T. Process physics: from information theory
to quantum space and matter. Nova Science Pub., New
York, 2005.

23. Cahill R.T. Dynamical fractal 3-space and the gener-
alised Schrödinger equation: Equivalence Principle and
vorticity effects. Progress in Physics, 2006, v. 1, 27–34.

24. Levy J. From Galileo to Lorentz. . . and beyond. Apeiron,
Montreal, 2003.

25. Guerra V. and de Abreu R. Relativity: Einstein’s lost
frame. Extramuros, 2005.

26. Cahill R.T. Dynamical 3-space: supernovae and the Hub-
ble expansion — the older Universe without dark energy.
Progress in Physics, 2007, v. 4, 9–12.

27. Cahill R.T. A quantum cosmology: no dark atter, dark
energy nor accelerating Universe. arXiv: 0709.2909.

28. Nieto M.N., Turyshev S.G., Anderson J.D. The Pioneer
anomaly: the data, its meaning, and a future test. arXiv:
gr-qc/0411077.

29. Cahill R.T. Novel Gravity Probe B frame-dragging effect.
Progress in Physics, 2005, v. 3, 30–33.

Reginald T. Cahill. Resolving Spacecraft Earth-Flyby Anomalies with Measured Light Speed Anisotropy 15



Volume 3 PROGRESS IN PHYSICS July, 2008

The Neutrosophic Logic View to Schrödinger’s Cat Paradox, Revisited

Florentin Smarandache� and Vic Christiantoy
�Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA

E-mail: smarand@unm.edu
ySciprint.org — a Free Scientific Electronic Preprint Server, http://www.sciprint.org

E-mail: admin@sciprint.org

The present article discusses Neutrosophic logic view to Schrödinger’s cat paradox.
We argue that this paradox involves some degree of indeterminacy (unknown) which
Neutrosophic logic can take into consideration, whereas other methods including Fuzzy
logic cannot. To make this proposition clear, we revisit our previous paper by offering
an illustration using modified coin tossing problem, known as Parrondo’s game.

1 Introduction

The present article discusses Neutrosophic logic view to
Schrödinger’s cat paradox. In this article we argue that this
paradox involves some degree of indeterminacy (unknown)
which Neutrosophic logic can take into consideration,
whereas other methods including Fuzzy logic cannot.

In the preceding article we have discussed how Neutro-
sophic logic view can offer an alternative method to solve the
well-known problem in Quantum Mechanics, i.e. the Schrö-
dinger’s cat paradox [1, 2], by introducing indeterminacy of
the outcome of the observation.

In other article we also discuss possible re-interpretation
of quantum measurement using Unification of Fusion Theo-
ries as generalization of Information Fusion [3, 4, 5], which
results in proposition that one can expect to neglect the prin-
ciple of “excluded middle”; therefore Bell’s theorem can be
considered as merely tautological. [6] This alternative view
of Quantum mechanics as Information Fusion has also been
proposed by G. Chapline [7]. Furthermore this Information
Fusion interpretation is quite consistent with measurement
theory of Quantum Mechanics, where the action of measure-
ment implies information exchange [8].

In the first section we will discuss basic propositions of
Neutrosophic probability and Neutrosophic logic. Then we
discuss solution to Schrödinger’s cat paradox. In subsequent
section we discuss an illustration using modified coin tossing
problem, and discuss its plausible link to quantum game.

While it is known that derivation of Schrödinger’s equa-
tion is heuristic in the sense that we know the answer to which
the algebra and logic leads, but it is interesting that Schrö-
dinger’s equation follows logically from de Broglie’s grande
loi de la Nature [9, p.14]. The simplest method to derive
Schrödinger’s equation is by using simple wave as [9]:

@2

@x2 exp(ikx) = �k2 � exp(ikx) : (1)

By deriving twice the wave and defining:

k =
2�mv
h

=
mv
~

=
px
~
; (2)

where px, ~ represents momentum at x direction, and ratio-
nalised Planck constants respectively.

By introducing kinetic energy of the moving particle, T ,
and wavefunction, as follows [9]:

T =
mv2

2
=

p2
x

2m
=

~2

2m
k2; (3)

and
 (x) = exp(ikx) : (4)

Then one has the time-independent Schrödinger equation
from [1, 3, 4]:

� ~

2m
@2

@x2  (x) = T �  (x) : (5)

It is interesting to remark here that by convention physi-
cists assert that “the wavefunction is simply the mathematical
function that describes the wave” [9]. Therefore, unlike the
wave equation in electromagnetic fields, one should not con-
sider that equation [5] has any physical meaning. Born sug-
gested that the square of wavefunction represents the prob-
ability to observe the electron at given location [9, p.56].
Although Heisenberg rejected this interpretation, apparently
Born’s interpretation prevails until today.

Nonetheless the founding fathers of Quantum Mechanics
(Einstein, De Broglie, Schrödinger himself) were dissatisfied
with the theory until the end of their lives. We can summarize
the situation by quoting as follows [9, p.13]:

“The interpretation of Schrödinger’s wave function
(and of quantum theory generally) remains a matter of
continuing concern and controversy among scientists
who cling to philosophical belief that the natural world
is basically logical and deterministic.”

Furthermore, the “pragmatic” view of Bohr asserts that for a
given quantum measurement [9, p.42]:

“A system does not possess objective values of its phys-
ical properties until a measurement of one of them is
made; the act of measurement is asserted to force the
system into an eigenstate of the quantity being mea-
sured.”
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In 1935, Einstein-Podolsky-Rosen argued that the axiomatic
basis of Quantum Mechanics is incomplete, and subsequently
Schrödinger was inspired to write his well-known cat para-
dox. We will discuss solution of his cat paradox in subsequent
section.

2 Cat paradox and imposition of boundary conditions

As we know, Schrödinger’s deep disagreement with the Born
interpretation of Quantum Mechanics is represented by his
cat paradox, which essentially questioning the “statistical” in-
terpretation of the wavefunction (and by doing so, denying
the physical meaning of the wavefunction). The cat paradox
has been written elsewhere [1, 2], but the essence seems quite
similar to coin tossing problem:

“Given p= 0.5 for each side of coin to pop up, we
will never know the state of coin before we open our
palm from it; unless we know beforehand the “state”
of the coin (under our palm) using ESP-like phenom-
ena. Prop. (1).”

The only difference here is that Schrödinger asserts that the
state of the cat is half alive and half dead, whereas in the coin
problem above, we can only say that we don’t know the state
of coin until we open our palm; i.e. the state of coin is inde-
terminate until we open our palm. We will discuss the solu-
tion of this problem in subsequent section, but first of all we
shall remark here a basic principle in Quantum Mechanics,
i.e. [9, p.45]:

“Quantum Concept: The first derivative of the wave-
function 	 of Schrödinger’s wave equation must be
single-valued everywhere. As a consequence, the
wavefunction itself must be single-valued everywhere.”

The above assertion corresponds to quantum logic, which can
be defined as follows [10, p.30; 11]:

P _Q = P +Q� PQ : (6)

As we will see, it is easier to resolve this cat paradox
by releasing the aforementioned constraint of “single-
valuedness” of the wavefunction and its first derivative. In
fact, nonlinear fluid interpretation of Schrödinger’s equation
(using the level set function) also indicates that the physical
meaning of wavefunction includes the notion of multivalued-
ness [12]. In other words, one can say that observation of
spin-half electron at location x does not exclude its possibility
to pop up somewhere else. This counter-intuitive proposition
will be described in subsequent section.

3 Neutrosophic solution of the Schrödinger cat paradox

In the context of physical theory of information [8], Barrett
has noted that “there ought to be a set theoretic language
which applies directly to all quantum interactions”. This is
because the idea of a bit is itself straight out of classical set

theory, the definitive and unambiguous assignment of an el-
ement of the set {0,1}, and so the assignment of an informa-
tion content of the photon itself is fraught with the same dif-
ficulties [8]. Similarly, the problem becomes more adverse
because the fundamental basis of conventional statistical the-
ories is the same classical set {0,1}.

For example the Schrödinger’s cat paradox says that the
quantum state of a photon can basically be in more than one
place in the same time which, translated to the neutrosophic
set, means that an element (quantum state) belongs and does
not belong to a set (a place) in the same time; or an ele-
ment (quantum state) belongs to two different sets (two dif-
ferent places) in the same time. It is a question of “alternative
worlds” theory very well represented by the neutrosophic set
theory. In Schrödinger’s equation on the behavior of electro-
magnetic waves and “matter waves” in quantum theory, the
wave function, which describes the superposition of possible
states may be simulated by a neutrosophic function, i.e. a
function whose values are not unique for each argument from
the domain of definition (the vertical line test fails, intersect-
ing the graph in more points).

Therefore the question can be summarized as follows [1]:

“How to describe a particle � in the infinite micro-
universe that belongs to two distinct places P1 and P2
in the same time? � 2 P1 and � 2 :P1 is a true con-
tradiction, with respect to Quantum Concept described
above.”

Now we will discuss some basic propositions in Neutrosophic
logic [1].

3a Non-standard real number and subsets

Let T,I,F be standard or non-standard real subsets�]�0, 1+[,

with sup T = t sup, inf T= t inf,
sup I = i sup, inf I = i inf,
sup F = f sup, inf F = f inf,
and n sup = t sup + i sup + f sup,
n inf = t inf + i inf + f inf.

Obviously, t sup, i sup, f sup6 1+; and t inf, i inf, f inf>�0,
whereas n sup6 3+ and n inf>�0. The subsets T, I, F are not
necessarily intervals, but may be any real subsets: discrete or
continuous; single element; finite or infinite; union or inter-
section of various subsets etc. They may also overlap. These
real subsets could represent the relative errors in determining
t, i, f (in the case where T, I, F are reduced to points).

For interpretation of this proposition, we can use modal
logic [10]. We can use the notion of “world” in modal logic,
which is semantic device of what the world might have been
like. Then, one says that the neutrosophic truth-value of a
statement A, NLt(A) = 1+ if A is “true in all possible
worlds.” (syntagme first used by Leibniz) and all conjunc-
tures, that one may call “absolute truth” (in the modal logic
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it was named necessary truth, as opposed to possible truth),
whereasNLt(A) = 1 if A is true in at least one world at some
conjuncture, we call this “relative truth” because it is related
to a “specific” world and a specific conjuncture (in the modal
logic it was named possible truth). Because each “world” is
dynamic, depending on an ensemble of parameters, we in-
troduce the sub-category “conjuncture” within it to reflect a
particular state of the world.

In a formal way, let’s consider the world W as being gen-
erated by the formal system FS. One says that statement A
belongs to the world W if A is a well-formed formula (wff )
in W, i.e. a string of symbols from the alphabet of W that
conforms to the grammar of the formal language endowing
W. The grammar is conceived as a set of functions (formation
rules) whose inputs are symbols strings and outputs “yes” or
“no”. A formal system comprises a formal language (alpha-
bet and grammar) and a deductive apparatus (axioms and/or
rules of inference). In a formal system the rules of inference
are syntactically and typographically formal in nature, with-
out reference to the meaning of the strings they manipulate.

Similarly for the Neutrosophic falsehood-value,
NLf (A) = 1+ if the statement A is false in all possible
worlds, we call it “absolute falsehood”, whereasNLf (A) = 1
if the statement A is false in at least one world, we call it
“relative falsehood”. Also, the Neutrosophic indeterminacy
value NLi(A) = 1 if the statement A is indeterminate in all
possible worlds, we call it “absolute indeterminacy”, whereas
NLi(A) = 1 if the statement A is indeterminate in at least
one world, we call it “relative indeterminacy”.

3b Neutrosophic probability definition

Neutrosophic probability is defined as: “Is a generalization
of the classical probability in which the chance that an event
A occurs is t% true — where t varies in the subset T, i% in-
determinate — where i varies in the subset I, and f% false
— where f varies in the subset F. One notes that NP(A) =
(T, I, F)”. It is also a generalization of the imprecise probabil-
ity, which is an interval-valued distribution function.

The universal set, endowed with a Neutrosophic probabil-
ity defined for each of its subset, forms a Neutrosophic prob-
ability space.

3c Solution of the Schrödinger’s cat paradox

Let’s consider a neutrosophic set a collection of possible lo-
cations (positions) of particle x. And let A and B be two
neutrosophic sets. One can say, by language abuse, that any
particle x neutrosophically belongs to any set, due to the per-
centages of truth/indeterminacy/falsity involved, which varies
between �0 and 1+. For example: x (0.5, 0.2, 0.3) belongs
to A (which means, with a probability of 50% particle x is in
a position of A, with a probability of 30% x is not in A, and
the rest is undecidable); or y (0, 0, 1) belongs to A (which

normally means y is not for sure in A); or z (0, 1, 0) belongs
to A (which means one does know absolutely nothing about
z’s affiliation with A).

More general, x ((0.2–0.3), (0.40–0.45) [ [0.50–0.51],
{0.2, 0.24, 0.28}) belongs to the set A, which means:

— with a probability in between 20-30% particle x is in
a position of A (one cannot find an exact approximate
because of various sources used);

— with a probability of 20% or 24% or 28% x is not in A;
— the indeterminacy related to the appurtenance of x to

A is in between 40–45% or between 50–51% (limits
included).

The subsets representing the appurtenance, indeterminacy,
and falsity may overlap, and n sup = 30% + 51% + 28%>
100% in this case.

To summarize our proposition [1, 2], given the Schrö-
dinger’s cat paradox is defined as a state where the cat can be
dead, or can be alive, or it is undecided (i.e. we don’t know
if it is dead or alive), then herein the Neutrosophic logic,
based on three components, truth component, falsehood com-
ponent, indeterminacy component (T, I, F), works very well.
In Schrödinger’s cat problem the Neutrosophic logic offers
the possibility of considering the cat neither dead nor alive,
but undecided, while the fuzzy logic does not do this. Nor-
mally indeterminacy (I) is split into uncertainty (U) and para-
dox (conflicting) (P).

We have described Neutrosophic solution of the Schrö-
dinger’s cat paradox. Alternatively, one may hypothesize
four-valued logic to describe Schrödinger’s cat paradox, see
Rauscher et al. [13, 14].

In the subsequent section we will discuss how this Neu-
trosophic solution involving “possible truth” and “indetermi-
nacy” can be interpreted in terms of coin tossing problem
(albeit in modified form), known as Parrondo’s game. This
approach seems quite consistent with new mathematical for-
mulation of game theory [20].

4 An alternative interpretation using coin toss problem

Apart from the aforementioned pure mathematics-logical ap-
proach to Schrödinger’s cat paradox, one can use a well-
known neat link between Schrödinger’s equation and Fokker-
Planck equation [18]:

D
@2p
@z2 � @�

@z
p� � @p

@z
� @p
@t

= 0 : (7)

A quite similar link can be found between relativistic clas-
sical field equation and non-relativistic equation, for it is
known that the time-independent Helmholtz equation and
Schrödinger equation is formally identical [15]. From this
reasoning one can argue that it is possible to explain Aharo-
nov effect from pure electromagnetic field theory; and there-
fore it seems also possible to describe quantum mechan-
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ical phenomena without postulating the decisive role of
“observer” as Bohr asserted. [16, 17]. In idiomatic form, one
can expect that quantum mechanics does not have to mean
that “the Moon is not there when nobody looks at”.

With respect to the aforementioned neat link between
Schrödinger’s equation and Fokker-Planck equation, it is in-
teresting to note here that one can introduce “finite differ-
ence” approach to Fokker-Planck equation as follows. First,
we can define local coordinates, expanded locally about a
point (z0, t0) we can map points between a real space (z; t)
and an integer or discrete space (i; j). Therefore we can sam-
ple the space using linear relationship [19]:

(z; t) = (z0 + i�; t0 + j� ) ; (8)

where � is the sampling length and � is the sampling time.
Using a set of finite difference approximations for the Fokker-
Planck PDE:

@p
@z

= A1 =
p (z0 + �; t0 � � )� p (z0 � �; t0 � � )

2�
; (9)

@2p
@z2 = 2A2 =

=
p (z0��; t0�� ) �2p (z0; t0�� ) +p (z0 +�; t0�� )

�2 ; (10)

and
@p
@t

= B1 =
p (z0; t0)� p (z0; t0 � � )

�
: (11)

We can apply the same procedure to obtain:

@�
@z

= A1 =
� (z0 +�; t0�� ) �� (z0��; t0�� )

2�
: (12)

Equations (9–12) can be substituted into equation (7) to
yield the required finite partial differential equation [19]:

p (z0; t0) = a�1 � p (z0��; t0�� ) �a0 � p (z0; t0�� ) +

+ a+1 � p (z0 + �; t0 � � ) : (13)

This equation can be written in terms of discrete space by
using [8], so we have:

pi;j = a�1 � pi�1;j�1 + a0 � pi;j�1 + a+1 � pi+1;j�1 : (14)

Equation (14) is precisely the form required for Parron-
do’s game. The meaning of Parrondo’s game can be described
in simplest way as follows [19]. Consider a coin tossing prob-
lem with a biased coin:

phead =
1
2
� " ; (15)

where " is an external bias that the game has to “overcome”.
This bias is typically a small number, for instance 1/200. Now
we can express equation (15) in finite difference equation (14)
as follows:

pi;j =
�1

2
� "
�
�pi�1;j�1 +0�pi;j�1 +

�1
2

+ "
�
�pi+1;j�1 : (16)

Furthermore, the bias parameter can be related to an ap-

plied external field.
With respect to the aforementioned Neutrosophic solu-

tion to Schrödinger’s cat paradox, one can introduce a new
“indeterminacy” parameter to represent conditions where the
outcome may be affected by other issues (let say, apparatus
setting of Geiger counter). Therefore equation (14) can be
written as:

pi;j =
�

1
2
� "� �

�
� pi�1;j�1 +

+ a0 � pi;j�1 +
�

1
2

+ "� �
�
� pi+1;j�1 ; (17)

where unlike the bias parameter (�1/200), the indeterminacy
parameter can be quite large depending on the system in ques-
tion. For instance in the Neutrosophic example given above,
we can write that:

� � 0.2� 0.3 = k
�
d
t

��1

= k
�
t
d

�
6 0.50: (18)

The only problem here is that in original coin tossing, one
cannot assert an “intermediate” outcome (where the outcome
is neither A nor B). Therefore one shall introduce modal logic
definition of “possibility” into this model. Fortunately, we
can introduce this possibility of intermediate outcome into
Parrondo’s game, so equation (17) shall be rewritten as:

pi;j =
�

1
2
� "� �

�
� pi�1;j�1 +

+ (2�) � pi;j�1 +
�

1
2

+ "� �
�
� pi+1;j�1 ; (19)

For instance, by setting � � 0.25, then one gets the finite
difference equation:

pi;j = (0.25� ") � pi�1;j�1 + (0.5) � pi;j�1 +

+ (0.25 + ") � pi+1;j�1 ; (20)

which will yield more or less the same result compared with
Neutrosophic method described in the preceding section.

For this reason, we propose to call this equation (19):
Neutrosophic-modified Parrondo’s game. A generalized ex-
pression of equation [19] is:

pi;j = (p0 � "� �) � pi�1;j�1 + (z�) � pi;j�1 +

+ (p0 + "� �) � pi+1;j�1 ; (21)

where p0, z represents the probable outcome in standard coin
tossing, and a real number, respectively. For the practical
meaning of �, one can think (by analogy) of this indetermi-
nacy parameter as a variable that is inversely proportional to
the “thickness ratio” (d=t) of the coin in question. There-
fore using equation (18), by assuming k= 0.2, coin thick-
ness = 1.0 mm, and coin diameter d= 50 mm, then we get
d=t= 50, or �= 0.2(50)�1 = 0.004, which is negligible. But
if we use a thick coin (for instance by gluing 100 coins alto-
gether), then by assuming k= 0.2, coin thickness = 100 mm,
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and coin diameter d= 50 mm, we get d=t= 0.5, or
�= 0.2(0.5)�1 = 0.4, which indicates that chance to get out-
come neither A nor B is quite large. And so forth.

It is worth noting here that in the language of “modal
logic” [10, p.54], the “intermediate” outcome described here
is given name ‘possible true’, written }A, meaning that “it is
not necessarily true that not-A is true”. In other word, given
that the cat cannot be found in location x, does not have to
mean that it shall be in y.

Using this result (21), we can say that our proposition in
the beginning of this paper (Prop. 1) has sufficient reason-
ing; i.e. it is possible to establish link from Schrödinger wave
equation to simple coin toss problem, albeit in modified form.
Furthermore, this alternative interpretation, differs apprecia-
bly from conventional Copenhagen interpretation.

It is perhaps more interesting to remark here that Heisen-
berg himself apparently has proposed similar thought on this
problem, by introducing “potentia”, which means “a world
devoid of single-valued actuality but teeming with unreal-
ized possibility” [4, p.52]. In Heisenberg’s view an atom is
certainly real, but its attributes dwell in an existential limbo
“halfway between an idea and a fact”, a quivering state of
attenuated existence. Interestingly, experiments carried out
by J . Hutchison seem to support this view, that a piece of
metal can come in and out from existence [23].

In this section we discuss a plausible way to represent the
Neutrosophic solution of cat paradox in terms of Parrondo’s
game. Further observation and theoretical study is recom-
mended to explore more implications of this plausible link.

5 Concluding remarks

In the present paper we revisit the Neutrosophic logic view of
Schrödinger’s cat paradox. We also discuss a plausible way
to represent the Neutrosophic solution of cat paradox in terms
of Parrondo’s game.

It is recommended to conduct further experiments in order
to verify and explore various implications of this new propo-
sition, including perhaps for the quantum computation theory.
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A classical model of gravitation is proposed with time as an independent coordinate.
The dynamics of the model is determined by a proposed Lagrangian. Applying the
canonical equations of motion to its associated Hamiltonian gives conservation equa-
tions of energy, total angular momentum and the z component of the angular momen-
tum. These lead to a Keplerian orbit in three dimensions, which gives the observed
values of perihelion precession and bending of light by a massive object. An expression
for gravitational redshift is derived by accepting the local validity of special relativity at
all points in space. Exact expressions for the GEM relations, as well as their associated
Lorentz-type force, are derived. An expression for Mach’s Principle is also derived.

1 Introduction

The proposed theory is based on two postulates that respec-
tively establish the dynamics and kinematics of a system of
particles subject to a gravitational force. The result is a closed
particle model that satisfies the basic experimental observa-
tions of the force.

The details of applications and all derivations are included
in the doctoral thesis of the author [1].

2 Postulates

The model is based on two postulates:

Postulate 1: The dynamics of a system of particles subject
to gravitational forces is determined by the Lagrangian,

L = �m0(c2 + v2) exp
R
r
; (1)

wherem0 is gravitational rest mass of a test body mov-
ing at velocity v in the vicinity of a massive, central
body of mass M ,  = 1=

p
1� v2=c2, R = 2GM=c2

is the Schwarzschild radius of the central body.
Postulate 2: Special Relativity (SR) is valid instantan-eously

and locally at all points in the reference system of the
central massive body. This gives the kinematics of the
system.

3 Conservation equations

Applying the canonical equations of motion to the Hamilto-
nian, derived from the Lagrangian, leads to three conservation
equations:

E = m0c2
eR=r

2 = total energy = constant ; (2)

L = eR=r M ; (3)
= total angular momentum = constant ;

Lz = eR=rm0r2 sin2� _� ; (4)
= z component of L = constant ;

where M = (r�m0v). Equations (2), (3) and (4) give the
quadrature of motion:

d	
du

= �
�
e2Ru

L2 � u2 � EeRu

L2

��1=2

; (5)

where u= 1=r, L=jLj and 	 is defined by

jMj = m0r2 d	
dt

: (6)

Expanding the exponential terms to second degree yields
a differential equation of generalized Keplerian form,

d	
du

= (au2 + bu+ c)�1=2; (7)

where

u =
1
r

a =
R2(4� E)

2L2 � 1

b =
R(2� E)

L2

c =
1� E
L2

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
; (8)

and the convention m0 = c = 1 was used.
Integrating (7) gives the orbit of a test particle as a gener-

alized conic,
u = K(1 + � cos k	) ; (9)

where the angles are measured from 	 = 0, and

k = (�a)
1
2 ; (10)

K = � b
2a
; (11)

� =
�

1� 4ac
b

� 1
2

: (12)
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Fig. 1: Deflection of light.

4 Gravitational redshift

Assuming the validity of d� = dt of SR at each point in
space and taking frequencies as the inverses of time, (2) yields

� = �0 e�R=2r (�0 = constant), (13)

which, to first approximation in exp(�R=2r), gives the ob-
served gravitational redshift.

5 Perihelion precession

In the case of an ellipse (� < 1), the presence of the coeffi-
cient k causes the ellipse not to be completed after a cycle of
� = 2� radians, i.e. the perihelion is shifted through a cer-
tain angle. This shift, or precession, can be calculated as (see
Appendix 9):

�� =
3�R

�a (1� �2)
; (14)

where �a is the semi-major axis of the ellipse. This expression
gives the observed perihelion precession of Mercury.

6 Deflection of light

We define a photon as a particle for which v = c. From (2) it
follows that E = 0 and the eccentricity of the conic section
is found to be (see Appendix 9)

� =
r0

R
; (15)

where r0 is the impact parameter. Approximating r0 by the
radius of the sun, it follows that � > 1. From Fig. 1 we see
that the trajectory is a hyperbola with total deflection equal to
2R=r0. This is in agreement with observation.

7 Lorentz-type force equation

The corresponding force equation is found from the associ-
ated Euler-Lagrange equations:

_p = Em+m0v �H ; (16)

where
p = m0 _r = m0v ; (17)

m =
m0

2 ; (18)

E = � r̂
GM
r2 ; (19)

H =
GM (v � r)

c2r3 : (20)

The force equation shows the deviation from Newton’s
law of gravitation. The above equations are analogous to the
gravitoelectromagnetic (GEM) equations derived by Mash-
hoon [2] as a lowest order approximation to Einstein’s field
equations for v � c and r � R.

8 Mach’s Principle

An ad hoc formulation for Mach’s Principle has been pre-
sented as [3, 4]

G �
Lc2

M
; (21)

where: L = radius of the universe,
M = mass of the universe � mass of the distant stars.

This relation can be found by applying the energy relation
of (2) to the system of Fig. 2.

M2

M1

ª

L

distant stars

Fig. 2: Mutual gravitational interaction between a central mass M1

and the distant stars of total mass M2.

The potential atM2 due toM1 is �1=GM1=L=R1c2=2L
and the potential of the shell atM1 is �2=GM2=L=R2c2=2L.
Furthermore, since M1 and M2 are in relative motion, the
value of  will be the same for both of them. Applying (2)
to the mutual gravitational interaction between the shell of
distant stars and the central body then gives

E = M1c2 exp
R2

L
= M2c2 exp

R1

L
:
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Since L > R2 � R1 we can realistically approximate the
exponential to first order in R2=L. After some algebra we get
R2 � L, which gives the Mach relation,

2GM2

Lc2
� 1 :

9 Comparison with General Relativity

The equations of motion of General Relativity (GR) are ap-
proximations to those of the proposed Lagrangian. This can
be seen as follows.

The conservation equations of (2), (3) and (4) can also be
derived from a generalized metric,

ds2 = e�R=rdt2�eR=r(dr2 +r2d�2 +r2 sin2� d�2) : (22)

Comparing this metric with that of GR,

ds2 =
�

1� R
r

�
dt2 �

� 1
1� R

r

dr2 � r2d�2 � r2 sin2� d�2; (23)

we note that (23) is a first order approximation to the time
and radial coefficients, and a zeroth order approximation to
the angular coefficients of (22). It implies that all predictions
of GR will be accommodated by the Lagrangian of (1) within
the orders of approximation.

Comparing (5) with the corresponding quadrature of GR,

d�
du

= �
�

1� E
J2 +

uRE
J2 � u2 +Ru3

��1=2

; (24)

we note that it differs from the Newtonian limit, or the Keple-
rian form of (7), by the presence of the Ru3 term. The form
of this quadrature does not allow the conventional Keplerian
orbit of (9).

Appendix

A.1 Precession of the perihelion

After one revolution of 2� radians, the perihelion of an el-
lipse given by the conic of (9) shifts through an angle ��=
= 2�

k � 2� or, from (10), as

�� = 2�
�
(�a)�1=2 � 1

�
; (25)

where a is given by (8). The constants of motion E and L
are found from the boundary conditions of the system, i.e.
du=d� = 0 at u = 1=r� and 1=r+, where r+ and r� are the
maximum and minimum radii respectively of the ellipse. We
find [1]

E � 1 +
R
2�a

R2

L2 � 2R
�a (1� �2)

9>>=>>; ; (26)

where �a = (r+ +r�)=2 is the semi-major axis of the approx-
imate ellipse. Substituting these values in (8) gives

a =
3R

�a(1� �2)
� 1 : (27)

Substituting this value in (25) gives (14).

A.2 Deflection of light

We first have to calculate the eccentricity � of the conic for
this case,

� =
�

1� 4ac
b2

�1=2
:

For a photon, setting v = c in (8) gives

�2 =
�
�1 +

L2

R2

�
: (28)

At the distance of closest approach, r = r0 = 1=u0, we
have d�=du = 0; so that from (5):

L2 =
e2Ru0

u2
0

= r2
0 e

2R=r0 : (29)

From (28) and (29), and ignoring terms of first and higher
order in R=r0, we find

� � r0

R
: (30)

For a hyperbola cos� = 1=�, so that (see Fig. 1):

sin� = 1=�
) � � 1=�
) 2� � 2R=r0 = total deflection.
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Einstein’s special relativity is a theory rich of paradoxes, one of which is the recently
discovered Relativistic Invariant Mass Paradox. According to this Paradox, the rela-
tivistic invariant mass of a galaxy of moving stars exceeds the sum of the relativistic
invariant masses of the constituent stars owing to their motion relative to each other.
This excess of mass is the mass of virtual matter that has no physical properties other
than positive relativistic invariant mass and, hence, that reveals its presence by no means
other than gravity. As such, this virtual matter is the dark matter that cosmologists be-
lieve is necessary in order to supply the missing gravity that keeps galaxies stable. Based
on the Relativistic Invariant Mass Paradox we offer in this article a model which quan-
tifies the anomalous acceleration of Pioneer 10 and 11 spacecrafts and other deep space
missions, and explains the presence of dark matter and dark energy in the universe. It
turns out that the origin of dark matter and dark energy in the Universe lies in the Para-
dox, and that the origin of the Pioneer anomaly results from neglecting the Paradox.
In order to appreciate the physical significance of the Paradox within the frame of Ein-
stein’s special theory of relativity, following the presentation of the Paradox we demon-
strate that the Paradox is responsible for the extension of the kinetic energy theorem
and of the additivity of energy and momentum from classical to relativistic mechanics.
Clearly, the claim that the acceleration of Pioneer 10 and 11 spacecrafts is anomalous is
incomplete, within the frame of Einstein’s special relativity, since those who made the
claim did not take into account the presence of the Relativistic Invariant Mass Paradox
(which is understandable since the Paradox, published in the author’s 2008 book, was
discovered by the author only recently). It remains to test how well the Paradox accords
with observations.

1 Introduction

Einstein’s special relativity is a theory rich of paradoxes, one
of which is the Relativistic Invariant Mass Paradox, which
was recently discovered in [1], and which we describe in Sec-
tion 5 of this article. The term mass in special relativity usu-
ally refers to the rest mass of an object, which is the Newto-
nian mass as measured by an observer moving along with the
object. Being observer’s invariant, we refer the Newtonian,
rest mass to as the relativistic invariant mass, as opposed to
the common relativistic mass, which is another name for en-
ergy, and which is observer’s dependent. Lev B. Okun makes
the case that the concept of relativistic mass is no longer even
pedagogically useful [2]. However, T. R. Sandin has argued
otherwise [3].

As we will see in Section 5, the Relativistic Invariant
Mass Paradox asserts that the resultant relativistic invariant
mass m0 of a system S of uniformly moving N particles ex-
ceeds the sum of the relativistic invariant masses mk, k =
1; : : : ; N , of its constituent particles, m0 >

PN
k=1mk, since

the contribution to m0 comes not only from the masses mk
of the constituent particles of S but also from their speeds
relative to each other. The resulting excess of mass in the

resultant relativistic invariant mass m0 of S is the mass of
virtual matter that has no physical properties other than pos-
itive relativistic invariant mass and, hence, that reveals it-
self by no means other than gravity. It is therefore naturally
identified as the mass of virtual dark matter that the system
S possesses. The presence of dark matter in the universe
in a form of virtual matter that reveals itself only gravita-
tionally is, thus, dictated by the Relativistic Invariant Mass
Paradox of Einstein’s special theory of relativity. Accord-
ingly, (i) the fate of the dark matter particle(s) theories as
well as (ii) the fate of their competing theories of modified
Newtonian dynamics (MOND [4]) are likely to follow the
fate of the eighteenth century phlogiston theory and the nine-
teenth century luminiferous ether theory, which were initi-
ated as ad hoc postulates and which, subsequently, became
obsolete.

Dark matter and dark energy are ad hoc postulates that ac-
count for the observed missing gravitation in the universe and
the late time cosmic acceleration. The postulates are, thus, a
synonym for these observations, as C. Lämmerzahl, O. Preuss
and H. Dittus had to admit in [5] for their chagrin. An ex-
haustive review of the current array of dark energy theories is
presented in [6].
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The Pioneer anomaly is the anomalous, unmodelled ac-
celeration of the spacecrafts Pioneer 10 and 11, and other
spacecrafts, studied by J. D. Anderson et al in [7] and sum-
marized by S. G. Turyshev et al in [8]. In [7], Anderson et
al compared the measured trajectory of a spacecraft against
its theoretical trajectory computed from known forces act-
ing on the spacecraft. They found the small, but significant
discrepancy known as the anomalous, or unmodelled, accel-
eration directed approximately towards the Sun. The inabil-
ity to explain the Pioneer anomaly with conventional physics
has contributed to the growing interest about its origin, as
S. G. Turyshev, M. M. Nieto and J. D. Anderson pointed
out in [9]. It is believed that no conventional force has been
overlooked [5] so that, seemingly, new physics is needed. In-
deed, since Anderson et al announced in [7] that the Pioneer
10 and 11 spacecrafts exhibit an unexplained anomalous ac-
celeration, numerous articles appeared with many plausible
explanations that involve new physics, as C. Castro pointed
out in [10].

However, we find in this article that no new physics is
needed for the explanation of both the presence of dark mat-
ter/energy and the appearance of the Pioneer anomaly.
Rather, what is needed is to cultivate the Relativistic Invariant
Mass Paradox, which has recently been discovered in [1], and
which is described in Section 5 below.

Accordingly, the task we face in this article is to show that
the Relativistic Invariant Mass Paradox of Einstein’s special
relativity dictates the formation of dark matter and dark en-
ergy in the Universe and that, as a result, the origin of the
Pioneer anomaly stems from the motions of the constituents
of the Solar system relative to each other.

2 Einstein velocity addition vs. Newton velocity addition

The improved way to study Einstein’s special theory of rela-
tivity, offered by the author in his recently published book [1],
enables the origin of the dark matter/energy in the Universe
and the Pioneer anomaly to be determined. The improved
study rests on analogies that Einsteinian mechanics and its
underlying hyperbolic geometry share with Newtonian me-
chanics and its underlying Euclidean geometry. In particu-
lar, it rests on the analogies that Einsteinian velocity addition
shares with Newtonian velocity addition, the latter being just
the common vector addition in the Euclidean 3-space R3.

Einstein addition � is a binary operation in the ball R3
c

of R3,
R3
c = fv 2 R3 : kvk < cg (1)

of all relativistically admissible velocities, where c is the
speed of light in empty space. It is given by the equation

u�v =
1

1 + u�v
c2

�
u +

1
u

v +
1
c2

u
1 + u

(u�v)u
�

(2)

where u is the gamma factor

v =
1r

1� kvk2
c2

(3)

in R3
c , and where � and k k are the inner product and norm

that the ball R3
c inherits from its space R3. Counterintuitively,

Einstein addition is neither commutative nor associative.
Einstein gyrations gyr[u;v] 2 Aut(R3

c ;�) are defined by
the equation

gyr[u;v]w = 	(u�v)�(u�(v�w)) (4)

for all u;v;w 2 R3
c , and they turn out to be automorphisms

of the Einstein groupoid (R3
c ;�). We recall that a groupoid is

a non-empty space with a binary operation, and that an au-
tomorphism of a groupoid (R3

c ;�) is a one-to-one map f
of R3

c onto itself that respects the binary operation, that is,
f(u�v) = f(u)�f(v) for all u;v 2 R3

c . To emphasize that
the gyrations of the Einstein groupoid (R3

c ;�) are automor-
phisms of the groupoid, gyrations are also called gyroauto-
morphisms.

Thus, gyr[u;v] of the definition in (4) is the gyroautomor-
phism of the Einstein groupoid (R3

c ;�), generated by
u;v 2 R3

c , that takes the relativistically admissible velocity
w in R3

c into the relativistically admissible velocity 	(u�v)
�(u�(v�w)) in R3

c .
The gyrations, which possess their own rich structure,

measure the extent to which Einstein addition deviates from
commutativity and associativity as we see from the following
identities [1, 11, 12]:

u�v = gyr[u;v](v�u) Gyrocommutative Law
u�(v�w) = (u�v)�gyr[u;v]w Left Gyroassociative
(u�v)�w = u�(v�gyr[u;v]w) Right Gyroassociative
gyr[u;v] = gyr[u�v;v] Left Loop Property
gyr[u;v] = gyr[u;v�u] Right Loop Property

Einstein addition is thus regulated by its gyrations so that
Einstein addition and its gyrations are inextricably linked. In-
deed, the Einstein groupoid (R3

c ;�) forms a group-like math-
ematical object called a gyrocommutative gyrogroup [13],
which was discovered by the author in 1988 [14]. Interest-
ingly, Einstein gyrations are just the mathematical abstraction
of the relativistic Thomas precession [1, Sec. 10.3].

The rich structure of Einstein addition is not limited to
its gyrocommutative gyrogroup structure. Einstein addition
admits scalar multiplication, giving rise to the Einstein gy-
rovector space. The latter, in turn, forms the setting for the
Beltrami-Klein ball model of hyperbolic geometry just as
vector spaces form the setting for the standard model of Eu-
clidean geometry, as shown in [1].

Guided by the resulting analogies that relativistic mech-
anics and its underlying hyperbolic geometry share with clas-
sical mechanics and its underlying Euclidean geometry, we
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are able to present analogies that Newtonian systems of parti-
cles share with Einsteinian systems of particles in Sections 3
and 4. These analogies, in turn, uncover the Relativistic In-
variant Mass Paradox in Section 5, the physical significance
of which is illustrated in Section 6 in the frame of Einstein’s
special theory of relativity. Finally, in Sections 7 and 8 the
Paradox reveals the origin of the dark matter/energy in the
Universe as well as the origin of the Pioneer anomaly.

3 Newtonian systems of particles

In this section we set the stage for revealing analogies that a
Newtonian system of N particles and an Einsteinian system
of N particles share. In this section, accordingly, as opposed
to Section 4, vk, k = 0; 1; : : : ; N , are Newtonian velocities in
R3, andm0 is the Newtonian resultant mass of the constituent
masses mk, k = 1; : : : ; N of a Newtonian particle system S.

Accordingly, let us consider the following well known
classical results, (6) – (8) below, which are involved in the
calculation of the Newtonian resultant mass m0 and the clas-
sical center of momentum (CM) of a Newtonian system of
particles, and to which we will seek Einsteinian analogs in
Section 4. Thus, let

S = S(mk;vk;�0; N) ; vk 2 R3 (5)

be an isolated Newtonian system of N noninteracting ma-
terial particles the k-th particle of which has mass mk and
Newtonian uniform velocity vk relative to an inertial frame
�0, k = 1; : : : ; N . Furthermore, let m0 be the resultant mass
of S, considered as the mass of a virtual particle located at
the center of mass of S, and let v0 be the Newtonian velocity
relative to �0 of the Newtonian CM frame of S. Then,

1 =
1
m0

NX
k=1

mk (6)

and

v0 =
1
m0

NX
k=1

mkvk

u + v0 =
1
m0

NX
k=1

mk(u + vk)

9>>>>>=>>>>>; ; (7)

u;vk2R3, mk > 0, k = 0; 1; : : : ; N . Here m0 is the Newto-
nian mass of the Newtonian system S, supposed concentrated
at the center of mass of S, and v0 is the Newtonian velocity
relative to �0 of the Newtonian CM frame of the Newtonian
system S in (5).

It follows from (6) that m0 in (6) – (7) is given by the
Newtonian resultant mass equation

m0 =
NX
k=1

mk : (8)

The derivation of the second equation in (7) from the first
equation in (7) is immediate, following (i) the distributive law
of scalar-vector multiplication, and (ii) the simple relation-
ship (8) between the Newtonian resultant mass m0 and its
constituent masses mk, k = 1; : : : ; N .

4 Einsteinian systems of particles

In this section we present the Einsteinian analogs of the New-
tonian expressions (5) – (8) listed in Section 3. The presented
analogs are obtained in [1] by means of analogies that result
from those presented in Section 2.

In this section, accordingly, as opposed to Section 3, vk,
k = 0; 1; : : : ; N , are Einsteinian velocities in R3

c , and m0 is
the Einsteinian resultant mass, yet to be determined, of the
masses mk, k = 1; : : : ; N , of an Einsteinian particle sys-
tem S.

In analogy with (5), let

S = S(mk;vk;�0; N); vk 2 R3
c (9)

be an isolated Einsteinian system of N noninteracting ma-
terial particles the k-th particle of which has invariant mass
mk and Einsteinian uniform velocity vk relative to an inertial
frame �0, k = 1; : : : ; N . Furthermore, let m0 be the resul-
tant mass of S, considered as the mass of a virtual particle lo-
cated at the center of mass of S (calculated in [1, Chap. 11]),
and let v0 be the Einsteinian velocity relative to �0 of the Ein-
steinian center of momentum (CM) frame of the Einsteinian
system S in (9). Then, as shown in [1, p. 484], the relativistic
analogs of the Newtonian expressions in (6) – (8) are, respec-
tively, the following Einsteinian expressions in (10) – (12),

v0
=

1
m0

NX
k=1

mkvk

u�v0
=

1
m0

NX
k=1

mku�vk

9>>>>>=>>>>>; (10)

and

v0
v0 =

1
m0

NX
k=1

mkvkvk

u�v0
(u�v0) =

1
m0

NX
k=1

mku�vk(u�vk)

9>>>>>=>>>>>; ; (11)

u;vk2R3
c , mk > 0, k = 0; 1; : : : ; N . Here m0,

m0 =

vuuuut NX
k=1

mk

!2

+ 2
NX

j;k=1
j<k

mjmk(	vj�vk� 1) (12)

is the relativistic invariant mass of the Einsteinian system S,
supposed concentrated at the relativistic center of mass of S
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(calculated in [1, Chap. 11]), and v0 is the Einsteinian ve-
locity relative to �0 of the Einsteinian CM frame of the Ein-
steinian system S in (9).

5 The relativistic invariant mass paradox of Einstein’s
special theory of relativity

In analogy with the Newtonian resultant mass m0 in (8),
which follows from (6), it follows from (10) that the Ein-
steinian resultant mass m0 in (10) – (11) is given by the
elegant Einsteinian resultant mass equation (12), as shown
in [1, Chap. 11].

The Einsteinian resultant mass equation (12) presents a
Paradox, called the Relativistic Invariant Mass Paradox,
since, in general, this equation implies the inequality

m0 >
NX
k=1

mk (13)

so that, paradoxically, the invariant resultant mass of a system
may exceed the sum of the invariant masses of its constituent
particles.

The paradoxical invariant resultant mass equation (12) for
m0 is the relativistic analog of the non-paradoxical Newto-
nian resultant mass equation (8) for m0, to which it reduces
in each of the following two special cases:

(i ) The Einsteinian resultant mass m0 in (12) reduces to
the Newtonian resultant mass m0 in (8) in the limit as
c!1; and

(ii ) The Einsteinian resultant mass m0 in (12) reduces to
the Newtonian resultant mass m0 in (8) in the special
case when the system S is rigid, that is, all the internal
motions in S of the constituent particles of S relative
to each other vanish. In that case 	vj�vk = 0 so that
	vj�vk = 1 for all j; k = 1; N . This identity, in turn,
generates the reduction of (12) to (8).

The second equation in (11) follows from the first equa-
tion in (11) in full analogy with the second equation in (7),
which follows from the first equation in (7) by the distribu-
tivity of scalar multiplication and by the simplicity of (8).
However, while the proof of the latter is simple and well
known, the proof of the former, presented in [1, Chap. 11],
is lengthy owing to the lack of a distributive law for the Ein-
steinian scalar multiplication (see [1, Chap. 6]) and the lack of
a simple relation for m0 like (8), which is replaced by (12).
Indeed, the proof of the former, that the second equation in
(11) follows from the first equation in (11), is lengthy, but
accessible to undergraduates who are familiar with the vec-
tor space approach to Euclidean geometry. However, in order
to follow the proof one must familiarize himself with a large
part of the author’s book [1] and with its “gyrolanguage”, as
indicated in Section 2.

It is therefore suggested that interested readers may
corroborate numerically (using a computer software like

MATLAB) the identities in (10) – (12) in order to gain con-
fidence in their validity, before embarking on reading several
necessary chapters of [1].

6 The physical significance of the paradox in Einstein’s
special theory of relativity

In this section we present two classically physical significant
results that remain valid relativistically owing to the Rela-
tivistic Invariant Mass Paradox, according to which the rel-
ativistic analog of the classical resultant mass m0 in (8) is,
paradoxically, the relativistic resultant mass m0 in (12).

To gain confidence in the physical significance that results
from the analogy between

(i ) the Newtonian resultant mass m0 in (8) of the Newto-
nian system S in (5) and

(ii) the Einsteinian invariant resultant mass m0 in (12) of
the Einsteinian system S in (9)

we present below two physically significant resulting analo-
gies. These are:

(1) The Kinetic Energy Theorem [1, p. 487]: According to
this theorem,

K = K0 +K1 ; (14)where

(i) K0 is the relativistic kinetic energy, relative to a
given observer, of a virtual particle located at the
relativistic center of mass of the system S in (9),
with the Einsteinian resultant mass m0 in (12);
and

(ii) K1 is the relativistic kinetic energy of the con-
stituent particles of S relative to its CM; and

(iii) K is the relativistic kinetic energy of S relative to
the observer.

The Newtonian counterpart of (14) is well known; see,
for instance, [15, Eq. (1.55)]. The Einsteinian analog in
(14) was, however, unknown in the literature since the
Einsteinian resultant mass m0 in (12) was unknown in
the literature as well till its first appearance in [1]. Ac-
cordingly, Oliver D. Johns had to admit for his chagrin
that “The reader (of his book; see [15, p. 392]) will be
disappointed to learn that relativistic mechanics does
not have a theory of collective motion that is as ele-
gant and complete as the one presented in Chapter 1
for Newtonian mechanics.”
The proof that m0 of (12) is compatible with the va-
lidity of (14) in Einstein’s special theory of relativity is
presented in [1, Theorem 11.8, p. 487].

(2) Additivity of Energy and Momentum: Classically, en-
ergy and momentum are additive, that is, the total en-
ergy and the total momentum of a system S of particles
is, respectively, the sum of the energy and the sum of
momenta of its constituent particles. Consequently,
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also the resultant mass m0 of S is additive, as shown
in (8). Relativistically, energy and momentum remain
additive but, consequently, the resultant mass m0 of S
is no longer additive. Rather, it is given by (12), which
is the relativistic analog of (8).
The proof that m0 of (12) is compatible with the ad-
ditivity of energy and momentum in Einstein’s special
theory of relativity is presented in [1, pp. 488–491].

Thus, the Einsteinian resultant mass m0 in (12) of the
Einsteinian system S in (9) is the relativistic analog of the
Newtonian resultant mass m0 in (8) of the Newtonian system
S in (5). As such, it is the Einsteinian resultant mass m0 in
(12) that is responsible for the extension of the validity of (14)
and of the additivity of energy and momentum from classical
to relativistic mechanics.

However, classically, mass is additive. Indeed, the New-
tonian resultant mass m0 equals the sum of the masses of
the constituent particles, m0 =

PN
k=1mk, as we see in (8).

Relativistically, in contrast, mass is not additive. Indeed, the
Einsteinian resultant mass m0 may exceed the sum of the
masses of the constituent particles, m0 >

PN
k=1mk, as we

see from (12). Accordingly, from the relativistic viewpoint,
the resultant mass m0 in (12) of a galaxy that consists of
stars that move relative to each other exceeds the sum of
the masses of its constituent stars. This excess of mass re-
veals its presence only gravitationally and, hence, we iden-
tify it as the mass of dark matter. Dark matter is thus vir-
tual matter with positive mass, which reveals its presence
only gravitationally. In particular, the dark mass mdark of
the Einsteinian system S in (9), given by (16) below, is the
mass of virtual matter called the dark matter of S. To con-
trast the real matter of S with its virtual, dark matter, we
call the former bright (or, luminous, or, baryonic) matter.
The total mass m0 of S, which can be detected gravitation-
ally, is the composition of the bright mass mbright of the
real, bright matter of S, and the dark mass mdark of the vir-
tual, dark matter of S. This mass composition, presented in
(15) – (17) in Section 7 below, quantifies the effects of dark
matter.

7 The origin of the dark matter

Let

mbright =
NX
k=1

mk (15)

and

mdark =

vuuuut2
NX

j;k=1
j<k

mjmk(	vj�vk � 1) (16)

so that the Einsteinian resultant mass m0 in (12) turns out to
be a composition of an ordinary, bright mass mbright of real
matter and a dark mass mdark of virtual matter according to

the equation

m0 =
q
m2
bright +m2

dark (17)

The massmbright in (15) is the Newtonian resultant mass
of the particles of the Einsteinian system S in (9). These par-
ticles reveal their presence gravitationally, as well as by radi-
ation that they may emit and by occasional collisions.

In contrast, the mass mdark in (16) is the mass of virtual
matter in the Einsteinian system S in (9), which reveals its
presence only gravitationally. In particular, it does not emit
radiation and it does not collide. As such, it is identified with
the dark matter of the Universe.

In our expanding universe, with accelerated expansion
[16], relative velocities between some astronomical objects
are significantly close to the speed of light c. Accordingly,
since gamma factors v approach 1 when their relative ve-
locities v 2 R3

c approach the speed of light, it follows from
(16) that dark matter contributes an increasingly significant
part of the mass of the universe.

8 The origin of the dark energy

Under different circumstances dark matter may appear or dis-
appear resulting in gravitational attraction or repulsion. Dark
matter increases the gravitational attraction of the region of
each stellar explosion, a supernova, since any stellar explo-
sion creates relative speeds between objects that were at rest
relative to each other prior to the explosion. The resulting
generated relative speeds increase the dark mass of the re-
gion, thus increasing its gravitational attraction. Similarly,
relative speeds of objects that converge into a star vanish in
the process of star formation, resulting in the decrease of
the dark mass of a star formation region. This, in turn, de-
creases the gravitational attraction or, equivalently, increases
the gravitational repulsion of any star formation inflated re-
gion. The increased gravitational repulsion associated with
star formation results in the accelerated expansion of the uni-
verse, first observed in 1998; see [6, p. 1764], [17] and [18,
19]. Thus, according to the present special relativistic dark
matter/energy model, the universe accelerated expansion is a
late time cosmic acceleration that began at the time of star
formation.

9 The origin of the Pioneer anomaly

The Einsteinian resultant mass m0 of our Solar system is
given by the composition (17) of the bright mass mbright and
the dark mass mdark of the Solar system. The bright mass
mbright of the Solar system equals the sum of the Newtonian
masses of the constituents of the Solar system. Clearly, it is
time independent. In contrast, the dark mass mdark of the
Solar system stems from the speeds of the constituents of the
Solar system relative to each other and, as such, it is time
dependent.
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The Pioneer 10 and 11 spacecrafts and other deep space
missions have revealed an anomalous acceleration known as
the Pioneer anomaly [7, 8]. The Pioneer anomaly, described
in the introductory section, results from an unmodelled ac-
celeration, which is a small constant acceleration on top of
which there is a smaller time dependent acceleration. A brief
summary of the Pioneer anomaly is presented by K. Tangen,
who asks in the title of [20]: “Could the Pioneer anomaly
have a gravitational origin?”

Our answer to Tangen’s question is affirmative. Our dark
matter/energy model, governed by the Einsteinian resultant
mass m0 in (15) – (17), offers a simple, elegant model that
explains the Pioneer anomaly. The motion of any spacecraft
in deep space beyond the Solar system is determined by the
Newtonian law of gravity where the mass of the Solar sys-
tem is modelled by the Einsteinian resultant mass m0 in (17)
rather than by the Newtonian resultant mass m0 in (8). It is
the contribution of the dark mass mdark to the Einsteinian
resultant mass m0 in (15) – (17) that generates the Pioneer
anomaly.

Ultimately, our dark matter/energy model, as dictated by
the paradoxical Einsteinian resultant mass m0 in (12), will
be judged by how well the model accords with astrophysical
and astronomical observations. Since our model is special
relativistic, only uniform velocities are allowed. Hence, the
model can be applied to the solar system, for instance, un-
der the assumption that, momentarily, the solar system can be
viewed as a system the constituents of which move uniformly.

Submitted on April 13, 2008
Accepted on April 15, 2008

References

1. Ungar A. A. Analytic hyperbolic geometry and Albert Ein-
stein’s special theory of relativity. World Scientific Publishing
Co. Pte. Ltd., Hackensack, NJ, 2008.

2. Okun L. B. The concept of mass. Phys. Today, 1989, v. 46(6),
31–36.

3. Sandin T. R. In defense of relativistic mass. Amer. J. Phys.,
1991, v. 59(11), 1032–1036.

4. Bekenstein J. D. The modified Newtonian dynamics — MOND
and its implications for new physics. Contemp. Physics, 2007,
v. 47(6), 387–403.

5. Lämmerzahl C., Preuss O., and Dittus H. Is the physics within
the Solar system really understood? arXiv: gr-qc/0604052.

6. Copeland E. J., Sami M., and Tsujikawa S. Dynamics of dark
energy. Intern. J. Modern Phys. D, 2006, v. 15, no. 11, 1753–
1935.

7. Anderson J. D., Laing P. A., Lau E. L., Liu A. S., Nieto M. M.,
and Turyshev S. G. Study of the anomalous acceleration of pio-
neer 10 and 11. Phys. Rev. D, 2002, v. 65, no. 8, 082004, 1–50.

8. Turyshev S. G., Toth V. T., Kellogg L. R., Lau E. L., and Lee
K. J. The study of the Pioneer anomaly: new data and objectives
for new investigation. arXiv: gr-qc/0512121.

9. Turyshev S. G., Nieto M. M., and Anderson J. D. Lessons
learned from the pioneers 10/11 for a mission to test the pio-
neer anomaly. arXiv: gr-qc/0409117.

10. Castro C. (Anti) de Sitter relativity, modified Newtonian
dynamics, noncommutative phase spaces and the Pioneer
anomaly. Adv. Stud. Theor. Phys., 2008, v. 2(7), 309–332.

11. Ungar A. A. Beyond the Einstein addition law and its gyro-
scopic Thomas precession: The theory of gyrogroups and gy-
rovector spaces. Vol. 117 of Fundamental Theories of Physics,
Dordrecht, Kluwer Academic Publishers Group, 2001.

12. Ungar A. A. Analytic hyperbolic geometry: Mathematical
foundations and applications. World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ, 2005.

13. Ungar A. A. Thomas precession and its associated grouplike
structure. Amer. J. Phys., 1991, v. 59, no. 9, 824–834.

14. Ungar A. A. Thomas rotation and the parametrization of the
Lorentz transformation group. Found. Phys. Lett., 1988, v. 1,
no. 1, 57–89.

15. Johns O. D. Analytical mechanics for relativity and quantum
mechanics. New York, Oxford University Press, 2005.

16. Brax P. The cosmological constant problem. Contemp. Physics,
2004, v. 45, no. 3, 227–236.

17. Kirshner R. P. The extravagant universe: exploding stars, dark
energy, and the accelerating cosmos. Princeton (NJ), Princeton
University Press, 2000.

18. Ries A. G. Observational evidence from supernovae for an ac-
celerating universe and a cosmological constant. Astron. J.,
1998, v. 116, 1009–1038.

19. Perlmutter S. Measurements of ! and � from 42 high-redshift
supernovae. Astrophys. J., 1999, v. 517, 565–586.

20. Tangen K. Could the Pioneer anomaly have a gravitational ori-
gin? arXiv: gr-qc/0602089.

Abraham A. Ungar. On the Origin of the Dark Matter/Energy in the Universe and the Pioneer Anomaly 29



Volume 3 PROGRESS IN PHYSICS July, 2008

A Critical Analysis of Universality and Kirchhoff’s Law: A Return to
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It has been advanced, on experimental (P.-M. Robitaille, IEEE Trans. Plasma Sci., 2003,
v. 31(6), 1263–1267) and theoretical (P.-M. Robitaille, Progr. Phys., 2006, v. 2, 22–23)
grounds, that blackbody radiation is not universal and remains closely linked to the
emission of graphite and soot. In order to strengthen such claims, a conceptual analysis
of the proofs for universality is presented. This treatment reveals that Gustav Robert
Kirchhoff has not properly considered the combined effects of absorption, reflection,
and the directional nature of emission in real materials. In one instance, this leads to
an unintended movement away from thermal equilibrium within cavities. Using equi-
librium arguments, it is demonstrated that the radiation within perfectly reflecting or
arbitrary cavities does not necessarily correspond to that emitted by a blackbody.

1 Introduction

Formulated in 1858, Stewart’s Law [1] states that when an ob-
ject is studied in thermal equilibrium, its absorption is equal
to its emission [1]. Stewart’s formulation leads to the re-
alization that the emissive power of any object depends on
its temperature, its nature, and on the frequency of observa-
tion. Conversely, Gustav Kirchhoff [2–4] reaches the con-
clusion that the emissive power of a body is equal to a uni-
versal function, dependent only on its temperature and the
frequency of interest, and independent of its nature and that
of the enclosure. He writes: “When a space is surrounded
by bodies of the same temperature, and no rays can pene-
trate through these bodies, every pencil in the interior of the
space is so constituted, with respect to its quality and inten-
sity, as if it proceeded from a perfectly black body of the same
temperature, and is therefore independent of the nature and
form of the bodies, and only determined by the temperature”
(see [4], p. 96–97).

At the same time, Max Planck, in his Theory of Heat Ra-
diation, reminds us that: “. . . in a vacuum bounded by totally
reflecting walls any state of radiation may persist” (see [5],
§51). Planck is aware that a perfect reflector does not nec-
essarily produce blackbody radiation in the absence of a per-
fect absorber [6]. It is not simply a matter of waiting a suf-
ficient amount of time, but rather the radiation will “persist”
in a non-blackbody, or arbitrary, state. Planck re-emphasizes
this aspect when he writes: “Every state of radiation brought
about by such a process is perfectly stationary and can con-
tinue infinitely long, subject, however, to the condition that
no trace of an emitting or absorbing substance exists in the
radiation space. For otherwise, according to Sec. 51, the
distribution of energy would, in the course of time, change
through the releasing action of the substance irreversibly, i.e.,
with an increase of the total entropy, into the stable distribu-

tion corresponding to black radiation” (see [5], §91). Planck
suggests that if an absorbing substance is present, blackbody
radiation is produced. Such a statement is not supported sci-
entifically. In fact, a perfect absorber, such as graphite or soot,
is required [6–8].

Recently, I have stated [6–8] that cavity radiation was not
universal and could only assume the normal distribution (i.e.
that of the blackbody) when either the walls of the cavity,
or the objects it contains, were perfectly absorbing. These
ideas are contrary to the expressed beliefs of Kirchhoff and
Planck. Therefore, they deserve further exposition by revis-
iting Kirchhoff’s basis for universality. In combination with
a historical review of blackbody radiation [8], such an analy-
sis demonstrates that claims of universality were never justi-
fied [6–8].

2.1 Kirchhoff’s first treatment of his law

Kirchhoff’s first presentation of his law [2] involved two
plates, C and c, placed before one another (see Fig. 1). Nei-
ther plate was perfectly absorbing, or black. Behind each
plate, there were mirrors, R and r; which ensured that all the
radiation remained between the plates. Kirchhoff assumed
that one of the plates, c, was made of a special material which
absorbed only one wavelength and transmitted all others.
This assumption appears to have formed the grounds for the
most strenuous objections relative to Kirchhoff’s first deriva-
tion [9–11]. Kirchhoff moved to insist (see [9] for a treatment
in English) that, under these conditions, at a certain tempera-
ture and wavelength, all bodies had the same ratio of emissive
and absorptive powers.

The fallacy with Kirchhoff’s argument lays not only in the
need for a special material in the second plate, c, as so many
have hinted [9–11]. The most serious error was that he did not
consider the reflection from the plates themselves. He treated
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Fig. 1: Schematic representation of Kirchhoff’s first proof [2]. C
and c represented objects of a specified nature (see text). R and
r corresponded to perfectly reflecting mirrors. Note that Kirchhoff

had neglected the reflection from the surfaces of C and c denoted as
R0 and r0.

the reflection as coming only from the mirrors placed behind
the plates. But this dealt with the problem of transmission,
not reflection. As a result, Kirchhoff ignored the reflection
produced by the surfaces of the plates.

The total radiation leaving from the surface of each plate,
given thermal equilibrium, is obtained, not only by its emis-
sion, E (or e), but rather by the sum of its emission, E (or
e), and reflection, R0 (or r0). It is only when the plates are
black that surface reflection can be neglected. Consequently,
if Kirchhoff insists that surface reflection itself need not be
addressed (R0= r0= 0), he simply proves that the ratio of
emission to absorption is the same for all blackbodies, not
for all bodies. The entire argument, therefore, is flawed be-
cause Kirchhoff ignored the surface reflection of each plate,
and is considering all reflection as originating from the per-
fectly reflecting mirrors behind the plates. A proper treat-
ment would not lead to universality, since the total radiation
from plate C was E+R0 not simply E, where R0 denotes
the reflection from surface C (see Fig. 1). Similarly, the to-
tal radiation from plate c was e+ r0, not simply e, where r0
denotes the reflection from surface c. The mirrors, R and r,
are actually dealing only with transmission through plates C
and c. The conceptual difficulty when reviewing this work is
that Kirchhoff apparently treats reflection, since mirrors are
present. In fact, he dismisses the issue. The mirrors cannot
treat the reflection off the surfaces of C and c. They deal with
transmission. Kirchhoff’s incorrect visualization of the effect
of reflection is also a factor in his second proof.

2.2 Kirchhoff’s second treatment of his law

Kirchhoff’s second treatment of his law [3, 4] is much more
interesting conceptually and any error will consequently be
more difficult to locate. The proof is complex, a reality rec-

Fig. 2: Schematic representation of Kirchhoff’s second proof [3, 4].
The cavity contained three openings, labeled 1, 2, and 3. There was
also a plate, P , which was perfectly transmitting for the frequency
and polarization of interest, and perfectly reflecting for all others.
While the existence of such a plate can be the source of objections
relative to Kirchhoff’s proof [10], the discussion in this work does
not center on the nature of the plate. Idealized objects can be as-
sumed as valid as they represent (more or less) mathematical exten-
sions of physical observations (see text). A black screen, S, was
used to prevent radiation from traveling directly between openings
1 and 3. An object, which was either perfectly absorbing or arbi-
trary, was placed in the enclosure located behind opening 1. The
key to Kirchhoff’s proof relied on rapidly changing the covering of
opening 3, from a perfect concave mirror to a perfectly absorbing
surface. In Kirchhoff’s initial presentation, the entire cavity was
perfectly absorbing [3, 4]. However, Kirchhoff extended his result
to be independent of the nature of the walls, making it acceptable to
consider the entire cavity as perfectly reflecting (see text).

ognized by Stewart in his Reply: “I may remark, however, that
the proof of the Heidelburg Professor is so very elaborate that
I fear it has found few readers either in his own country or in
this” [12].

Kirchhoff began by imagining a cavity whose walls were
perfectly absorbing (see Fig. 2). In the rear of the cavity
was an enclosure wherein the objects of interest were placed.
There were three openings in the cavity, labeled 1, 2, and 3.
He conceived that openings 2 and 3 could each be sealed with
a perfectly absorbing surface. As a result, when Kirchhoff did
this, he placed his object in a perfectly absorbing cavity [6].
He eventually stipulated that the experiment was independent
of the nature of the walls, in which case the cavity could be
viewed as perfectly reflecting [6]. Yet, as has been previ-
ously highlighted [6], the scenario with the perfectly reflect-
ing cavity required, according to Planck, the introduction of
a minute particle of carbon [5, 8]. Hence, I have argued that
Kirchhoff’s analysis was invalid on this basis alone [6]. By
carefully considering Kirchhoff’s theoretical constructs, the
arguments against blackbody radiation, within a perfect re-
flecting enclosure, can now be made from a slightly different
perspective.

Kirchhoff’s analysis of his cavity (see Fig. 2) was inge-
nious. He set strict conditions for the positions of the walls
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which linked the openings 1 and 2, and which contained
opening 3. The key was in the manner wherein opening 3
was handled. Kirchhoff permitted opening 3 to be covered ei-
ther with a perfect absorber or with a perfect concave mirror.
He then assumed that equilibrium existed in the cavity and
that he could instantaneously change the covering at opening
3. Since equilibrium was always preserved, Kirchhoff could
then treat the rays within the cavity under these two different
conditions and, hence, infer the nature of the radiation within
the cavity at equilibrium.

Kirchhoff initially demonstrated that, if the enclosed ob-
ject and the cavity were perfectly absorbing, the radiation was
denoted by the universal function of blackbody radiation. He
then replaced the object with an arbitrary one, and concluded,
once again, that the radiation was black. Kirchhoff’s presen-
tation was elegant, at least when the cavity was perfectly ab-
sorbing. The Heidelburg Professor extended his findings to
make them independent of the nature of the walls of the en-
closure, stating that the derivation was valid, even if the walls
were perfectly reflecting. He argued that the radiation within
the cavity remained blackbody radiation. Let us revisit what
Kirchhoff had done.

Since the walls can be perfectly reflecting, this state is
adopted for our analysis. Opening 3 can once again be cov-
ered, either by a concave mirror or by a perfectly absorb-
ing surface. An arbitrary object, which is not a blackbody,
is placed in the cavity. The experiment is initiated with the
perfect concave mirror covering opening 3. As shown in Sec-
tion 3.1.2, under these conditions, the cavity contains radia-
tion whose nature depends not on the cavity, but on the object.
This radiation, in fact, is not black. This can be seen, if the ob-
ject was taken as perfectly reflecting. The arbitrary radiation
is weaker at all frequencies. Thus, when an arbitrary object is
placed in the enclosure, the intensity of the radiation within
the cavity, at any given frequency, does not correspond to that
predicted by the Planckian function (see Section 3.1.2). How-
ever, when opening 3 is covered by a perfectly absorbing sub-
stance, the radiation in the cavity becomes black (see Sections
3.1.2 and 3.2). The emission from the object is that which the
object emits and which it reflects. The latter originates from
the surface of opening 3 (see Section 3.2). When the perfect
absorber is placed over opening 3, the entire cavity appears to
hold blackbody radiation. Therefore, by extending his treat-
ment to the perfect reflector, Kirchhoff is inadvertently jump-
ing from one form of cavity radiation (case 1: the concave
mirror, object radiation) to another (case 2: the perfect ab-
sorber, blackbody radiation) when the covering on opening 3
is changed. At that moment, the cavity moves out of equilib-
rium.

Thus, Kirchhoff’s proof is invalid. This is provided, of
course, that the test began with the perfect concave mirror
covering opening 3. Only under these circumstances would
Kirchhoff’s proof fail. Nonetheless, the experimental proof
cannot be subject to the order in which manipulations are ex-

ecuted. This is because the validity of equilibrium arguments
is being tested. Consequently, nothing is independent of the
nature of the walls. This is the lesson provided to us by Bal-
four Stewart in his treatise when he analyzes radiation in a
cavity temporarily brought into contact with another cavity
[8]. Dynamic changes, not equilibrium, can be produced in
cavities, if reflectors are used. This is the central error relative
to Kirchhoff’s second attempt at universality [3, 4].

There are additional minor problems in Kirchhoff’s pre-
sentation [3, 4]. In §13 of his proof [3, 4], Kirchhoff is exam-
ining an arbitrary object within a perfectly absorbing cavity.
It is true that the resultant cavity radiation will correspond to
a blackbody, precisely because the walls are perfectly absorb-
ing (see Section 3.1.1). However, Kirchhoff states: “the law
§3 is proved under the assumption that, of the pencil which
falls from surface 2 through opening 1 upon the body C, no fi-
nite part is reflected by this back to the surface 2; further, that
the law holds without limitation, if we consider that when the
condition is not fulfilled, it is only necessary to turn the body
C infinitely little in order to satisfy it, and that by such a rota-
tion the quantities E and A undergo only and [sic] infinitely
small change” (see [4], p. 92). Of course, real bodies can have
diffuse reflection. In addition, rotation does not ensure that
reflection back to surface 2 will not take place. Real bodies
also have directional spectral emission, such that the effect of
rotation on E and A is not necessarily negligible. These com-
plications are of little significance within a perfectly absorb-
ing cavity. The radiation within such enclosures is always
black (see Section 3.1.1). Conversely, the problems cannot
be dismissed in the perfect reflector and the entire proof for
universality, once again, is invalid.

For much of the 19th century, the understanding of black-
body radiation changed little, even to the time of Planck [11].
No laboratory proof of Kirchhoff’s Law was ever produced,
precisely because universality could not hold. Only theoreti-
cal arguments prevailed [10]. Yet, such findings cannot form
the basis for a law of physics. Laws stem from experiments
and are fortified by theory. They are not born de novo, using
mathematics without further validation. It is not possible to
ensure that black radiation exists, within a perfectly reflect-
ing cavity, without recourse at least to a carbon particle [6,
8]. In fact, this is the route which Planck utilized in treating
Kirchhoff’s Law [5, 8].

3 Thermal equilibrium in cavities

A simple mathematical treatment of radiation, under condi-
tions of thermal equilibrium, begins by examining the fate of
the total incoming radiation, �, which strikes the surface of
an object. The various portions of this radiation are either
absorbed (A), reflected (R), or transmitted (T) by the object.
If normalized, the sum of the absorbed, reflected, or trans-
mitted radiation is equal to �+ �+ � = 1. Here, absorptivity,
�, corresponds to the absorbed part of the incoming radia-
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tion/total incoming radiation. Similarly, the reflectivity, �, is
the reflected part of the incoming radiation/total incoming ra-
diation. Finally, the transmissivity, � , involves the transmitted
part of the incoming radiation/total incoming radiation. If all
objects under consideration are fully opaque, then 1 =�+ �.

Stewart’s Law [1] states that, under conditions of thermal
equilibrium, the ability of an object to absorb light, �, is ex-
actly equal to its ability to emit light, ". Nonetheless, for this
presentation, Stewart’s Law is not assumed to be valid [1].
The question arises only in the final Section 4.2, when two
objects are placed within a perfectly reflecting cavity. Emis-
sivity, ", is standardized relative to lamp-black [8] and, for
such a blackbody, it is equal to 1. For a perfect reflector, the
emissivity, ", is 0. All other objects hold values of emissiv-
ity between these two extremes. If thermal equilibrium is not
established, then " and � are not necessarily equal [8].

If a cubical cavity is considered with walls P 1, P 2, P 3,
P 4, P 5 (top surface), and P 6 (bottom surface), the following
can be concluded at thermal equilibrium: since P 1 and P 3

are equal in area and opposite one another, then the total radi-
ation from these walls must be balanced, �p1��p3 = 0. Sim-
ilarly, �p2��p4 = 0 and �p5��p6 = 0. As such, �p1 = �p3
and �p2 = �p4. If one considers pairs of adjacent walls, then
(�p1 + �p2)� (�p3 + �p4) = 0. It is possible to conclude that
�p1 = �p2 = �p3 = �p4 and, using symmetry, it can finally be
concluded that �p1 = �p2 = �p3 = �p4 = �p5 = �p6. Conse-
quently, with normalization, �c = 1

6 (�p1 + �p2 + �p3 +
+ �p4 + �p5 + �p6). For an opaque cavity, the total radiation
coming from the cavity, �T , is given by �T = "c�c + �c�c =
= "c�c + (1��c)�c. This states that the total emission from
the cavity must be represented by the sum of its internal emis-
sion and reflection. If the cavity is constructed from perfectly
absorbing walls, �c = 1, �c = 0, yielding �T = "c�c. The
cavity is black and "c must now equal 1, by necessity. Stew-
art’s Law [1] has now been proved for blackbodies. If the cav-
ity is made from perfectly reflecting walls, at thermal equi-
librium, "c�c + (1��c)�c = 0. There is also no source of
radiation inside the cavity ("c = 0) and (1��c)�c = 0, lead-
ing explicitly to �c = 0. Because �c = 0, the total radiation
monitored �T = "c�c + �c�c = 0.

These conclusions can be extended to perfectly absorb-
ing and reflecting cavities of rectangular (or arbitrary) shapes.
The central point is that a perfectly reflecting cavity can sus-
tain no radiation, a first hint that universality cannot be valid.
Planck only obtains blackbody radiation, in such cavities, by
invoking the action of a carbon particle [6, 8]. This special
case will be treated in Sections 3.1.1 and 3.2.

3.1 An object in a perfect cavity

At thermal equilibrium, the total emission from the surface
of the object, �so, is equal to that from the surface of the
cavity, �sc. When normalizing, the total emission, �T , will
therefore be as follows: �T = 1

2 �so + 1
2 �sc. The total ra-

diation from the surface of the object is equal to that which
it emits plus that which it reflects, �so = ["o�o + �o�c], and
similarly for the surface of the cavity, �sc = ["c�c + �c�o].
Therefore, at equilibrium, ["o�o + �o�c] = ["c�c + �c�o] or
�o["o � �c] = �c["c � �o]. Solving for either �o or �c, we
obtain that �o = �c ["c��o]

["o��c] and �c = �o
["o��c]
["c��o] .

3.1.1 An arbitrary object in a perfectly absorbing cavity

In such a case "c = 1, �c = 0. Since �T = 1
2 �so + 1

2 �sc, then

�T = 1
2

�
"o�c ["c��o]

["o��c] + �o�c
�

+ 1
2

�
"c�c + �c�c ["c��o]

["o��c]
�

. It
is readily shown that �T = �c. Note that no use of Stewart’s
Law [1] was made in this derivation. In any case, when an
object is placed within a cavity, which is perfectly absorbing,
the emitted spectrum is independent of the object and depends
only on the nature of the cavity. A blackbody spectrum is pro-
duced. This was the condition which prevailed over much of
the 19th century when cavities were often lined with soot [8].
If the radiation was independent of the nature of the walls, or
of the object, it was because the walls were coated with this
material [8].

3.1.2 An arbitrary object in a perfectly reflecting cavity

In such a case "c = 0, �c = 1. Since �T = 1
2 �so + 1

2 �sc, then

�T = 1
2

�
"o�o + �o�o

["o��c]
["c��o]

�
+ 1

2

�
"c�o

["o��c]
["c��o] + �c�o

�
.

It is readily shown that �T = �o. Note, once again, that no
use of Stewart’s Law [1] was made in this derivation. When
an object is placed within a cavity which is perfectly reflect-
ing, the emitted spectrum is determined only by the object
and is independent of the nature of the cavity. If the object
is perfectly absorbing, like a carbon particle [6, 8], a black-
body spectrum will be obtained. Furthermore, if an arbitrary
object is placed within a cavity, which is perfectly reflecting,
the emitted spectrum is dependent only on the nature of the
object. One observes object radiation, not blackbody radi-
ation, because the object was never black a priori. This is
the condition which Kirchhoff has failed to realize when he
extended his treatment to be independent of the nature of the
walls in his 1860 proof [3, 4], as seen in Section 2.

3.1.3 An arbitrary object in an arbitrary cavity

Consider such a general case. Since �T = 1
2 �so + 1

2 �sc, then

�T = 1
2

�
"o�o + �o�o

["o��c]
["c��o]

�
+ 1

2

�
"c�o

["o��c]
["c��o] + �c�o

�
or alternatively, we have �T = 1

2

�
"o�c ["c��o]

["o��c] + �o�c
�

+

+ 1
2

�
"c�c + �c�c ["c��o]

["o��c]
�

. In this case, the expressions can-

not be further simplified and the initial form, �T = 1
2 �so +

+ 1
2 �sc, can be maintained. Therefore, the total radiation

emitted from such a cavity is a mixture depending on both
the characteristics of the object and the walls of the cavity.
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This highlights that cavities do not always contain black radi-
ation and that universality is invalid [6–8].

3.2 An arbitrary object and a carbon particle in a per-
fectly reflecting cavity

If thermal equilibrium exists between an opaque object, o, a
carbon particle, p, and a cavity, c, then ["o�o+�o�p+�o�c]�� ["p�p + �p�o + �p�c] + ["c�c + �c�o � �c�p] = 0. Since
the cavity is perfectly reflecting, �c = 0, "c = 0, and �c = 1,
yielding, "o�o + �o�P � "p�p � �p�o + �o � �p = 0, and
with rearrangement, ("o+�o�1)�p�"p�p+(1��p)�o = 0.
If we take Stewart’s Law ("p = �p; "o = �o) as valid [1], we
can see that "o + �o = 1, and then (1 � �p)�o = "p�p,
leading directly to �o = �p. Alternatively, we may no-
tice that, by definition, �o = 1��o and �p = 1��p, then,
�o = ("p�"o+�o)

�p �p. If we take the particle to be black, we
can simplify to �o = (1� "o + �o)�p. Therefore, if we then
observe the radiation in the cavity and find it to be black, since
the particle is also black, Stewart’s law is verified. This is be-
cause �o will be black and equal to �p only when "o = �o.

The problem can be examined from a slightly different
angle in order to yield a little more insight, but the same con-
clusions hold. Because the objects are in a perfect reflector,
then the radiation coming off their surfaces can be expressed
as �so = "o�o + �o�p and �sp = "p�p + �p�o. Given
thermal equilibrium, the production of radiation from each
object must be equal, �so = �sp, and thus "o�o + �o�p =
= "p�p + �p�o. Consequently, �o = ["p��o]

["o��p] �p (see Sec-
tion 3.1). If the particle is black, "p = 1 and �p = 0, and
�o = (1� �o)

"o �p. As a result of thermal equilibrium, the object
must be producing a total emission which appears
black in nature. �o must equal �p. All solutions involve
�o + "o = 1, which as stated above, is a proof of Stew-
art’s Law ("o = �o). The object takes the appearance of a
blackbody through the sum of its emission and reflection. The
presence of completely black radiation within a cavity filled
in this manner constitutes an explicit verification of Stewart’s
Law [1], as mentioned above. Since such cavities are known
to be black, Stewart’s Law has been proven. In fact, we have
returned to the first portion of Section 3.1.2. The effect is the
same as if the walls of the cavity were perfectly absorbing.
This is the point Planck failed to realize when he placed the
carbon particle within the perfectly reflecting cavity and gave
it a catalytic function [5, 6, 8].

4 Conclusions

Nearly 150 years have now passed since Gustav Robert
Kirchhoff first advanced his Law of Thermal Radiation.
Kirchhoff’s Law [2–4] was far reaching. Its universal nature
had a profound effect on the scientists of the period. At the
time, many of these men were trying to discover the most

general laws of nature. Hence, the concept of universality
had great appeal and became ingrained in the physics litera-
ture. As a result, Kirchhoff’s Law has endured, despite con-
troversy [10], until this day. Recently, I have questioned uni-
versality [6, 7]. It is doubtful that Kirchhoff’s Law can long
survive the careful discernment of those physicists who wish
to further pursue this issue.

At the same time, Kirchhoff’s Law seems inseparably tied
to Max Planck’s equation [13]. As such, could a reevaluation
of Kirchhoff’s ideas compromise those of Max Planck [13]?
In the end, it is clear that this cannot be the case [8]. Planck’s
solution to the blackbody problem remains valid for cavities
which are perfectly absorbing. Thus, physics loses nothing
of the Planck and Boltzmann constants, h and k, which were
born from the study of heat radiation [1, 8]. That blackbody
radiation loses universal significance also changes nothing,
in fact, relative to the mathematical foundations of quantum
theory. However, the same cannot be said relative to experi-
mental findings [8]. In the end, the physics community may
well be led to reconsider some of these positions [8].

Balfour Stewart [1] preceded Kirchhoff [2–4] by nearly
two years in demonstrating, under equilibrium, the equality
between absorptivity and emissivity. Stewart’s treatment, un-
like Kirchhoff’s, does not lead to universality [1, 8, 9, 14]
but, rather, shows that the emissive power of an object is de-
pendent on its nature, its temperature, and the frequency of
observation. This is true even within cavities, provided that
they do not contain a perfect absorber. It is only in this special
circumstance that the nature of the object is eliminated from
the problem. Yet, this is only because the nature of the car-
bon itself controls the situation. Stewart also properly treats
emission and reflection in his Treatise [14]. Despite popular
belief to the contrary [9], Stewart’s interpretation is the cor-
rect solution. Conversely, Kirchhoff’s formulation, not only
introduced error, but provided justification for setting temper-
atures inappropriately. I have repeatedly expressed concern
in this area [6–8]. It can be argued that Stewart’s analysis
lacked mathematical sophistication [9]. Stewart himself [12]
counters the point [8]. Nonetheless, it is doubtful that the im-
portant consequences of Stewart’s work can continue to be ig-
nored. Justice and the proper treatment of experimental data
demand otherwise.
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Since the days of Kirchhoff, blackbody radiation has been considered to be a uni-
versal process, independent of the nature and shape of the emitter. Nonetheless, in
promoting this concept, Kirchhoff did require, at the minimum, thermal equilibrium
with an enclosure. Recently, the author stated (P.-M. Robitaille, IEEE Trans. Plasma
Sci., 2003, v. 31(6), 1263–1267; P.-M. Robitaille, Progr. in Phys., 2006, v. 2, 22–23),
that blackbody radiation is not universal and has called for a return to Stewart’s law
(P.-M. Robitaille, Progr. in Phys., 2008, v. 3, 30–35). In this work, a historical analysis
of thermal radiation is presented. It is demonstrated that soot, or lampblack, was the
standard for blackbody experiments throughout the 1800s. Furthermore, graphite and
carbon black continue to play a central role in the construction of blackbody cavities.
The advent of universality is reviewed through the writings of Pierre Prévost, Pierre
Louis Dulong, Alexis Thérèse Petit, Jean Baptiste Joseph Fourier, Siméon Denis Pois-
son, Frédérick Hervé de la Provostaye, Paul Quentin Desain, Balfour Stewart, Gustav
Robert Kirchhoff, and Max Karl Ernst Ludwig Planck. These writings illustrate that
blackbody radiation, as experimentally produced in cavities and as discussed theoreti-
cally, has remained dependent on thermal equilibrium with at least the smallest carbon
particle. Finally, Planck’s treatment of Kirchhoff’s law is examined in detail and the
shortcomings of his derivation are outlined. It is shown once again, that universality
does not exist. Only Stewart’s law of thermal emission, not Kirchhoff’s, is fully valid.

1 Introduction

If real knowledge is to be derived from an equation, it is often
necessary to reassess the experiments that gave it life. A thor-
ough evaluation of these developments, relative to Planck’s
equation [1, 2], can be found in Hans Kangro’s Early His-
tory of Planck’s Radiation Law [3]. Kangro reminds us of the
need to study important milestones relative to physical ideas:
“Only concern with details appearing in sources reveals —
often unexpectedly — what has really happened historically,
and allowed something to be divined from that history as to
‘how it really happened’” [3; p. 3]. He then sets forth a fasci-
nating account of the history of the law [1, 2] which gave
birth to modern physics. Kangro’s work [3] is unique for
its balance relative to experimental methods and theoretical
foundations. It covers, in considerable detail, the period from
Kirchhoff to Planck [3]. Hoffmann’s work [4] is also valuable
since it is short, well written, and reviews the experiments
from which Planck formulated his equation [1, 2]. Kuhn’s
text [5] centers on the theoretical basis of Planck’s law. It
has been the subject of substantial justified criticism, primar-
ily for advancing that Planck was not the first to introduce
quantized processes [6–8]. It is by using such works, and the
collection of the scientific literature, that we may revisit the
days of Planck [9–16] and judge, with perhaps greater insight
than our forefathers, the soundness of the claims on which
universality in blackbody radiation rests.

At the onset, it should be emphasized that the validity of
Planck’s equation [1, 2], as a mathematical solution to the
blackbody problem, is not being disputed in any way. The
accuracy and merit of Planck’s equation [1, 2] has been estab-
lished beyond question. Nonetheless, two aspects of Planck’s
formulation are being brought to the forefront. First, that
Planck [1, 2, 9–16], Einstein [17, 18], and all of physics have
yet to ascribe a direct physical process for the production of
blackbody radiation [19]. That is to say, blackbody radiation
remains unlinked to a specific and identifiable physical entity
(such as the nucleus, the electron, etc). Second, that black-
body radiation is not universal, contrary to what Kirchhoff

has concluded [20–22] and Planck believed [1, 2, 9].
I have previously stated that Kirchhoff’s law [20–22], and,

as a necessary result, Planck’s law [1, 2] and blackbody radi-
ation, are not universal in nature [23–25]. Kirchhoff’s con-
clusions hold only for objects in thermal equilibrium with a
perfectly absorbing enclosure [23]. Under these conditions,
Kirchhoff’s cavities act, in essence, as transformers of light
[23]. Any object placed within them will give a total emission
which is the sum of its own emission and the reflection of the
emission from the cavity wall. Consequently, the entire cav-
ity appears black [23, 25]. Outside the restrictions imposed
by such a cavity, universality does not exist [23–25]. As for
Kirchhoff’s law, it holds only under very limited experimen-
tal conditions: the walls of these cavities, or the objects they
contain, must be perfectly absorbing (see [25] for a proof).

36 Pierre-Marie Robitaille. Blackbody Radiation and the Carbon Particle



July, 2008 PROGRESS IN PHYSICS Volume 3

Otherwise, Kirchhoff’s law in its widest sense (i.e. universal-
ity) does not hold [23]. However, that section of Kirchhoff’s
law specifically addressing the equality between emissivity
and absorptivity at equilibrium is valid. This is Stewart’s law
[26], not Kirchhoff’s [20–22], as will be seen below.

In Planck’s words (see [9; §44]), Kirchhoff’s law of ther-
mal emission holds that: “With these assumptions, accord-
ing to equations (46), (45), and (43), Kirchhoff’s law holds,
E=A= I = d� cos �d
K� d�, i.e., the ratio of the emissive
power to the absorbing power of any body is independent of
the nature of the body”. The implications of Kirchhoff’s law
are best summarized in the words of its originator: “When a
space is surrounded by bodies of the same temperature, and
no rays can penetrate through these bodies, every pencil in
the interior of the space is so constituted, with respect to its
quality and intensity, as if it proceeded from a perfectly black
body of the same temperature, and is therefore independent of
the nature and form of the bodies, and only determined by the
temperature. . . In the interior of an opaque glowing hollow
body of given temperature there is, consequently, always the
same brightness whatever its nature may be in other respects”
[22; §17]. Kirchhoff’s law states that, for all bodies, the ratio
of emissive to absorbing power is a function of only wave-
length and temperature, given thermal equilibrium with an
enclosure. All that Kirchhoff knew about his universal func-
tion, in 1859, was that its value was zero in the visible range
at low temperatures, non-zero at high temperatures, and non-
zero at the longer wavelengths at all temperatures [3; p. 7].
Planck [1, 2], in 1900, eventually defined the function on the
right side of Kirchhoff’s law [20–22].

Given thermal equilibrium within an enclosure, Kirch-
hoff’s law [20–22] states that the ability of an object to emit
a photon is equal to its ability to absorb one. This aspect of
Kirchhoff’s work [20–22], properly called Stewart’s law [25,
26], is not being questioned. If equilibrium holds, the equality
between emissivity and absorptivity has been experimentally
demonstrated (see [25] for a complete discussion). It is only
when objects are permitted to radiate freely, that equality may
fail. Discussions on this issue have been published [27–29].
It has been argued that the equality between absorptivity and
emissivity may, in fact, still be applicable for freely radiating
bodies, provided that “the distribution over material states is
the equilibrium condition” [27]. At the same time, it should
be realized that, under all non-equilibrium conditions, these
laws collapse [20–22, 25, 26].

The vast experimental knowledge relative to thermal
emission reveals that virtually all materials fall far short of
exhibiting blackbody behavior. Yet, Max Thiesen, a pupil
of Kirchhoff, in 1900 stated that: “we have become accus-
tomed to treat radiation independently of the emitting body”
and therefore, this radiation should “be designated simply as
black radiation” [3; p. 184]. Experimental reality illustrates
that nothing in nature behaves like a blackbody. Kirchhoff’s
statement that: “In the interior of an opaque glowing hol-

low body of given temperature there is, consequently, always
the same brightness whatever its nature may be in other re-
spects” [22; Brace, p. 97] is incorrect without much further
consideration. Even graphite and soot produce the desired re-
sult only over a limited range of conditions. It remains true
that “different bodies . . . radiate different kinds of heat” as
published in the first issue of Nature in 1869 [30]. An ex-
amination of thermal emissivity plots is sufficient to confirm
these statements [31]. Not a single object in nature is a black-
body. Hence, it is reasonable to wonder why this concept
has so captivated physics. In studying blackbody radiation, it
will be demonstrated that radiation within an enclosed body
is not necessarily black [25], as Kirchhoff’s law erroneously
dictates [20–22].

If this subject matter remains important after all these
years [1, 2, 20–22], it is because so much of physics, and
more specifically astrophysics, is tied to the concept of uni-
versality in blackbody radiation. Agassi highlights the impor-
tance of Kirchhoff’s law for astrophysics: “Browsing through
the literature, one may find an occasional use of Kirchhoff’s
law in some experimental physics, but the only place where it
is treated at all seriously today is in the astrophysical litera-
ture” [32]. As a result, in astrophysics, if a thermal spectrum
is observed which displays, or even approximates, a Planck-
ian (or normal) distribution, temperatures are immediately in-
ferred. For this reason, the fall of universality heralds, in the
most profound and far-reaching manner, a new dawn in this
sub-discipline. Should universality be reconsidered, there are
significant consequences for our models of the Sun and rel-
ative to the temperatures of the stars [33–35]. The validity
of the �3 K microwave background temperature would be
questioned [36–41] and with it, perhaps, the entire framework
of cosmology [33, 42]. Kirchhoff’s law of thermal emission
[20–22] may well be the simplest law in physics, but it is clear
that, upon its validity, rests the very foundation of modern as-
trophysics.

Given these facts, it is unusual that Planck has advanced
an equation [1, 2] which remains unlinked to any real physical
process or object. Sadly, it is somewhat as a result of Kirch-
hoff’s law that Planck remained unable to link his equation to
a physical cause. The problem was an extremely serious one
for Planck, and the fact that his hands were tied by universal-
ity is no more evident than in the helplessness he displays in
the following quotation: “On the contrary, it may just as cor-
rectly be said that in all nature there is no process more com-
plicated than the vibrations of black radiation. In particular,
these vibrations do not depend in any characteristic manner
on the special processes that take place in the centers of emis-
sion of the rays, say on the period or the damping of emitting
particles; for the normal spectrum is distinguished from all
other spectra by the very fact that all individual differences
caused by the special nature of the emitting substances are
perfectly equalized and effaced. Therefore to attempt to draw
conclusions concerning the special properties of the parti-
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cles emitting the rays from the elementary vibrations in the
rays of the normal spectrum would be a hopeless undertak-
ing” [9; §111].

Yet, it is primarily universality that makes this task
a “hopeless undertaking”. Planck, in fact, realized that vi-
brating atoms, electrons, or particles of some sort, must be
responsible for the process of thermal emission. He specifi-
cally believed that the answer might be found by studying the
electron and devoted much of his life to this topic [5; pp. 133–
134, 198–199, 245]. But, unfortunately, Planck never makes
the link to a real physical species, and the electron itself is not
the proper lone candidate. Planck’s belief that the answer lay
in electron theory is explicitly contained in his letter to Paul
Ehrenfest on July 6, 1905 in which he states: “But perhaps
it is not out of the question to make progress in the following
way. If one assumes that resonator oscillations are produced
by the motion of electrons. . . ” [5; p. 132]. Lorenz had already
been successful, in deriving the radiation equation for long
wavelengths (the Rayleigh-Jeans solution), using the analysis
of electrons [5; p. 190].

Surprisingly, the real solution to the blackbody radiation
problem has never been discovered [19]. Even Albert Ein-
stein, in 1909, expressed frustration in this regard in a letter
to H. A. Lorentz: “I cherish the hope that you can find the
right way, if indeed you find the reasons given in the paper for
the untenability of the current foundations to be at all valid.
But if you should deem those reasons to be invalid, then your
counterarguments could perhaps furnish the key to the real
solution of the radiation problem” [18; p. 105]. The problem
was never solved. As late as 1911, Einstein continues to ex-
press his frustration to Lorentz: “I am working on the case
of damped resonators; it involves quite a lot of calculation.
The case of the electrons in the magnetic field, which I al-
ready mentioned in Brussels, is interesting, but not as much
as I had thought in Brussels. Electrons in a spatially variable
magnetic field are oscillators with variable frequency. If one
neglects the radiation, then statistical mechanics yields the
distribution law at every location if it is known at one loca-
tion. If that location is field-free, then Maxwell’s distribution
holds there; from this one concludes it must hold everywhere.
This leads of course to Jean’s formula. Nevertheless, to me
the thing seems to show that mechanics does not hold even
in the case of the electron moving in the magnetic field. I am
telling you this as an argument against the view that mechan-
ics ceases to hold at the point where more than two things in-
teract with each other. Anyway, the h-disease looks ever more
hopeless” [18; p. 228]. Blackbody radiation was never linked
to a direct physical process. Yet, according to Kuhn, Einstein
pointed out that “not only the vibrations of electrons but also
those of charged ions must, contribute to the blackbody prob-
lem” [5; p. 210]. Nonetheless, Kuhn goes on to write that
by the early 1910s “while the nature of Planck’s oscillators
and of the corresponding emission process remained a mys-
tery, the black-body problem could provide no further clues to

physics” [5; p. 209]. In 1910, Peter Debye, derives Planck’s
law by quantizing the vibration modes of the electromagnetic
field without recourse to oscillators [5; p. 210]. Albert Ein-
stein would soon obtain it using his coefficients [17]. But the
nature of the emitter was not identified [19]. In fact, in both
cases, physics moved increasingly outside the realm of phys-
ical reality and causality.

Astrophysics believes that nothing of known physical ori-
gin is needed to obtain a blackbody spectrum. All that is re-
quired is a mathematical construct involving photons in ther-
mal equilibrium and this, well outside the confines of a solid
enclosure, as demanded by the experimental constraints sur-
rounding blackbody radiation. Astrophysics has no need of
the physical lattice, of some physical species vibrating within
the confines of a structural physical assembly. But, if a ther-
mal spectrum is to be produced, it is precisely this kind of
physical restriction which must exist [19, 23]. However, as
long as the idea that blackbody radiation is independent of
the nature of the walls prevails, there can be no correction
of this situation. It is the very formation of Kirchhoff’s law
[20–22] which must be brought into question, if any progress
is to be made toward linking Planck’s equation [1, 2] to the
physical world and if astrophysics is to reform the manner in
which it treats data. For these reasons, we now embark on the
review of the findings which led to the concept of universal-
ity. Overwhelming evidence will emerge (see also [23–25])
that this concept is erroneous and should be reconsidered.

2 Experimental production of black radiation

2.1 The 19th century and the lampblack standard

Wedgwood published his delightful analysis on the produc-
tion of light from heated substances in 1792 [43]. The works
are noteworthy and pleasant to read because 1) they define
the “state of the art” just prior to the 19th century, 2) they
examine a plethora of substances, and 3) they possess won-
derful historical descriptions of antecedent works. The ex-
periments contained therein are nothing short of elegant for
the period. Even at this time, the emission within a cylin-
der, either polished or blackened (presumably covered with
lampblack), had already gained the attention of science [43].
Wedgwood realized that it did not matter, if heat entered the
substance of interest through light, or through friction [43].
Much was already known about thermal radiation, but confu-
sion remained.

The experimental aspects of the science of thermal radia-
tion really began with the release of Leslie’s An Experimen-
tal Inquiry into the Nature and Propagation of Heat [44].
In this classic work, Leslie describes how all objects emit
light, but also that they have very different emissive powers,
even at the same temperature [44; pp. 81, 90, 110]. This was
well understood throughout the 19th century [45, 46]. Leslie
opens his work as follows: “The object I chiefly proposed,
was to discover the nature, and ascertain the properties of
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what is termed Radiant Heat. No part of physical science
appeared so dark, so dubious and neglected” [44; p. X]. Iron-
ically, Leslie’s last sentence rings somewhat true, even 200
years later.

Using reflectors made of tin, Leslie analyzed radiation
emitted from the sides of a cube made of “block tin”. At
least one side was kept polished, one side was often coated
with lampblack, and the other two were used to place miscel-
laneous substances, like tin foil, colored papers, or pigments
[44; p. 8]. In order to maintain a constant temperature, the
cubes were filled with water. The key to Leslie’s experiments
was a differential thermometer. By positioning various faces
of the cube towards the reflector and placing his thermome-
ter at the focal point, he soon discovered that polished met-
als give much less radiant heat than soot. He also realizes
that the power to absorb or emit heat is somehow conjoined
[44; p. 24]. It is interesting that, in his very first experiment,
Leslie examines lampblack. It would become, for the rest of
the 1800s, the means by which radiation would be calibrated.

Lampblack, the oxidation product of oil lamps, was not
only a suitable material for coating surfaces and generating
blackbodies over the course of the 1800s, it rapidly became
the standard of radiation. By 1833, the Reverend Baden Pow-
ell, whose son was to form the Scouting movement, already
writes that: “all experimenters have usually blackened their
thermometer” [47; p. 276]. In 1848, G. Bird notes how lamp-
black has become a reference standard in the study of emis-
sion [48; p. 516]. Stewart refers repeatedly to lampblack in-
voking that soot had become the standard by which all ra-
diation was to be measured: “The reason why lampblack was
chosen as the standard is obvious; for, it is known from
Leslie’s observations, that the radiating power of a surface
is proportional to its absorbing power. Lampblack, which ab-
sorbs all the rays that fall upon it, and therefore possesses
the greatest possible absorbing power, will possess also the
greatest possible radiating power” [26; §4]. He directly
refers to lampblack heat [49; p. 191]. His experiments with
lampblack are covered below in the context of the theoretical
formulation of the law of radiation. Silliman’s work is partic-
ularly valuable in that it was completed in 1861 [50]. It not
only gives a well written and thorough account of the current
state of knowledge in heat radiation, but it restates the central
role of lampblack: “Lampblack is the only substance which
absorbs all the thermal rays, whatever be the source of heat”
[50; p. 442].

Langley re-emphasizes the extensive use of lampblack in
his paper on solar and lunar spectra: “I may reply that we
have lately found an admirable check upon the efficiency of
our optical devices in the behavior of that familiar substance
lampblack, which all physicists use either on thermometers,
thermopiles, or bolometers” [51]. In 1893, Clerke writes of
the “lampblack standard” in her tremendous work on the his-
tory of Astronomy [52; p. 271]. Tillman, in the 4th edition
of his Elementary Lessons in Heat, summarizes well the be-

lief that prevailed throughout the 1800s: “Lampblack is the
most perfect absorber and radiator, it being devoid of both
reflecting and diffusive power. Its absorbing power is also
most nearly independent of the source of heat. It absorbs
all rays nearly alike, the luminous as well as the dark ones.
Lampblack is accordingly taken as the standard surface of
absorption, absorbing in the greatest degree every variety of
ray which fall upon it. It is consequently, also , when hot,
the typical radiator, giving out the maximum amount of heat
which any substance at the same temperature could possibly
give out; moreover, it gives out the maximum amount of each
kind of heat that can be given out by any body at that temper-
ature” [46; p. 92]. Tillman does recall Langley’s discovery
that, in the infrared, lampblack was nearly transparent [51].
In any event, the role of lampblack in thermal radiation was
well established by the end of the 19th century.

In his textbook on physics, published for the 7th time in
1920, Watson provides an elaborate description of the use of
lampblack in coating both thermometers and surfaces for the
study of comparative emission between objects [53]. He de-
scribes the lampblack standard as follows: “Lampblack, al-
though it does not absorb quite the whole of the incident ra-
diation, yet possesses the property of absorbing very nearly, if
not quite, the same proportion of the incident radiation what-
ever the wave-length, and so this substance is taken as a stan-
dard” [53; p. 301].

A review of the blackbody literature for the 19th century
reveals that blackbodies were produced either from graphite
itself or from objects covered with lampblack (soot) or paints,
which contained soot or bone black [54]. That is not to say
that other substances were not used. Kangro [3] outlines an
array of studies where experimentalists, over a small region of
the spectrum, used different materials (platinum black, copper
oxide, iron oxide, thorium oxide, etc). Nonetheless, graphite
and soot take precedence over all other materials, precisely
because their absorbance extends over such a wide range of
wavelengths. Conversely, all other materials exhibit disad-
vantages, either because of their suboptimal emissivity, or due
to their limited frequency ranges [31]. There are problems in
visualizing the infrared, even with platinum black. Kangro
explains: “They (Lummer and Kurlbaum) changed to a plat-
inum box as being more easily heated electrically and better
suited to exact temperature measurement, then they used a
platinum roll and finally a platinum cylinder the interior of
which was blackened with iron oxide, and also divided by di-
aphragms the whole enclosed in a large asbestos cylinder”
[3; p. 159]. They also report “the defective absorption of long
wavelengths by Platinum black with which their bolometers
were coated” as a possible source of error [3; p. 159]. Lum-
mer and Kurlbaum made their 1898 cavity from platinum
blackened with a mixture of chromium, nickel, and cobalt
oxide [4]. Nonetheless, in order to properly visualize the
longest wavelengths, the method of residual rays, developed
by Rubens, was utilized [4]. These were critical experiments
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for Planck. Yet, since platinum black could not reach ele-
vated temperatures, in 1903, Lummer and Pringsheim would
design a new blackbody with graphite walls [4]. This design
has endured, essentially unchanged, until the present day [4].

2.2 The 19th century and the general state of knowledge

In 1833, Powell gave his excellent report on radiant heat [47].
By this time, the amount of radiation was known to be in-
versely related to conductive power [47; p. 266]. The more
an object conducted thermal radiation, the better it acted as a
reflector and the worst it was as an emitter/absorber. Based
on the experiments of William Ritchie [55], it was also known
that the absorptive power of a substance was directly related
to its emissive power [47, p. 265]. Prévost’s theory on thermal
equilibrium, the famous Theory of Exchanges [56–58] was
understood [47; p. 261]. Herschel’s studies with infrared radi-
ation were complete and the blocking action of glass was es-
tablished [47; pp. 269–272]. While Herschel had discovered
infrared radiation in 1800 [59], it was not until Langley, that
infrared radiation could be accurately monitored [51]. At the
time, Langley observed that lampblack was very nearly trans-
parent to infrared radiation. Using prisms, it was also known
that, on opposite sides of the spectrum, there existed “isother-
mal points” [47; p. 296]. Prisms played an important role in
the early classification of the quality of light and heat by sep-
aration into colors [47; pp. 291–296]. Interestingly, Powell
takes a sidestep relative to liquids and writes in his conclu-
sion: “In liquids, it has been disputed whether there can be
radiation; and they are worse conductors than solids” [47;
p. 300]. Silliman notes that, even at the time of Kirchhoff,
there remained some debate as to the relation between absorp-
tive and emissive powers [50; p. 441], with de la Provostaye,
Desains, and Melloni highlighting that these were not always
equivalent. Given this general state of knowledge during the
19th century, we now move to the most important areas of
experimentation, Prévost’s Theory of Exchanges [56–58] and
cavity radiation at thermal equilibrium.

2.3 The 19th century and cavity radiation

Pierre Prévost advanced his powerful Theory of Exchanges
just as the 19th century came to life [56–58]. In formulating
his law, Prévost invokes the enclosure: “. . . I will suppose the
two portions to be enclosed in an empty space, terminated
on all sides by impenetrable walls” [56; in Brace, p. 5]. He
then moves to develop his Theory of Exchanges [56–58]. This
theory was critical to Kirchhoff’s thinking when the concept
of universality was formulated [20–22]. As such, it is im-
portant to understand how Prévost’s theory was viewed, not
simply at the time of its formulation, but in the days of Kirch-
hoff. This knowledge can be gained by examining Balfour
Stewart’s summary of Prévost’s theory. Stewart recounts the
central ideas of equilibrium with an enclosure in his Treatise
[49]. He summarizes Prévost’s findings as follows: “1. If an

enclosure be kept at a uniform temperature, any substance
surrounded by it on all sides will ultimately attain that tem-
perature. 2. All bodies are constantly giving out radiant heat,
at a rate depending upon their substance and temperature,
but independent of the substance or temperature of the bod-
ies that surround them. 3. Consequently when a body is kept
at uniform temperature it receives back just as much heat as
it gives out” [49; p. 215].

With Prévost, nearly 70 years before Kirchhoff, the real
study of cavity radiation began. At the same time, the under-
standing of cavity radiation really grew near the 1820s. This
was when the experimental work of Dulong and Petit [60]
with cavities took place. Simultaneously, theoretical studies
of heat were being forged by Fourier [61–67] and Poisson
[68, 69]. Fourier’s works are particularly important in that
they represent the most far-reaching theoretical analysis of
heat and cavities in this time frame.

The paper by Dulong and Petit [60] is a major milestone
in experimental science and it is difficult to do it justice in
a brief treatment. Thus, let us concentrate not on the first
section dealing with the measurements of temperatures, the
dilatation of solids, and the specific heats of materials, but
rather on the second section. This section addresses the laws
of cooling derived within an enclosure. Of course, Kirch-
hoff’s law of thermal emission [20–22] deals with radiation
under equilibrium conditions. Conversely, the results of Du-
long and Petit examine a dynamic process [60]. While they
do not directly apply, the studies by Dulong and Petit form
the experimental basis for the works that follow and are cru-
cial to understanding cavity radiation. Dulong and Petit rec-
ognized the importance of distinguishing the effects of gas
particles and radiative emission in cooling [60]. By examin-
ing the cooling of water and liquids in enclosures of varying
shapes, they conclude that the rate of cooling is independent
of the shape of the walls of the enclosure, on its size, and on
the nature of the liquid [60; p. 245]. Note how this conclusion
is reminiscent of Kirchhoff’s law [20–22]. Importantly, they
observe that the rate of cooling is dependent on the state of
the surface of the enclosure [60; p. 245].

Dulong and Petit continue their inquiry into the laws of
cooling by building a copper enclosure, the inner surface of
which they cover with lampblack [60; p. 247]. They place a
thermometer at the center of the enclosure. The outer sur-
face of the thermometer is either silvered or left in its glassy
state [60; p. 250]. Using a pump, a balloon (containing var-
ious gases of interest), and a barometer attached to the en-
closure, they deduce the law of cooling. Dulong and Petit
accomplished their goal by varying the gas pressure within
the enclosure while monitoring the drop in temperature of the
previously heated thermometer. Initially, ignoring the effect
of gases and working near vacuum, they quickly realize that
the rate of cooling depends on the nature of the thermome-
ter surface, and this even within the blackened cavity [60;
p. 260]. The rates of cooling of the two thermometers were

40 Pierre-Marie Robitaille. Blackbody Radiation and the Carbon Particle



July, 2008 PROGRESS IN PHYSICS Volume 3

proportional to one another, not equal [60; p. 260]. They ar-
rive at a simple general law of cooling that applies to all bod-
ies [60; p. 263]. Finally, by repeating the same experiments
with gases at different pressures, they derive a law of cooling
with two terms depending on radiation and the effect of the
gas. They infer that the first term depends on the nature, the
size, and the absolute temperature of the enclosure, while the
second term depends only on the characteristics of the gas
[60; p. 288]. Dulong and Petit’s work is not revisited in a
substantial manner until de la Provostaye and Desain publish
their Mémoires [70–75].

De la Provostaye and Desain published their second Mem-
oir on the Radiation of Heat in 1848, more than 10 years be-
fore the formulation of Kirchhoff’s law of thermal emission
[71]. The authors open their work by stating (all translations
from French were made by the author): “We must know how
the quantity of heat emitted by a surface of a determined size
depends on its temperature, its proper nature, its state, on the
direction of the emission” [71; p. 358]. They then highlight:
“but that we (scientists) have not, up to this day, introduced
into the solution questions of equilibrium and of movement of
the heat” [71; p. 358].

The authors revisit Dulong and Petit’s experiments with
gases using a half liter cylinder, blackened interiorly with
lampblack (noir de fumée), in which they can introduce gases.
They were never able to confirm the exact relation of Dulong
and Petit and, therefore, present a more elaborate equation to
describe the law of cooling [71; p. 369]. The paper contains a
relevant caveat in that the authors report that it is not always
easy to obtain a black surface, even with lampblack paste.
They resort to the flame of a lamp to resurface the object of
interest in order that its emission becomes truly independent
of angle of observation [71; p. 398]. However, the bulk of
our concern is relative to their work on the approach towards
thermal equilibrium within an enclosure [71; pp. 406–431].

They recall that Fourier has proved: “1) that within a
blackened enclosure without reflective power, equilibrium is
established from element to element, 2) that the equilibrium
is maintained in the same manner if we restore to one of the
elements a reflective power, as long as we admit, in the first
instance, that the absorbing and reflecting powers are com-
plementary; and in the second place, that the emissive power
is equal to the absorptive power, 3) that the same will hold,
if we restore a certain reflective power to all the elements”
[71; p. 406].

De la Provostaye and Desain highlight that the enclosure
must be blackened for Fourier’s conclusions to hold, but the
latter does not always specifically state if his cavity is black-
ened interiorly. Nonetheless, Fourier’s derivations
make the assumption that the wall of the enclosure follows
Lambert’s law [66]. As such, the objects can be viewed as
placed within a perfectly absorbing cavity. De la Provostaye
and Desain make the point as follows: “The demonstration
supposes, what the author (Fourier) seems in fact to have

recognized for himself (Annales de Chimie et de Physiques,
tome XXVII, page 247 (see [66]) in his last Memoires, that
the radiating body is stripped of all reflective power. It would
therefore be not at all general. . . ” [71; p. 408].

De la Provostaye and Desain begin their studies by plac-
ing a hypothetical thermometer in a spherical cavity and make
no assumptions other than stating that diffuse reflection does
not occur. They permit, therefore, that both the cavity and
the thermometer can sustain normal reflection and emission.
Assuming that reflective power does not depend on the an-
gle of incidence, they permit the rays to travel throughout the
cavity and follow the progression of the rays over time, until
equilibrium is reached. The authors conclude that the radia-
tion inside such a cavity will not follow Lambert’s law [71;
p. 414]. The result is important because it directly contradicts
Kirchhoff’s assertion that the radiation inside all cavities must
be black [20–22]. They then restrict their treatment to the
consideration of angles below 60˚ or 70˚, in order to reach a
simplified form for the laws of cooling.

Like Dulong and Petit [60], de la Provostaye and Desain
[70–75] are not concerned exclusively with thermal equilib-
rium, but rather, they are examining the velocity of cooling,
the path to equilibrium. They provide important insight into
the problem, as the following excerpt reveals: “When in an
blackened enclosure with an invariable temperature t, we in-
troduce a thermometer at the same temperature and a body
either warmer or colder, but maintained always at the same
degree T , the thermometer will warm or cool, and, following
the reciprocal exchanges of heat, it will attain a final temper-
ature �, whose value, function of T and t, depends also on the
emissive power E0 of its surface, of that E of the source, and
of their forms, sizes and reciprocal distances” [71; p. 424].

Siegel [76] highlights appropriately that de la Provostaye
and Desains defined the emissive power E of a body as a
fraction of the radiant emission of the blackbody where f(t)
is the emission of the blackbody, and the emission of the body
is Ef(t) [74; p. 431]. In contrast, Kirchhoff defines emission
simply as E, which, in fact, corresponds to de la Provostaye
and Desain’s Ef(t) [76]. Consequently, the universal func-
tion f(t) is incorporated into Kirchhoff’s law, even when it
does not seem to be the case [76].

3 Cavity radiation

3.1 The Stewart-Kirchhoff dispute

Balfour Stewart [26] preceded Kirchhoff [20–22] by at least
2 years in the treatment of radiation at thermal equilibrium.
Both Kirchhoff and Stewart built on the idea, initially ad-
vanced by Prévost [56–58], and expanded upon by Fourier
[61–67], Poisson [68, 69], Dulong [60], Petit [60], de la Pro-
vostaye [70–75], Desains [70–75], and surely others, that
thermal equilibrium existed between objects at the same tem-
perature in the presence of confinement [49; p. 196]. The
Stewart-Kirchhoff conflict is one of the darkest moments in
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Gustav Robert Kirchhoff (12 March 1824 – 17 October 1887)

the history of science and it has been the subject of an excel-
lent review [76]. This public quarrel is worth revisiting, not
only because it is a powerful example of how science must not
be performed, but also because it is very likely that the dis-
pute between these men, and the international involvement of
their collaborators [76] was directly responsible for the per-
sistence of universality. If Stewart and Kirchhoff had better
communicated, Kirchhoff might have yielded and the erro-
neous concept of universality, might have been retracted.

However, nationalistic passions were inflamed to such a
measure that reason and scientific truth were moved to sec-
ondary positions. The animosity between Germany and
British scientists would eventually reach the boiling point
when, in 1914, Planck and 92 other learned men signed the
Appeal to the Cultured Peoples of the World [16; pp. 70–ff].
Planck apparently signed the Appeal without examining its
contents. Wien, for his part, insisted that British scientists
“appropriated discoveries made in Germany, confused truth
and falsehood, argued in bad faith, and . . . that England was
the worst enemy of the Reich” [16; p. 72]. He urged that
German scientists avoid, as much as possible, publication in
British journals [16; p. 72]. Planck, for his part, refused to
sign Wien’s manifesto [16; pp. 70–ff]. While the Stewart-
Kirchhoff affair cannot bear all the responsibility for these
tragic developments, and while other scientific battles also
raged [76], it is relatively certain that the situation played an
early role in the building of such misconceptions.

The papers from Stewart and Kirchhoff which caused this
conflict were all published in The London, Edindurgh, and

Balfour Stewart (1 November 1828 – 19 December 1887)

Dublin Philosophical Magazine and Journal of Science.
Kirchhoff was able to have access to the English literature,
primarily through the assistance of F. Guthrie and Henry E.
Roscoe. The latter translated many of Kirchhoff’s works into
English for Philosophical Magazine. Roscoe had studied and
published with Bunsen who, in turn, eventually became
Kirchhoff’s key collaborator.

Stewart opens the discourse by publishing, in 1858, “An
account of some experiments on radiant heat, involving an ex-
tension of Prévost’s Theory of Exchanges” [26]. It will be dis-
covered below that, in fact, it is Stewart’s work which reached
the proper conclusion, not Kirchhoff’s [25]. Yet, Stewart’s
Account [26] has been forgotten, in large part, because, unlike
Kirchhoff’s papers [20–22], it did not arrive at universality as
Seigel emphasizes [76].

The battle really begins when F. Guthrie translates Kirch-
hoff’s paper and places it in Philosophical Magazine [21],
the journal where Stewart’s work had appeared just two years
earlier. Kirchhoff is rapidly criticized for failure to cite prior
work, not only relative to Stewart, but relative to other semi-
nal discoveries [76]. With the aid of Roscoe [77–80], he pub-
lishes in 1863, “Contributions towards the history of spec-
trum analysis and of the analysis of the solar atmosphere”
[81] in which he seems to dismiss the importance of Stew-
art’s contributions. Kirchhoff writes: “This proof cannot be
a strict one, because experiments which have only taught us
concerning more and less, cannot strictly teach us concern-
ing equality” [81]. Kirchhoff highlights that Stewart is not
treating an enclosure in his experiments, but extends his con-
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clusions to these objects [81]. In the end, Kirchhoff’s Contri-
butions [81] is not impolite. . . but it is tough.

For Stewart, Kirchhoff’s Contributions [81] is viewed as
an attack which must be immediately countered [82]. Stewart
opens his rebuttal by stating: “In the course of his remarks
the learned author has reviewed in a somewhat disparaging
manner some researches of mine on radiant heat, in conse-
quence of which I am forced to reply, although very unwill-
ingly, and desiring much to avoid a scientific controversy, es-
pecially with Professor Kirchhoff as an opponent” [82]. In
his own defense, Stewart then adds: “nor did I omit to obtain
the best possible experimental verification of my views, or to
present this to men of science as the chief feature, ground-
ing theory upon the experiments, rather than deducing the
experiments from the theory” [82]. This powerful charge by
Stewart, in the end, forms the entire argument against Kirch-
hoff’s proof [82]. Kirchhoff’s results can never be validated
by experiments, and Stewart, as an expert in heat radiation,
must have recognized this to be the case [82].

Stewart closes his defense as follows: “Although I pre-
ceded Kirchhoff nearly two years in my demonstration, I did
not hesitate to acknowledge that his solution had been inde-
pendently obtained; but, as a general principle, I cannot con-
sent to admit that when a man of science has proved a new
law and is followed by another who from the same premises
deduces the same conclusions, the latter is justified in depre-
ciating the labours of the former because he conceives that
his solution is more complete. Will Kirchhoff himself will-
ingly forego his own claims in favour of any one who shall in
the future ages devise (if this be possible) a simpler and more
convincing demonstration than that which has been given us
by the Hiedelberg Professor? I feel, Sir, that, as an historian
of science, you will acknowledge the justice of these remarks,
and join me in regretting that one who has so eminently dis-
tinguished himself in original investigation should have cho-
sen to superadd to his functions as a discoverer those of a
severe and hostile critic upon the labours of those men who
have worked at the same subject with himself, and by all of
whom he has been treated with the utmost possible consider-
ation” [82].

The Stewart-Kirchhoff dispute reached such a magnitude
that Kirchhoff, it seems, never again publishes in Philosoph-
ical Magazine, even though Bunsen, for his part, continues
to utilize the journal. Stewart remained at a profound dis-
advantage, as he did not benefit from a relationship simi-
lar to that between Kirchhoff, Bunsen, and Roscoe. Roscoe
would reprint Kirchhoff’s infamous Contributions [81] in his
Spectrum Analysis [80; pp. 115–122]. However, in this ver-
sion [80; pp. 115–122], all text referring to Stewart has been
removed without comment. It is impossible to understand
Roscoe’s motivation for the attenuated version. Roscoe may
have suffered for having translated the letter. Alternatively,
Kirchhoff’s Contributions [81] might not fit in its entirety
within the context of the other lectures. In any event,

Roscoe‘s Spectrum Analysis is a strange ode to Kirchhoff,
which lacks broad scientific review. Regrettably, it seems that
Roscoe made no attempt to reconcile the Kirchhoff-Stewart
matter through proper and continuing scientific discourse.

In the end, Kirchhoff and Stewart each fell short of the
mark. However, Kirchhoff’s error was more serious [20–22],
since it has theoretical consequences to this day. As for Bal-
four Stewart, had he presented a better theoretical case [26],
the course of physics may have followed a different path.
Kirchhoff, for example, correctly highlighted that Stewart’s
proof should not use the index of refraction, but rather, the
square of the index [81]. Stewart conceded the point [76, 82].
For Kirchhoff, Stewart’s proof was possibly true, not neces-
sarily true [81]. Siegel elegantly clarified Kirchhoff’s con-
cerns [76]. These shortcomings in Stewart’s derivation hinder
the search for truth. Finally, had nationalistic sentiments not
been aroused [76], it might have been easier to resolve the
conflict.

3.2 Balfour Stewart

In examining Stewart’s writings [26, 49, 82–85], we discover,
as Brace highlights, “the comprehensiveness of his mind and
the originality of his genius” [83; p. 72]. Many of Stewart’s
[26, 82–85] ideas are contained in his Elementary Treatise
on Heat [49] and the later reflects his positions at the end
of his life. As such, our discussion will begin first with the
examination of this work and close with the review of his
1858 and 1859 papers [26, 83].

By the time Stewart writes his Treatise, he clearly recog-
nizes that all substances display at least selective absorption
of light [49; p. 191]. He comments on the probable identity of
heat and light and writes: “The facts detailed in this chapter
all tend to shew that radiant light and heat are only varieties
of the same physical agent, and also that when once the spec-
trum of a luminous object has been obtained, the separation
of the different rays from one another is physically complete;
so that if we take any region of the visible spectrum, its illu-
minating and heating effect are caused by precisely the same
rays” [49; p. 195]. He continues: “Furthermore, we have rea-
son to suppose that the physical distinction between different
parts of the spectrum is one of wave length, and that rays of
great wave length are in general less refracted than those of
small wave length” [49; p. 196].

Stewart’s thoughts with respect to radiation within a cav-
ity are important, not only because they provide us insight
into the proper analysis of the enclosures, but also because
they clearly outline what was known just prior to Planck.
Stewart’s comments relative to these experiments are summa-
rized once again in his Treatise: “. . . let us for our present pur-
pose imagine to ourselves a chamber of the following kind.
Let the walls which surround this chamber be kept at a con-
stant temperature, say 100˚C, and let them be covered with
lampblack — a substance which reflects no heat, or at least
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very little; — also let there be a thermometer in the enclosure.
It is well known that this thermometer will ultimately indicate
the temperature of the surrounding walls. . . Suppose that the
outside of the bulb of the thermometer of last article is cov-
ered with tinfoil, so that its reflecting power is considerable.
Now according to the Theory of Exchanges this thermometer
is constantly radiating heat towards the lampblack, but it is
receiving just as much heat as it radiates. Let us call radia-
tion of lampblack 100, and suppose that 80 of these 100 rays
which strike the thermometer are reflected back from its tinfoil
surface, while the remaining 20 are absorbed. Since therefore
the thermometer is absorbing 20 rays, and since nevertheless
its temperature is not rising, it is clear that it must be also
radiating 20 rays, that is to say, under such circumstances
its absorption and radiation must be equal to one another. If
we now suppose the outside of the bulb to be blackened in-
stead of being covered with tinfoil, the thermometer will ab-
sorb nearly all the 100 rays that fall upon it, and just as in the
previous case, since its temperature is not rising, it must be
radiating 100 rays. Thus we see that when covered with tinfoil
it only radiated 20 rays, but when blackened it radiates 100.
The radiation from a reflecting metallic surface ought there-
fore, if our theory be true, to be much less than from a black-
ened one. This has been proved experimentally by Leslie, who
shewed that good reflectors of heat are bad radiators. Again,
we have seen that in the case of the bulb covered with tinfoil
80 of the 100 rays which fell upon it were reflected back, and
we have also seen that 20 were radiated by the bulb. Hence
the heat reflected plus the heat radiated by this thermometer
in the imaginary enclosure (author underscoring text) will be
equal to 100, that is to say, it will be equal to the lampblack
radiation from the walls of the enclosure. We may generalize
this statement by saying that in an enclosure of constant tem-
perature the heat reflected plus the heat radiated by any sub-
stance will be equal to the total lampblack radiation of that
temperature, and this will be the case whether the reflecting
substance be placed inside the enclosure or whether it form a
part of the walls of the enclosure” [49; pp. 199–201].

Stewart reaches this conclusion for an enclosure whose
walls have been covered with lampblack [49]. In that case,
the heat inside the enclosure will correspond to that from
lampblack, as I have shown [25]. In the pages which follow
[49], Stewart goes on to explain that his law holds, in a man-
ner which is independent of the nature of the walls, provided
that both radiation and reflection are included. He also illus-
trates independence relative to wall shape. Importantly, he
invokes the work of de la Provostaye and Desains with silver
and lampblack to demonstrate that the total radiation inside
an enclosure containing a silver surface will also be equal to
100, where 2.2 parts arise from the emission of silver itself
and 97 parts from the reflection of lampblack. Stewart real-
izes that the value of 100 is only achieved in the presence of
lampblack. The nature of the wall was immaterial simply be-
cause lampblack was always present. In fact, it appears that

Stewart was actually contemplating enclosures which con-
tain both reflective surfaces and absorbing ones, as seen in
his section 227: “It has already been stated (Art. 204) that
the stream of radiant heat continually proceeding through an
enclosure of which the walls are kept at a constant tempera-
ture depends only on the temperature of the walls, and not on
the nature of the various substances of which they are com-
posed; the only difference being that for metals this stream is
composed partly of radiated and partly also of reflected heat,
while for lampblack it is composed wholly of radiated heat.
This may be expressed by saying that this stream depends
upon or is a function of the temperature, and of it alone; but
there is the following very important difference between a re-
flecting and lampblack surface, as representing this stream
of radiant heat. It is only when a reflecting surface forms
part of a complete enclosure of the same temperature as itself,
that the radiated and reflected heat from this surface together
represent the whole stream of heat; for if we bring it for a
moment into another enclosure of lower temperature, the re-
flected heat is altered, and although the radiation will for a
short time continue nearly constant, yet this radiation will not
represent the whole stream of heat due to the temperature of
the surface. On the other hand, if a lampblack surface be
placed in the above position, since the stream of heat which
flows from it is entirely independent of the reflexion due to
neighboring bodies, the heat which it radiates when brought
for a moment into an enclosure of lower temperature than it-
self will truly represent the stream of radiant heat due to the
temperature of the lampblack” [49; pp. 221–222]. One can
see that reflecting materials provide very different conditions
than lampblack within enclosures. That is, within an enclo-
sure under dynamic conditions, objects which are partially
or fully reflecting cannot indefinitely support black radiation.
They simply emit their own radiation and reflect the heat
incident upon their surface. Through this discussion, Stew-
art demonstrates that thermal equilibrium would be disturbed
when a perfect absorber is replaced with a reflector, bringing
about dynamic rather than equilibrium conditions. This was
an important insight relative to the analysis which I recently
provided [25] of Kirchhoff’s second proof [21, 22].

In order to examine the velocity of temperature change,
Stewart invokes a thin copper globe lined with lampblack:
“Having now considered the law of cooling as representing
with much accuracy the quantity of heat given out by a black
substance at different temperatures, we come next to the re-
lation between the temperature and the quality or nature of
the heat given out. And here we may remark that the laws
which connect the radiation of a black body with its tem-
perature, both as regards to the quantity and the quality of
the heat given out, hold approximately for bodies of indefi-
nite thickness which are not black, — thus, for instance, they
would hold for a metallic surface, which would represent very
nearly a lampblack surface, with the radiation diminished a
certain number of times. These laws would not, however, hold
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exactly for a white surface, such as chalk; for this substance
behaves like lampblack with respect to rays of low temper-
ature, while it is white for rays of high temperature, and the
consequence of this will be that its radiation will increase less
rapidly than that of a lampblack surface. In like manner, these
laws will not hold exactly for coloured surfaces” [49; p. 230].
Note how these statements are directly contradictory to what
Kirchhoff requires. For Stewart, there is no universality and
this is a major distinction between his work and that of his
adversary [25].

With regards specifically to a black surface, Stewart writes
(see page 231): “1. The spectrum of the radiant heat and light
given out by a lampblack surface is continuous, embracing
rays of all refrangibilities between certain limits on either
side. . . 2. We have reason to think that as the temperature
rises, the spectrum of a black substance is extended in the
direction of greatest refrangibility, so as to embrace more
and more of the violet and photographic rays” [49; p.231].
Stewart goes on to discuss thin plates of glass and explains
how they cannot be compared to lampblack, as their radia-
tion with increasing temperature will be substantially differ-
ent [49; p. 232].

It is clear that if scientists of the period coated the walls
of their enclosure with lampblack, that emission would be
independent of the nature of the walls themselves, precisely
because lampblack was coating these walls. After all, Stew-
art fully realizes that silver, for instance, has a total emission
much below lampblack [49; pp. 201–206]. Stewart used an
enclosure coated with lampblack to arrive at the following
laws: “1. The stream of radiant heat is the same through-
out, both in quantity and quality; and while it depends on
the temperature it is entirely independent of the materials or
shape of the enclosure. 2. This stream is unpolarized. 3.
The absorption of a surface in such an enclosure is equal
to its radiation and this holds for every kind of heat” [49;
p. 206]. That is how the concept of independence of the na-
ture of the walls entered the literature. Nothing, in fact, was
independent. The walls were simply coated with lampblack
[49; pp. 201–206]. This was such an obvious part of these ex-
periments, during the 19th century, that it is likely that most
scientists, unlike Balfour Stewart, simply neglected to report
their common practice. As a result, future generations who
followed the theoretical avenues of Kirchhoff, actually came
to believe that the nature of the walls was unimportant and
the vital role of the soot coating was forgotten.

Stewart’s law stated that absorption was equal to radiation
for every kind of heat [26, 49, 76, 82]. This was true under
equilibrium conditions. However, Kirchhoff objected [81] to
this formulation by Stewart [26], since he believed that Stew-
art had inappropriately extended the results of his experimen-
tal finding to include equality whereas proportionality was all
that had been proven [76, 81]. In any event, the fact remains
that Stewart’s conclusion [26, 49, 82], not Kirchhoff’s [20–
22], was correct. It alone was supported by the experimental

findings and, unlike Kirchhoff’s law [20–22], made no claims
of universality [76].

The central portion of Stewart’s proof considers a con-
tinuous plate of rock salt positioned between two plates cov-
ered with lampblack [26; §12]. The idea is both simple and
powerful. Stewart immediately reaches the result that “the
absorption of a plate equals, its radiation, and that for ev-
ery description of heat” [26; §19]. Then, Stewart considers
radiation internal to a substance: “Let AB, and BC be two
contiguous, equal, and similar plates in the interior of a sub-
stance of indefinite extent, kept at a uniform temperature” [26;
§20]. Stewart is invoking the same restriction found for ther-
mal equilibrium with an enclosure. However, he moves to
the interior of a body, apparently in order to avoid dealing
with surface reflection [82]. Seigel [76] highlights this point.
Kirchhoff believes that Stewart has not properly treated the
enclosure [81]. The point is weak as Stewart’s entire treat-
ment is based on the ideas of Prévost [55–57].

Stewart is clearly working within the confines of Prévost’s
Theory of Exchanges [26, 56–58]. Considering the equilib-
rium between lampblack and an arbitrary surface at thermal
equilibrium, he writes “. . . hence the total quantity of heat ra-
diated and reflected which leaves the surface. . . (is) the same
as if the substance had been lampblack, the only difference
being, that, in the case of lampblack, all this heat is radiated,
whereas in other substances only part is radiated, the remain-
der being reflected heat” [26; §31]. He continues: “Although
we have considered only one particular case, yet this is quite
sufficient to make the general principle plain. Let us sup-
pose we have an enclosure whose walls are of any shape, or
any variety of substances (all at a uniform temperature), the
normal or statical condition will be, that the heat radiated
and reflected together, which leaves any portion of the sur-
face, shall be equal to the radiated heat which would have
left that same portion of the surface, if it had been composed
of lampblack. . . Let us suppose, for instance, that the walls of
this enclosure were of polished metal, then only a very small
quantity of heat would be radiated; but this heat would be
bandied backwards and forwards between the surfaces, until
the total amount of radiated and reflected heat together be-
came equal to the radiation of lampblack” [26; §32]. These
passages are quite similar to Kirchhoff‘s with the distinction
that universality is never invoked. Stewart realizes that the
lampblack surface within the enclosure is essential.

Stewart’s manner of addressing the problem is lacking, as
Siegel highlights [76], especially for Kirchhoff [81]. A re-
view of this work [76] provides a sufficient discussion. Stew-
art advances an initial attempt at the correct solution to the
radiation puzzle, but the presentation was not sufficient, at
least for his adversary. Surprisingly, in his Reply to Kirchhoff

in 1863, Stewart seems embarrassed [76] relative to reflec-
tion writing: “I shall only add that it was attempted, as far as
possible, to disengage the proof, theoretical and experimen-
tal, from the embarrassment of considering surface reflexion”
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[82]. If reflection is neglected, however, almost by definition,
the radiation must be black [25]. Consequently, all attempts
to address the issue devoid of surface reflection can never
yield the proper conclusion relative to the existence of uni-
versality. Stewart reaches the proper answer because he does
include reflection in his papers [26, 83] and within his Trea-
tise [49]. Within an enclosure containing a lampblack surface
and another object, he reminds us that “the reflection plus the
radiation of the body at any temperature equals the lampblack
radiation at that temperature” [83; §44]. The proper consid-
eration of reflection is key [25] and though Stewart may have
had weaknesses in his presentation, he did ascertain the truth.

3.3 Gustav Kirchhoff and his law

It can be said that Kirchhoff’s law of thermal emission [20–
22], through its claims of the universal nature of radiation
within enclosures, represents one of the most profound dis-
missals of experimental science in the history of physics. The
great mass of experimental evidence speaks against univer-
sality of radiation within cavities. Cavity radiation only as-
sumes the normal distribution (i.e. that of the blackbody)
when either the walls of the cavity, or at least one of the ob-
jects it contains, are perfectly absorbing [23, 25]. In fact, the
proof that Kirchhoff’s law does not hold, in its universal form,
does not require extensive mathematical or experimental ar-
guments, only simple ones [23–25].

Schirrmacher [86] emphasizes that, at the time Planck for-
mulated his law, a solid proof of Kirchhoff’s remained absent.
Furthermore, he highlights that, as late as 1912, Hilbert was
arguing that Kirchhoff’s law still lacked proof [86]. Hilbert
makes this statement in spite of Planck’s attempt to prove
the law in his Theory of Heat Radiation [9]. Schirrmacher
also outlines that nearly all attempts to advance universality
were met with a refutation [86; p. 16]. Sadly, these correc-
tions never prevailed.

De la Provostaye was one of the first to offer an analy-
sis of cavity radiation following Kirchhoff, in 1863 [87]. In
his work, de la Provostaye deduces that the radiation within a
perfectly absorbing cavity must be black [87]. He also infers
that a cavity, a portion of whose walls are perfectly absorbing,
and which contains an object of arbitrary emittance and re-
flectance, must also contain normal (or blackbody) radiation
[87]. Like Kirchhoff, he attempts to extend his findings to a
perfectly reflecting cavity. At first, he concedes that a fully re-
flecting cavity must be devoid of radiation. At this point, de la
Provostaye should have ceased as the question was resolved;
but strangely . . . he continues. Prompted perhaps by the quest
for Kirchhoff’s universality [20–22], he permits radiation to
enter the perfectly reflecting cavity and immediately moves to
show that such radiation must be black [87]. As a result, de
la Provostaye stumbles in a manner quite similar to Kirchhoff

and his paper does not, in fact, form a refutation of Kirch-
hoff’s law [87]. De la Provostaye simply objected that Kirch-

hoff, by introducing perfect reflectors, essentially dictated the
result which he sought [86].

De la Provostaye’s analysis of cavity radiation is particu-
larly important, because he was an expert in the subject. He
had dealt with enclosures on an experimental basis and must
have known from the work of his own hands, that Kirchhoff’s
law could not hold, in its universal form. This is why he
presents the second case discussed above where at least a por-
tion of the cavity walls remained perfectly absorbing. De la
Provostaye did overreach in his conclusions [87] in a manner
not dissimilar from Kirchhoff [20–22].

In any event, de la Provostaye’s theoretical objections rel-
ative to the absence of a perfectly reflecting mirror was not the
central problem for Kirchhoff [25]. While many followed de
la Provostaye’s initial objection, refutations always seemed
to be based on arguments such as perfectly reflecting mirrors
do not exist, neither do perfectly diathermanous (or transpar-
ent) bodies, or bodies which can only absorb one wavelength.
Such idealized substances are utilized in various proofs of
Kirchhoff’s law [86]. Unfortunately, since Kirchhoff’s law
is based on a theoretical extension of experimental reality, the
fact that idealized objects do not exist is not sufficient to over-
turn Kirchhoff’s position [25]. Hence, the law has prevailed,
even though experimental reality is well established against
its claims as de la Provostaye and Stewart must have realized.

The only way to refute Kirchhoff’s law is to show that
some section of its treatment either fails to consider an essen-
tial aspect of physical reality or that, through its derivation,
Kirchhoff himself violates the thermal equilibrium, which he
required as a precondition [25]. Both of these complications
have been brought to the forefront [25]. Kirchhoff’s law is
not valid for two reasons: first, the importance of reflection
is not properly included and second, Kirchhoff’s model gives
rise, under certain conditions, to a violation of thermal equi-
librium [25].

Physics is in a difficult position relative to Kirchhoff’s
law, since the modern relationship between radiation and ab-
sorption, under equilibrium conditions, is based upon this
work. At the same time, Kirchhoff’s claims of universality
given enclosure are strictly invalid [25]. A perfect absorber
must be present. The only means of rectifying this situation
is to finally acknowledge the merit of Stewart’s contributions
[26, 49, 83].

3.4 Max Planck and cavity radiation
3.4.1 Whence the carbon particle

In the first preface of his book The Theory of Heat Radia-
tion Planck mentions that he has “deviated frequently from
the customary methods of treatment, wherever the matter
presented or considerations regarding the form of presenta-
tion seems to call for it, especially in deriving Kirchhoff’s
laws. . . ” [9; p. xi]. Yet, when one reads Planck’s text, the
precise nature of the deviations cannot be ascertained and the
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origin of the carbon particle remains a mystery. Since the
exposition deals with Kirchhoff, one could be led to assume
that the idea came from Kirchhoff [23]. Planck, after all, was
a strict theoretician. He relied on experimentalists to give him
insight in the particle used for the generation of blackbody ra-
diation. Still, we are never told specifically that Kirchhoff in-
voked the carbon particle [23]. It is certain that, at the time of
Kirchhoff, virtually all blackbodies were covered with lamp-
black. Hence, radiation in a cavity whose inner walls were
coated with lampblack would have been observed to be inde-
pendent of the nature of the walls. This simple observation
may well have prompted Kirchhoff and Planck to reach for
physically profound statements relative to universality while
minimizing the role of soot.

The origin of the carbon particle is surely of historical in-
terest. However, with regards to physics, its existence causes
concern, not its historical origin. How a particle of carbon en-
tered the perfectly reflecting cavity and involved the actions
of Kirchhoff, Planck, or another scientist, alters nothing rel-
ative to the consequences for universality [23]. What remain
critical are Kirchhoff’s claims that blackbody radiation was
independent of the nature of the walls of the cavity, whether
these were absorbing, transparent or reflecting to radiation,
provided that thermal equilibrium was maintained [21, 22].
Planck’s invocation of the carbon particle [9] shatters all these
arguments [23, 25] and, as such, it is important to repeat the
many words of Planck relative to the need for a tiny piece of
carbon.

We begin by recalling how Planck himself was well aware
that real blackbodies are formed using lampblack. Nothing
here is independent of the nature of the walls: “Now, since
smooth non-reflecting surfaces do not exist . . . it follows that
all approximately black surfaces which may be realized in
practice (lampblack, platinum black). . . ” [9; §11]. Rela-
tive to the carbon particle itself, the first key passages come
at the end of Part I: “Thus far all the laws derived in the
preceding sections for diathermanous media hold for a def-
inite frequency, and it is to be kept in mind that a substance
may be diathermanous for one color and adiathermanous for
another. Hence the radiation of a medium completely en-
closed by absolutely reflecting walls is, when thermodynamic
equilibrium has been established for all colors for which the
medium has a finite coefficient of absorption, always the sta-
ble radiation corresponding to the temperature of the medium
such as is represented by the emission of a black body. Hence
this is briefly called “black” radiation. On the other hand, the
intensity of colors for which the medium is diathermanous is
not necessarily the stable black radiation, unless the medium
is in a state of stationary exchange of radiation with an ab-
sorbing substance” [9; §50]. Planck recognizes that the pres-
ence of a perfectly absorbing substance is required within
the perfect reflector. If this condition is not fulfilled, Planck
reminds us immediately that: “. . . in a vacuum bounded by
totally reflecting walls any state of radiation may persist”

[9; §51]. As such, Planck is fully aware that the perfect reflec-
tor can never produce blackbody radiation in the absence of
a perfect absorber. It is not simply a matter of waiting a suf-
ficient amount of time, but rather, the radiation will persist in
a non-blackbody or arbitrary state. He re-emphasizes this as-
pect clearly “Every state of radiation brought about by such
a process is perfectly stationary and can continue infinitely
long, subject, however, to the condition that no trace of an
emitting or absorbing substance exists in the radiation space.
For otherwise, according to Sec. 51, the distribution of en-
ergy would, in the course of time, change through the releas-
ing action of the substance irreversibly, i.e., with an increase
of the total entropy, into the stable distribution corresponding
to black radiation” [9; §91].

Planck soon brings the carbon particle front and center:
“But as soon as an arbitrarily small quantity of matter is in-
troduced into the vacuum, a stationary state of radiation is
gradually established. In this the radiation of every color
which is appreciably absorbed by the substance has intensity
K� corresponding to the temperature of the substance and
determined by the universal function (42) for q= c, the inten-
sity of radiation of the other colors remaining intermediate. If
the substance introduced is not diathermanous for any color,
e.g., a piece of carbon however small, there exists at the sta-
tionary state of radiation in the whole vacuum for all colors
the intensity K� of black radiation corresponding to the tem-
perature of the substance. The magnitude of K� regarded as
a function of � gives the spectral distribution of black radi-
ation in a vacuum, or the so-called normal energy spectrum,
which depends on nothing but the temperature. In the normal
spectrum, since it is the spectrum of emission of a black body,
the intensity of radiation of every color is the largest which a
body can emit at that temperature at all” [9; §51].

“It is therefore possible to change a perfectly arbitrary
radiation, which exists at the start in the evacuated cavity
with perfectly reflecting walls under consideration, into black
radiation by the introduction of a minute particle of carbon.
The characteristic feature of this process is that the heat of the
carbon particle may be just as small as we please, compared
with the energy of radiation contained in the cavity of arbi-
trary magnitude. Hence, according to the principle of con-
servation of energy, the total energy of radiation remains es-
sentially constant during the change that takes place, because
the changes in the heat of the carbon particle may be entire
neglected, even if its changes in temperature would be finite.
Herein the carbon particle exerts only a releasing (auslösend)
action. Thereafter the intensities of the pencils of different
frequencies originally present and having different frequen-
cies, directions, and different states of polarization change at
the expense of one another, corresponding to the passage of
the system from a less to a more stable state of radiation or
from a state of smaller to a state of larger entropy. From a
thermodynamic point of view this process is perfectly analo-
gous, since the time necessary for the process is not essential,
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to the change produced by a minute spark in a quantity of
oxy-hydrogen gas or by a small drop of liquid in a quantity
of supersaturated vapor. In all these cases the magnitude of
the disturbance is exceedingly small and cannot be compared
with the magnitude of the energies undergoing the resultant
changes, so that in applying the two principles of thermody-
namics the cause of the disturbance of equilibrium, viz., the
carbon particle, the spark, or the drop, need not be consid-
ered. It is always a case of a system passing from a more or
less unstable into a more stable state, wherein, according to
the first principle of thermodynamics, the energy of the sys-
tem remains constant, and, according to the second principle,
the entropy of the system increases” [9; §52]. Planck views
the carbon particle simply as a catalyst. He does not recog-
nize that it has a vital function as a perfect absorber. This is
a critical oversight, as demonstrated in my review of thermal
equilibrium within a perfectly reflecting cavity containing a
carbon particle [25].

Planck invokes the carbon particle repeatedly throughout
his text. This issue is so central to the discussion at hand
that all these sections must be brought forth. He writes: “For
the following we imagine a perfectly evacuated hollow cylin-
der with an absolutely tight-fitting piston free to move in a
vertical direction with no friction. A part of the walls of the
cylinder, say the rigid bottom, should consist of a black body,
which temperature T may be regulated arbitrarily from the
outside. The rest of the walls including the inner surface of
the piston may be assumed to be totally reflecting. Then, if the
piston remains stationary and the temperature, T , constant,
the radiation in the vacuum will, after a certain time, assume
the character of black radiation (Sec. 50) uniform in all di-
rections. The specific intensity, K, and the volume density, u,
depend only on the temperature, T , and are independent of
the volume, V , of the vacuum and hence the position of the
piston” [9; §61].

“Let us also consider a reversible adiabatic process. For
this it is necessary not merely that the piston and the mantle
but also that the bottom of the cylinder be assumed as com-
pletely reflecting, e.g., as white. Then the heat furnished on
compression or expansion of the volume of radiation isQ= 0
and the energy of radiation changes only by the value pdV of
the external work. To insure, however, that in a finite adia-
batic process the radiation shall be perfectly stable at every
instant, i.e., shall have the character of black radiation, we
may assume that inside the evacuated cavity there is a car-
bon particle of minute size. This particle, which may be as-
sumed to possess an absorbing power differing from zero for
all kinds of rays, serves merely to produce stable equilibrium
of the radiation in the cavity (Sec. 51 et seq.) and thereby to
ensure the reversibility of the process, while its heat contents
may be taken as so small compared with the energy of radi-
ation, U , that the addition of heat required for an apprecia-
ble temperature change of the particle is perfectly negligible.
Then at every instant in the process there exists absolutely

stable equilibrium of radiation and the radiation has the tem-
perature of the particle in the cavity. The volume, energy, and
entropy of the particle may be entirely neglected” [9; §68].

“Let us finally, as a further example, consider a simple
case of an irreversible process. Let the cavity of volume V,
which is elsewhere enclosed by absolutely reflecting walls,
be uniformly filled with black radiation. Now let us make a
small hole through any part of the walls, e.g., by opening of a
stopcock, so that the radiation may escape into another com-
pletely evacuated space, which may also be surrounded by
rigid, absolutely reflecting walls. The radiation will at first
be of a very irregular character; after some time, however,
it will assume a stationary condition and will fill both com-
municating spaces uniformly, its total volume being, say, V 0.
The presence of a carbon particle will cause all conditions of
black radiation to be satisfied in the new state” [9; §69].

“If the process of irreversible adiabatic expansion of the
radiation from the volume V to the volume V 0 takes place as
just described with the single difference that there is no car-
bon particle present in the vacuum, after the stationary state
of radiation is established, as will be the case after a certain
time on account of the diffuse reflection from the walls of the
cavity, the radiation in the new volume V 0 will not any longer
have the character of black radiation, and hence no definite
temperature . . . If a carbon particle is afterwards introduced
into the vacuum, absolutely stable equilibrium is established
by a second irreversible process, and, the total energy as well
as the total volume remaining constant, the radiation assumes
the normal energy distribution of black radiation and the en-
tropy increases to the maximum value S0. . . ” [9; §70].

“Hence, on subsequent introduction of a carbon particle
into the cavity, a finite change of the distribution of energy is
obtained, and simultaneously the entropy increases further to
the value S0 calculated in (82)” [9; §103].

Throughout The Theory of Heat Radiation, Planck in-
vokes the carbon particle as a vital determinant of blackbody
radiation. Only in the section of the derivation of Wien’s law
does he try to minimize the importance of his catalyst. How-
ever, in this case, the derivation starts with the presence of
a blackbody spectrum a priori. One could argue that Planck
goes through great pains to explain that he does not need the
particle when, in fact, he has already invoked it to produce
the radiation he requires as a starting point. The discussion
is well worth reading precisely for the number of times that
the carbon particle is utilized: “The starting point of Wien’s
displacement law is the following theorem. If the black radia-
tion contained in a perfectly evacuated cavity with absolutely
reflecting walls is compressed or expanded adiabatically and
infinitely slowly, as described above in Sec. 68, the radiation
always retains the character of black radiation, even without
the presence of a carbon particle. Hence the process takes
place in an absolute vacuum just as was calculated in Sec. 68
and the introduction, as a precaution, of a carbon particle is
shown to be superfluous. But this is true only in this special
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case, not at all in the case described in Sec. 70. . . ” [9; §71].
“Let the completely evacuated hollow cylinder, which is at

the start filled with black radiation, be compressed adiabat-
ically and infinitely slowly to a finite fraction of the original
volume. If, now, the compression being completed, the ra-
diation were no longer black, there would be no stable ther-
modynamic equilibrium of the radiation (Sec. 51). It would
then be possible to produce a finite change at constant volume
and constant total energy of radiation, namely, the change to
the absolutely stable state of radiation, which would cause
a finite increase of entropy. This change could be brought
about by the introduction of a carbon particle, containing a
negligible amount of heat as compared with the energy of ra-
diation. This change, of course, refers only to the spectral
density of the radiation uv , whereas the total density of the
energy u remains constant. After this has been accomplished,
we could, leaving the carbon particle in the space, allow the
cylinder to return adiabatically and infinitely slowly to its
original volume and then remove the carbon particle. The
system will then have passed through a cycle without any ex-
ternal changes remaining. For heat has been neither added
nor removed, and the mechanical work done on compression
has been regained on expansion, because the latter, like the
radiation pressure, depends only on the total density u of the
energy of radiation, not on its spectral distribution. There-
fore, according to the first principle of thermodynamics, the
total energy of radiation is at the end just the same as at the
beginning, and hence also the temperature of the black radia-
tion is again the same. The carbon particle and its changes do
not enter into the calculation, for its energy and entropy are
vanishingly small compared with the corresponding quanti-
ties of the system. The process has therefore been reversed in
all details; it may be repeated any number of times without
any permanent change occurring in nature. This contradicts
the assumption, made above, that a finite increase in entropy
occurs; for such a finite increase, once having taken place,
cannot in any way be completely reversed. Therefore no finite
increase in entropy can have been produced by the introduc-
tion of the carbon particle in the space of radiation, but the
radiation was, before the introduction and always, in the state
of stable equilibrium” [9; §71].

In reading these sections, it is almost as if Planck has en-
tered into a duel with the carbon particle. He tries to mini-
mize its role, even though it is strictly necessary to his suc-
cess. In any event, as I have shown [25], when Planck (or
Kirchhoff) places the carbon particle inside the perfectly re-
flecting cavity, it is as if the entire cavity had been lined with
soot [23]. Thermal equilibrium arguments are powerful, and
one of their interesting aspects is that equilibrium does not
depend on the extent of the interacting surfaces. This affects
only the amount of time required to reach equilibrium, not the
nature of the radiation present under equilibrium conditions.
Planck’s catalyst is a perfect absorber, and therefore, given
equilibrium, it controls the entire situation. The carbon parti-

cle does not simply lead to a distribution of radiation which
would have occurred even in its absence.

3.4.2 Planck’s derivation of Kirchhoff’s law

Planck’s derivation of Kirchhoff’s law, as presented in
The Theory of Heat Radiation [9; pp. 1–45], brings the reader
to universality, precisely because reflection is not fully con-
sidered. Planck’s exposition is elegant and involves two dis-
tinct parts. The first deals with radiation within an object [9;
§4–26] and is eerily similar to Stewart’s formulation [26, 82].
The second examines radiation between “two different ho-
mogeneous isotropic substances contiguous to each other . . .
and enclosed in a rigid cover impermeable to heat” [9; §35–
39]. By combining these two parts, Planck arrives at a rela-
tionship which is independent of the nature of the materials
in a manner consistent with his belief in universality.

A cursory examination of this derivation [9; pp. 1–45],
suggests that universality must be valid. Planck seems to
properly include reflection, at least when discussing the inter-
face between two separate materials [9; §35–39]. He arrives
with ease at Kirchhoff’s law, q2("�=��) = q2K� , [9; Eq. 42],
involving the square of the velocity of propagation, q, the co-
efficient of emission, "� , the coefficient of absorption, �� ,
and the universal function, K� . This relationship simplifies
to the familiar form "�=�� = K� . The Theory of Heat Ra-
diation focuses, later, on the definition of the universal func-
tion, which of course, is the right side of Planck’s famous
equation [1, 2]:

"�
��

=
2h�3

c2
1

eh�=kT � 1
:

Unfortunately, there is a difficulty at the very beginning
of the Planck’s elucidation of Kirchhoff’s law.

In order to arrive at universality [20–22], Planck first ex-
amines the equilibrium of radiation within an object. He be-
gins by considering only the emission from a single element
d� internal to the object and in so doing, is deliberately ig-
noring reflection. Planck writes, in deriving Eq. (1), that the
“total energy in a range of frequency from � to �+ d� emit-
ted in the time dt in the direction of the conical element d
 by
a volume element d�” [9; §6] is equal to dtd� d
d�2"� . This
will lead directly to Kirchhoff’s law. If Planck had properly
weighed that the total radiation coming from the element d�
was equal to the sum of its emission and reflection, he would
have started with dtd� d
d�2("� + ��), which would not
lead to universality.

Planck moves on to examine absorption, by imagining
two elements d� and d�0 which are exchanging radiation
within the same substance [9; §20]. Finally, he views the
total “space density of radiation” in a sphere at the center
of which is a volume element, �, receiving radiation from a
small surface element, d� [9; §22]. In the end, by combining
his results for emission and absorption, Planck demonstrates
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that within an individual substance, K� = "�=�� . He writes
the powerful conclusion that “in the interior of a medium in
a state of thermodynamic equilibrium the specific intensity
of radiation of a certain frequency is equal to the coefficient
of emission divided by the coefficient of absorption of the
medium for this frequency” [9; §26]. This was the flaw in his
presentation. Had Planck fully included reflection, he would
have obtained K� = ("� + ��)=(�� + ��).

Yet, this is only the first portion of Planck’s walk to uni-
versality. In order to extend his deduction to all substances,
he must first bring two differing materials in contact with one
another. He accomplishes this correctly in §35–38. Properly
treating reflection in this case, he is led, as was seen above,
to q2("�=��) = q2K� [9; §38], a statement of universality.
The equation becomes completely independent of the nature
of the substance. But if Planck had properly executed the first
portion of his proof [9; §1–26], he would have been led, for
every substance, once again to K� = ("� + ��)=(�� + ��).

In hindsight, there are many problems with Planck’s
derivation. In the first section of his proof, he moves to the
inside of an object. He advances that thermal equilibrium
is achieved internally, not through conduction and the vibra-
tion of atoms, but rather through radiation. While it is true,
as Planck believes, that in a state of thermal equilibrium there
can be no net conduction, it cannot be said that there can be no
conduction. In fact, modern condensed matter physics would
surely argue that thermal equilibrium within objects is sus-
tained through conduction, not radiation. Planck like Stewart
before him [26, 76, 82] invokes internal radiation as a central
component of his proof. He does so precisely to avoid deal-
ing with reflection. He assumes that the volume elements d� ,
d� and d�0 can sustain only emission, not reflection. In so
doing, he predetermines the outcome he seeks, beginning as
we have seen with his equation (1) [9; §6].

3.5 Graphite, carbon-black, and the modern age

Graphite and soot, whose commercial forms include carbon
black [88] and black carbon [89], continue to be at the center
of nearly all blackbody experiments conducted by the Na-
tional Bureau of Standards and other laboratories. None-
theless, certain metal blacks [88], namely platinum black and
gold black [90–92], have a narrow range of uses as absorbers,
especially at long wavelengths. Platinum black is usually pre-
pared by electroplating the surface with platinum. Gold black
is particularly interesting as a material. It is produced, by va-
porizing the metal onto a substrate until thin gold films are
generated. In this sense, the conductivity of gold is being
structurally limited and the resulting material is black. In the
end, the metal blacks are used primarily in the infrared, and
their applications, while important, even in the days following
Planck, are somewhat limited.

It remains the overwhelming case that the walls of many
cavities are still made from graphite [93–97]. However, if

they are made of alternate materials (i.e. brass [98], copper
[99], clay [93]), they are either blackened, or smoked with
soot [98], or they are covered with black paint [93, 96, 98–
104]. Some of these paints have proprietary contents. None-
theless, it is relatively certain that they all contain the carbon
black pigment [105, 106]. For instance, the author has been
able to verify that Aeroglaze Z306 and Z302 both contain
carbon black (private communication, Robert Hetzell, Lord
Corporation, Erie, PA). The same can be ascertained relative
to Nextel Velvet coating P/N101-C10 black. It is true that
carbon black, with its extremely high carbon content remains
the premium black pigment [105]. Graphite and soot (carbon
black, black carbon) continue to absolutely dominate all work
with experimental blackbodies.

Even fixed point blackbodies [95] which operate at the
freezing points of elements such as gold [95], aluminum,
zinc, and tin [100] rely either on graphite [107] walls or cav-
ities coated with black paints. In these fixed point black-
bodies, the metal freezing/melting point ensures that the en-
tire surface of the emitter can be temporarily maintained at a
unique temperature. Interestingly, the metals themselves ap-
pear to be relatively innocuous or transparent to emission by
the graphitic, or carbon lined, surfaces of the cavity.

There are restrictions on the quality of freezing point
blackbody cavities, and these have been outlined by Geist
[108]: “How well the actual radiance approaches the ideal
radiance in a given blackbody is often referred to in a qual-
itative manner as the quality of the blackbody...The princi-
ple restriction on the concept of quality...is that it can only
be defined for radiation from blackbodies with wall materi-
als whose thermal radiative parameters are independent of
wavelength. One important class of freezing point blackbody
for which this is not a serious restriction is the class whose
cavity walls are constructed from graphite.” A mathematical
treatment of laboratory blackbodies reveals that the produc-
tion of a cavity whose performance will yield a high quality
blackbody is not a trivial task [109].

In any event, it remains clear that whether a blackbody is
designed to operate at the freezing point of an element or not,
graphite [31, 107], or soot (carbon black [105, 106], or black
carbon [89]) continue to dominate this field.

4 Conclusion

Through the exposition of Kirchhoff’s law, we have been able
to highlight that universality does not hold in cavity radiation.
The great bulk of experimental evidence leads to this con-
clusion. Indeed, if blackbody radiation was universal, there
would be no need for the National Bureau of Standards to uti-
lize graphite or soot in order to study such processes. The ab-
sence of cavities made of arbitrary walls (without any trace of
a perfect absorber) is the best physical proof that universality
does not hold. Our laboratories require carbon. Nothing fur-
ther is needed to shatter Kirchhoff’s belief. Nonetheless, even

50 Pierre-Marie Robitaille. Blackbody Radiation and the Carbon Particle



July, 2008 PROGRESS IN PHYSICS Volume 3

the simplest of mathematical considerations suffices to illus-
trate the point [25]. Perfectly reflecting cavities, containing
no objects, emit no radiation [25]. Perfectly reflecting cavi-
ties which contain objects emit radiation which is character-
istic of these objects [25]. Thus, if a carbon particle is placed
within a perfectly reflecting cavity, the cavity will be black,
irrespective of the size of the particle. This is a testament to
the power of thermal equilibrium; but if the particle is small,
it may take some time to reach this equilibrium. Perfectly
absorbing cavities emit normal, or blackbody radiation [23,
25]. In such a cavity, the proper description of the radiation
from an arbitrary object is ("� + ��)=(�� + ��) = f(T; �)
[25]. This equation echoes Stewart [26, 49, 82]. Conversely,
Kirchhoff incorrectly advanced "�=�� = f(T; �), leading to
universality [20–22].

Consequently, when examining blackbody radiation, we
are not dealing with a phenomenon of universal significance.
Rather, we are dealing with a physical process which is ex-
tremely limited in its applications. Blackbodies are made of
solids, and specifically relative to practical blackbodies, they
are made of graphite. Nature knows no equivalent as is well
demonstrated by the review of thermal emissivity tables [31].
Yet, even in the case of radiation from graphite, the physical
cause of the process remains remarkably unknown to modern
science. The physical species producing blackbody emission
has not been concretely identified [19, 23].

If Planck’s law [1, 2] has not been linked to a physical
species, it is in part certain that the formulation of Kirch-
hoff’s law [20–22], in its creation of universality, hindered
the process. At the same time, there is a fundamental
difficulty in providing a complete physical picture relative to
thermal emission. This is because the nature of the oscilla-
tors, at the heart of thermal radiation, can change depend-
ing on the physical nature of the material being examined.
The thermal emission profiles of metals are highly affected
by their conduction electrons, at least in the sense that their
presence acts to prevent emission and favor reflection. For
each opaque material, a unique emission profile exists [31]
and the answer to these problems will most likely involve
the use of computational tools, not simple algebraic solutions.
It may well be that entire lattices will have to be represented
and processed in digital forms, in order to yield meaningful
results. Yet, some thermal emission profiles, which provide
Planck-like behavior, such as graphite, the microwave back-
ground (only apparent Planckian behavior), and the emission
of the photosphere (only apparent Planckian behavior), may
be capable of being solved analytically. A solution for one of
these is likely to have broad implications for the others. At
the same time, only graphite will remain truly Planckian in
nature, as it is the only one restricted to a solid. The mi-
crowave background and the photosphere produce only
apparent Planckian spectra. Since their physical sources are
not solids, their relevant internal bonds (if any) are weak, and
they support convection processes which alter the validity of

the temperatures they report [33].
For graphite or soot

"�
��
� 2h�3

c2
1

eh�=kT � 1
as Planck derived [1, 2]. Conversely, for the Sun and the
microwave background, we can write that

"�
��
� 2h�3

c2
1

eh�=kTapp � 1
;

where Tapp is constant. Tapp =T=�, where T is the real tem-
perature of the source and � is a variable, with temperature
dependence, whose value is �1,000 for the photosphere and
�100 for the microwave background [33]. Thus, the real tem-
perature of the photosphere is �1,000 times higher than the
currently accepted temperature [34, 35]. Similarly, the tem-
perature for the source of the microwave background is�100
times higher than the measured value [33, 39, 40]. These
complications arise because we are dealing with non-solids
outside the confines of enclosure [23, 33].

If a Planckian approach is used to analyze graphite, the
carbon nucleus can be viewed as the mass and the carbon-
carbon bond as the spring in an oscillator scenario [1, 2].
If the microwave background is confirmed to be from an
oceanic source [33, 36–42], then the oscillators might be en-
tire water molecules, linked through weak hydrogen bond-
ing, vibrating within a fleeting lattice. In this regard, it re-
mains interesting that water can become completely black.
This occurs, for instance, when shock waves from nuclear
explosions propagate in the sea. For the photosphere, if a
hydrogen-based condensed Sun is contemplated [34, 35], the
vibration of protons within a fleeting lattice field will have to
be considered. In this case, the electrons might simply oc-
cupy conduction bands. Nonetheless, the nuclei should be
viewed as being confined to a distinct condensed structure
which, though fleeting, is being maintained, perhaps only by
the need to sustain the quantum mechanical requirements to
produce the conduction bands. Physicists versed in the prop-
erties of condensed liquid metallic hydrogen might consider
these questions. Only the future can reveal how mankind
moves forward on linking a given physical species to a center
of emission.

With the loss of the universal function, the proper treat-
ment of materials will involve the long recognized fact that
the ratio of the emission, e, of an object to its absorption,
a, is equal to a complex function dependent on its temper-
ature, T , its nature, N , (its shape, the roughness of its sur-
face, its specific heat, etc.), and the wavelengths of inter-
est, namely e=a= f(T;N; �). Also, e and a, individually,
are functions of these parameters, otherwise, as Agassi high-
lights [30], spectroscopy would be impossible. The afore-
mentioned equation can be simplified to Kirchhoff’s formu-
lation e=a= f(T; �) only within a perfectly absorbing enclo-
sure or within an enclosure where a perfect absorber is also
present. In all these cases, the object never truly becomes a
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blackbody. Along with its own emission, it simply reflects
radiation in the cavity and appears to hold blackbody proper-
ties. It is difficult to envision how this scenario is of any use
in modern physics.

The physics community has persisted in upholding Kirch-
hoff’s law of thermal emission even though it has been refuted
both recently [23–25] and in the past (see [86] for a discussion
of the controversy surrounding Kirchhoff’s law). This has
occurred despite the fact that graphite and soot are uniquely
positioned in all blackbody work with cavities. Nonetheless,
some of this hesitance may be due to a certain respect, even
reverence, for Kirchhoff and his work. In part, there is also
the proximity to Planck himself. Such concerns are unjus-
tified, in that even if Kirchhoff’s law loses its universal sta-
tus, nothing changes relative to Planck’s derivation. Planck’s
law [1, 2] simply becomes devoid of universal significance. It
maintains its value relative to the treatment of radiation within
perfectly absorbing enclosures and within perfectly reflect-
ing enclosures which contain a perfect absorber. Of course,
Planck’s equation will no longer extend to simple perfectly
reflecting enclosures.

At the same time, the merit of k and h, at the heart of
Planck’s law, is not altered. The great changes simply in-
volve the interdict of extending the laws of thermal emis-
sion [1, 2, 110, 111], without modification, to objects which
are not solids [33–42] or enclosed within perfectly absorbing
cavities [23–25].

Despite these facts, it may well be that physics remains
unwilling to pronounce itself relative to the invalidity of
Kirchhoff’s treatment until the consequences of the error be-
come so great that society demands retraction. The reassign-
ment of the microwave background to the Earth [33, 36–42]
should eventually provide sufficient motivation to act. On that
day, a new age in astrophysics will spring forth [34, 35] and
we may finally begin to write the long-awaited ode to Balfour
Stewart.
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The rôle of the element rhodium as an independent affirmation of calculations by the
Hyperbolic Law and validity of all its relations is shown herein. The deviation in cal-
culation by this method of the atomic mass of heaviest element is 0.0024%, and its
coefficient of scaling 0.001–0.005%.

1 Introduction

The method of rectangular hyperbolas assumes that their
peaks (i.e. vertices) should be determine with high accuracy.
For this purpose the theorem of Lagrange and the coefficient
of scaling calculated by the Author for transition from the
system of coordinates of the image of a hyperbola, standard
practice of the mathematician, and used in chemistry, are uti-
lized. Such an approach provides a means for calculating the
parameters of the heaviest element in the Periodic Table of
D. I. Mendeleyev [1].

In the first effect of the Hyperbolic Law it is shown that
to each direct hyperbola corresponds an adjacent hyberbola:
they intersect on the line Y = 0.5 at a point the abscissa of
which is twice the atomic mass of an element [2]. This fact is
clearly illustrated for Be, Ca, Cd in Fig. 1.

Upon close examination of the figure deeper relationships
become apparent:
• From the centre of adjacent hyperbolas (X = 0, Y = 1)

the secants have some points of crossing, the principal
of which lie on the line Y = 0.5 and on the virtual axes
(peaks);

• The secants intersect a direct hyperbola in two points,
with gradual reduction of a segment with the increase
in molecular mass;

• Behind the virtual axis of adjacent hyperbolas the se-
cants cut a direct hyperbola in only one point;

• In conformity therewith, the magnitude of the abscissa,
between a secant and a point of intersection of hyper-
bolas on the line Y = 0.5, also changes;

• For the element rhodium the secant becomes a tangent
and also becomes the virtual axis of adjacent hyper-
bolas.

2 Mathematical motivation

On the basis of the presented facts, we have been led to calcu-
lations for 35 elements to establish the laws for the behavior
of secants. The results are presented in the table for the fol-
lowing parameters:

• Atomic numbers of elements and their masses;
• Calculated coordinates of peaks of elements (the square

root of the atomic mass and coefficient of scaling
20.2895 are used);

• Abscissas of secants on the line Y = 0.5 are deduced
from the equation of a straight lines by two points

(X �X1)
(X2 �X1)

=
(Y � Y1)
(Y2 � Y1)

(column 6);

• Points of intersection of direct and adjacent hyperbolas
(column 7);

• Difference between the abscissas in columns 6 and 7
(column 8);

• Tangent of an inclination of a secant from calculations
for column 6.

According to columns 6 and 7 in Fig. 2, dependences
which essentially differ from each other are obtained. Ab-
scissas of secants form a curve of complex form which can
describe with high reliability (size of reliability of approxi-
mation R2 = 1) only a polynomial of the fifth degree. The
second dependency has a strictly linear nature (Y = 2X), and
its straight line is a tangent to a curve at the point (102.9055,
205.811). For clarity the representation of a curve has been
broken into two parts: increases in molecular mass (Fig. 3)
and in return — up to hydrogen, inclusive (Fig. 4).
The strongly pronounced maximum for elements B, C, N, O,
F, Ne is observed.

At the end of this curve there is a very important point at
which the ordinate is equal to zero, where (the line of rhodium
in the table) the data of columns 6 and 7 coincide.

Thus it is unequivocally established that for rhodium the
secant, tangent and the virtual axis for an adjacent hyperbola
are represented by just one line, providing for the first time a
means to the necessary geometrical constructions on the basis
of only its atomic mass (the only one in the Periodic Table),
for the proof of the Hyperbolic Law.

Graphical representation of all reasoning is reflected in
Fig. 5 from which it is plain that the point with coordinates
(205.811, 0.5) is the peak of both hyperbolas, and the peaks
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of Ca and Ta are on both sides of it. Below are the calculations
for the basic lines of rhodium on these data:

1. A secant: —
(X � 0)

(205:811� 0)
=

(Y � 1)
(0:5� 1)

;

whence
Y = �0:0024294134X + 1 :

At Y = 0, X = 411.622; in this case coordinates of
peak will be: X = 205.811, Y = 0.5.

2. A tangent:— the equation of a direct hyperbola,

Y =
102:9055

X
;

its derivative at X = 205.811, so

Y 0 = �102:9055
205:8112 = �0:0024294134 ;

Y � 0:5 = �0:0024294134X + 0:5 :
Finally,

Y = �0:0024294134X + 1 ;
at Y = 0, X = 411:622.

3. A normal: — (the virtual axis),

Y = 0:0024294134X ;

at Y = 1, X = 411:622.

Here are the same calculations for the tabulated data pre-
sented:

1. A secant: —
X

205:82145
=

(Y � 1)
(0:4999746� 1)

;

whence
Y = �0:0024294134X + 1 ;
Y = 1 ; X = 411:622 :

2. A tangent: —

Y =
102:9055

X
;

the fluxion at X = 205:821454,

Y 0 = � 102:9055
205:821452 = �0:0024291667 ;

so

Y � 0:4999746 = �0:0024291667(X � 205:82145) ;

whence

Y = �0:0024291667X + 0:99994928 ;

Y = 0 ; X = 411:6429 :

3. A normal: —

Y = 0:0024291667X ;

Y = 1 ; X = 411:6638 :

3 Comparative analysis calculations

For a secant the results are identical with the first set of cal-
culations above, whereas for a tangent and normal there are
some deviations, close to last element calculated.

By the first set of calculations above its atomic mass is
411.622; hence the deviation is 411.663243 � 411.622 =
= 0.041243 (0.01%). By the second set the size of a tan-
gent and a normal are close to one another (an average of
411.65335) and have a smaller deviation: 411.663243 �
� 411.65335 = 0.009893 (0.0024%). This is due to the tan-
gent of inclination of the virtual axis of a direct hyperbola in
the first set is a little high.

Using rhodium (Fig. 5) we can check the propriety of a
choice of coefficient of scaling. It is necessary to make the
following calculations for this purpose:

• Take the square root of atomic mass of rhodium (X =
=Y = 10.1442348);

• Divide X0 by X of the peak (205.811/10.1442348 =
= 20.2885);

• Divide Y = 10.1442348 by Y0 of the peak (0.5): also
gives 20.2885;

• The difference by X and Y with the coefficient obtain-
ed, 20.2895, yielding the same size at 0.001 or 0.005%.

Formulae for transition from one system of coordinates to
another have been given in the first paper of this series.

Using data for peaks, from the table, we get the following
results:

Coordinates of peak

X0 = 205:8215; Y0 = 0:49997;

X = Y = 10:1442348;
then

X0

X
= 20:2895;

Y
Y0

= 20:2897;

i. e. absolute concurrence (maximum difference of 0.0009%).

4 The rôle of the element Rhodium

However, all these insignificant divergences do not belittle
the most important conclusion: that the validity of the Hy-
perbolic Law is estabished because the data calculated above
completely coincide with calculations for rhodium is proved,
based only on its atomic mass.

All the calculations for the table were necessary in order
to find a zero point for rhodium, for which it is possible to
do so without calculating the secant, but using only its atomic
mass, thereby verifying the Hyperbolic Law.

How to get the correct choice of abscissa of a secant is
depicted in Fig. 6 (using beryllium as an example) where in-
stead of its tabulated value, 35.7434, the value equal to twice
the point of intersection (36.0488) has been used. Here we
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Fig. 1

tried to make a start from any fixed point not calculated (sim-
ilar to the case for rhodium). It has proved to be impossible
and has led to a mistake in the definition of the peak. In Fig. 7
the geometrical constructions for beryllium on the basis of
correct settlement of data are given.

5 Conclusions

Previously we marked complexity of a choice of peak of a hy-
perbola of an element in the coordinates, satisfying the condi-
tions Y 6 1, K 6X , as on an axis of ordinates the maximum
value being a unit whilst the abscissa can take values in the
hundreds of units. The problem has been solved by means
of the theorem of Lagrange and the coefficient of scaling de-
duced. On the basis thereof our further conclusions depended,
so it was very important to find a method not dependent on
our calculations and at the same time allowing unequivocally
to estimate the results. Owing to properties of the virtual axis
of an rectangular hyperbola on which peaks of all elements
lie, it is enough to have one authentic point.

Analyzing the arrangement of the virtual axes of direct
and adjacent hyperbolas, we have paid attention to their point
of intersection (205.83, 0.5), the abscissa of which is exactly
half of atomic mass of the last element. As secants from the
centre X = 0, Y = 1 cut direct hyperbolas any way (Fig. 1),
we have been led to necessary calculations and have obtained
a zero point at which the secant coincides with a tangent and

the valid axis. The divergence with tabular data is in the order
of 0.004%–0.009%.

Thus rhodium provides an independent verification of the
method of rectangular hyperbolas for the Periodic Table of
elements of D. I. Mendeleyev.
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1 2 3 4 5 6 7 8 9

El. No. At. mass X0 peak Y0 peak Abs. secant Cross. hyperb. ∆ = 6�7 tana, secant
H 1 1.0079 20.3695 0.04948 10.715 2.0158 8.6992 �0.046664

He 2 4.0026 40.5992 0.0986 22.5163 8.0052 14.5111 �0.0222

Li 3 6.941 53.4543 0.12985 30.7155 13.882 16.8335 �0.01628

Be 4 9.0122 60.9097 0.14976 35.7434 18.0244 17.719 �0.014

B 5 10.811 66.712 0.162055 39.80692 21.622 18.18492 �0.01256

C 6 12.0107 70.3162 0.1708 42.4 24.0214 18.3786 �0.0117923

N 7 14.0067 75.9345 0.184458 46.5546 28.0134 18.5412 �0.01074

O 8 15.9994 81.1565 0.197143 50.5423 31.9988 18.5435 �0.009893

F 9 18.9984 88.4362 0.21483 56.3163 37.9968 18.3195 �0.008878

Ne 10 20.1797 91.1441 0.2214 58.5311 40.3594 18.1717 �0.0085425

Mg 12 24.305 100.0274 0.242983 66.0669 48.61 17.4569 �0.007568

S 16 32.065 114.89125 0.27909 79.6849 64.13 15.5549 �0.006273

Ca 20 40.078 128.4471 0.31202 93.3508 80.156 13.1948 �0.005356

Cr 24 51.9961 146.3042 0.3554 113.484 103.9922 9.4918 �0.004406

Zn 30 65.409 164.093 0.3986 136.428 130.818 5.61 �0.003665

Br 35 79.904 181.366 0.44057 162.0982 159.808 2.29 �0.003085

Zr 40 91.224 193.7876 0.47074 183.075 182.448 0.627 �0.002731

Mo 42 95.94 198.7336 0.482757 192.1085 191.88 0.2285 �0.002603

Rh 45 102.906 205.82145 0.4999746 205.811 205.811 0 �0.00242941
Cd 48 112.411 215.1175 0.52256 225.26 224.822 0.458 �0.00221946

Ba 56 137.327 237.7658 0.577573 281.428 274.654 6.774 �0.001777

Nd 60 144.242 243.6785 0.591936 298.5785 288.484 10.09455 �0.0016746

Sm 62 150.36 248.7926 0.60436 314.417 300.72 13.7 �0.00159

Dy 66 162.5 258.6414 0.628283 347.9 325 22.9 �0.001437

Yb 70 173.04 266.8976 0.64834 379.48 346.08 33.4 �0.0013176

Hf 72 178.49 271.068 0.65847 396.843 356.98 39.863 �0.00126

Ta 73 180.948 272.928 0.663 404.923 361.896 43.027 �0.0012348

Re 75 186.207 276.8658 0.67255 422.7646 372.414 50.35 �0.0011827

Ir 77 192.217 281.2984 0.68332 444.1376 384.434 59.704 �0.0011258

Hg 80 200.59 287.3598 0.698 475.8318 401.18 74.6518 �0.00105

At 85 210 294.0228 0.71423 514.44 420 94.44 �0.000972

Fr 87 223 302.9868 0.736 573.85 446 127.85 �0.00087

Th 90 232.038 309.0658 0.75077 620.0472 464.07612 155.971 �0.000806

Am 95 243 316.282 0.7683 682.53 486 196.53 �0.0007326

Es 99 252 322.0858 0.7824 740.0874 504 236.0874 �0.0006756

a) columns 4 and 5 contain coordinates of peaks of rectangular hyperbolas of elements;
b) in a column 6 are presented abscissas the secants which are starting with the peak center (0,1) up to crossings

with line Y = 0:5; at prolongation they cross the valid axis in points peaks;
c) in a column 7 are resulted abscissa points of crossing of a direct and adjacent hyperbola each element presented

here;
d) the column 8 contains a difference between sizes of 6 and 7 columns;
e) in a column 9 tangents of a corner of an inclination of secants are resulted; at an element “rhodium” this line

crosses an axis X in a point with abscissa, equal 411.622, and its position coincides with tangent in peak;
411:66� 411:62 = 0:04 or nearly so 0.01% from atomic mass.

Table 1: Results of calculations for some elements of the Periodic Table
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Fig. 2

Fig. 3
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Fig. 4

Fig. 5
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Fig. 6

Fig. 7

62 Albert Khazan. The Rôle of the Element Rhodium in the Hyperbolic Law of the Periodic Table of Elements



July, 2008 PROGRESS IN PHYSICS Volume 3

What Gravity Is. Some Recent Considerations

Vic Christianto� and Florentin Smarandachey
�Sciprint.org — a Free Scientific Electronic Preprint Server, http://www.sciprint.org

E-mail: admin@sciprint.org
yDepartment of Mathematics, University of New Mexico, Gallup, NM 87301, USA

E-mail: smarand@unm.edu

It is well-known, that when it comes to discussions among physicists concerning the
meaning and nature of gravitation, the room temperature can be so hot. Therefore,
for the sake of clarity, it seems worth that all choices were put on a table, and we
consider each choice’s features and problems. The present article describes a non-
exhaustive list of such gravitation theories for the purpose of inviting further and more
clear discussions.

1 Introduction

The present article summarizes a non-exhaustive list of grav-
itation theories for the purpose of inviting further and more
clear discussions. It is well-known, that when it comes to
discussions among physicists concerning the meaning and
nature of gravitation, the room temperature can be so hot.
Therefore, for the sake of clarity, it seems worth that all
choices were put on a table, and we consider each choice’s
features and problems. Of course, our purpose here is not to
say the last word on this interesting issue.

2 Newtonian and non-relativistic approaches

Since the days after Newton physicists argued what is the
meaning of “action at a distance” (Newton term) or “spooky
action” (Einstein term). Is it really possible to imagine how
an apple can move down to Earth without a medium whatso-
ever?

Because of this difficulty, from the viewpoint of natu-
ral philosophy, some physicists maintained (for instance Eu-
ler with his impulsion gravity), that there should be “perva-
sive medium” which can make the attraction force possible.
They call this medium “ether” though some would prefer this
medium more like “fluid” instead of “solid”. Euler himself
seems to suggest that gravitation is some kind of “external
force” acting on a body, instead of intrinsic force:

“gravity of weight: It is a power by which all bodies
are forced towards the centre of the Earth” [3].

But the Michelson-Morley experiment [37] opened the way
for Einstein to postulate that ether hypothesis is not required
at all in order to explain Lorentz’s theorem, which was the
beginning of Special Relativity. But of course, one can ask
whether the Michelson-Morley experiment really excludes
the so-called ether hypothesis. Some experiments after Mi-
chelson seem to indicate that “ether” is not excluded in the
experiment setup, which means that there is Earth absolute
motion [4, 5].

To accept that gravitation is external force instead of in-
trinsic force implies that there is distinction between grav-
itation and inertial forces, which also seem to indicate that
inertial force can be modified externally via electromag-
netic field [6].

The latter notion brings us to long-time discussions in var-
ious physics journals concerning the electromagnetic nature
of gravitation, i.e. whether gravitation pulling force have the
same properties just as electromagnetic field is described by
Maxwell equations. Proponents of this view include Tajmar
and de Matos [7, 8], Sweetser [9]. And recently Rabounski
[10] also suggests similar approach.

Another version of Euler’s hypothesis has emerged in mo-
dern way in the form of recognition that gravitation was car-
ried by a boson field, and therefore gravitation is somehow
related to low-temperature physics (superfluid as boson gas,
superconductivity etc.). The obvious advantage of superfluid-
ity is of course that it remains frictionless and invisible; these
are main features required for true ether medium — i.e. no
resistance will be felt by objects surrounded by the ether, just
like the passenger will not feel anything inside the falling ele-
vator. No wonder it is difficult to measure or detect the ether,
as shown in Michelson-Morley experiment. The superfluid
Bose gas view of gravitation has been discussed in a series of
paper by Consoli et al. [11], and also Volovik [12].

Similarly, gravitation can also be associated to supercon-
ductivity, as shown by de Matos and Beck [29], and also in
Podkletnov’s rotating disc experiment. A few words on Pod-
kletnov’s experiment. Descartes conjectured that there is no
gravitation without rotation motion [30]. And since rotation
can be viewed as solution of Maxwell equations, one can say
that there is no gravitation separated from electromagnetic
field. But if we consider that equations describing supercon-
ductivity can be viewed as mere generalization of Maxwell
equations (London field), then it seems we can find a modern
version of Descartes’ conjecture, i.e. there is no gravitation
without superconductivity rotation. This seems to suggest the
significance of Podkletnov’s experiments [31, 32].
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3 Relativistic gravitation theories

Now we will consider some alternative theories which agree
with both Newton theory and Special Relativity, but differ ei-
ther slightly or strongly to General Relativity. First of all,
Einstein’s own attempt to describe gravitation despite earlier
gravitation theories (such as by Nordstrom [1]) has been in-
spired by his thought-experiment, called the “falling eleva-
tor” experiment. Subsequently he came up with conjecture
that there is proper metric such that a passenger inside the el-
evator will not feel any pulling gravitation force. Therefore
gravitation can be replaced by certain specific-chosen metric.

Now the questions are twofold: (a) whether the proper-
metric to replace gravitation shall have non-zero curvature
or it can be flat-Minkowskian; (b) whether the formulation
of General relativity is consistent enough with Mach princi-
ple from where GTR was inspired. These questions inspired
heated debates for several decades, and Einstein himself (with
colleagues) worked on to generalize his own gravitation theo-
ries, which implies that he did find that his theory is not com-
plete. His work with Strauss, Bergmann, Pauli, etc. (Prince-
ton School) aimed toward such a unified theory of gravitation
and electromagnetism.

There are of course other proposals for relativistic gravi-
tation theories, such as by Weyl, Whitehead etc. [1]. Mean-
while, R. Feynman and some of his disciples seem to be more
flexible on whether gravitation shall be presented in the
General-Relativity “language” or not.

Recently, there is also discussion in online forum over
the question: (a) above, i.e. whether curvature of the metric
surface is identical to the gravitation. While most physicists
seem to agree with this proposition, there is other argument
suggesting that it is also possible to conceive General Rela-
tivity even with zero curvature [13, 14].

Of course, discussion concerning relativistic gravitation
theories will not be complete without mentioning the PV-
gravitation theory (Puthoff et al. [15]) and also Yilmaz theory
[16], though Misner has discussed weaknesses of Yilmaz the-
ory [17], and Yilmaz et al. have replied back [18]. Perhaps
it would be worth to note here that General Relativity itself
is also not without limitations, for instance it shall be modi-
fied to include galaxies’ rotation curve, and also it is actually
theory for one-body problem only [2], therefore it may be
difficult to describe interaction between bodies in GTR.

Other possible approaches on relativistic gravitation the-
ories are using the fact that the “falling-elevator” seems to
suggest that it is possible to replace gravitation force with
certain-chosen metric. And if we consider that one can find
simplified representation of Maxwell equations with Special
Relativity (Minkowski metric), then the next logical step of
this “metrical” (some physicists prefer to call it “geometro-
dynamics”) approach is to represent gravitation with yet an-
other special relativistic but with extra-dimension(s). This
was first conjectured in Kaluza-Klein theory [19]. Einstein

himself considered this theory extensively with Strauss etc.
[20]. There are also higher-dimensional gravitation theories
with 6D, 8D and so forth.

In the same direction, recently these authors put forth a
new proposition using Carmeli metric [21], which is essen-
tially a “phase-space” relativity theory in 5-dimensions.

Another method to describe gravitation is using “torsion”,
which is essentially to introduce torsion into Einstein field
equations. See also torsional theory developed by Hehl,
Kiehn, Rapoport etc. cited in [21].

It seems worth to remark here, that relativistic gravita-
tion does not necessarily exclude the possibility of “aether”
hypothesis. B. Riemann extended this hypothesis by assum-
ing (in 1853) that the gravitational aether is an incompress-
ible fluid and normal matter represents “sinks” in this aether
[34], while Einstein discussed this aether in his Leiden lecture
Ether and Relativity.

A summary of contemporary developments in gravitation
theories will not be complete without mentioning Quantum
Gravity and Superstring theories. Both are still major topics
of research in theoretical physics and consist of a wealth of
exotic ideas, some or most of which are considered contro-
versial or objectionable. The lack of experimental evidence
in support of these proposals continues to stir a great deal of
debate among physicists and makes it difficult to draw defi-
nite conclusions regarding their validity [38]. It is generally
alleged that signals of quantum gravity and superstring theo-
ries may occur at energies ranging from the mid or far TeV
scale all the way up to the Planck scale.

Loop Quantum Gravity (LQG) is the leading candidate
for a quantum theory of gravitation. Its goal is to combine
the principles of General Relativity and Quantum Field The-
ory in a consistent non-perturbative framework [39]. The fea-
tures that distinguish LQG from other quantum gravity the-
ories are: (a) background independence and (b) minimality
of structures. Background independence means that the the-
ory is free from having to choose an apriori background met-
ric. In LQG one does not perturb around any given clas-
sical background geometry, rather arbitrary fluctuations are
allowed, thus enabling the quantum “replica” of Einstein’s
viewpoint that gravity is geometry. Minimality means that
the general covariance of General Relativity and the princi-
ples of canonical quantization are brought together without
new concepts such as extra dimensions or extra symmetries.
It is believed that LQG can unify all presently known in-
teractions by implementing their common symmetry group,
the four-dimensional diffeomorphism group, which is almost
completely broken in perturbative approaches.

The fundamental building blocks of String Theory (ST)
are one-dimensional extended objects called strings [40, 41].
Unlike the “point particles” of Quantum Field Theories,
strings interact in a way that is almost uniquely specified by
mathematical self-consistency, forming an allegedly valid
quantum theory of gravity. Since its launch as a dual res-
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onance model (describing strongly interacting hadrons), ST
has changed over the years to include a group of related su-
perstring theories (SST) and a unifying picture known as the
M-theory. SST is an attempt to bring all the particles and
their fundamental interactions under one umbrella by model-
ing them as vibrations of super-symmetric strings.

In the early 1990s, it was shown that the various super-
string theories were related by dualities, allowing physicists
to map the description of an object in one superstring theory
to the description of a different object in another superstring
theory. These relationships imply that each of SST represents
a different aspect of a single underlying theory, proposed by
E. Witten and named M-theory. In a nut-shell, M-theory com-
bines the five consistent ten-dimensional superstring theories
with eleven-dimensional supergravity. A shared property of
all these theories is the holographic principle, that is, the idea
that a quantum theory of gravity has to be able to describe
physics occurring within a volume by degrees of freedom that
exist on the surface of that volume. Like any other quantum
theory of gravity, the prevalent belief is that true testing of
SST may be prohibitively expensive, requiring unprecedented
engineering efforts on a large-system scale. Although SST is
falsifiable in principle, many critics argue that it is un-testable
for the foreseeable future, and so it should not be called sci-
ence [38].

One needs to draw a distinction in terminology between
string theories (ST) and alternative models that use the word
“string”. For example, Volovik talks about “cosmic strings”
from the standpoint of condensed matter physics (topologi-
cal defects, superfluidity, superconductivity, quantum fluids).
Beck refers to “random strings” from the standpoint of sta-
tistical field theory and associated analytic methods (space-
time fluctuations, stochastic quantization, coupled map lat-
tices). These are not quite the same as ST, which are based
on “brane” structures that live on higher dimensional space-
time.

There are other contemporary methods to treat gravity, i.e.
by using some advanced concepts such as group(s), topology
and symmetries. The basic idea is that Nature seems to pre-
fer symmetry, which lead to higher-dimensional gravitation
theories, Yang-Mills gravity etc.

Furthermore, for the sake of clarity we have omitted here
more advanced issues (sometimes they are called “fringe re-
search”), such as faster-than-light (FTL) travel possibility,
warpdrive, wormhole, cloaking theory (Greenleaf et al. [35]),
antigravity (see for instance Naudin’s experiment) etc. [36].

4 Wave mechanical method and diffraction hypothesis

The idea of linking gravitation with wave mechanics of Quan-
tum Mechanics reminds us to the formal connection between
Helmholtz equation and Schrödinger equation [22].

The use of (modified) Schrödinger equation has become
so extensive since 1970s, started by Wheeler-DeWitt (despite

the fact that the WDW equation lacks observation support).
And recently Nottale uses his scale relativistic approach
based on stochastic mechanics theory in order to generalize
Schrödinger equation to describe wave mechanics of celestial
bodies [23]. His scale-relativity method finds support from
observations both in Solar system and also in exo-planets.

Interestingly, one can also find vortex solution of Schrö-
dinger equation, and therefore it is worth to argue that the
use of wave mechanics to describe celestial systems implies
that there are vortex structure in the Solar system and beyond.
This conjecture has also been explored by these authors in the
preceding paper. [24] Furthermore, considering formal con-
nection between Helmholtz equation and Schrödinger equa-
tion, then it seems also possible to find out vortex solutions
of Maxwell equations [25, 26, 27]. Interestingly, experiments
on plasmoid by Bostick et al. seem to vindicate the existence
of these vortex structures [28].

What’s more interesting in this method, perhaps, is that
one can expect to to consider gravitation and wave mechanics
(i.e. Quantum Mechanics) in equal footing. In other words,
the quantum concepts such as ground state, excitation, and
zero-point energy now can also find their relevance in gravi-
tation too. This “classical” implications of Wave Mechanics
has been considered by Ehrenfest and also Schrödinger him-
self.

In this regards, there is a recent theory proposed by Gulko
[33], suggesting that matter absorbs from the background
small amounts of energy and thus creates a zone of reduced
energy, and in such way it attracts objects from zones of
higher energy.

Another one, by Glenn E. Perry, says that gravity is dif-
fraction (due to the changing energy density gradient) of mat-
ter or light as it travels through the aether [33].

We can remark here that Perry’s Diffraction hypothesis
reminds us to possible production of energy from physical
vacuum via a small fluctuation in it due to a quantum indeter-
minancy (such a small oscillation of the background can be
suggested in any case because the indeterminancy principle).
On the average the background vacuum does not radiate —
its energy is constant. On the other hand, it experiences small
oscillation. If an engine built on particles or field interacts
with the small oscillation of the vacuum, or at least ”senses
the oscillation, there is a chance to get energy from them. Be-
cause the physical vacuum is eternal capacity of energy, it is
easy to imagine some possible techniques to be discovered in
the future to extract this energy.

Nonetheless, diffraction of gravity is not a “new hot topic”
at all. Such ideas were already proposed in the 1920’s by the
founders of relativity. They however left those ideas, even
unpublished but only mentioned in memoirs and letters. The
main reason was that (perhaps) almost infinitely small energy
which can be extracted from such background per second. (In
the mean time, there are other vaious proposals suggesting
that it is possible to ’extract’ energy from gravitation field).
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About Glenn Perry and his theory. There is a drawback
that that matter he called “aether” was not properly deter-
mined by him. In such a way like that, everything can be
“proven”. To produce any calculation for practical purpose,
we should have exact data on the subject of this calculation,
and compare it with actual experiments.

On the other hand, such an idea could be put into another
field — the field of Quantum Mechanics. That is, to study
diffraction not gravitational radiation (gravitational waves
which is so weak that not discovered yet), but waves of the
field of the gravitational force — in particular those can be
seismic-like waves travelling in the cork of the Earth (we
mean not the earthquakes) but in the gravitational field of the
planet. These seismic-like oscillations (waves) of the grav-
itational force are known to science, and they aren’t weak:
everyone who experienced an earthquake knows this fact.

Other hint from wave aspect of this planet is known in the
form of Schumann resonance, that the Earth produces vibra-
tion at very-low frequency, which seems to support the idea
that planetary mass vibrates too, just as hypothesized in Wave
Mechanics (de Broglie’s hypothesis). Nonetheless, there are
plenty of things to study on the large-scale implications of the
Wave Mechanics.

5 Concluding remarks

The present article summarizes a non-exhaustive list of grav-
itation theories for the purpose of inviting further and more
clear discussions. Of course, our purpose here is not to say
the last word on this interesting issue. For the sake of clarity,
some advanced subjects have been omitted, such as faster-
than-light (FTL) travel possibility, warpdrive, wormhole,
cloaking theory (Greenleaf et al.), antigravity etc. As to the
gravitation research in the near future, it seems that there are
multiple directions which one can pursue, with which we’re
not so sure. The only thing that we can be sure is that ev-
erything changes (Heraclitus of Ephesus), including how we
define “what the question is” (Wheeler’s phrase), and also
what we mean with “metric”, “time”, and “space”. Einstein
himself once remarked that ’distance’ itself is merely an illu-
sion.
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The first two parts of this article series dealt with the questions: What is a quark?
and What is mass? While the present models lead to a physical idea of the mass,
the geometrical theory of the general relativity only shows the effect of mass. From
the physical idea of mass, from the idea of the resultant vector (EV) as electric flux
< and from the ideas relating to the magnetic monopole (MMP) it follows that the
gravitational field is an electrical field. The share of the electrical gravitational flux
<� on the entire electrical flux < of a quark is determined from Newton’s empirical
gravitational constant G. The superposition of the <�-fluxes of two quark collectives
produces the gravitational force effect between two quark collectives. Gravitational
fields reach infinitely far according to our current ideas. Connected with the quark
oscillations hinted in the Parts I and II this results in the idea of the <-<�-flux spreading
with infinite speed, having enormous consequences.

1 Introduction

In Parts I and II separate reference is made to the most pro-
ductive assumptions or ideas relating to the development of
the models. In Part I the formal assumptions/ideas are shown,
which include the vectors in the constellation of the outer
product of a vector with certain angular movements. At the
end of Part II it transpires that the locus loop created by the
EV is a physical central-symmetrical sinus oscillation in the
mass-affected three-quark particle. Other productive ideas are
the orthogonal, hyperbolic space with two real axes and an
imaginary axis as well as the identification of the formal EV
with a physical meaning. The EV identified as electrical flux
< with the dimension [Vm] results in the idea of the MMP.
The absolute number of < amounts to < = 1.8095�10�8[Vm]
according to the network of constants, see [1, page 143]. The
massless MMP is an important idea to recognise on the one
hand what mass is and on the other hand to develop the quark
structure of the massless photon(-likes) from the quark com-
position of the electron.

2 The meaning of the “fountain”

In Part II the model idea for the composition of the MMP with
the surrounding electrical field is shown with Fig. 1. Thus, the
decisive physical components of a quark are introduced with
Part II, not considering the dynamics of these components in
mass-affected and massless particles. Relating to Fig. 1 it was
not explained what the <�-field is. This is done now.

During the course of the development of the models at-
tempts were made to look behind the facade of Newton’s
gravitational equation wherein obviously there was no short-
age of incorrect estimates, one way streets and wrong tracks.

Newton’s gravitational constant G included in the equation is
one of the many independent quantities of the standard model
of physics to be determined empirically.

In Part II it is shown what mass is. The route there com-
mences with the equations of E=m� c2 and E=h� �, re-
sulting in equation 1 of Part II, which can also be described as
equation (8–II) of [1]: m= elt

2e���C�c2 . If this form is intro-
duced in Newton’s gravitational equation K� =G� ma�mb

l2 ,
G can be determined with the correct dimension [m5/VAs5]:

G =
4e�2 � c4�Ca�Cb
elt� n1 � n2

: (1)

In it e� are the fine structure constant, �C the Compton
wavelengths of the elementary particles involved and elt see
below. On the route to clarifying the gravitational equation
the aim is to find what the quantities n1 and n2 are and how
large they are. If equation (1) is solved for n1 and n2 and the
Compton wavelengths of the nucleons (as mass-richest ele-
mentary particles) are substituted for �C , the empirical nu-
merical value

p
n1 � n2 = ni = 3.939�1018 is obtained.

The n thus are gigantic numbers. What do these gigantic
numbers stand for?

At this point it is highly productive to use Fig. 1 of Part
II. Visible is the MMP that occurs with highest frequencies,
which is enclosed by the electrical source flux <. Here, by
far the predominant part of this source flux < is closely con-
nected with the magnetic flux � (Maxwell). Only the minute
share <� of the total flux < leads to the outside. This share is
expressed in the simple relationship:

<�=
1
n
� < : (2)

If the gigantic numbers n are substituted in the equa-
tion (2) (see [1, page 172, equation (8–XIII)]), it follows:
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<�=
1

3.939�1018� <=

= 2.539�10�19 � 1.8095�10�8 = 4.594�10�27 [Vm]:

This is the minute share of the <-field <� (<�-field or grav-
itational field), leaving the quarks of a three-quark particle
(3QT). <� is shown as a symbolic line in Fig. 1, Part II.

In addition to Newton’s gravitational equation there are
further important equations of physics with a similar struc-
ture, such as the equations of Coulomb (elec. charges), Ryd-
berg (spectral series) and Schrödinger (waves). These equa-
tions are different forms of the universal equation from [1,
page 157]:

elt� elt� n1 � n2 = a� b� elta � eltb : (3)

In it the universal constant elt has the dimension [VAsm],
[1, page 141]. It can be composed of many kinds of constants,
e.g.: elt = Nh� c [VAsm] with Nh = h� 2e�.

Equation (3) can be paraphrased with some considera-
tions in a further equation (4) , which can be written next
to the equations of Coulomb (charges), Newton (gravitation),
Rydberg (spectral series) and Schrödinger (waves): With
elt = K � l2 and according to [1, Fig. 8–1c], elt= <2� "0 it
follows from equation (3):

K =
"0

n1 � n2
� a<� b<

l2
: (4)

If the relationship <� = 1
n �< of equation (2) is substi-

tuted in equation (4) and if some more considerations are ex-
amined, the following is obtained:

K = "0 � a<�� b <�

l2
; (4a)

K =
"0

0.8�
� a<�� b<�

l2
: (4b)

Thus the following is realised:

1. The meaning of the gigantic numbers n1 and n2 in
Newton’s empirical, gravitational constant G analysed
with equation (1) is seen as follows. With the prod-
uct of the inverse of the number ni and of the electri-
cal source flux < the minute fraction of the electrical
source flux, that is to say <�, of each “3QT” is de-
scribed, where <� is leaving the quarks of a “3QT”.
The minute fraction of < accounts for the <�-field of a
quark or a “3QT”;

2. The quantity of said fraction of the <-field of a “3QT”
is 1

3:939�1018 = 2.539�10�19 or inverted 3.939�1018�
�<� =<. <� has the empirical value <� =1.8095�10�8

[Vm]�2.539�10�19 = 4.594�10�27 [Vm] as absolute
number. These numbers apply to our galactic environ-
ment;

3. The equations (4a) and (4b) signify that the superposi-
tion of the <�-fields of two quarks or two quark collec-
tives (a and b) produces the gravitational force effect
between two quark collectives;

4. These considerations have made the “gravitation” a su-
perposition of physical namely electrical <�-fields of
highest frequency!

3 Some aspects relating to the <�-fields

In Part II it is explained by means of Shapiro’s experiments
how electrical fields and thus the gravitational fields influence
the photon(-likes). This physical substantiation for example
for the reduction of the speed of light (“refractive index of
the vacuum”) is to be preferred compared to an substantiation
through the geometrical theory of the general relativity.

Gravitational fields reach infinitely far according to our
current ideas. The loci of the quarks (sinus oscillations) of
which we and our environment consist, are traversed within
10�20 (electrons) to 10�25 (nucleons) seconds. This means
the <�-field of a quark expands into infinity and contracts
again within this absurdly short time. The propagation speed
of the <�-field is thus infinitely large. (Of course this has
an effect on large research projects as e.g. LISA with which
the allegedly wave-shaped and light-speed propagation of the
gravitational field according to the standard physics is to be
investigated.)

The infinitely fast propagation of the <�-field has “nat-
ural” consequences everywhere. If the composition of the
quarks according to Fig. 1 of Part II applies — which is as-
sumed in these models — the electrical field < enclosing the
MMPs also expands at infinite speed. This means the <-fields
of the mass-affected particles occur instantaneously. The
range of the <-fields is approximately congruent with
the range within the Maginpar or the range of the <-fields
is congruent with the confinement. The confinement located
inside a particle is marked off from the outer range by a spher-
ical shell around the coordinate centre with approximately the
radius of the Maginpar. No causality applies any longer in
the small range of the <-field within the confinement!

The infinitely fast propagation of the <-field undoubtedly
also influences the uncertainty principle. The latter is valid
for the range outside the confinement and therefore for elec-
tromagnetic processes. In the outer range with causality —
with �t between two events — applies e.g. �t��E = h or
�x��p = h.

Inside the confinement the ranges for the toroidal mag-
netic field � and the electric source field < are distinguished,
where �t = 0 applies because of the instantaneous propa-
gation of the <-field. Some relation for the interior of the
confinement corresponding to the uncertainty principle looks
different; the input quantities are certain: N�� � � � = Nh.
The product from inertia quantum N� times frequency N���
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corresponds to the impulse p or �p and � corresponds to the
x or �x. (Otherwise N� = Nh=c is the definition equation
for the natural constant N�.)

Entirely different aspects are touched by the infinitely fast
propagation of the <�-field, which are merely mentioned here
but not discussed: A) The infinitely fast propagation of the
<�-field revitalises the Mach principle according to which
the local behaviour of matter is based on the influences of
the remainder of the universe. B) The universal structure of
galactic chains and dark bubbles and the synchronised cre-
ation of galaxies are based on the infinitely fast propagation.
C) According to the models the centres of the galaxies are
quantum objects. The considerations relating to causality and
uncertainty also apply to these. D) The Planck length, [1,
page 178], is determined through the interaction of MMP and
<-<�-field. E) The experiments of A. Zeilinger for tele-
portation are based on the infinitely fast propagation of the
<-field in the rapidly enlarging confinement of polarisation-
entangled photons (12QT).
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Essential laws and principles of the natural sciences were discovered at the high aggre-
gation levels of matter such as molecules, metal crystals, atoms and elementary parti-
cles. These principles reappear in these models in modified form at the fundamental
level of the quarks. However, the following is probably true: since the principles apply
at the fundamental level of the quarks they also have a continuing effect at the higher
aggregation levels. In the manner of the law of mass action, eight processes for weak
interaction are formulated, which are also called Weak Processes here. Rules for quark
exchange of the reacting elementary particles are named and the quasi-Euclidian or
complex spaces introduced in Part I associated with the respective particles. The weak
processes are the gateway to the “second” strand of this universe which we practically
do not know. The particles with complex space, e.g. the neutrino, form this second
strand. According to the physical model of gravitation from Part III the particles of
both strands have <�-fields and are thus subject to the superposition, which results in
the attraction by gravity of the particles of both strands. The weak processes (7) and (8)
offer a fair chance for the elimination of highly radioactive waste.

1 Introduction

The first parts of this series of papers have headline ques-
tions which are answered within the scope of the models [1]:
I) What is a quark? II) What is mass? III) What is the nature
of the gravitational field?

Which of the three questions will a physicist representing
the current standard model be able to answer positively with-
out hesitation? The standard model of physics combines huge
quantities of analyses, conformities with natural laws and the-
ories. However, too many independent quantities that can
only be captured empirically still enter the standard model of
physics and inconsistencies between individual theories are
known. For this reason, theoreticians are looking for new
physics especially in the field of the strings, loops and branes;
however, they have been unable to establish any reference to
reality. The standard model of cosmology has the general
theory of relativity (GTR) as thread, wherein the GTR is a
geometrical and not a physical theory. Despite this deficit the
mainstream of cosmologists is absolutely convinced of the
big bang model which is based on the GTR, wherein the big
bang is a central part of the standard model of cosmology.
The physical model of gravitation presented in Part III opens
up a new interpretation of our universe. The perspectives of
Part III render a Part V for cosmology — the utmost level of
organisation — unnecessary. But there is a Part V in prepara-
tion concerning the magnetic load, which leads to the under-
most level of organisation of our universe. Although many
relationships are better recognizable with this model than in
the past, there is certainly a lot we do not know of our uni-
verse.

2 The weak interaction

The equations of the weak interaction which in the following
are also called ”Weak Processes” are the central content of
the present Part IV. Physics books present equations relating
to the weak interaction. These equations are considered cor-
rect although the authors have no exact idea of what a quark
is, although they are uncertain as to the mass possessed for in-
stance by a neutrino, although they should have doubts in the
uniformity of so-called “elementary particles”, although they
are looking for additional particles that could be included in
the equations.

An often-quoted equation in the literature is formulated
thus:

p+ + ��e ! n0 + e+: (1)

According to Table 1 of Part I, each of the four elementary
particles involved is a three-quark particle (3QT). If this is
used to make a quark equation — which cannot happen in the
standard model of physics — according to the models to date
equation (1) must read as follows:

uu|{z}jj d+ �d �d|{z}? �u! dd|{z}jj u+ �d �d|{z}? �d :

As can be seen, the quarks on both sides do not agree in
number and type. If the left side is correct, an �u and an u
are missing on the right, instead there are a d and an �d too
many on the right; the charge balance would be correct as in
equation (1).

The literature equation (1) cannot be corrected because it
is wrong. To get onto the right track here are some fundamen-
tal remarks concerning equations with particles.
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From [1], Chapter 8.5, page 202: The (A) law of mass
action, the (B) Pauli principle, the (C) superconductivity and
the (D) uncertainty principle were found at higher aggrega-
tion levels of the particle world and applied to (A) molecules,
(B) atoms, (C) metal crystals and (D) elementary particles.
All four can be found again in these models in modified form
at the fundamental level of the quarks, e.g. in the following
(A) weak processes or with the (B) configurations of the nu-
clei in [1], Chapter 7.5 or in the (C) “fountain”, Fig. 1 in Part
I, or in the definition of the natural constant of the (D) inertia
quantum N�, see penultimate paragraph of Part III. Probably
the effect of such laws and principles has to be seen differ-
ently: Since they apply at the fundamental level they con-
tinue to have an effect also at the higher aggregation levels.

The following is an example using the (B) Pauli’s prin-
ciple. The Pauli principle states for a complete atom — i.e.
for a higher aggregation level — that a shell (K, L, M etc.
with the sub-shells s, p, d etc.) of the atomic shell cannot be
occupied by two electrons.

In Part I, Table 1 in line A shows the particles dd|{z} jj d �
ee and uu|{z} jj u � �� for the fundamental level of the quarks.

In addition, Fig. 12 in Part I shows the loci for a dd|{z}�Zk.
(A definition of the “dual-coordination” or briefly “Zk” is
given in Part I, page 74, paragraph 5.) If the locus of a third
d-quark were to be placed in the level of this Zk, either space
I or space III would be occupied with two loci. Such double
occupancy is demanded for the particles ee and �� by the
jj symbol. According to the Pauli principle this means at the
fundamental level of the quarks that the particles ee and ��
are prohibited, see Table 2! Allowed are only the electron
dd|{z}? d � e� and the deldopon uu|{z}? u � (�++), where

each quark assumes a different position.
Another example relates to the (A) law of mass action.

This law primarily applies to the fundamental quark equa-
tions, but was initially discovered by us by means of the chem-
ical reactions at the high aggregation level. The equation of
a chemical reaction is formulated in the same manner as a
fundamental quark equation. All constituents entering a fun-
damental reaction again come out of the reaction in a changed
composition. Nothing disappears or is added. In this re-
gard, some of the equations for the weak interaction offered
in physics books are totally unsatisfactory, since the particles
on both sides of the equations lack a common basis. This is
also evident from the above equation (1): for the nucleons
there is the quark representation in the standard model, not
for the leptons.

3 The eight weak processes

Reading the following is not easy, the subject however highly
interesting for the understanding of our universe. The com-
ments regarding the equations are intended to facilitate this
understanding.

Eight processes with the construction

Starting particle! (Quarkpool)! Reaction products

p+ + e� ! ! ! ! n0 + �e (2)

uu|{z} jj d+ dd|{z}? d!  
uujj d

:::dd?d" "
!
! dd|{z} jj u+

+ dd|{z}? u (2a)

Space type qeR qeR ! ! ! ! qeR koR

n0 + �e ! ! ! ! p+ + e� (3)

dd|{z} jj u+ dd|{z}? u!  
ddjj u

:::dd?u" "
!
! uu|{z} jj d+

+ dd|{z}? d (3a)

Space type qeR koR ! ! ! ! qeR qeR

The equations (2) and (3) count among the best known of
the weak interaction. For the formulations according to the
standard model the common basis of the particles mentioned
above is absent. As quark equation (2a) and (3a), they corre-
spond to the characteristics of the law of mass action. Details
for a “quark pool” are included in the quark equations. This
quark pool stands for the physical process of the reaction of
the particles involved which requires a finite time and during
which exchange processes take place. The signs within the
brackets explain this exchange. During both the above pro-
cesses a quark from the Zk of the baryon/nucleon involved
is exchanged for the singular quark of the lepton, while the
quark from the Zk of the baryon does not belong to the ujjd-
group.

It can also be seen that the structure symbols in the equa-
tions are retained. A jj and a ? symbol each are present on
the left and on the right side of the equation. This is to be
correlated with the retention of the baryon and lepton number
of the standard model. This means there are fixed rules for
the reactions during the weak processes.

In each third line for each reaction the space type qeR
or koR, see [5], Part I, page 72/73, of the elementary parti-
cle is noted. If two particles from “our” quasi-Euclidian space
(qeR) react with each other the probability of the reaction sub-
stantially depends on a resonance possibility, i.e. the size of
the particles MAGINPARs. In addition to this probability for
a reaction there is obviously also a second one. This depends
on the space type. This means, two particles with the same
space type react with each other with far greater probability
than particles with different space type.

We are aware of this in the case of the hugely plentiful
neutrinos with the complex space type koR which hit the par-
ticles of earth with the space type qeR with only an extremely

72 Ulrich K. W. Neumann. Models for Quarks and Elementary Particles — Part IV: How Much Do We Know of This Universe?



July, 2008 PROGRESS IN PHYSICS Volume 3

3QT dd d dd u uu d uu u

Locus level of singular quark parallel
(jj) to the locus level of the Zk z

ee z n0 p+ ��
z

Space type of particle koR1 z qeR1 qeR1 koR1 z

Locus level of singular quark vertically
(?) on locus level of Zk

e� �e ?+ (�++)

Space type of particle qeR2 koR2 koR2 qeR2

koR � “complex” space, qeR � quasi-Euclidian space.
The number 1 or 2 designates the number of the �-rotation levels per particle.
zElementary particles prohibited by the Pauli principle.

Table 2: Space structures of the elementary particles

low probability. The probabilities for a reaction are called
MAGINPAR and space type probability. All eight weak pro-
cesses are characterized in that at least one particle of a pro-
cess has the space type koR. Thus the space type probability
applies to the eight here treated processes which is why we
talk about the “weak” interaction.

p+ + ?+ ! ! ! ! n� + (�++) (4)

uu|{z} jj d+ uu|{z}? d!  
uujj d

:::uu?d" "
!
! dd|{z} jj u+

+ uu|{z}? u (4a)

Space type qeR koR ! ! ! ! qeR qeR

n� + (�++)! ! ! ! p+ + ?+ (5)

dd|{z} jj u+ uu|{z}? u!  
ddjj u

:::uu?u" "
!
! uu|{z} jj d+

+ uu|{z}? d (5a)

Space type qeR qeR ! ! ! ! qeR koR

A hypothesis (here the models under consideration) es-
tablishes new predictions/expansions unknown to date for the
(physical) teaching applicable to that point, which have to be
verified. Such predictions are made by Table 1 and the still to
follow Table 2 with some of the particles noted there, which
also occur in the equations (4) and (5). For the sake of brevity
the particles of the Tables that have not been found yet will
not be further commented upon at this point. Reference is
only made to the respective exchange of the quarks in the
quark pool, which corresponds to the fixed rules for the reac-
tions mentioned above.

To facilitate the association of the space types with the
individual elementary particles Table 2 is inserted.

The best known equation to describe the “�-decay” is the
following:

n0 ! p+ + e� + ��e (6)

Under the aspect of the standard theories such an equa-
tion is possible because four totally independent particles are
present, the electric charges involved are correct and the n0

has the greatest mass/energy so that it can decay into the
three other particles of lower energy. Under the aspect of the
models developed here the two sides of this process cannot
be brought into line even from the number of the quarks in-
volved. The right side of the equation comprises nine quarks,
the left side three quarks. In other words six quarks have to
be added to the left side, while a 6QT or boson is obvious.

The following arguments speak for the photon-like
�-gamma (� � ) as trigger of the process — incompletely
— described with the above non-equation:

1. The particle is not yet known which is why it is not
named so far on the left side of the process;

2. Because of its space type koR the particle — based on
�e (Table 2) — is difficult to discover;

3. �-gamma brings with it the necessary number and type
of quarks and of structure signs jj respectively ?.

The almost known “�-decay” according to the standard
model as fully formulated weak process according to these
models then becomes the following as particle and quark
equation:

n0 + � �  ! ! ! ! p+ + e� + ��e (8)

dd|{z} jj u+ dd|{z}? u�u? �d �d|{z}! �
d from n0 ,
u from Bk

�
!

! uu|{z} jj d+ d? dd|{z}+�u? �d �d|{z} (8a)

Space type qeR koR ! ! !
!qeR qeR koR
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The central part uu of the �� within the quark-equation
(8a) is called a “binding coordination”, briefly “Bk”.

The fixed rules for the quark reactions need only be mod-
ified slightly for the reaction type (8) relative to the reaction
type (2) and (3) or (4) and (5):

• A baryon each reacts with a photon-like 6QT (instead
of 3QT lepton).

• From the original particles, a formally singular quark
each (not anti-quark) of a lepton and now part of a Bk in
the photon-like is exchanged for a Zk-quark (not from
the ujjd-group) of the baryon.

• In addition to the type and number of the quarks in-
volved the type and number of the structure signs jj and
? now agree on both sides of equation (8) as well.

Since equation (8) relative to the non-equation (6) has
been explained, equation (7) is now added where e- (our
“normal” photon) has to be additionally considered compared
with the standard version.

p+ + e�  ! ! ! ! n0 + e+ + �e (7)

uu|{z} jj d+ dd|{z}? d �d? �d �d|{z}! �
u from p+ ,
d from Bk

�
!

! dd|{z} jj u+ �d �d|{z} ? �d+ dd|{z} ?u (7a)

Space type qeR qeR ! ! !
! qeR qeR koR

Since the following equations (9) and (10) contain parti-
cles not yet found from the systematic of Table 1 and 2 here
they will not be further commented upon. In structure they
correspond to the type of the equations (7) and (8) and com-
plete the set of the weak processes according to these models:

p++?�  ! ! ! ! n0 + (�2+)+?+ (9)

uu|{z} jj d+ uu|{z}? d �d? �u�u|{z}! �
u from p+ ,
d from Bk

�
!

! dd|{z} jj u+ uu|{z} ?u+ �u�u|{z} ? �d (9a)

n0 + (�)�  ! ! ! ! p++?+ + (�2�) (10)

dd|{z} jj u+ uu|{z}? u�u? �u�u|{z}! �
d from n0 ,
u from Bk

�
!

! uu|{z} jj d+ d? uu|{z}+�u? �u�u|{z} (10a)

The weak processes are the gateway to the “second”
strand of this universe. The particles having a complex space
(koR) form this second strand. “Our” particles with quasi-
Euclidian space (qeR) from the “first” strand overlap those
from the second strand without problems, which is why the
spaces also overlap without problems. (What is a “space” be-
ing created in our imagination?) The “spaces” do not interact
with each other.

In contrast with this, the physical = electric <�-fields
from qeR and koR interact very well with each other so that
their superposition results in the mutual attraction, see [1],
page 186, line 18. Measured by the undiscovered particles of
Tables 1 and 2 there is much to be discovered behind the gate
to the “second” strand of this universe. Judging by the ratio
of the gravitational effects of the visible matter and the dark
matter what can be discovered behind the gate is a multiple
of what we already know.

4 The Meaning of the Weak Processes (7) and (8)

Equations (7) and (8) contain some fascinating technical po-
tential. H. Stumpf deals with nuclear reaction rates of the
electroweak interaction [2] and at the end of his paper he
refers to L. I. Urutskoev and other Russian authors, who per-
form experiments regarding this item. The potential of those
works includes finding new routes for the elimination of
highly radioactive waste. In a few years this waste from hun-
dreds of disused nuclear reactors will pile up in many states
of our earth. The final storage of this waste is not clarified
and costs for a long time storage with e. g. sarcophagus as
in Tschernobyl would be enormous. The duration of storage
follows from natural �-decay half-life periods of different ele-
ments or their isotopes which can last for up to 1.5�1024 years
for 128

52 Te, [4], page 34, which mankind cannot live to see.
Equation (7) respectively (7a) demonstrates, that the pro-

tons of radioactive elements can have resonance and can react
with very short waved photons (e�) into neutrons, positrons
and neutrinos. Thereby the structure and the therewith com-
bined beat of the photon shown in Part II, page 77, left col-
umn, point (2) and the storage of the photon in an electron
(resonance), Part II, page 77, right column, penultimate para-
graph are called to mind.

Equation (7) is confirmed by two aspects of the above
mentioned experiments of L. I. Urutskoev et al. [3]. First as-
pect: The central incidents of the experiments are electric dis-
charges between metallic foils in vessels filled with various
fluids, [2], page 455. My interpretation is, that by the dis-
charges those short waved e� of process (7) are generated,
which can have resonance and reaction with the protons of
the (radioactive) elements. Second aspect: The possibility of
“low-energy nuclear transformation” is reported in [3]. If an
electron and a visible photon have a comparable COMPTON-
wavelength and therefore have resonance, then the photon has
an energy of multiplier 105 less than the electron, [1], Chap-
ter 8.2.3, page 163. With weak interaction nuclei emit short
waved e� in the range of a few keV up to a few MeV. That
means nuclei are in the position to have resonance with those
short waved e�. If such short waved e� arrives at a nu-
cleus and hit (a neutron or) a proton then there is the possibil-
ity for the “low-energy” exchange of quarks in a quark-pool
according to the rules of page 72, middle of right column, and
page 74, upper part left column. By the exchange of quarks
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in accordance with equation (7) the proton transforms into a
neutron and by this a new element respectively a new iso-
tope takes shape. New elements respectively isotopes were
detected by the authors of [3].

Following are comments on the peculiarities of the weak
process (7):

1. The Standard Model of Physics treats the �-“decay” as
statistical phenomenon or as happening by chance. The
model under consideration especially the weak process
(7) presents a dosed bombardment of protons by e�.
The transformation of the protons into products of re-
action happens not by chance instead the reaction is
determined by the efficiency of the law of mass action.

2. Without the knowledge of the weak process (7) Urut-
skoev et al. with exotic experiments strive for the re-
alisation of reactions according to this process. With
knowledge of equation (7) different experiments are
possible:
Possibly one could observe the weak process cease
when the bombardment of protons by photons, which
can have resonance, is prevented completely. Neverthe-
less the “radioactive decay” of a specimen with an outer
screening could continue because a radiation could be
released “from the interior” of this specimen. The latter
could stem from the less probable but possible opposite
reaction of equation (7): n0 + e+ + �e ! p+ + e�.
The e� originating in the interior of the atomic nu-
cleus would be absorbed after flying a very short dis-
tance in the specimen because of a high probability
of resonance. By this the weak process (7) would be
caused “from the interior”.

3. The weak process (7) cannot be observed in nature, [4],
S. 38.

Following are comments on the peculiarities of the weak
process (8):

1. The very common but not applicable non-equation (6)
claims that the neutrons of radioactive elements would
“decay” into protons, electrons and anti-neutrinos. As
with equation (7) the law of mass action is valid with
equation (8);

2. By the exchange of quarks according equation (8) a
new element respectively a new isotope takes shape.
The problem is, until now we still do not know the
� �  because of its complex space koR and beyond
this we cannot shield it from the outside or handle it at
all. From that point of view we would be dependent
on the sun, on space or on nuclear reactors as genera-
tors for � �  of whatever intensity and wavelength to
shorten half-life periods by chance.

Eventually a possibility on the basis of the opposite reaction
of the weak process (8) will be revealed. Those � �  origi-
nating from p+ + e� + ��e ! n0 + � �  would be absorbed

after flying the shortest distance because of a high probability
of resonance. By this the weak process (8) would be released
“from the interior”. The opposite reaction of the weak pro-
cess (8) should be reinforced by proper conditions in such a
way that the reaction rates are of sufficient size.

In summary: Though till now we do not know the � � -
radiation so far and, much less, we can control it, there is hope
to transform the neutrons of radioactive elements by � � 
via the opposite reaction of equation (8). The construction
of some technical apparatus for short waved e�-radiation as
e.g. X-rays of 103 to 106 eV is feasible. By the reaction of
proton and e� (photon) according to the weak process (7)
natural, partly very long time half-life periods can be short-
ened down to seconds using a technical apparatus! The use
of both types of radiation, � �  and e�, would be decisive
steps for the elimination of highly radioactive waste.
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Einstein’s September 1905 paper is origin of light energy-mass inter conversion equa-
tion (L = �mc2) and Einstein speculated E = �mc2 from it by simply replacing L
by E. From its critical analysis it follows that L = �mc2 is only true under special or
ideal conditions. Under general cases the result is L / �mc2 (E / �mc2). Conse-
quently an alternate equation �E = Ac2�M has been suggested, which implies that
energy emitted on annihilation of mass can be equal, less and more than predicted by
�E = �mc2. The total kinetic energy of fission fragments of U235 or Pu239 is found
experimentally 20–60 MeV less than Q-value predicted by �mc2. The mass of parti-
cle Ds (2317) discovered at SLAC, is more than current estimates. In many reactions
including chemical reactions E = �mc2 is not confirmed yet, but regarded as true. It
implies the conversion factor than c2 is possible. These phenomena can be explained
with help of generalized mass-energy equation �E = Ac2�M .

1 Introduction

Mass energy inter-conversion processes are the oldest in na-
ture and constitute the basis of various phenomena. Before
Einstein’s work, Newton [1] stated that “Gross bodies and
light are convertible into one another. . . ”. Einstein derived
light energy-mass inter-conversion equation for Newton’s
perception as L= �mc2. Before Einstein scientists such as
S. Tolver Preston [2] Olinto De Pretto [3], Fritz Hasenohrl
[4, 5] Frederick Soddi [6] contributed to the topic.

Einstein’s derivation of L= �mc2 (from which Einstein
speculated E= �mc2), is true under special conditions
(where selective values of variables are taken). Under gen-
eral conditions (when all possible values of parameters are
taken) equations like L= 0:0011�mc2, L= 0:999988�mc2
etc. are obtained i.e. L/�mc2. Thus conversion factor
other than c2 is possible in Einstein’s derivation. Further
the generalized mass–energy equation �E=Ac2�M , is de-
rived, and E= �mc2 is special case of the former depend-
ing upon value of A (depends upon the characteristics condi-
tions of the process). Thus apart from theoretical limitations,
E= �mc2 has experimental limitations e.g. sometimes ex-
perimental results differ from it and in many cases it is not
confirmed. Under such cases �E=Ac2�M is widely use-
ful and applicable. The fission fragments result from U235

and Pu239 have total kinetic energy 20–60 MeV less than Q-
value (200 MeV) of reaction predicted by �E= �mc2 [7–
9]. Palano [10] has confirmed that mass of particle Ds (2317)
has been found more than current estimates based upon
�E= �mc2. Also �E= �mc2 does not give consistent
results in explaining the binding energy, as it violates the uni-
versal equality of masses of nucleons.

All these facts can be explained by �E=Ac2�M with
value of A less or more than one. �E= �mc2 is not con-
firmed in many processes such chemical reactions, atom

bomb explosions, volcanic reactions etc. Whatever may be
the case �E=Ac2�M is capable of explaining the phe-
nomena. Thus conversion factor other than c2 is possible, in
Einstein’s September 1905 derivation and confirmed experi-
mentally also.

2 Einstein’s light energy — mass equation L= �mc2
and its hidden aspects

Einstein [11] perceived that let there be a luminous body at
rest in co-ordinate system (x; y; z). The system (�, �, �) is in
uniform parallel translation w.r.t. system (x, y, z); and origin
of system (�, �, �) moves along x-axis with relative velocity
v. Let a system of plane light waves have energy ` relative
to system (x, y, z), the ray direction makes angle � with x-
axis of the system (�, �, �). The quantity of light measured in
system (�, �, �) has the energy [11, 12].

`� = `
�
1� v

c cos�
�q

1� v2

c2

(1)

Einstein has given Eq. (1) in his paper known as Special The-
ory of Relativity [12] and called Eq. (1) as Doppler principle
for any velocities whatever.

Let E0 and H0 are energies in coordinate system (x, y, z)
and system (�, �, �) before emission of light energy, further
E1 and H1 are the energies of body in the both systems after
it emits light energy. Thus Einstein wrote various equations
as Energy of body in system (x, y, z)

E0 = E1 + 0:5L+ 0:5L = E1 + L; (2)

Energy of body in system (�, �, �)

H0 = H1 + 0:5�L
h�

1� v
c

cos�
�

+
�

1 +
v
c

cos�
�i

(3)
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where �= 1=[1� v2=c2]1=2;

H0 = H1 + �L; (4)
or

(H0 � E0)� (H1 � E1) = L (� � 1) : (5)

Einstein calculated, kinetic energy of body before emis-
sion of light energy, K0(mbv2=2) and kinetic energy of body
after emission of light energy, K(mav2=2) as

K0 �K = L

0@ 1q
1� v2

c2

� 1

1A (6)

Einstein considered the velocity in classical region thus ap-
plying binomial theorem,

K0 �K = L
�

1 +
v2

2c2
+

3v4

8c4
+

+
15v6

48c6
+

105v8

384c8
+ : : : � 1

�
:

(7)

Further Einstein quoted [16] “Neglecting magnitudes of
fourth and higher orders, we may place”

K0 �K = L
v2

2c2
(8)

Mb
v2

2
�Ma

v2

2
= L

v2

2c2
(9)

or
L = (Mb �Ma) c2 = �mc2; (10)

or Mass of body after emission (Ma) = Mass of body before
emission (Mb�L=c2).

Now replacing L (light energy) by E (total energy or ev-
ery energy) Einstein wrote

E = (Mb �Ma) c2 = �mc2 (11)

or Mass of body after emission (Ma) = Mass of body before
emission (Mb�E=c2).

Thus Einstein derived that conversion factor between
mass and light energy is precisely equal to c2, this aspect
is elaborated by Fadner [13]. But Einstein’s this derivation
has been critically discussed by many such a Planck [14],
Stark [15], Ives [16], Stanchel [17], Okun [18] and N. Ham-
dan [19] etc. At the same time in some references [20, 21] it
is expressed that Einstein has taken hints to derive equation
E= �mc2 and from existing literature without acknowledg-
ing the work of preceding scientists. Max Born [22] has ex-
pressed that Einstein should have given references of existing
literature.

Thus Einstein’s work on the topic has been critically an-
alyzed by scientists since beginning, in views of its scientific
and procedural aspects.

3 The conversion factor between mass-energy other
than c2 is also supported by Einstein’s derivation
under general conditions

As already mentioned Einstein’s September 1905 derivation
of �L= �mc2 is true under special or ideal conditions (se-
lected values of parameters is taken) only, this aspect is stud-
ied critically with details by the author [23–36] discussing
those aspects which have not been raised earlier. Thus the
value of conversion factor other than c2 is also supported
from Einstein’s derivation under general conditions (all pos-
sible values of variables). The law or phenomena of inter-
conversion of mass and energy holds good in all cases for all
bodies and energies under all conditions.

In the derivation of �L= �mc2 there are FOUR vari-
ables e.g.

(a) Number of waves emitted,

(b) l magnitude of light energy,

(c) Angle � at which light energy is emitted and

(d) Uniform velocity, v.

Einstein has taken special values of parameters and in
general for complete analysis the derivation can be repeated
with all possible values of parameters i.e. under general con-
ditions taking in account the momentum conservation (which
is discussed in next sub-section).

(A) The body can emit large number of light waves but Ein-
stein has taken only TWO light waves emitted by lumi-
nous body.

(B) The light waves emitted may have different magnitudes
but Einstein has taken EQUAL magnitudes

(C) Body may emit large number of light waves of different
magnitudes of energy making DIFFERENT ANGLES
(other than 0� and 180�) assumed by Einstein.

(D) Einstein has taken velocity in classical region (v � c)
has not at all used velocity in relativistic region. If ve-
locity is regarded as in relativistic region (v is compa-
rable with c), then equation for relativistic variation of
mass with velocity i.e.

Mrel =
Mrestq
1� v2

c2

(12)

is taken in account. It must be noted that before Ein-
stein’s work this equation was given by Lorentz [37,38]
and firstly confirmed by Kaufman [39] and afterwards
more convincingly by Bucherer [40]. Einstein on June
19, 1948 wrote a letter to Lincoln Barnett [41] and
advocated abandoning relativistic mass and suggested
that is better to use the expression for the momentum
and energy of a body in motion, instead of relativistic
mass.
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It is strange suggestion as Einstein has used relativistic
mass in his work including in the expression of rela-
tivistic kinetic energy [12] from which rest mass energy
is derived.

(E) In addition Einstein has assumed that body remains at
rest before and after emission of light energy. But the
body may be at rest i.e. v= 0, velocity may be in clas-
sical region and velocity may be in relativistic region
(v� c), the law of inter-conversion of mass and energy
holds good under all conditions.
In electron-positron annihilation, the material particles
are in motion before and after annihilation. In mate-
rialization of energy, a gamma ray photon is converted
to electron positron pair, which move in opposite direc-
tions to conserve momentum. In nuclear fission and fu-
sion particles remain in motion in the process of mass
energy inter conversion. The thermal neutron which
causes fission has velocity 2185 m/s.

4 L / �mc2 is mathematically consistent in Einstein’s
derivation, under general conditions

Under general conditions (all possible values of variables) the
value of conversion factor other than c2 can be easily justified
mathematically in Einstein’s derivation [23–36]. This aspect
is not touched by the preceding authors [13–21].

(a) In Einstein’s derivation if one wave is regarded as to
form angle 0.5� rather than 0� then

H0 = H1 + 0:5�L�
� h�1� v

c
cos 0:5�

�
+
�

1� v
c

cos 180�
�i
;

(13)

or
H0 = H1 + �L

�
1 + 0:000018038

v
c

�
;

or

K0 �K = 0:000019038 lL
v
c

+ L
v2

2c2
;

�m (Mb �Ma) = 0:000038077
L
cv

+
L
c2
; (14)

or

L =
�mc2

1141
= 0:000876�mc2; (15)

�L / �mc2:

Further,Ma (mass after emission of light energy) =Mb (mass
before emission of light energy): 0:000038077L=cv=L=c2
in (14).

According to Einstein if body emits two light waves of en-
ergy 0:5L each in opposite directions then decrease in mass
is given by Eq. (10) i.e. �m=L=c2 and in this case decrease

in mass is (0:000038077L=cv+L=c2) thus there is no def-
inite value of decrease in mass in Einstein’s derivation. In
this case decrease in mass is more than as predicted by Ein-
stein, hence again the conversion factor other than c2 is con-
firmed i.e. �L/�mc2. Like this there are many examples
of this type.

(b) The central equation in Einstein’s derivation is Eq. (1)
and binomial theorem is equally applicable to it at any
stage i.e. in the beginning or end. Einstein applied bi-
nomial theorem in the end and obtained L= �mc2 ,
but the same equation is not obtained if binomial theo-
rem is applied in the beginning. The binomial theorem
is simply a mathematical tool and its application at any
stage should not affect results i.e. make or mar equation
L= �mc2.

The reason is that typical nature of derivation and Eq. (1)
is different from other relativistic equations. The energy is
scalar quantity and independent of direction but Eq. (1) is di-
rectional in nature due to angle �. In contrast if binomial
theorem is applied to Relativistic Kinetic Energy in the be-
ginning or at the end then result is same i.e. classical form
of kinetic energy (mrestv2=2). So there is inconsistency in
applications in this case.

Applying binomial theorem to Eq. (1) and repeating the
calculations as Einstein did, altogether different results are
obtained,

`� = `
�

1� v
c

cos�
��

1 +
v2

2c2
+

3v4

8c4
+ : : :

�
: (16)

Here v=c� 1, hence v2=c2 and higher terms can be ne-
glected. Thus

`� = `
�

1� v
c

cos�
�

or
(H0 � E0)� (H1 � E1) = 0 ;

or
Kb �Ka = 0 ;

or
1
2
Mbv2 � 1

2
Mav2 = 0 ;

or
Mass of body before emission (Mb) =
= Mass of body after emission (Ma): (17)

Thus light energy is being emitted, but under this condi-
tion Einstein’s this derivation does not provide any relation-
ship (equality or proportionality) between mass annihilated
and energy created. Similar is the situation if velocity v= 0.
Hence Einstein’s derivation gives decrease in mass of body
equal to L=c2 only under certain conditions. Thus in this case
derivation is not valid.
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Sr. No Values of various parameters WhetherL = �mc2 or L / �mc2

1 0:5L, 0:5L, � = 0� , � = 180� L = �mc2

2 0:5L, 0:5L, � = 0:5� , � = 180� L = �mc2=901 or L / �mc2

3 0:5001L, 0:49999L, � = 0�, � = 180� L = 0:9999988�mc2 or L / �mc2

4 0:5L, 0:5L, � = 0� , � = 180� but v = 0 No relation between L and �m
5 0:5L, 0:5L, � = 0�, � = 180�

but Binomial Theorem is applied in beginning.
No relation between L and �m

6 For other energies than light Equations not considered

Table 1: Einstein’s Sep 1905 derivation gives L = �mc2 under certain conditions and L / �mc2 under general conditions

(c) Let the body emits two light waves of slightly different
energies i.e. 0:5001L and 0:4999L in opposite direc-
tions and other parameters remain the same as assumed
by Einstein. In this case

H0 = H1 + 0:4999�L
�

1� v
c

cos 0�
�

+

+ 0:5001�L
�

1� v
c

cos 180�
�
:

(18)

Now proceeding in the same way as Einstein did

K0 �K = 0:0002L
v
c

+ L
v2

2c2
(19)

or
�m = Mass of body before emission(Mb)�
Mass of body after emission(Ma);

= 0:0004
L
cv

+
L
c2

(20)

or
Ma = 0:004

L
cv
� L
c2

+Mb

or

L =
�mc2�

0:0004 cv + 1
� :

The velocity v is in classical region, say 10 m/s,

L = �mc2
�
0:000083

�
; (21)

�L / �mc2:

Thus, �E/�mc2. Hence conversion factor other than
c2 follows from Einstein’s derivation under general condi-
tions.

(d) Energy emitted in various reactions. In his September
1905 paper Einstein derived Eq. (10) i.e. �L= �mc2
and then replaced L (light energy) by E (total energy)
and speculated

�E = �mc2: (11)

In Eq. (11) E stands for all possible energies of the uni-
verse e.g.: (i) sound energy, (ii) heat energy, (iii) chemical
energy, (iv) nuclear energy, (v) magnetic energy, (vi) electri-
cal energy, (vii) energy emitted in form of invisible radiations,

(viii) energy emitted in cosmological and astrophysical phe-
nomena, (ix) energy emitted volcanic reactions, (x) energies
co-existing in various forms etc., etc.

Now Eq. (1) i.e.

`� = `
�
1� v

c cos�
�q

1� v2

c2

is put forth for light energy by Einstein in June 1905 paper
(`� is light energy in moving frame), it is not meant for other
possible energies as quoted above.

Einstein never justified Eq. (1) for all the energies cited
above. The parameters used in Einstein’s equation are de-
fined for light energy only, not for all the energies. Thus by
this derivation L= �mc2 is derived under special conditions
for light energy only and replacing L by E in Eq. (10) is not
justified.

There are evidences that Einstein worked hurriedly in
other case also e.g. in theory of static universe the introduc-
tion of cosmological constant proved to be incorrect and Ein-
stein accepted the mistake later as quoted by Gamow [42].
The various cases when �E/�mc2 is justified are shown
in Table 1.

5 Conservation of momentum in general cases

The momentum is conserved irrespective of the fact that body
remains at rest or recoils or tends to recoil after emission of
light energy [43]. The law of conservation of momentum
can be used to calculate the velocity of recoil in this case
also. Let the body of mass 10 kg emits two waves of en-
ergy in visible region of wavelength 5000 _A it corresponds to
energy 7:9512�10�19 J. This energy is emitted in two waves
i.e., as obvious, 0:5001L (3:97639512�10�19 J) and 0:4999L
(3:97480488�10�19 J). Applying the conservation of mo-
mentum [43] the recoil velocity, recoil momentum and recoil
kinetic energy comes out to be �5:3�10�32 m/s, 5:3�10�31

kg�m/s and 1:404�10�62 J respectively. This recoil velocity
(Vr) will change the uniform velocity v as Vr + v, but it will
not make any difference to final result of change in mass as in
Eq. (21), due to negligible value of Vr [27]. Hence in the law
of conservation of momentum is obeyed in this case also.
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6 Experimental feasibility with conversion factors other
than c2

(a) Dirac [44] was one of the first physicists to suggest that,
in connection with his theory of large numbers, fundamental
dimensional constants may vary in time during the expansion
of the universe. The idea of variation of the speed of light
is suggested in various cosmological models [45, 46] and has
been the subject of attention by physicists in investigations of
extra dimensions, strings and branes [47]. Webb [48] has re-
ported variations in fine structure constant over cosmological
time scales and hence variations in c. This suggestion implies
�E/�mc2.
(b) Einstein has derived L= �mc2 (conversion factor be-
tween mass and energy is precisely equal to c2) under the ex-
tremely special or ideal conditions , which are even difficult
to attain practically. The work of scientists before Einstein
also justifies �E / �mc2.

This discussion does not confront with existing experi-
mental situation but addresses those theoretical and exper-
imental issues for which �E= �mc2 is not analyzed yet.
The mass energy inter-conversion equation, with conversion
factor equal to c2 i.e. �E= �mc2 has been confirmed in
nuclear physics and is also basis of nuclear physics. Even el-
ementary units of atomic mass (1 amu) or and energy (eV)
are based upon it. Thus it will remain standard in measure-
ments as seven days in a week; its validity in this regard is not
doubted at all.

The aim is to discuss experimentally those phenomena in
which �E= �mc2 is not applied yet. The mass energy con-
version processes are weird in nature and all have not been
at all studied in view of �E= �mc2. The conversion fac-
tor other than c2 is discussed for such elusive cases, not for
those it is already confirmed. Hence there is no confrontation
with the established experimental situation at all, but aim is
to open a mathematical front (�E / �mc2) for numerous
experimentally unstudied phenomena in nature. This devel-
opment can be discussed as below.

7 Most abundant chemical reactions

(i) Unconfirmed chemical reactions. When Einstein de-
rived E= �mc2, chemical reactions were the most abundant
sources of energy in nature. Till date E= �mc2 is not con-
firmed in the chemical reaction and the reason cited for this
is that equipments are not enough sensitive [49,50]. Consider
burning of 1kg straw or paper or petrol in controlled way i.e.
in such a way that masses, ashes, gases and energy produced
can be estimated. Even if 0.001 kg or 1gm of matter is annihi-
lated then energy equal to 9�1013 J (can drive a truck of mass
1000 kg to distance of 9�107 km) will be produced. Until
the equation is not confirmed in such reactions, then scien-
tifically E= �mc2 may not be regarded as precisely true in
such cases. It is equally possible that energy emitted may be

less than predicted by E= �mc2 i.e. E / �mc2 is feasible,
it is an open possibility unless ruled out.

Reactions in nuclear physics
(ii) Less efficiency: The efficiency of the nuclear weapons as
well as nuclear reactors is far less than the theoretical value
predicted by E= �mc2. Robert Serber (member of first
American team entered Hiroshima and Nagasaki in Septem-
ber 1945 to assess loses), has indicated [51] that the effi-
ciency of “Little Boy” weapon (U235, 49 kg) that was used
against Hiroshima was about 2% only. It is assumed that
all the atoms don’t undergo fission, thus material is wasted.
But no such waste material is specifically measured quantita-
tively. Thus the waste material (nuclear reactor or weapon)
must be measured and corresponding energy be calculated,
and it must quantitatively explain that why efficiency is less.
It may require the measurements of all types of energies (may
co-exist in various forms) in the processes and experimental
errors. Until such experiments are specifically conducted and
E= �mc2 is confirmed, �E / �mc2 is equally feasible.
(iii) Less energy: In laboratory it is confirmed [7, 52, 53]
that using thermal neutrons the total kinetic energy (TKE) of
fission fragments that result from of U235 and Pu239 is 20–
60 MeV less than Q-value (200 MeV) of reaction predicted
by �E= �mc2. This observation is nearly four decades
old. Bakhoum [7] has explained it on the basis of equation
H =mv2 (energy emitted is less than E= �mc2). Hence
here E / �mc2 is justified.
(iv) More mass: Palano [10] has confirmed that mass of par-
ticle Ds (2317) has been found more than current estimates
based upon �E= �mc2. Thus in this case E / �mc2 is
justified.
(v) Binding energy and mass defect in deuteron: There are
two inherent observations [23, 28, 29] about nucleus: firstly,
masses of nucleons are fundamental constants, i.e. they are
the same universally (inside and outside the nucleus in all
cases); and secondly nuclei possess Binding Energy
(BE= �mc2) owing to a mass defect. To explain these ob-
servations, in the case of the deuteron (BE= 2:2244 MeV),
the mass defect of nucleons must be 0.002388 amu or about
0.11854% of the mass of nucleons, i.e., nucleons must be
lighter in the nucleus. This is not experimentally justified,
as masses of nucleons are universal constants. Thus observa-
tions and predictions based upon �E= �mc2 are not justi-
fied, hence �E / �mc2 is equally feasible.

8 Mathematical form of extended equation

Until E= �mc2 is not precisely confirmed experimentally
in ALL CASES , it is equally feasible to assume that the en-
ergy emitted may be less than E= �mc2 (or E / �mc2).
It does not have any effect on those cases where E= �mc2
is confirmed, it simply scientifically stresses confirmation of
E= �mc2 in all cases. Also when reactants are in bulk
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amount and various types of energies are simultaneously
emitted and energies may co-exist. Thus both the possibilities
are equally probable until one is not specifically ruled out. In
view of weirdness in reactions emitting energy in universe,
some theoretical inconsistencies in the derivation and non-
availability of data, one can explore the second possibility
even as a postulate. All the equations in science are regarded
as confirmed when specifically justified in all experiments
time and again. The reactions involving inter-conversion of
mass and energy are utmost diverse, weird and new phenom-
ena are being added regularly, thus E=mc2 needs to be con-
firmed in all cases. Thus in general, in view of above propor-
tionality it may be taken in account as

dE / c2dm :

The above proportionality dE / c2dm can be changed
into equation by introducing a constant of proportionality.
The inception of proportionality constant is consistent with
centuries old perception of constant of proportionality in
physics since days of Aristotle and Newton. In second law of
motion (F = kma) the value of constant of proportionality, k
is always unity (like universal constant) i.e. F =ma. When
more and more complex phenomena were studied or values of
constants of proportionality were determined then it showed
dependence on the inherent characteristics of the phenomena.
In case constant of proportionality varies from one situation
to other then it is known as co-efficient of proportionality e.g.
co-efficient of thermal conductivity or viscosity etc. Thus re-
moving the proportionality between dE and c2dm, we get

dE=Ac2dm ; (22)

whereA is (a co-efficient) used to remove that sign of propor-
tionality; it depends upon inherent characteristics of the pro-
cesses in which conversion of mass to energy takes place and
it is dimensionless. It has nature precisely like Hubble’s con-
stant (50 and 80 kilometers per second-Megaparsec, Mpc) or
coefficient of viscosity (1:05�10�3 poise to 19:2�10�6 poise)
or co-efficient of thermal conductivity (0.02 Wm�1K�1 to
400 Wm�1K�1) etc. Thus, in fact Hubble’s constant may be
regarded Hubble’s variable constant or Hubble’s coefficient,
as it varies from one heavenly body to other. If “A” is equal
to one, then we will get dE= dmc2 i.e. same as Einstein’s
equation.

In Eq. (22) “A” is regarded as conversion factor as it de-
scribes feasibility and extent of conversion of mass into en-
ergy. For example out of bulk mass, the mass annihilated to
energy is maximum in matter-antimatter annihilation, appar-
ently least in chemical reactions, undetermined in volcanic
reactions and cosmological reactions. It (the co-efficient A)
depends upon the characteristic conditions of a particular pro-
cess. It may be constant for a particular process and varies
for the other depending upon involved parameters or experi-
mental situation. Thus “A” cannot be regarded as universal

constant, just like universal gravitational constant G and k in
Newton’s Second Law of Motion. The reason is that mass en-
ergy inter-conversion are the bizarre processes in nature and
not completely studied.

Now consider the case that when mass is converted into
energy. Let in some conversion process mass decreases from
Mi(initial mass) to Mf (final mass), correspondingly energy
increases from Ei (initial energy) to Ef (final energy). The
Eq. (22) gives infinitesimally small amount of energy dE cre-
ated on annihilation of mass dm. To get the net effect the
Eq. (22) can be integrated similarly Einstein has obtained the
relativistic form of kinetic energy in June 1905 paper [18]Z

dE=Ac2
Z
dm ;

Initial limit of mass =Mi, Initial limit of Energy = Ei ,

Final limit of mass = Mf , Final limit of Energy = Ef .

Initially when mass of body is Mi, then Ei is the ini-
tial energy of the system. When mass (initial mass, Mi)
is converted into energy by any process under suitable cir-
cumstances the final mass of system reduces to Mf . Conse-
quently, the energy of system increases to Ef the final en-
ergy. ThusMf and Ef are the quantities after the conversion.
Hence, Eq. (22) becomes

Ef � Ei =Ac2 (Mf �Mi) (23)
or

�E=Ac2�m (24)

Energy evolved =Ac2 (decrease in mass): (25)

If the characteristic conditions of the process permit then
whole mass is converted into energy i.e. after the reaction no
mass remains (Mf = 0)

�E= � Ac2Mi (26)

In this case energy evolved is negative implies that energy
is created at the cost of annihilation of mass and the process
is exo-energic nature (energy is emitted which may be in any
form). Energy is scalar quantity having magnitude only, thus
no direction is associated with it.

Thus the generalized mass-energy equivalence may be
stated as

“The mass can be converted into energy or vice-versa
under some characteristic conditions of the process,
but conversion factor may or may not always be c2
(9�1016 m2/s2) or c�2.”

9 Applications of generalized mass energy inter conver-
sion equation �E=Ac2�m

(i) It is already mentioned in section (3) that if 0.001 kg or
1gm of matter is annihilated then energy equal to 9�1013 J
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(can drive a truck of mass 1000 kg to distance of 9�107 km)
will be produced. Such or similar predictions are not experi-
mentally confirmed and energy emitted can be found less than
predictions.

Let the energy observed is 4:5�1013 J corresponding to
mass annihilated 0.001 kg , then value of A from �E=
=Ac2�m will be 0.5 i.e.

A=
�E
c2�m

=
4:5�1013 J

9�1016 = 0:5: (27)

Thus in this case mass energy inter-conversion equation
becomes

�E= 0:5c2�m: (28)

(ii) Let the TKE of fission fragments of U235 and Pu239 is
175 MeV (as experimentally it is observed less), instead of
expected 200 MeV. It can be explained with help of �E=
=Ac2�m with value of A is equal to 0.875 i.e.

A=
�E
c2

�m=
175
200

= 0:875 : (29)

Thus energy of fission fragments of U235 and Pu239 is
given by

�E= 0:875c2�m: (30)

Thus value of A less than one is justified experimentally
in this case.
(iii) The anomalous observation of excess mass of
Ds(2317) can be understood with help of �E=Ac2�m, as
mass of the observed particle is found more [10] than pre-
dictions of E= �mc2. In this case value of A will be less
than one. For understanding consider energy equal to 106 J is
converted into mass, then corresponding mass must be
1:11�10�11 kg. We are considering the case that mass is
found more than this. Let the mass be 1:12�10�11 kg. The
value of A this case is 0.992, as calculated from �E=
=Ac2�m i.e.

A=
106

10:8�105 = 0:992 : (31)

Thus in this mass energy inter conversion equation be-
comes

�E= 0:992c2�m or �m= 1:008�E : (32)

Thus corresponding to small energy more mass is emitted.
(vi) �E=Ac2�m is useful in explaining the binding energy
(2.2244MeV or 3:55904�10�13 J), mass defect (0.002388
amu or 2:388�10�3 amu) and universal equality of mass of
nucleons (mn = 1.008664 amu, mp = 1.006082 amu). Ob-
viously neutron and protons contribute equally towards the
mass defect (0.001194 amu), then mass of neutron inside nu-
cleus must be 1.00747 amu (mass outside nucleus i.e. in Free
State is 1.008664 amu). Similarly corresponding mass of pro-
ton in the nucleus must be 1.006082 amu (mass of proton
outside nucleus 1.007274 amu). But decrease in mass of nu-
cleons inside nucleus is not justified, as masses of nucleons
are universally same [23, 28, 29].

Thus mass defect of deuteron must be infinitesimally
small, only then masses of nucleons are same inside nucleus
and outside nucleus. Also binding energy must be 2.2244
MeV as experimentally observed. Both these experimentally
confirmed facts can be explained with help of �E=Ac2�m.

Let in this case the mass defect is negligibly small i.e.
2:388�10�13 amu or 3:9653�10�40 kg. Then value of A
(coefficient of proportionality or mass energy inter conver-
sion coefficient) is 1010 i.e. for annihilation of infinitesimally
small mass exceptionally large amount of energy is liberated.
Thus

A=
�E
c2�m

=
3:5634�10�13

9�1016�3:9653�10�40 = 1010 ; (33)

�E= 1010c2�m: (34)

(v) Webb [48] has reported results for time variability of the
fine structure constant or Sommerfeld fine structure constant
(�) using absorption systems in the spectra of distant quasars.
The variation in magnitude of alpha has been observed as

��
�

=
(�then � �now)

�now
= � 0:9�10�5: (35)

According to CODATA currently accepted value of alpha
(�now) is 7:297352�10�3. Hence from Eq. (35),

�then = 0:007296 : (36)

Now corresponding to the reduced value of � (�then =
= 0.007296) the the speed of light can be determined from
equation

cthen =
e2

2�then"h
(37)

as 2:994�108m/s (where all terms have usual meanings). Cur-
rently accepted value of the speed of light is 2:99729�108m/s.

To explain the energy emitted with this value of the speed
of light is the value A (�E=Ac2�M )

A=
c2

c2then
= 1:001 : (38)

Thus in this case mass energy inter conversion equation
becomes

�E= 1:001c2�m: (39)

Hence �E / �mc2 has both experimental and theo-
retical support, with emergence of new experimental data its
significance will increase.
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The thinking which encompasses both reasoning-in-itself and reasoning-for-itself,
called “aprioristic thinking” by Hegel, is the freest form of thinking. This form of
thinking is imparted to the physical sciences by philosophy. Only under this condition
can physics obtain deeper scientific knowledge.

In the beginning of the last century, the renowned scientist
Anri Bergson [1] gave an advanced notice: “We experience
now one of the greatest crises; all our thinking, all ethics, all
life, all our spiritual and moral existence are in a condition of
intellectual fermentation. . . ”. This fermentation, according
to the opinion of the known philosopher Edmund Husserl [2],
occurs due to installation dominant in positivistic and natural-
istic philosophy. This installation of ordinary consciousness
contrasts the human consciousness and being to each other,
and, therefore, not taking into account consciousness, can
lead to more crisis the European sciences. As pointed out
by Husserl, the sciences about the nature can be founded only
by means of phenomenology, as a strict philosophy, which
is oriented towards a first-hand experience of consciousness.
Though many years have already passed since then, as these
scientists have written, resolute turn in this question is not yet
present. Even, in spite of the fact that in one of the achieve-
ments of modern physics — in quantum physics — the con-
sciousness of the observer has found a place for itself. In
the interpretation of quantum mechanics, the most important
upshot of this for physicists is that this problem is related to
the problem of consciousness — an interdisciplinary problem
concerning not only physicists, but also philosophers, psy-
chologists, physiologists and biologists. Its solution will re-
sult in deeper scientific knowledge. But all the same, for some
reason, scientists very often in case of scientific cognition
neglect questions of the interaction between our conscious-
ness and the surrounding world. If we wish to reach fuller
scientific knowledge, we should not deal with physical phe-
nomena and thinking (consciousness) itself separately. The
well-known physicist Wigner [3] maintains that the separa-
tion between our perception and the laws of nature is no more
than simplification. And though we are convinced that it has
a harmless character, to nevertheless merely forget about it
should not be the case. It is clear that deeper scientific knowl-
edge should include in itself a problem of the theory of cog-
nition — a problem of the origin of knowledge and a logical
substantiation of the relevant system of knowledge.

In deciding upon this problem, the cognition theory con-
siders the connection between “I”, my consciousness and an
external world, and says that the decision is concealed in the
interaction between sensuality and reason. Reason transforms
our feelings into thoughts and it means that the representa-

tions are replaced with concepts. If science does not wish to
be, as it was described by Hegel [4], a simple unit of data
then, of course, it should have concepts and should operate
with them. But, if science also does not wish to be positivis-
tic (all sciences, except philosophy, are positivistic) then it
should have a rational basis and beginning. Only in this case,
does the sole purpose (affair) of science become the concept
of the concept. (Hegel has distinguished between the sciences
as follows: 1) sciences, as a simple unit of data, 2) the ex-
tremely positive sciences, 3) positive sciences, 4) philosophy.
Positivism of a physical science is that it does not know that
its definitions are final).

Physics, certainly, has a rational basis which is intimately
connected with philosophy too. But what prevents a physical
science from becoming a “mere” philosophy? Hegel has elab-
orated on the notion of a positivistic side of the sciences. In
physics, this positivism is characterized by the lack of knowl-
edge that its definitions are final and therefore there is no tran-
sition into the higher sphere. This finiteness is connected with
the finiteness of the cognition (feeling, belief, authority of
others, and authority of external and internal contemplation).

However, it is perhaps meant so to happen, as described
by Hegel, that thoughtful contemplation, lowering casual
conditions and organizing everything, will present the gen-
eral outline before a detailed intellectual exposition. It is clear
then that an intellectual physical science will picture a ratio-
nal science of Nature in the form of an image which is the
external image of Nature. This image is called a physical pic-
ture of the world, or, as called by Max Planck [5], the world
of a physical science. Planck has explained further about it:
“. . . We are compelled to recognize behind the sensual world
the second, real world which leads independent existence in-
dependent of the person, — the world which we not can com-
prehend directly, but we comprehend via the sensual world,
via known symbols which he informs us, as if we would con-
sider a interesting subject only through the glasses, optical
properties of which are absolutely unknown for us”.

Thus, according to Planck, there are three worlds: the real
world, the sensual world and the world of a physical science
or a physical picture of the world. The real world is the world
outside us, it exists irrespective of our understanding of its
laws, i.e. irrespective of our consciousness and therefore it is
the objective world. The sensual world is our world because
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we perceive it through our bodies of perception: eyes, hear-
ing, charm etc., and it is subjective (it is possible to tell that
it is illusion). A physical picture of the world is the world
in which can be reflected both real and the sensual world.
This world is a bridge for us with which help we study the
world around. Reflection of the real world in the world of a
physical science is a physical picture of the real world; it is
also possible to describe the quantum world and the science
studying this world is the quantum physics. The reason why
the real world is the quantum world is because the so-called
world of atoms and electrons, as Planck has given above, ex-
ists independently of the person. Reflection of the sensual
world in a physical picture of the world is a physical picture
of the sensual world (the classical world) and the correspond-
ing science is the classical physics. Thus, only in case of the
thoughtful contemplation can the physics can be concerned
with the philosophy of nature.

But when will it be possible to tell, whether the physical
science is not simply concerned with philosophy, and even
enters into it, to a certain extent it? Based on a well-known
classification of all sciences by Hegel, the nature philosophy
is a science about an idea in another-being. Hegel has thus
said: “what is real, is reasonable”, referring to understanding
in the context of the reality of a reasonable idea. Such a reality
is the maintenance of Hegel’s philosophy. Hegel writes that
phenomena, being unstable (random) and existing in continu-
ous fluidity, are in contrast to the idea and do not enter into it.
Therefore Hegel takes the idea as the maintenance of his phi-
losophy. In the ancient time, Plato too spoke about ideas [2].
He wrote: “In a horse, in the house or in the fine woman there
is nothing real. The reality is concluded as a universal type
(idea) of a horse, the house, the fine woman” [6]. Plato con-
firms the continuous fluidity of all existing forms and asks
the question: can the philosophy be within continuous and
chaotic fluidity? As a result, the human knowledge is possi-
ble only under the condition of the existence of steady ideas,
and with the help of it, is possible to distinguish between
things based on fluid validity and to plan in it any logical or-
der. Hegel understands that an idea will be steady, if it will be
the reality of a “reasonable”. After all, only reason is steady,
absolute. But this is not only because it is so ingenious to
define ideas in the way Hegel did it. In “Metaphysics”, Aris-
totle, criticizing Plato, asserts that the idea of a thing explains
nothing in the thing itself, even provided that the idea relates
to the thing, as found for example, in the fact that whiteness
concerns a white subject. Aristotle did not actually deny the
independent existence of ideas, but attributed to them the ex-
istence within things themselves. Namely, Hegel’s idea —
the reality of the “reasonable” — satisfies Aristotle’s require-
ment. Because, in such determination, the idea is taken from
the reality itself. But against Hegel’s reality the mind at once
acts. The mind says to us that ideas are no existing chimeras.
If science does not want to conceptualize its concept then it,
of course, will agree with the mind. Then, very figuratively, it

is described by Hegel as follows: just as meal process is un-
grateful to the meal (simply eats it, not giving instead of any-
thing), similarly, thinking process will be ungrateful to apos-
teriori experience, and will simply give nothing in exchange.
In order to receive something from thinking process, it is nec-
essary to make the thinking itself by the subject of thinking.
Reflection transforms our representations into concepts. And
further reflections of concepts transform concepts into con-
cepts, i.e. it becomes clear as a concept. Only under such
conditions can the science understand its concept. However,
only in philosophy do we find that the subject of thinking is
the thinking itself (for example, for the mathematician, it is
numbers, spaces etc.). The thinking, opposing with itself to
itself, is the reasoning-for-itself. Process thinking neverthe-
less is inside and consequently it is the reasoning-in-itself. As
a result, the “in itself” and “for itself” reasoning is the most
substantial form of free thinking and it is defined by Hegel, as
aprioristic thinking. Only by aprioristic thinking can the gen-
erality and authenticity be found. Namely, in this thinking,
philosophy informs the maintenance of empirical sciences.
The obligation of the sciences is not to refuse this process,
because it is a very noble act for a science to reach the con-
cept of the concept. But the mind, objecting again, speaks to
us: “But what it can give to the physics? ”. At all times, there
have been physicists who, knowing about the finiteness of the
knowledge of their science, have spoken about deeper scien-
tific knowledge [8–15]. They envision when it will be possi-
ble to speak about the physicist and about the consciousness
of the observer simultaneously.

Hegel has very interestingly written: “In the physicist we
too get acquainted with the general, with essence, the only
distinction between physics and the philosophy of nature is
that the philosophy of nature leads up us to the comprehen-
sion of the true forms of the concept of natural things”. But
doesn’t it mean that in deeper scientific cognition the physical
science has transited into a higher circle which is not present
in physics because of its positivism? And the answer to this
question is, of course, yes, it does. Thus, only under the con-
dition of deeper scientific knowledge can we claim that the
physical science is the philosophy of nature (in the sense that,
for example, the apple is a fruit).

Hegel defines the philosophy of nature, as a science about
an idea in its another being. As he writes, in philosophy we
do not learn anything else, except ideas, but the ideas exist
here as exterior forms. An exterior form of an idea is its an-
other being. Because the being of an idea (reasoning-in-itself
and reasoning-for-itself) takes place in the reason itself. Na-
ture receives its exterior, that exterior which we see, in the
exterior process of an idea. In fact, Hegel’s slogan “what is
reasonable, is real” is confirmed.

Unwittingly, we could as well resolve one more problem.
The maintenance of philosophy, as Hegel writes, is an idea
which excludes from itself, the phenomenon, chance. But
the maintenance of physics is Nature, its phenomena. At the
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same time we may ask, “when can the physical science be-
come the philosophy of nature?” All becomes clear when we
agree with Hegel, that Nature is connected with an idea, in the
sense that it is an idea in its another being. The laws of Na-
ture, discovered by our thinking about physics, are also ideas
– reasonables of reality.

Thus, as in the past, philosophy will continue to play an
important role related to the necessity for the sciences to en-
ter a higher level. Only in this case can the sciences avoid the
crisis about which Husserl has always warned us. As Berg-
son continues that which has been said in the beginning of
this article: “. . . The new system, more general, wider should
become the doctrine for many decades and even centuries.
These new principles should direct all our life on a new way
on which the mankind will approach to cognition of true and
to happiness increase at the Earth”.
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Nuclear structure of 230-238U isotopes hav been studied in the frame work of the in-
teracting boson approximation model (IBM � 1). The contour plot of the potential
energy surfaces, V (�; ), shows that all nuclei are deformed and have rotational char-
acters, SU(3). Levels energy spectra belonging to the gsb, � ,  bands, electromagnetic
transition rates B(E1) and B(E2), quadrupole moment Q0, deformation parameterare
�2 and the strength of the electric monopole transitionsX(E0=E2) are calculated. The
calculated values are compared with the available theoretical and experimental data and
show reasonable agreement.

1 Introduction

The observation of a large quadrupole moments to 230-238U
isotopes had led to the suggestion that these nuclei might be
deformed and have to be confirmed by the measurement of
their nuclear properties as well as the observation of their ro-
tational band structures. It is noticed that the level schemes
of uranium isotopes are characterized by the existence of two
bands of opposite parity and lay in the region of octupole de-
formations. The primary evidence for this octupole deforma-
ton comes from the parity-doublet bands, fast electric tran-
sition (E1) between the negative and positive parity bands
and the low-lying 1�, 0+

2 and 2+
2 excitation energy states.

Many authors have studied 230-238U isotopes theoretically
using different models. The relativistic Mean Field Model
has employed [1–4] to obtain the densities of the cluster and
daughter nuclei. Also, a systematic �-decay properties of
the even-even heavy and superheavy nuclei have been inves-
tigated. The energy of the deformed nuclei in the actinide
region has been determined in the frame work of the macro-
scopic — microscopic approach. The Yukawa folding proce-
dure has used [5] together with the Liquid Drop Model [6].

The properties of the states of the alternating parity bands
in actinides are analyzed within the Cluster Model. The
model has been used successfully in calculating levels en-
ergy, quadrupole moments and half-lives of cluster radioac-
tivity. A comparison was mad between the predicted data
[7–13] and the calculated values by other models and show
good agreement.

The band heads, energy spacings within bands and a num-
ber of interband as well as intraband B(E2) transition rates
are well reproduced [14] for all actinide nuclei using the Ex-
actly Separable Davidson (ESD) solution of the Bohr Hamil-
tonian.

The potential energy surfaces are calculated [15] to 230U
using the most advanced asymmetric two-center shell model

that are added to the Yukawa-plus-exponential model.
Until now scarce informations are available about the ac-

tinide region in general and this is due to the experimental
difficulties associated with this mass region. In the present ar-
ticle we used the Interacting Boson Model (IBM �1) which
is a theoretical model and differ than all the previous models
used with the actinid nuclei. The aim of the present work is
to process calculation for the follows:

1. For the potential energy surfaces, V (�; ), for all
230-238U nuclei;

2. For levels energy;

3. For the electromagnetic transition ratesB(E1) and also
calculation for B(E2);

4. For the electric quadrupole moment Q0;

5. For the deformation parameter �2;

6. For the strength of the electric monopole transitions
X(E0=E2).

2 (IBA-1) model

2.1 Level energies

The IBA-1 model was applied to the positive and negative
parity low-lying states in even-even 230-238U isotopes. The
proton, �, and neutron, �, bosons are treated as one boson and
the system is considered as an interaction between s-bosons
and d-bosons. Creation (sydy) and annihilation (s ~d) operat-
ors are for s and d bosons. The Hamiltonian [16] employed
for the present calculation is given as:

H = EPS � nd + PAIR � (P � P ) +

+
1
2
ELL � (L � L) +

1
2
QQ � (Q �Q) +

+ 5OCT � (T3 � T3) + 5HEX � (T4 � T4) ;

(1)
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nucleus EPS PAIR ELL QQ OCT HEX E2SD(eb) E2DD(eb)
230U 0.2000 0.000 0.005 �0.0150 0.0000 0.0000 0.2060 �0.6094
232U 0.2000 0.000 0.0050 �0.0150 0.0000 0.0000 0.1890 �0.5591
234U 0.2000 0.0000 0.0044 �0.0150 0.0000 0.0000 0.1782 �0.5271
236U 0.2000 0.0000 0.0055 �0.0150 0.0000 0.0000 0.1720 �0.5088
238U 0.2000 0.0000 0.0057 �0.0150 0.0000 0.0000 0.1630 �0.4822

Table 1: Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

where

P � p =
1
2

24 n(sysy)(0)
0 �

p
5(dydy)(0)

0

o
xn

(ss)(0)
0 �

p
5( ~d ~d)(0)

0

o 35(0)

0

; (2)

L � L = �10
p

3
h
(dy ~d)(1)x (dy ~d)(1)

i(0)

0
; (3)

Q �Q =
p

5

26664
�

(Sy ~d+ dys)(2) �
p

7
2

(dy ~d)(2)
�
x�

(sy ~d+ + ~ds)(2) �
p

7
2

(dy ~d)(2)
�
37775

(0)

0

; (4)

T3 � T3 = �p7
h
(dy ~d)(2)x (dy ~d)(2)

i(0)

0
; (5)

T4 � T4 = 3
h
(dy ~d)(4)x (dy ~d)(4)

i(0)

0
: (6)

In the previous formulas, nd is the number of boson; P �P ,
L �L, Q �Q, T3 �T3 and T4 �T4 represent pairing, angular mo-
mentum, quadrupole, octupole and hexadecupole interactions
between the bosons; EPS is the boson energy; and PAIR,
ELL, QQ, OCT , HEX is the strengths of the pairing, an-
gular momentum, quadrupole, octupole and hexadecupole in-
teractions.

2.2 Transition rates

The electric quadrupole transition operator [16] employed in
this study is given by:

T (E2) = E2SD � (sy ~d+ dys)(2) +

+
1p
5
E2DD � (dy ~d)(2) : (7)

The reduced electric quadrupole transition rates between
Ii ! If states are given by

B (E2; Ii � If ) =
[< If k T (E2) k Ii >]2

2Ii + 1
: (8)

3 Results and discussion

3.1 The potential energy surface

The potential energy surfaces [17], V (�, ), for uranium iso-
topes as a function of the deformation parameters � and 

have been calculated using :

EN�N� (�; ) = <N�N� ;� jH�� jN�N� ;�> =

= �d(N�N�)�2(1 + �2) + �2(1 + �2)�2�
��kN�N�[4� ( �X� �X�)� cos 3]

	
+

+
�

[ �X� �X��2] +N�(N� � 1)
�

1
10
c0 +

1
7
c2
�
�2
�
;

(9)

where

�X� =
�

2
7

�0:5

X� � = � or � : (10)

The calculated potential energy surfaces, V (�; ), for ura-
nium series of isotopes are presented in Fig. 1 and Fig. 2.
It shows that all nuclei are deformed and have rotational-like
characters. The two wells on both oblate and prolate sides are
not equal but the prolate is deeper in all nuclei.. The energy
and electromagnetic transition rates are calculated cosidering
uranium series of isotopes a rotational-like nuclei.

3.2 Energy spectra

IBA-1 model has been used in calculating the energy of the
positive and negative parity low -lying levels of uranium se-
ries of isotopes. In many deformed actinide nuclei the neg-
ative parity bands have been established and these nuclei are
considered as an octupole deformed. A simple means to ex-
amine the nature of the band is to consider the ratio R which
for octupole band, R � 1, and defined as [18]:

R =
E (I + 3)� E (I � 1)NPB
E (I)� E (I � 2)GSB

: (11)

In the present calculations all values of R for uranium se-
ries of isotopes are � 1, and we treated them as octupole
deformed nuclei.

A comparison between the experimental spectra [19–23]
and our calculations, using values of the model parameters
given in Table 1 for the ground and octupole bands, are il-
lustrated in Fig. 3. The agreement between the calculated
levels energy and their correspondence experimental values
for all uranium nuclei are reasonable, but slightly higher es-
pecially for the higher excited states. We believe this is due to
the change of the projection of the angular momentum which
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I+i I+f
230U 232U 234U 236U 238U

01 Exp. 21 9.70(12) 10.0(10) 10.66(20) 11.61(15) 12.09(20)

01 Theor. 21 9.7128 10.0163 10.6479 11.6506 12.1143

21 01 1.9426 2.0033 2.1296 2.3301 2.4229

22 01 0.0107 0.0113 0.0104 0.0095 0.0081

22 02 1.2419 1.3677 1.5411 1.7598 1.8855

23 01 0.0190 0.0131 0.0099 0.0082 0.0066

23 02 0.0027 0.0095 0.0131 0.0144 0.0139

23 03 0.0245 0.0085 0.0031 0.0013 0.0007

24 03 0.7577 0.8679 1.0291 1.2308 1.3730

24 04 0.0508 0.0415 0.1309 0.0710 0.0022

41 21 2.7740 2.8443 3.0182 3.3014 3.4336

41 22 0.0699 0.0480 0.0352 0.0276 0.0213

41 23 0.0046 0.0019 0.0010 0.0007 0.0005

61 41 3.0183 3.0849 3.2707 3.5790 3.7256

61 42 0.0706 0.0532 0.0412 0.0333 0.0260

61 43 0.0128 0.0066 0.0039 0.0026 0.0018

81 61 3.0670 3.1387 3.3335 3.6548 3.8121

81 62 0.0618 0.0503 0.0415 0.0351 0.0381

81 63 0.0201 0.0117 0.0073 0.0049 0.0034

101 81 2.9919 3.0827 3.2910 3.6237 3.7930

101 82 0.0510 0.0439 0.0383 0.0340 0.0280

Table 2: Table 2: Values of the theoretical reduced transition probability, B(E2) (in e2 b2).

I�i I+f
230U 232U 234U 236U 238U

11 01 0.1353 0.1602 0.1824 0.2071 0.2294

11 02 0.0531 0.0512 0.0492 0.0475 0.0449

31 21 0.2509 0.2811 0.3075 —— ——

31 22 0.0811 0.0763 0.0711 —— ——

31 23 0.0013 0.0002 0.0000 —— ——

51 41 0.3628 0.3913 —— —— —–

51 42 0.0862 0.0831 —— —— —–

51 43 0.0020 0.0006 —— —— —–

71 61 0.4809 0.5064 —— —— ——

71 62 0.0816 0.0811 —— —— ——

91 81 0.6043 0.6267 —— —— ——

91 82 0.0736 0.0749 —— —— ——

Table 3: Table 3: Values of the theoretical reduced transition probability, B(E1) (in � e2b).

nucleus 230U 232U 234U 236U 238U

Q0 9.920 10.020 10.340 10.800 11.020

�2 0.263 0.264 0.272 0.282 0.286

Table 4: Table 4: The calculated electric quadrupole moment Q0 and deformation parameter �2.
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Fig. 1: Potential energy surfaces for 230-238U nuclei at = 0� (prolate) and 60� (oblate).

Fig. 2: Contour plot of the potential energy surfaces for 230-238U nuclei.
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Fig. 3: Comparison between experimental (Exp.) [19–23] and theoretical (IBA-1) energy levels in 230-238U.

is due to band crossing and octupole deformation. From -
bands [24] octupole deformation deformation has observed
at I = 14 (for 232U), I = 10 (for 234U), I = 15 (for 236U) and
I = 10 (for 238U) respectively.

Unfortunately there is no enough measurements of elec-
tromagnetic transition ratesB (E2) orB (E1) for these series
of nuclei. The only measured B (E2; 0+

1 ! 2+
1 )’s are pre-

sented, in Table 2 for comparison with the calculated values.
The parameters E2SD and E2DD used in the present calcu-
lations are displayed in Table 1.

The calculated [equations 12, 13] electric quadrupole mo-
ment Q0 and deformation parameter �2 are given in Table 4.
It is clear that both values are increasing with the increase of
the neutron number of uranium isotopes.

Q0 =
�

16�B (E2)exp:
5

�1=2

; (12)

�2 =
[B (E2)exp:]1=2

3ZR2
0

4�

(13)

3.3 Electric monopole transitions

The electric monopole transitions, E0, are normally occur-
ring between two states of the same spin and parity by trans-

ferring energy and zero unit of angular momentum. The
strength of the electric monopole transitions,Xif 0f (E0=E2),
[25] are calculated using equations (14, 15) and presented in
Table 5.

Xif 0f (E0=E2) =
B (E0; Ii � If )
B (E2; Ii � I0f )

; (14)

Xif 0f (E0=E2) = (2.54�109)A3=4 �
�E

5
(MeV)

KL

�(E2)
Te(E0; Ii � If )
Te(E2; Ii � I0f )

: (15)

3.4 Conclusions

The IBA-1 model has been applied successfully to 230-238U
isotopes and we have got:

1. The ground state and octupole bands are successfully
reproduced;

2. The potential energy surfaces are calculated and show
rotational behavior to 230-238U isotopes where they are
mainly prolate deformed nuclei;

3. Electromagnetic transition rates B (E1) and B (E2)
are calculated;
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I+i I+f I+0f
230U 232U 234U 226U 238U

02 01 21 0.660 0.560 0.001 0.920 1.470

03 01 21 13.370 1.300 15.910 0.282 —–

03 01 22 2.400 0.410 3.000 1.960 212.500

03 01 23 3.510 0.280 2.420 1.240 0.520

03 02 21 0.620 0.590 0.660 0.500 —–

03 02 22 0.110 0.180 0.120 0.001 1.500

03 02 23 0.180 0.130 0.100 0.001 3.720

04 01 22 1.960 7.750 0.001 0.230 7.250

04 01 23 1.320 0.250 —– 0.250 0.190
04 01 24 32.660 0.330 1.000 0.170 0.460

04 02 22 —– 0.020 0.0000 0.060 3.250

04 02 23 —— 0.750 —– 0.070 0.080

04 02 24 —– —– 0.000 0.100 0.2000

04 03 21 0.330 —– —– 24.000 19.000

04 03 22 0.020 0.080 0.110 0.330 4.750

04 03 23 0.010 2.750 —– 0.360 0.130

04 03 24 0.330 —– 17.000 0.520 0.300

Table 5: Table 5. Theoretical Xif 0f (E0/E2) ratios for E0 transitions in Ra isotopes.

4. Electric quadrupole moment Q0 are calculated;

5. Deformation parameter �2 are calculated.
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LETTERS TO PROGRESS IN PHYSICS

A Brief Note on “Un-Particle” Physics

Ervin Goldfain

Photonics Co., Welch Allyn Inc., Skaneateles Falls, NY 13153, USA
E-mail: ervingoldfain@gmail.com

The possibility of a hidden sector of particle physics that lies beyond the energy range of
the Standard Model has been recently advocated by many authors. A bizarre implication
of this conjecture is the emergence of a continuous spectrum of massless fields with
non-integral scaling dimensions called “un-particles”. The purpose of this Letter is to
show that the idea of “un-particles” was considered in at least two previous independent
publications, prior to its first claimed disclosure.

The Standard Model (SM) is a highly successful theoretical
framework that describes the relationships among all known
elementary particles and the attributes of three of the four
forces that act on these particles — electromagnetism, the
strong force and the weak force. SM covers an energy range
upper limited by the weak interaction scale of approx. 300
GeV. Despite the remarkable success of SM, it seems likely
that a much deeper understanding of nature will be achieved
as physicists continue to probe the fundamental constituents
of matter at increasingly higher energies. Both theory and
experiments strongly indicate that new phenomena await dis-
covery beyond the SM range and reaching into the Terascale
region. The Large Hadron Collider (LHC) at CERN is based
on high energy proton beams and is scheduled to begin opera-
tion later this year. Moreover, further exploiting the Terascale
physics will be possible in the near future with a new accel-
erator known as the International Linear Collider (ILC). It is
believed that running both LHC and ILC will provide clues
on how to go about solving many of the open questions chal-
lenging the current SM.

The possibility of a yet-unseen sector that lies in the
Terascale range and is weakly coupled to SM has been re-
cently advocated by many authors [1–6]. A bizarre implica-
tion of this conjecture is the emergence of a continuous spec-
trum of massless states with non-integral scaling dimensions
called “un-particles”. In classical physics, the energy, lin-
ear momentum and mass of a free point particle are linked
through the relativistic connection (c = 1):

E2 = p2 +m2: (1)

Quantum mechanics converts (1) into a dispersion rela-
tion for the corresponding quantum waves, with the mass m
fixing the low frequency cut-off (~= 1):

!2 = k2 +m2: (2)

Unlike (1) or (2), un-particles are conjectured to emerge
as streams of fractional objects, something that has never
been either imagined or seen before. A possible signal of

un-particles at either LHC or ILC may show up as “missing”
energy in certain decay channels [1–6].

The purpose of this Letter is to set the record straight
and point out that the idea of “un-particles”, first claimed
in [1, 2], was previously considered elsewhere. To the best
of our knowledge, there are at least two publications where a
similar or identical concept was introduced and discussed:

1. In 2005, Prof. F. Smarandache has launched the term
un-matter as part of his novel mathematical framework
of Neutrosophy and Fuzzy Logic [7, 8];

2. In 2006, the author has formulated the concept of frac-
tional number of field quanta in connection with the de-
velopment of quantum field theory using complex dy-
namics [9].

It is unfortunate that neither one of [1–6] have referenced
these contributions.
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LETTERS TO PROGRESS IN PHYSICS

International Injustice in Science

Florentin Smarandache

Chair of Math & Sciences Department, University of New Mexico, Gallup, NM 87301, USA
E-mail: smarand@unm.edu

In the scientific research, it is important to keep our freedom of thinking and not being
yoked by others’ theories without checking them, no matter where they come from.
Cogito, ergo sum (I think, therefore I am), said Descartes (1596–1650), and this Latin
aphorism became his first principle in philosophy.

Inspired by D. Rabounski [1] and M. Apostol [2] I read more
articles about injustices in science (for example [3]) and in
arts and letters occurring in contemporary societies. The poet
Plautus (254-184 B.C.) had once exclaimed that homo homini
lupus (man is a wolf for man), so people make problems to
people. In this short letter to the editor, I would like to list
some inconvenient cases that manifest today:

There exist reviewing and indexing publications and insti-
tutes made just for a propagandistic way, and not reviewing
all relevant literature on the topics, but reviewing their peo-
ple and their ideas while ignoring, boycotting, denigrating, or
discrediting other people and ideas. They exercise an interna-
tional traffic of influence by manipulations and falsifications
of information (such as biographies, history of events, etc.),
discourage people for working on topics different from theirs,
and use subversive techniques in their interest of hegemony in
science, arts, and letters.

The science, art, and literature of the powerful are like
that: If you don’t cite them, it is your fault as if you have
not read them. However, if they don’t cite you, it’s your fault
too as if you did not deserve to be cited because you have
published in so-called by them “obscure publications”, even
if these people have “borrowed” your idea without acknowl-
edgement. They categorize as “obscure, unimportant, not
by establishment” those journals, publishing houses, cultural
centers and researchers or creators that do not obey to them or
that dare to be independent thinkers, in order that these people
with power positions stigmatize them in the public’s eye (be-
cause they can not control these publications). While the pub-
lications and centers of research they control they proclaim as
“the best”. The science/art & letters establishments continue
to ignore or minimalize the research and creation done out-
side the establishment. It became a common procedure that
people who control the so-called “high” publications abuse
their power and they “take” ideas from less circulated publi-
cations and publish them in these “high” publications without
citation, as their own ideas!

There are journals using hidden peer-reviewers that delay
the publication until someone else from their house get credit
for your paper’s ideas.

Secret groups and services ignore and even boycott per-

sonalities who are independent in thinking and don’t follow
the establishment or don’t obey to them; they manipulate na-
tional and international awards in science, arts, literature, also
they manipulate university positions, high research jobs,
funding; they try to confiscate the whole planet’s thought by
making biased so-called “reference sites” (as the self-called
“encyclopedias”, “dictionaries”, “handbooks”, etc.) where
they slander independent thinkers, while blocking other sites
they don’t like; that’s why the whole human history of sci-
ence, arts, letters has to be re-written; the search engines bring
these “reference sites” amongst the first pages in a search,
even they are not the most relevant to the search topic, and
since most of the hurry readers browse only the beginning
pages [they don’t spend time to look at all of them], it is a
high probability that the populace is manipulated according
to the biased information of these so-called “free” (just be-
cause they are not free!) reference sites; these groups try to
confiscate the Internet at the global scale; always, during his-
tory, there were and unfortunately there still are intentions
from some secret groups or services to dominate others. . .
They try to transform other countries in spiritual colonies by
brain washing. Secret groups and services do not only politic,
economic, or military espionage, but also scientific, artistic,
literary manipulations in the profit of their people.

Unfortunately, big cultures continue to destroy small cul-
tures and to delete the collective memory of small nations.
History is written by winners, says the aphorism, but this is
not correct, history should be written by all parts. Interna-
tional organisms are created who unfortunately only serve the
interests of a few powers, not of the whole world.

There are people believing they detain the absolute truth,
and if somebody dares to have a different opinion from them,
he or she is blacklisted, slandered, banned from various pub-
lications, etc.

The public opinion is provoked, manipulated through pro-
paganda, publicity, dissemination by those who detain the
power or control the mass media and the national and interna-
tional awards, and these awards have been created in purpose
to impose some people and ideologies.

There exist scientific, artistic, literary, or cultural associ-
ations/organizations whose hidden goal is to manipulate peo-
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ple in their propagandistic interest and indoctrinate them. The
literature they start to send (after collecting your member-
ship money!) reflects only their ideas and praise only their
people, while ignoring or boycotting others’. Nolens volens
(unwilling or willing) the “member” of such association be-
comes their spiritual slave. Consequently, you are yoked to
this association’s propaganda. Better to be independent and
not belonging to any association/organization.

The author would like to express his gratitude to V. Chris-
tianto, D. Rabounski, M. Apostol, and E. Goldfain for their
comments.
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A Unified Theory of Interaction: Gravitation and Electrodynamics

Pieter Wagener

Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
E-mail: Pieter.Wagener@nmmu.ac.za

A theory is proposed from which the basic equations of gravitation and electromag-
netism are derived from a single Lagrangian. The total energy of an atom can be ex-
pressed in a power series of the fine structure constant, �. Specific selections of these
terms yield the relativistic correction to the Bohr values of the hydrogen spectrum and
the Sommerfeld-Dirac equation for the fine structure spectrum of the hydrogen atom.
Expressions for the classical electron radius and some of the Large Number Coinci-
dences are derived. A Lorentz-type force equation is derived for both gravitation and
electrodynamics. Electron spin is shown to be an effect of fourth order in �.

1 Introduction

In a previous article [2] in this journal we presented a clas-
sical Lagrangian characterizing the dynamics of gravitational
interaction,

L = �m0(c2 + v2) expR=r; (1)

where we denote:
m0 = gravitational rest mass of a test body mov-

ing at velocity v in the vicinity of a mas-
sive, central body of mass M ,

 = 1=
p

1� v2=c2,
R = 2GM=c2 is the Schwarzschild radius of the

central body.
The following conservation equations follow:

E = mc2eR=r = total energy = constant ; (2)
L = eR=rM = constant; (3)
Lz = MzeR=r = eR=rm0r2 sin2� _� (4)

= z component of L = constant;

where m = m0=2 and

M = (r�m0v) (5)

is the total angular momentum of the test body.
It was shown that the tests for perihelion precession and

the bending of light by a massive body are satisfied by the
equations of motion derived from the conservation equations.

The kinematics of the system is determined by assuming
the local and instantaneous validity of special relativity (SR).
This leads to an expression for gravitational redshift:

� = �0 e�R=2r; (�0 = constant) , (6)

which agrees with observation.
Electrodynamics is described by the theory of special rel-

ativity. If the motion of a particle is dynamically determined

by the above Lagrangian, then a description of the kinematics
of its motion in terms of special relativity should yield equa-
tions of motion analogous to those of electrodynamics. This,
in principle, should allow the simultaneous manifestation of
gravitation and electrodynamics in one model of interaction.

We follow this approach and show, amongst others, that
electrical charge arises from a mathematical necessity for
bound motion. Other expressions, such as the classical elec-
tron radius and expressions of the Large Number Hypothesis
follow.

The total energy for the hydrogen atom can be expressed
in terms of a power series of the fine structure constant, �.
Summing the first four terms yields the Sommerfeld-Dirac
expression for the total energy. For higher order terms the
finite radius of the nucleus must be taken into account. This
introduces a factor analogous to “electron spin”.

Details of all calculations are given in the PhD thesis of
the author [1].

2 Gravitation and Special Relativity

Einstein’s title of his 1905 paper, Zur Elektrodynamik be-
wegter Körper indicates that electrodynamics and SR are in-
terrelated, with SR giving an explanation for certain proper-
ties of electrodynamics. Red-shift is such a property, combin-
ing both gravitation and electromagnetism in a single formu-
lation, and should provide us with a dynamical link between
these two phenomena. To do this, we substitute the photo-
electric effect,

h� = ~mc2; (7)

where ~m =  ~m0 and ~m0 is the electromagnetic rest mass of
a particle, into (6). This gives

E = ~mc2eR=2r = ~m0c2
eR=2rp

1� v2=c2
= ~EeR=2r

= ~m0c2 + ~m0v2=2 + ~m0Rc2=2r+
+ ~m0Rv2=4r + : : :

9>>>>=>>>>; ; (8)
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where E is another constant of energy and ~E = ~mc2 is the
total energy of the theory of special relativity.

Let us compare this expansion with the expansion of (2)
for the gravitational energy,

m0c2 � E
2

=
m0v2

2
� GMm0

r
+
m0v2R

2r
�

� m0c2R2

4r2 +
m0v2R2

4r2 + : : :
(9)

The negative sign of the second right hand term in (9)
ensures attractive, or bound, motion under gravitation. In or-
der for the motion determined by (8) to be bounded, the third
right hand term must similarly be negative and inversely pro-
portional to r. To ensure this we let

~m0c2 = �e2=re; (10)

where e2 is an arbitrary constant and

re = R=2: (11)

Eq.(8) can then be rewritten as

E = ~mc2ere=r: (12)

As we shall see for the hydrogen atom, e represents the
electron charge, re represents the classical electron radius and
(11) yields some of the numbers of Dirac’s Large Number
Hypothesis.

The choice of a positive sign in (10) gives repulsive mo-
tion. Such a freedom of choice is not possible for the gravita-
tional energy of (9).

2.1 Hamiltonian formulation

Confirmation of the above conclusions can be found by exam-
ining the predictions for the hydrogen spectrum. We follow
a classical approach based on the principles of action vari-
ables [3].

Using the identity 2 = 1 + 2v2=c2 to separate the ki-
netic and potential energies in (8), a corresponding Lagran-
gian can be found:

L = � ~m0c2
p

1� v2=c2 exp(re=r): (13)

We obtain the conjugate momenta:

pr = ~m _r exp(re=r) ; (14)

p� = ~mr2 _� exp(re=r) ; (15)

p� = ~mr2 sin2� _� exp(re=r) : (16)

The associated Hamiltonian can be derived from the for-
mula H =

P
_qipi � L as follows

H =
�

~m2
0c

4 exp(re=r) +

+ c2(p2
r + p2

�=r
2 + p2

�=r
2 sin2�)

�1=2: (17)

From the canonical equations

_pi =
@H
@qi

; (18)

we find the following conservation equations:

L2 �M2 exp(2re=r) = p2
� + p2

�= sin2� ; (19)

Lz �Mz exp(re=r) = p� ; (20)

where L2 and Lz are constants and

M = (r� ~mv); (21)

is the total angular momentum of the orbiting particle.
It should be noted that (12), (19), (20) and (21) have re-

spectively the same forms as for the gravitational equations
(2), (3), (4), (5), but withm = m0=2 replaced by ~m =  ~m0
and R by re = R=2.

3 The hydrogen spectrum

In order to determine an expression for the energy levels of
the H-atom, two different approaches can be followed: (i)
Analogously to the Wilson-Sommerfeld model, one can ap-
ply the procedures of action angle variables, or (ii) pertur-
bation theory, where the contribution of each energy term is
evaluated separately.

To generalize our discussion we shall, where appropriate,
use a general potential � = Rc2=2r = rec2=r:

3.1 Method of action angle variables

The theory of action angle variables originated in the de-
scription of periodic motion in planetary mechanics [4, Ch.9].
From that theory Wilson and Sommerfeld postulated the
quantum condition:

For any physical system in which the coordinates
are periodic functions of time, there exists
a quantum condition for each coordinate. These
quantum conditions are

Ji =
I
pidqi = nih ; (22)

where qi is one of the coordinates, pi is the mo-
mentum associated with that coordinate, ni is a
quantum number which takes on integral values,
and the integral is taken over one period of the
coordinate qi.

Applying these quantization rules to the conjugate mo-
menta of (14), (15) and (16) gives [3]

Lz = Mz exp(re=r) = n� ~ ; (23)

L = M exp(re=r) = (n� + n�) ~ = k~ ; (24)H �
E2=c2 � ~m2

0c2 exp(re=r)� k2~2=r2� 1
2 dr = nrh ; (25)
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where n�, n�, k and nr have the values 0, 1, 2, . . .
To determine the atomic spectrum we need to evaluate the

integral of (25). Because of the finite radius of the nucleus
we choose an arbitrary effective nuclear radius of gre. The
potential term in the exponentials is then written as

exp
�

2�
c2

�
= exp

�
2re

r � gre
�
; (26)

so that

exp(2�=c2) =

= 1 + 2
re
r

+ 2
r2
e
r2 (g + 1) + 3

r3
e
r3 g (g + 1) + : : : (27)

For convenience we also define a parameter f such that

f = 2(g + 1) : (28)

We shall subsequently see that the value of g, or f , is
related to the concept of electron spin.

Approximating (27) to second order in re=r, substituting
this approximation in (25) and integrating gives

E2
m = 1� �2h

n� k +
p
k2 + f�2

i2 ; (29)

where Em = E= ~m0c2, n = nr +k and � = e2=~c is the fine
structure constant. This expression is simplified by expanding
to fourth order in �:

Em � 1� �2

2n2

�
1 +

�2

n

�
1

4n
� f
k

��
: (30)

The corresponding Sommerfeld/Dirac expressions are re-
spectively

E2
m =

 
1 +

�2�
n� k +

p
k2 � �2

�2!�1

(31)

and

Em � 1� �2

2n2

�
1 +

�2

n

�
1
k
� 3

4n

��
; (32)

where k = j+ 1
2 for the Dirac expression, and j = 1

2 ;
3
2 ;

5
2 ; : : :

: : : (n�1)
2 .

The difference between the energy given by our model
EW , as given by (30), and that of the Sommerfeld-Dirac
model, ED, as given by (32), is

(ED � EW )= ~m0c2 =
�4

2n3

�
1
k

(f + 1)� 1
n

�
: (33)

We shall show below that this difference corresponds to
the energy associated with the “spin-orbit” interaction of our
model.

4 Perturbation method

We use this method as applied by Born and others [3, Ch. 4].
To apply the perturbation method we need to express the

energy ~E in terms of the momentum:

E = (p2c2 + ~m2
0c

4)1=2 exp(�=c2) ; (34)

where p = ~mv. Again, taking the finite radius of the nucleus
into account, we choose for the potential,

exp(�=c2) = exp
�
re=(r � gre)� ; (35)

so that the potential term can be written as

exp(�=c2) = 1 +
re
r

+w
r2
e
r2 +

�
w2 � 1

4

�
r3
e
r3 + : : : ; (36)

where
w = (g + 1=2) = (f � 1)=2 : (37)

With this form for the potential, and using ~m0c2re =�e2,
(34) can be expanded as

E = ~m0c2|  {z  }
E0

+
p2

2 ~m0
� e2

r|          {z          }
E1

� p4

8 ~m3
0c2|    {z    }
E2

+
p2re
2 ~m0r|   {z   }
E3

+

+ w
r2
e ~m0c2

r2|         {z         }
E4

+w
p2r2

e
2 ~m0r2|        {z        }
E5

� p4re
8 ~m3

0c2r|      {z      }
E6

+

+ ~m0c2
�
w2 � 1

4

�
r3
e
r3|                       {z                       }

E7

+ : : : (38)

Applying the unperturbed Bohr theory to each braced
term, we find the following quantized expressions:

4.1 E0: rest mass energy

The first term on the right is the rest mass energy, which we
denote by E0:

E0 = ~m0c2: (39)

4.2 E1: Bohr energy

The next two terms represent the unperturbed Coulomb en-
ergy of the hydrogen atom, which we indicate by E1:

E1 = p2=2 ~m0 � e2=r : (40)

According to the method of the Bohr theory,

E1 = �Re=n2; n = 1; 2; : : : (41)

where

Re =Ryhc = e2=2a0 = �2 ~m0c2=2
a0 =Bohr radius = ~2= ~m0e2

Ry =Rydberg constant = 2�2e4 ~m0=ch3 = �=4�a0

9>=>; : (42)
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4.3 E2: relativistic correction

The third term is denoted by E2. It can be shown that [1]

E2 = � p4=8 ~m3
0c

2; (43)

= � �2Re
n3

�
1
k
� 3

4n

�
: (44)

This is the “relativistic correction” of the Bohr-Sommer-
feld model [3, §33]. This energy term is similar to that con-
tained in the Dirac expression of (32). The sum of E0, E1
and E2 gives an expression identical to that of Sommerfeld
and similar to that of Dirac.

It is well-known that Sommerfeld’s result was fortuitous
as the effect of spin-orbit coupling was ignored in his model.
This effect is incorporated in the Dirac model. In our model
we shall see below that E3 is an orbit-interaction term and
that E4 is related to ‘electron spin’. These two terms, missing
in the Sommerfeld model, can now be added toE0 +E1 +E2
of the Sommerfeld energy expression.

4.4 E3: orbital magnetic energy

We denote the fourth term by E3:

E3 = p2re=2 ~m0r : (45)

Applying the unperturbed Bohr theory, we find from (40):

E3 = (E1 + e2=r)re=r

= re(E1=r + e2=r2) : (46)

Using (41) and the average values [3, p144],

1=r = 1=n2a0 ; (47)

1=r2 = 1=a2
0n

3k ; k = 1; 2; : : : n (48)

as well as
re=a0 = a2; (49)

we get

E3 =
�2Re
n3

�
2
k
� 1
n

�
=
�4 ~m0c2

2n3

�
2
k
� 1
n

�
: (50)

The physical interpretation of E3 is that it is the energy
due to the magnetic interaction of an electron moving in orbit
about a proton. This can be seen as follows.

Substituting p= ~mv and re =� e2= ~m0c2 into (45) gives

E3 = � e2v2

2rc2

�
~m
~m0

�2
� � e2v2

2rc2
in the non-relativistic limit: (51)

It corresponds to the classical form of the magnetic en-
ergy due to orbital motion, as given by (70) below:

4.5 E4: “electron spin”

E4 = wr2
e ~m0c2=r2;

= we4= ~m0c2r2:
(52)

Applying (48) gives

E4 =
w2�2Re
n3k

= w�4 ~m0c2
1
n3k

: (53)

We consider the significance of the factor w. We note that
the potential energy expression (36) can be truncated after the
quadratic term in re=r by letting w2� 1

4 = 0. As such, trun-
cation can be considered as the limit to the resolution of the
apparatus used for spectral observation. With this condition,
we find that

w = � 1
2

(54)

gives the spectrum due to all interactions up to second degree
in r=re. Therefore, from (42) and (53):

E4 = �1
2
e8 ~m0

~4c2
1
n3k

: (55)

The above expression for E4 corresponds to the quantum
mechanical result for the energy due to electron spin. Except
for the quantum numbers, Eisberg and Resnick [6, Example
8–3] find a similar result for the energy due to spin-orbit in-
teraction.

The equivalence of (55) to the result of Eisberg and Res-
nick also confirms the implicit value gs = 2 in E4.

In this study E4 corresponds to the energy due to quan-
tum mechanical spin only. Combining E3 and E4 gives the
corresponding total spin-orbit energy.

For k = 1 the expression for E4 is equal to the Darwin
term of the Dirac theory. In the Dirac theory the Darwin term
has to be introduced separately for ` = 0 states, whereas in
our model E4 already provides for ` = 0 through the degen-
eracy (` = 0; 1) associated with the k = 1 level.

In summary, ‘electron spin’ represents a second order
contribution r2

e=r2 to the total energy of the atom.
The above reasoning also applies to higher orders of ap-

proximation. Expanding (35) to fourth degree in re=r gives:

exp(�=c2) = 1 +
re
r

+
r2
e
r2w +

r3
e
r3 (w2 � 1

2
) +

+
r4
e
r4

�
w2 � 1

4

�
w + : : :

(56)

The coefficient of r4
e=r4 is zero if (w2 � 1

4 )w = 0, or

w =
1
2
; �1

2
; 0: (57)

A next higher resolution to r3
e=r3 therefore introduces an

additional value of w = 0, giving a triplet symmetrical about
this value.

For a comprehensive survey of the conceptual develop-
ments surrounding electron spin we refer to the text by To-
monaga [7].
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4.6 E5: radiative reaction

E5 = w
p2r2

e
2 ~m0r2 (58)

= � 1
2
�4Re

�
1
n5k
� 2
n3k3

�
: (59)

Substituting p = ~mv in (58) gives

E5 = � 1
2

v2e4

2 ~m0c4r2

�
~m
~m0

�2
: (60)

In the non-relativistic limit, ~m � ~m0, the above term
corresponds to the last RHS term of (69), i.e. the classical
energy resulting from radiative reaction. Its value is too small
(� 10�8 eV) to affect the values of the fine-spectrum.

4.7 Summary

E0 = m0c2 : rest mass energy;

E1 = �Re
n2 : Bohr energy;

E2 = ��2Re
n3

�
1
k
� 3

4n

�
: relativistic correction;

E3 =
�2Re
n3

�
2
k
� 1
n

�
: orbital magnetic energy;

E4 = w
2�2Re
n3k

: electron spin energy;

E5 = w�4Re
�

1
n5k
� 2
n3k3

�
: Radiative reaction;

where w = � 1
2 .

The sum of the energy terms
P
Ei = E0 + E1 + E2 +

E3 + E4 + E5 is:X
Ei= ~m0c2 = 1� �2

2n2

�
1� �2

n

�
f
k
� 1

4n

��
; (61)

which, as expected, is the same as (30).
Each term in (38) can be related to a standard electro-

dynamic effect. It is significant that although (38) does not
explicitly contain any vector quantities, such as the vector po-
tential A, this potential is implicit, as shown in the discussion
of E3 and the comparison with (69).

An explanation for the difference (33) between the spec-
trum of the proposed model and that of Dirac-Sommerfeld
can be seen as follows:

Consider the sum

E3 + E4 =
�2Re
n3

�
2
k

(w + 1)� 1
n

�
(62)

or, since w = (f � 1)=2,

E3 + E4 =
�2Re
n3

�
1
k

(f + 1)� 1
n

�
: (63)

The above equation corresponds to (33), the difference
between the Sommerfeld-Dirac expression and that of our
model. The expression (30) therefore already incorporates
the spin-orbit interaction.

The energy E3 + E4 therefore represents a perturbation
to the Sommerfeld-Dirac values. The only candidate for this
perturbation is the Lamb-shift. For the (n; k) = (2,1) level and
forw=� 0.5 the value ofE3+E4 is 4.52 831 78 e�5 ev. The
Lamb-shift for this level is 4.37 380 19 e�6 eV, which is an
order 10 smaller. It would be overly ambitious to find the ob-
served Lamb-shift from the present simple model. At this de-
gree of spectral resolution one would have to look at a modifi-
cation of the effective nuclear radius to r� a1re� a2r2

e � : : :

4.8 Comparison with classical electromagnetic energy

In order to compare the results of this study with those of con-
ventional electromagnetic theory, we give a brief summary of
the energy relations of classical electrodynamic theory.

The Hamiltonian describing the interaction of an electron
with fields H and E is given by [8, p. 124]

Hclassical = e� +
�
p� e

c
A
�2
=2 ~m; (64)

where � and A are respectively the electrostatic and vector
potentials of the system.

It is important to note that A and � do not merely repre-
sent the external fields in which the particle moves, but also
the particle’s own fields. This implies that the force of radia-
tive reaction is automatically included.

The corresponding classical Lagrangian is

Lclassical =
p2

2 ~m
� e� +

e
c
A � v: (65)

For an electron moving under the influence of a magnetic
field,

H = e (v � r)=cr3; (66)

a vector potential A can be found as

A =
1
2

(H� r) = ev=2cr : (67)

Substituting this expression for A and using p = ~mv,
yields �

p� e
c
A
�2

= p2 � e2v2 ~m
c2r

+
e4v2

4c4r2 : (68)

Since the Hamiltonian of (64) does not contain t explic-
itly, we may equate it to the total energy. Consequently, sub-
stituting (68), and e� =� e2=r, in (64) gives the classical
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energy

Eclassical = �e2

r
+

p2

2 ~m
� e2v2

2c2r
+

e4v2

8 ~mc4r2 : (69)

The third RHS term is the magnetic energy due to the
orbital motion of the electron:

Eorbital = µ` �H = �g` e2v2

2rc2
; (70)

where µ` = magnetic moment, g` = Landé g factor = 1, and
M and H are parallel to one another. This energy corresponds
to that of E3 above.

The fourth RHS term of (69) represents radiative reaction,
which corresponds to our E5 as given by (60).

The standard relativistic Hamiltonian is given by:

Hrelativistic =
�
(p� qA=c)2c2 + ~m2

0c
4� 1

2 + q� : (71)

The Hamiltonians of (64) and (71) must be compared to
ours of (17).

It is well-known that the Bohr model for the atom fails
because of radiative reaction; in our model this loss is com-
pensated for by the additional and associated potential term,
E4, This term can also be interpreted as a modification of
Coulomb’s law. It is significant that this energy term can also
be interpreted as arising from electron spin.

It is also significant that the Sommerfeld relativistic cor-
rection term, E2, does not appear in either (69) or (71).

We can consider the electromagnetic energy arising from
the Hamiltonians of (64) and (71) as approximations to that
of our Hamiltonian of (17).

We also note that the energy derived from the Hamilto-
nian of (64), which is normally derived from a Lagrangian
containing the vector potential A, appears as an approxima-
tion to our model, which does not explicitly contain a vector
potential. A vector potential arises in our theory because of
the variation of mass according to (12).

5 The large number coincidences

Dirac postulated that the large dimensionless ratios (� 1040)
of certain universal constants underlie a fundamental relation-
ship between them. A theoretical explanation for these ratios
has not yet been found, but it became known as Dirac’s Large
Number Hypothesis (LNH). [9] Some of these relations are
derivable from (11).

Taking R as the Schwarzschild radius of the proton,
Rp = 2GMp=c2, we rewrite (11) as

� e2

~m0c2
=

GMp

c2

or � e2

GMp ~m0
= 1: (72)

Defining the relationship between the gravitational mass
Mp and the electromagnetic rest mass ~m0p of the proton as

Mp = ND ~m0p ; (73)

where ND is a dimensionless number, we can write (72) as

� e2

G ~M0p ~m0
= ND ; (74)

which, if the absolute value is taken, is the basic relationship
of the LNH.

6 Lorentz force

The force equation for a particle, mass ~m and velocity v
is found by applying the Euler-Lagrange equations to (13).
This gives

_p = r̂
~mrec2

r2 +
~mre
r3 v � (v � r) : (75)

Defining

E = r̂
rec2

r2 ; (76)

H =
rev � r
r3 ; (77)

we can write (75) as

Electromagnetic _p = ~m
�
E + v �H

�
: (78)

For v � c, ~mrec2 ! ~m0rec2 = e2 and then (75) ap-
proaches the classical Lorentz form.

7 Unifying gravitation and electromagnetism

Equation (16) of reference [1] can be combined with (78) in
one formulation:

_p = ~m
�
kE + v �H

�
; (79)

where for

Gravitation : k = �1;
Electromagnetism : k = 1:

The same equation gives either planetary or atomic mo-
tion, where the vectors E and H are respectively given by

E = r̂
GM
r2 = r̂

rec2

r2 ; (80)

H =
GM(v � r)

c2r3 =
rev � r
r3 : (81)
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8 Summary

Gravitation Electromagnetism

R = 2GM=c2 re = R=2
m0 ~m0 = m0=N

L = �m0(c2 + v2)eR=r L = �( ~m0c2=)ere=r

E = mc2eR=r E = ~mc2ere=r

m = m0=2 ~m =  ~m0

L2 = M2e2R=r = constant L2 = M2e2re=r = constant
Lz = MzeR=r = constant Lz = Mzere=r = constant

M = (r�m0v) M = (r� ~m0v)
_p = mE +m0v �H _p = ~m[E + v �H]

p = m0v p = ~mv

E = �r̂GM=r2 E = r̂rec2=r2

H = GM(v � r)=r3c2 H = re(v � r)=r3

9 Nuclear force

In a subsequent article we shall show that equations for the
nuclear force, such as the Yukawa potential, can be derived
by considering the forms of both the energy equations (2) and
(8) at r � R=2 = re:
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Emergent physics refers to the formation and evolution of collective patterns in systems
that are nonlinear and out-of-equilibrium. This type of large-scale behavior often de-
velops as a result of simple interactions at the component level and involves a dynamic
interplay between order and randomness. On account of its universality, there are credi-
ble hints that emergence may play a leading role in the Tera-ElectronVolt (TeV) sector of
particle physics. Following this path, we examine the possibility of hypothetical high-
energy states that have fractional number of quanta per state and consist of arbitrary
mixtures of particles and antiparticles. These states are similar to “un-particles”, mass-
less fields of non-integral scaling dimensions that were recently conjectured to emerge
in the TeV sector of particle physics. They are also linked to “unmatter”, exotic clusters
of matter and antimatter introduced few years ago in the context of Neutrosophy.

1 Introduction

Quantum Field Theory (QFT) is a framework whose meth-
ods and ideas have found numerous applications in various
domains, from particle physics and condensed matter to cos-
mology, statistical physics and critical phenomena [1, 2]. As
successful synthesis of Quantum Mechanics and Special Rel-
ativity, QFT represents a collection of equilibrium field theo-
ries and forms the foundation for the Standard Model (SM),
a body of knowledge that describes the behavior of all known
particles and their interactions, except gravity. Many broken
symmetries in QFT, such as violation of parity and CP in-
variance, are linked to either the electroweak interaction or
the physics beyond SM [3–5]. This observation suggests that
unitary evolution postulated by QFT no longer holds near or
above the energy scale of electroweak interaction
(� 300GeV) [6,7]. It also suggests that progress on the the-
oretical front requires a framework that can properly handle
non-unitary evolution of phenomena beyond SM. We believe
that fractional dynamics naturally fits this description. It op-
erates with derivatives of non-integer order called fractal op-
erators and is suitable for analyzing many complex processes
with long-range interactions [6–9]. Building on the current
understanding of fractal operators, we take the dimensional
parameter of the regularization program " = 4�d to represent
the order of fractional differentiation in physical space-time
(alternatively, " = 1 � d in one-dimensional space) [10, 11].
It can be shown that " is related to the reciprocal of the cutoff

scale " � (�0/�), where �0 stands for a finite and arbitrary
reference mass and � is the cutoff energy scale. Under these
circumstances, " may be thought as an infinitesimal param-
eter that can be continuously tuned and drives the departure
from equilibrium. The approach to scale invariance demands
that the choice of this parameter is completely arbitrary, as

long as " � 1. Full scale invariance and equilibrium field
theory are asymptotically recovered in the limit of physical
space-time (d = 4) as "! 0 or �!1 [11, 12].

2 Definitions

We use below the Riemann-Liouville definition for the one-
dimensional left and right fractal operators [13]. Consider for
simplicity a space-independent scalar field '(t). Taking the
time coordinate to be the representative variable, one writes

0D�
L '(t) =

1
�(1� �)

d
dt

tZ
0

(t� � )��'(� )d� ; (1)

0D�
R '(t) =

1
�(1� �)

(� d
dt

)
0Z
t

(� � t)��'(� )d� : (2)

Here, fractional dimension 0 < � < 1 denotes the order
of fractional differentiation. In general, it can be shown that �
is linearly dependent on the dimensionality of the space-time
support [8]. By definition, � assumes a continuous spectrum
of values on fractal supports [11].

3 Fractional dynamics and ‘unparticle’ physics

The classical Lagrangian for the free scalar field theory in
3+1 dimensions reads [1–2, 14]

L = @�'@�'�m2'2; (3)

and yields the following expression for the field momentum

� =
@L
@(@'@t )

=
@'
@t

: (4)
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It is known that the standard technique of canonical quan-
tization promotes a classical field theory to a quantum field
theory by converting the field and momentum variables into
operators. To gain full physical insight with minimal com-
plications in formalism, we work below in 0+1 dimensions.
Ignoring the left/right labels for the time being, we define the
field and momentum operators as

'! b' = ' ; (5)

� ! b�� = � i @�

@ j'j� � �iD
�: (6)

Without the loss of generality, we set m = 1 in (3). The
Hamiltonian becomes

H ! bH� = �1
2
D2� +

1
2
'2 =

1
2

(b�2� + '2) : (7)

By analogy with the standard treatment of harmonic oscil-
lator in quantum mechanics, it is convenient to work with the
destruction and creation operators defined through [1–2, 14]

ba� :=
1p
2

[b'+ ib��] ; (8)

ba+� :=
1p
2

[b'� i b��] : (9)

Straightforward algebra shows that these operators satisfy
the following commutation rules

[ba; ba] = [ba+�; ba+� ] = 0 ; (10)

[ba+�; ba� ] = i [ b'; b�� ] = �� b�(��1): (11)

The second relation of these leads tobH� = ba+� ba� +
1
2
�b�(��1): (12)

In the limit � = 1 we recover the quantum mechanics of
the harmonic oscillator, namely

bH = ba+ba+
1
2
: (13)

It was shown in [6] that the fractional Hamiltonian (12)
leads to a continuous spectrum of states having non-integer
numbers of quanta per state. These unusual flavors of par-
ticles and antiparticles emerging as fractional objects were
named “complexons”. Similar conclusions have recently sur-
faced in a number of papers where the possibility of a scale-
invariant “hidden” sector of particle physics extending be-
yond SM has been investigated. A direct consequence of this
setting is a continuous spectrum of massless fields having
non-integral scaling dimensions called “un-particles”. The
reader is directed to [15–21] for an in-depth discussion of
“un-particle” physics.

4 Mixing properties of fractal operators

Left and right fractal operators (L/R) are natural analogues of
chiral components associated with the structure of quantum
fields [8, 9]. The goal of this section is to show that there is an
inherent mixing of (L/R) operators induced by the fractional
dynamics, as described below. An equivalent representation
of (1) is given by

0D�
L '(t) =

1
�(1��)

(� d
dt

)
0Z
t

[�(��t)]��'(� ) d� ; (14)

or

0D�
L '(t) =

(�1)��
�(1� �)

�
� d
dt

� 0Z
t

(� � t)��'(� ) d� =

= (�1)�� 0D�
R '(t) ; (15)

0D�
R = (�1)� 0D�

L = exp(i��) 0D�
L : (16)

Starting from (2) instead, we find

0D�
L = (�1)� 0D�

R = exp(i��) 0D�
R : (17)

Consider now the one-dimensional case d = 1, take
� = " = 1�d and recall that continuous tuning of " does not
impact the physics as a consequence of scale invariance. Let
us iterate (16) and (17) a finite number of times (n > 1) under
the assumption that n"� 1. It follows that the fractal opera-
tor of any infinitesimal order may be only defined up to an ar-
bitrary dimensional factor exp(i�n") � 1+(i�n") = 1�ie",
that is,

0D"
L;R '(t) � �0D0

L;R � ie"�'(t) (18)

or
i0D"

L;R '(t) =
�
i 0D0

L;R + e"�'(t) ; (19)

where
lim
"!0

D"
L;R '(t) = '(t) : (20)

Relations (18–20) indicate that fractional dimension e" in-
duces: (a) a new type of mixing between chiral components
of the field and (b) an ambiguity in the very definition of the
field, fundamentally different from measurement uncertain-
ties associated with Heisenberg principle. Both effects are
irreversible (since fractional dynamics describes irreversible
processes) and of topological nature (being based on the con-
cept of continuous dimension). They do not have a counter-
part in conventional QFT.

5 Emergence of “unmatter” states

Using the operator language of QFT and taking into account
(6), (18) can be presented asb�"'(t) = b�"'(t)� e" b'(t) : (21)
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Relation (21) shows that the fractional momentum op-
erator b�" and the field operator b'(t) ='(t) are no longer
independent entities but linearly coupled through fractional
dimension e". From (11) it follows that the destruction and
creation operators are also coupled to each other. As a re-
sult, particles and antiparticles can no longer exist as linearly
independent objects. Because e" is continuous, they emerge
as an infinite spectrum of mixed states. This surprising find-
ing is counterintuitive as it does not have an equivalent in
conventional QFT. Moreover, arbitrary mixtures of particles
and antiparticles may be regarded as a manifestation of “un-
matter”, a concept launched in the context of Neutrosophic
Logic [22–24].

6 Definition of unmatter

In short, unmatter is formed by matter and antimatter that
bind together [23, 24].

The building blocks (most elementary particles known to-
day) are 6 quarks and 6 leptons; their 12 antiparticles also
exist.

Then unmatter will be formed by at least a building block
and at least an antibuilding block which can bind together.

Let’s start from neutrosophy [22], which is a generaliza-
tion of dialectics, i.e. not only the opposites are combined
but also the neutralities. Why? Because when an idea is
launched, a category of people will accept it, others will reject
it, and a third one will ignore it (don’t care). But the dynamics
between these three categories changes, so somebody accept-
ing it might later reject or ignore it, or an ignorant will accept
it or reject it, and so on. Similarly the dynamicity of <A>,
<antiA>, <neutA>, where <neutA> means neither <A>
nor <antiA>, but in between (neutral). Neutrosophy consid-
ers a kind not of di-alectics but tri-alectics (based on three
components: <A>, <antiA>, <neutA>).

Hence unmatter is a kind of intermediary (not referring to
the charge) between matter and antimatter, i.e. neither one,
nor the other.

Neutrosophic Logic (NL) is a generalization of fuzzy
logic (especially of intuitionistic fuzzy logic) in which
a proposition has a degree of truth, a degree of falsity, and
a degree of neutrality (neither true nor false); in the normal-
ized NL the sum of these degrees is 1.

7 Exotic atom

If in an atom we substitute one or more particles by other
particles of the same charge (constituents) we obtain an ex-
otic atom whose particles are held together due to the electric
charge. For example, we can substitute in an ordinary atom
one or more electrons by other negative particles (say ��,
anti-Rho meson, D�, D�s , muon, tau, 
�, ��, etc., gener-
ally clusters of quarks and antiquarks whose total charge is
negative), or the positively charged nucleus replaced by other

positive particle (say clusters of quarks and antiquarks whose
total charge is positive, etc.).

8 Unmatter atom

It is possible to define the unmatter in a more general way,
using the exotic atom.

The classical unmatter atoms were formed by particles
like (a) electrons, protons, and antineutrons, or (b) antielec-
trons, antiprotons, and neutrons.

In a more general definition, an unmatter atom is a system
of particles as above, or such that one or more particles are
replaces by other particles of the same charge.

Other categories would be (c) a matter atom with where
one or more (but not all) of the electrons and/or protons are
replaced by antimatter particles of the same corresponding
charges, and (d) an antimatter atom such that one or more (but
not all) of the antielectrons and/or antiprotons are replaced by
matter particles of the same corresponding charges.

In a more composed system we can substitute a particle
by an unmatter particle and form an unmatter atom.

Of course, not all of these combinations are stable, semi-
stable, or quasi-stable, especially when their time to bind to-
gether might be longer than their lifespan.

9 Examples of unmatter

During 1970–1975 numerous pure experimental verifications
were obtained proving that “atom-like” systems built on nu-
cleons (protons and neutrons) and anti-nucleons (anti-protons
and anti-neutrons) are real. Such “atoms”, where nucleon
and anti-nucleon are moving at the opposite sides of the same
orbit around the common centre of mass, are very unstable,
their life span is no more than 10�20 sec. Then nucleon and
anti-nucleon annihilate into gamma-quanta and more light
particles (pions) which can not be connected with one an-
other, see [6, 7, 8]. The experiments were done in mainly
Brookhaven National Laboratory (USA) and, partially,
CERN (Switzerland), where “proton–anti-proton” and
“anti-proton–neutron” atoms were observed, called them �pp
and �pn respectively.

After the experiments were done, the life span of such
“atoms” was calculated in theoretical way in Chapiro’s works
[9, 10, 11]. His main idea was that nuclear forces, acting be-
tween nucleon and anti-nucleon, can keep them far way from
each other, hindering their annihilation. For instance, a pro-
ton and anti-proton are located at the opposite sides in the
same orbit and they are moved around the orbit centre. If
the diameter of their orbit is much more than the diameter of
“annihilation area”, they are kept out of annihilation. But be-
cause the orbit, according to Quantum Mechanics, is an actual
cloud spreading far around the average radius, at any radius
between the proton and the anti-proton there is a probability
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that they can meet one another at the annihilation distance.
Therefore nucleon—anti-nucleon system annihilates in any
case, this system is unstable by definition having life span no
more than 10�20 sec.

Unfortunately, the researchers limited the research to the
consideration of �pp and �pn nuclei only. The reason was
that they, in the absence of a theory, considered �pp and �pn
“atoms” as only a rare exception, which gives no classes of
matter.

The unmatter does exists, for example some messons and
antimessons, through for a trifling of a second lifetime, so the
pions are unmatter (which have the composition uˆd and udˆ,
where by uˆ we mean anti-up quark, d = down quark, and
analogously u = up quark and dˆ = anti-down quark, while
by ˆ means anti), the kaon K+ (usˆ), K� (uˆs), Phi (ssˆ), D+

(cdˆ), D0(cuˆ), D+
s (csˆ), J/Psi (ccˆ), B� (buˆ), B0 (dbˆ), B0

s
(sbˆ), Upsilon (bbˆ), where c = charm quark, s = strange
quark, b = bottom quark, etc. are unmatter too.

Also, the pentaquark Theta-plus (�+), of charge +1,
uuddsˆ (i.e. two quarks up, two quarks down, and one anti-
strange quark), at a mass of 1.54 GeV and a narrow width of
22 MeV, is unmatter, observed in 2003 at the Jefferson Lab
in Newport News, Virginia, in the experiments that involved
multi-GeV photons impacting a deuterium target. Similar
pentaquark evidence was obtained by Takashi Nakano of Os-
aka University in 2002, by researchers at the ELSA acceler-
ator in Bonn in 1997–1998, and by researchers at ITEP in
Moscow in 1986.

Besides Theta-plus, evidence has been found in one
experiment [25] for other pentaquarks, ��5 (ddssuˆ) and
�+

5 (uussdˆ).
D. S. Carman [26] has reviewed the positive and null ev-

idence for these pentaquarks and their existence is still under
investigation.

In order for the paper to be self-contained let’s recall that
the pionium is formed by a �+ and �� mesons, the positro-
nium is formed by an antielectron (positron) and an electron
in a semi-stable arrangement, the protonium is formed by a
proton and an antiproton also semi-stable, the antiprotonic
helium is formed by an antiproton and electron together with
the helium nucleus (semi-stable), and muonium is formed by
a positive muon and an electron.

Also, the mesonic atom is an ordinary atom with one or
more of its electrons replaced by negative mesons.

The strange matter is a ultra-dense matter formed by a big
number of strange quarks bounded together with an electron
atmosphere (this strange matter is hypothetical).

From the exotic atom, the pionium, positronium, proto-
nium, antiprotonic helium, and muonium are unmatter.

The mesonic atom is unmatter if the electron(s) are re-
placed by negatively-charged antimessons.

Also we can define a mesonic antiatom as an ordinary
antiatomic nucleous with one or more of its antielectrons re-
placed by positively-charged mesons. Hence, this mesonic

antiatom is unmatter if the antielectron(s) are replaced by
positively-charged messons.

The strange matter can be unmatter if these exists at least
an antiquark together with so many quarks in the nucleous.
Also, we can define the strange antimatter as formed by a
large number of antiquarks bound together with an antielec-
tron around them. Similarly, the strange antimatter can be
unmatter if there exists at least one quark together with so
many antiquarks in its nucleous.

The bosons and antibosons help in the decay of unmatter.
There are 13+1 (Higgs boson) known bosons and 14 anti-
bosons in present.

10 Chromodynamics formula

In order to save the colorless combinations prevailed in the
Theory of Quantum Chromodynamics (QCD) of quarks and
antiquarks in their combinations when binding, we devise the
following formula:

Q�A 2 �M3 ; (22)

where M3 means multiple of three, i.e. �M3=f3 �kjk2Zg=
f: : : ;�12;�9;�6;�3; 0; 3; 6; 9; 12; : : :g, and Q = number
of quarks, A = number of antiquarks.

But (22) is equivalent to:

Q � A(mod3) (23)

(Q is congruent to A modulo 3).
To justify this formula we mention that 3 quarks form a

colorless combination, and any multiple of three (M3) com-
bination of quarks too, i.e. 6, 9, 12, etc. quarks. In a similar
way, 3 antiquarks form a colorless combination, and any mul-
tiple of three (M3) combination of antiquarks too, i.e. 6, 9,
12, etc. antiquarks. Hence, when we have hybrid combina-
tions of quarks and antiquarks, a quark and an antiquark will
annihilate their colors and, therefore, what’s left should be
a multiple of three number of quarks (in the case when the
number of quarks is bigger, and the difference in the formula
is positive), or a multiple of three number of antiquarks (in
the case when the number of antiquarks is bigger, and the
difference in the formula is negative).

11 Quantum chromodynamics unmatter formula

In order to save the colorless combinations prevailed in the
Theory of Quantum Chromodynamics (QCD) of quarks and
antiquarks in their combinations when binding, we devise the
following formula:

Q�A 2 �M3 ; (24)

where M3 means multiple of three, i.e. �M3=f3 �kjk2Zg=
f: : : ;�12;�9;�6;�3; 0; 3; 6; 9; 12; : : :g, and Q = number
of quarks, A = number of antiquarks, with Q > 1 and A > 1.

Ervin Goldfain and Florentin Smarandache. On Emergent Physics, “Unparticles” and Exotic “Unmatter” 13



Volume 4 PROGRESS IN PHYSICS October, 2008

But (24) is equivalent to:

Q � A(mod3) (25)

(Q is congruent to A modulo 3), and also Q > 1 and A > 1.

12 Quark-antiquark combinations

Let’s note by q = quark 2 {Up, Down, Top, Bottom, Strange,
Charm}, and by a = antiquark 2 {Up, Down, Top, Bottom,
Strange, Charm}.

Hence, for combinations of n quarks and antiquarks,
n > 2, prevailing the colorless, we have the following pos-
sibilities:

— if n = 2, we have: qa (biquark — for example the
mesons and antimessons);

— if n = 3, we have qqq, aaa (triquark — for example the
baryons and antibaryons);

— if n = 4, we have qqaa (tetraquark);

— if n = 5, we have qqqqa, aaaaq (pentaquark);

— if n = 6, we have qqqaaa, qqqqqq, aaaaaa (hexaquark);

— if n = 7, we have qqqqqaa, qqaaaaa (septiquark);

— if n = 8, we have qqqqaaaa, qqqqqqaa, qqaaaaaa (oc-
toquark);

— if n = 9, we have qqqqqqqqq, qqqqqqaaa, qqqaaaaaa,
aaaaaaaaa (nonaquark);

— if n = 10, obtain qqqqqaaaaa, qqqqqqqqaa, qqaaaaaaaa
(decaquark);

— etc.

13 Unmatter combinations

From the above general case we extract the unmatter combi-
nations:

— For combinations of 2 we have: qa (unmatter biquark),
(mesons and antimesons); the number of all possible
unmatter combinations will be 6�6 = 36, but not all of
them will bind together.
It is possible to combine an entity with its mirror oppo-
site and still bound them, such as: uuˆ, ddˆ, ssˆ, ccˆ, bbˆ
which form mesons.
It is possible to combine, unmatter + unmatter = un-
matter, as in udˆ + usˆ = uudˆsˆ (of course if they bind
together);

— For combinations of 3 (unmatter triquark) we can not
form unmatter since the colorless can not hold.

— For combinations of 4 we have: qqaa (unmatter tetra-
quark); the number of all possible unmatter combina-
tions will be 62�62 = 1,296, but not all of them will
bind together;

— For combinations of 5 we have: qqqqa, or aaaaq (un-
matter pentaquarks); the number of all possible unmat-
ter combinations will be 64� 6+64�6 = 15,552, but not
all of them will bind together;

— For combinations of 6 we have: qqqaaa (unmatter hex-
aquarks); the number of all possible unmatter combi-
nations will be 63 � 63 = 46,656, but not all of them
will bind together;

— For combinations of 7 we have: qqqqqaa, qqaaaaa (un-
matter septiquarks); the number of all possible unmat-
ter combinations will be 65 � 62 + 62 � 65 = 559,872,
but not all of them will bind together;

— For combinations of 8 we have: qqqqaaaa, qqqqqqqa,
qaaaaaaa (unmatter octoquarks); the number of all pos-
sible unmatter combinations will be 64 � 64 + 67 � 61

+ 61 � 67 = 5,038,848, but not all of them will bind
together;

— For combinations of 9 we have: qqqqqqaaa, qqqaaaaaa
(unmatter nonaquarks); the number of all possible un-
matter combinations will be 66�63 + 63 � 66 = 2�69 =
20,155,392, but not all of them will bind together;

— For combinations of 10: qqqqqqqqaa, qqqqqaaaaa,
qqaaaaaaaa (unmatter decaquarks); the number of
all possible unmatter combinations will be 3�610 =
181,398,528, but not all of them will bind together;

— etc.

I wonder if it is possible to make infinitely many combina-
tions of quarks/antiquarks and leptons/antileptons. . . Unmat-
ter can combine with matter and/or antimatter and the result
may be any of these three.

Some unmatter could be in the strong force, hence part of
hadrons.

14 Unmatter charge

The charge of unmatter may be positive as in the pentaquark
Theta-plus, 0 (as in positronium), or negative as in anti-Rho
meson, i.e. uˆd, (M. Jordan).

15 Containment

I think for the containment of antimatter and unmatter it
would be possible to use electromagnetic fields (a container
whose walls are electromagnetic fields). But its duration is
unknown.

16 Summary and conclusions

It is apparent from these considerations that, in general, both
“unmatter” and “unparticles” are non-trivial states that may
become possible under conditions that substantially deviate
from our current laboratory settings. Unmatter can be thought
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as arbitrary clusters of ordinary matter and antimatter, unpar-
ticles contain fractional numbers of quanta per state and carry
arbitrary spin [6]. They both display a much richer dynamics
than conventional SM doublets, for example mesons (quark-
antiquark states) or lepton pairs (electron-electron antineu-
trino). Due to their unusual properties, “unmatter” and “un-
particles” are presumed to be highly unstable and may lead
to a wide range of symmetry breaking scenarios. In particu-
lar, they may violate well established conservation principles
such as electric charge, weak isospin and color. Future obser-
vational evidence and analytic studies are needed to confirm,
expand or falsify these tentative findings.
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The proposal for dark energy based on Type Ia Supernovae redshift is examined. It is
found that the linear and non-Linear portions in the Hubble Redshift are easily explained
by the use of the Hubble Sphere model, where two interacting Hubble spheres sharing
a common mass-energy density result in a decrease in energy as a function of distance
from the object being viewed. Interpreting the non-linear portion of the redshift curve
as a decrease in interacting volume between neighboring Hubble Spheres removes the
need for a dark energy.

1 Introduction

The discovery in 1998 of fainter than expected Type Ia su-
pernova resulted in the hypothesis of an apparent accelera-
tion in our expanding universe [1]. Type Ia supernovas have
a previously determined standard-candle distance which has
shown to be the same as their redshift distance for low z val-
ues. However, their fainter brightness at far distances indicate
that they are further away than expected when compared with
their redshift distance. This lead to the conclusion that the
standard candle distance is correct but that there is an appar-
ent acceleration in the expansion of the universe occurring in
the range where the Type Ia supernovas were measured. This
explanation was designed the preserve the linearity of Hub-
ble’s Law while explaining the further distance of the Type Ia
supernova. The existence of dark energy, a repulsive gravi-
tational field that is a manifestation of the cosmological con-
stant, was theorized as the likely cause of the acceleration [2].
Experimentalists are now embarking on the task of proving
the existence of dark energy with little examination or criti-
cal analysis of the cause and effect of the initial observations.
We can show that the observed effects of the Type Ia super-
nova redshift are explainable by another phenomena which
satisfies known laws of physics.

2 Assumptions

We begin by making the following assumptions:
Assumption 1: The gravitational and electro-
magnetic force ranges are not infinite.

Although there is as of yet no widely accepted model of uni-
fying the gravitational and electromagnetic (QED) forces,
they both follow an inverse-square law and have similar di-
vergence properties so we assume they are fairly equivalent
in nature but by no means infinite in range. We assume the
gravitational and electromagnetic force ranges have a steep

decline in effect similar to the profile for the strong nuclear
force but at a range = 1026 meters =Ru=2 which BB theo-
rists currently estimate as the radius of the Universe. We will
call the sphere that is centered around our point of observa-
tion on Earth as our Hubble sphere, and it encompasses what
we see out to the radius Ru=2 which we assume as the limit
of the gravitational and electromagnetic forces. Likewise, ob-
jects at a distant d from us on Earth also have a Hubble sphere
that is centered on their point of observation.

Assumption 2: The Universe is bigger than the
Hubble sphere and is perhaps infinite.

When we refer to the Universe we are referring to all space in-
cluding what lies beyond our Hubble sphere, which we cannot
view because light is infinitely redshifted at the boundary of
our sphere due to the steep decay of the gravitational and EM
forces at a distanceRu=2. We currently accept that a decrease
in energy between two points can cause a redshift in photons.
This explanation should be adequate for the purposes of our
discussion on how the apparent redshift-acceleration may be
the cause of two overlapping Hubble spheres, each with their
own center of observation. This explanation also answers Ol-
ber’s Paradox in which an infinite Universe would contain so
many stars that the darkness of night would be overwhelmed
with starlight. The answer to the paradox is that there is no
starlight that can reach us beyond our Hubble sphere radius
because of the limit of the electromagnetic force range.

Assumption 3: If one views an object at a dis-
tance d from Earth, the light from that object is
affected by the mass-energy density of our local
Hubble sphere interacting with the mass-energy
density of the distant object’s Hubble sphere.

The intersecting volumes of two neighboring Hubble spheres
correspond to a common mass-energy density between the
spheres that decreases as the distance between the centers
of the spheres increases, resulting in less common volume.
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Fig. 1: Hubble sphere’s 1 and 2 intersect sharing a volume (shaded
gray).

The decrease in common mass-energy density between the
spheres results in a redshift of photons emitted from the cen-
ter of either Hubble sphere to the center of the other Hubble
sphere. Regardless of which direction we look, we always
see a redshift because there is matter all around the outside
of our Hubble sphere that gravitationally attracts the matter
inside our Hubble sphere. The Hubble sphere by this account
is a three-dimensional Euclidean sphere, which is assumed to
have a constant mass-energy density.

3 The common energy of Hubble spheres

If we examine Figure 1, we see the intersection of two Hub-
ble spheres with their centers separated by a distance d. The
shaded gray area is the intersecting volume, which also repre-
sents common mass-energy between the spheres. The center
of sphere 1 can be imagined as our viewpoint from Earth and
the center of sphere 2 can be the distant object we are viewing.

From Figure 1 we can find the ratio of intersecting volume
between the spheres to the volume in our sphere as:
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where Volumecommon is the intersecting volume between the
spheres and Volumelocal is the volume of our own sphere.

If we assume homogenous mass-energy throughout both
spheres, then the ratio of common mass-energy between the
spheres to the energy in our own sphere is proportional to the

ratio of the intersecting volume between the spheres to our
sphere’s volume. We also know that the mass-energy in a
given sphere is proportional to the h�, so we arrive at:
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The change in frequency ��=�1 = (�2 � �1) =�1 is the
similar to the measured value of z with respect to wavelength
� large, but we now look at it with respect to � and ��=� is
found to be:
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From (3) we see that the energy viewed from our observa-
tion point decreases with the distance d to the object (which
is also the distance between the centers of the spheres), and
is essentially linear for d � Ru where Ru is the radius of
each Hubble sphere. This linear decrease in energy is inter-
preted as an increase in redshift or a linear increase in veloc-
ity with distance by Big Bang (BB) theorists and amounts to
the linear portion of Hubble’s Law. For situations where d
gets close to Ru there is a slight increase in energy resulting
from the d3 term in (3), suggesting to the BB theorist that the
object being viewed is decelerating and is closer to us than
would be expected from the previously linear Hubble slope
when d� Ru.

Instead of accepting a non-linearity in the Hubble curve,
BB theorists believe that the curve is still linear and that the
shorter distance computed at larger d based on measured
wavelength is still correct. The fainter-than-expected bright-
ness of the Type Ia supernova is then a result of an apparent
acceleration in the object due to some unknown “dark energy”
with a negative gravitational force. In reality, the Hubble Law
coincides fairly well with standard candle observations until
d approaches Ru, where it then becomes non-linear and pro-
duces a result that mimics acceleration of the viewed object,
if one still believes that Hubble’s Law is linear. The d3 term
in (3) results in an apparent acceleration of the object viewed
at larger distances and in fact this acceleration is not a real but
instead is a non-linearity in Hubble’s Law.

4 Conclusions

The results of the analysis of intersecting Hubble spheres
shows that a linear redshift results by assuming that the grav-
itational and electromagnetic forces have a finite range, Ru.
The linear relationship for smaller d explains Hubble’s Law
without requiring an expansion of the Universe or our own
Hubble sphere. The derivation also explains the apparent ac-
celeration of objects as our distance d to them approachesRu.
Therefore, a simpler explanation of a non-expanding Uni-
verse exists which to current knowledge is at least the size
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of 2Ru and possibly much bigger. The Cosmic Microwave
Background Radiation (CMBR) has been shown by others to
be a result of absorption and scattering of the intergalactic
medium [3]. The additional production of Helium and other
element ratios is easily found by allowing the Universe as
much time as it needs to produce these results in stellar cores.
The proposed explanation is a far simpler one than the re-
quirement to balance photon to proton ratios in the theorized
early Universe of the Big Bang, with the added concern of an
inflationary period to allow smoothness in the CMBR.
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We report the discovery of an exact mapping from Galilean time and space coordinates
to Minkowski spacetime coordinates, showing that Lorentz covariance and the space-
time construct are consistent with the existence of a dynamical 3-space, and “absolute
motion”. We illustrate this mapping first with the standard theory of sound, as vibra-
tions of a medium, which itself may be undergoing fluid motion, and which is covari-
ant under Galilean coordinate transformations. By introducing a different non-physical
class of space and time coordinates it may be cast into a form that is covariant under
“Lorentz transformations” wherein the speed of sound is now the “invariant speed”. If
this latter formalism were taken as fundamental and complete we would be lead to the
introduction of a pseudo-Riemannian “spacetime” description of sound, with a metric
characterised by an “invariant speed of sound”. This analysis is an allegory for the
development of 20th century physics, but where the Lorentz covariant Maxwell equa-
tions were constructed first, and the Galilean form was later constructed by Hertz, but
ignored. It is shown that the Lorentz covariance of the Maxwell equations only occurs
because of the use of non-physical space and time coordinates. The use of this class
of coordinates has confounded 20th century physics, and resulted in the existence of a
“flowing” dynamical 3-space being overlooked. The discovery of the dynamics of this
3-space has lead to the derivation of an extended gravity theory as a quantum effect, and
confirmed by numerous experiments and observations.

1 Introduction

It is commonly argued that the manifest success of Lorentz
covariance and the spacetime formalism in Special Relativ-
ity (SR) is inconsistent with the anisotropy of the speed of
light, and indeed the existence of absolute motion, that is, a
detectable motion relative to an actual dynamical 3-space, de-
spite the repeated experimental detection of such effects over,
as we now understand, more than 120 years. This apparent
incompatibility between a preferred frame, viz a dynamical
3-space, and the spacetime formalism is explicitly resolved
by the discovery of an exact mapping from Galilean time
and space coordinates to Minkowski spacetime coordinates�,
showing that Lorentz covariance and the spacetime construct
are indeed consistent with Galilean covariance, but that they
suppress any account of an underlying dynamical 3-space.

In the neo-Galilean formalism, known also as the Lo-
rentzian interpretation of SR, length contraction and clock ef-
fects are real effects experienced by objects and clocks in mo-
tion relative to an actual 3-space, whereas in the Minkowski-
Einstein spacetime formalism these effects are transferred to
the metric of the mathematical spacetime, and then appear
to be merely perspective effects for different observers. Ex-
periments, however, have shown that the Galilean space and
time coordinates competently describe reality, whereas the
Minkowski-Einstein spacetime construct is merely a mathe-

�See [1] and Damour [2] for discussion of Minkowski’s work.

matical artifact, and that various observable phenomena can-
not be described by that formalism. We thus arrive at the dra-
matic conclusion that the neo-Galilean formalism is the valid
description of reality, and that it is a superior more encom-
passing formalism than the Minkowski-Einstein formalism in
terms of both mathematical clarity and ontology.

Physics arrived at the Minkowski-Einstein formalism be-
cause of two very significant accidents of history, first that
Maxwell’s unification of electric and magnetic phenomena
failed to build in the possibility of an actual 3-space, for
which the speed of light is only c relative to that space, and
not relative to observers in general, and 2nd that the first crit-
ical test of the Maxwell EM unification by Michelson using
interferometry actually suffered a fundamental design flaw,
causing the instrument to be almost 2000 times less sensi-
tive than Michelson had assumed. A related issue is that the
Newtonian theory of gravity used an acceleration field for the
description of gravitational phenomena, when a velocity field
description would have immediately lead to a richer descrip-
tion, and for which notions such as “dark matter” and “dark
energy” are not needed.

We illustrate the properties of this new mapping first with
the standard theory of sound, as vibrations of a medium which
itself may be undergoing fluid motion, and which is covariant
under Galilean coordinate transformations, which relate the
observations by different observers who may be in motion
wrt the fluid and wrt one another. Here we show that by in-
troducing a different non-physical class of space and time co-
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ordinates, essentially the Minkowski coordinates, the sound
vibration dynamics may be cast into a form that is covariant
under “Lorentz transformations”, wherein the speed of sound
is now the invariant speed. If this latter formalism were taken
as fundamental and complete we would be lead to the intro-
duction of a pseudo-Riemannian “spacetime” formalism for
sound with a metric characterised by the invariant speed of
sound, and where “sound cones” would play a critical role.

This analysis is an allegory for the development of 20th
century physics, but where the Lorentz covariant Maxwell
equations were constructed first, and the Galilean form was
later suggested by Hertz, but ignored. It is shown that the
Lorentz covariance of the Maxwell equations only occurs be-
cause of the use of degenerate non-physical space and time
coordinates. The conclusion is that Lorentz covariance and
the spacetime formalism are artifacts of the use of peculiar
non-physical space and time coordinates. The use of this class
of coordinates has confounded 20th century physics, and lead
to the existence of a “flowing” dynamical 3-space being over-
looked. The dynamics of this 3-space, when coupled to the
new Schrödinger and Dirac equations, has lead to the deriva-
tion of an extended gravity theory confirmed by numerous
experiments and observations. This analysis also shows that
Lorentz symmetry is consistent with the existence of a pre-
ferred frame, namely that defined by the dynamical 3-space.
This dynamical 3-space has been repeatedly detected over
more than 120 years of experiments, but has always been de-
nied because of the obvious success of the Lorentz covariant
formalism, where there the Lorentz transformations are char-
acterised by the so-called invariant speed of light. Einstein’s
fundamental principle that ‘the speed of light is invariant” is
not literally true, it is only valid if one uses the non-physical
space and time coordinates.

As with sound waves, the non-invariance or speed aniso-
tropy of the actual speed of light in vacuum is relatively easy
to measure, and is also relatively large, being approximately
1 part in 1000 when measured on earth, with the direction
of the “flowing space” known since the 1925/26 experiment
by Miller [3]. Successful direct and sufficiently accurate mea-
surements of the one-way speed of light have never been
made simply because the speed of light is so fast that accu-
rate timing for laboratory-sized speed measurements are not
possible. For that reason indirect measurements have always
been used. One of the first was the Michelson interferometer.
However a subtlety always arises for indirect measurements
— namely that the anisotropy of the speed of light also affects
the operation of the experimental apparatus in ways that have
not always been apparent. The Michelson interferometer, for
example, has a major design flaw that renders it nearly 2000
times less sensitive than believed by Michelson, who used
Newtonian physics in calibrating his instrument. It was only
in 2002 [5,6] that the correct calibration of the Michelson in-
terferometer was derived, and analysis of the non-null fringe
shift data from that Michelson-Morley 1887 experiment was

analysed and shown to reveal a “flowing space” with a speed
in excess of 300km/s. The 2002 analysis [5, 6] showed that
the presence of a gas in the Michelson interferometer was a
key component of its operation — for in vacuum mode the
instrument is totally defective as a detector of light speed
anisotropy. This is merely because different unrelated effects
just happen to cancel when the Michelson interferometer is
used in vacuum mode — a simple design flaw that at least
Michelson could not have known about. It so happens that
having a gas in the light paths causes this cancellation to be
incomplete. The sensitivity of the instrument varies as n� 1,
where n is the refractive index. For gases this calibration fac-
tor is very small — for air at STP n� 1 = 0:00029, whereas
Michelson, using Newtonian physics, used a calibration co-
efficient of value 1. However if we use optical fibers in place
of air n� 1 � 0:5, and the detector is some 2000 times more
sensitive, and the use of such detectors has lead to the de-
tailed characterisation of turbulence in the 3-space flow —
essentially gravitational waves�.

There are now four different experimental techniques for
detecting light speed anisotropy: (1) gas-mode Michelson in-
terferometer [3,4,7–10], (2) one-way RF speed in coaxial ca-
bles [11–13], (3) optical fiber interferometer [14, 15], and (4)
doppler-shift effects in earth-flyby of spacecraft [16]. These
consistent light-speed anisotropy experiments reveal earth ro-
tation and orbit effects, and sub-mHz gravitational waves.
The detection of gravitational wave effects, it now turns out,
dates back to the pioneering work of Michelson and Mor-
ley in 1887 [4], as discussed in [20], and detected again by
Miller [3] also using a gas-mode Michelson interferometer,
and by Torr and Kolen [11], DeWitte [12] and Cahill [13] us-
ing RF waves in coaxial cables, and by Cahill [14] and Cahill
and Stokes [15] using an optical-fiber interferometer design,
and also present in the spacecraft flyby doppler shifts [16].

2 Sound wave Galilean covariant formalism

Let us first use the example of sound waves to discuss the
mapping from Galilean space and time coordinates to
Minkowski-Einstein spacetime coordinates — as in this case
the underlying physics is well understood. The standard for-
mulation for sound waves in a moving fluid is�

@
@t

+ v(r; t) � r
�2
�(r; t) = c2r2�(r; t) ; (1)

where r = f @@x ; @@y ; @@z g. The physical time coordinate t
and Euclidean space coordinates r = fx; y; zg are used by
�The design flaw of the vacuum-mode Michelson interferometer has

been repeated in the large and expensive terrestrial gravitational wave de-
tectors such as LIGO, and also in the vacuum-mode resonant cavity interfer-
ometers [17]. These cavity experiments are based on two mistaken notions:
(i) that a breakdown of Lorentz symmetry is related to the existence of a
preferred frame, and (ii) that vacuum-mode Michelson interferometers can
detect a light speed anisotropy associated with such a preferred frame.
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an observer O to label the readings of a clock and the loca-
tion in space where the “wind” or “fluid flow” has velocity
v(r; t), and small pressure variations �(r; t), relative to the
background pressure. Clearly the “fluid flow” and “pressure
fluctuations” are different aspects of the same underlying phe-
nomena — namely the dynamics of some macroscopic sys-
tem of atoms and/or molecules, but separated into very low
frequency effects, — the flow, and high frequency effects, —
the sound waves. The dynamics for the flow velocity v(r; t) is
not discussed here. As well the symbol c is the speed of sound
waves relative to the fluid. In (1) the coordinates ft; x; y; zg
ensure that the dynamical flow v is correctly related to the
pressure fluctuation �, at the same time and space. When-
ever we separate some unified phenomenon into two or more
related phenomena we must introduce a “coordinate system”
that keeps track of the connection. To demonstrate this we
find plane-wave solutions of (1) for the case where the fluid
flow velocity is time and space independent, viz uniform,

�(r; t) = A sin(k � r� !t) ; (2)

!(k;v) = c j~kj+ v � k : (3)

The sound wave group velocity is then

vg = ~rk!(k;v) = c k̂ + v ; (4)

and we see that the wave has velocity vg relative to the ob-
server, with the fluid flowing at velocity v also relative to the
observer, and so the speed of sound is c in direction k̂ relative
to the fluid itself. This corresponds to a well known effect,
namely that sound travels slower up-wind than down-wind.
This “sound speed anisotropy” effect can be measured by
means of one-way sound travel times, or indirectly by means
of doppler shifts for sound waves reflected from a distant ob-
ject separated by a known distance from the observer.

Next consider two observers, O and O0, in relative mo-
tion. Then the physical time and space coordinates of each
are related by the Galilean transformation

t0 = t ;
x0 = x� V t ; y0 = y; z0 = z : (5)

We have taken the simplest case where V is the relative
speed of the two observers in their common x directions.
Then the derivatives are related by
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Then (1) becomes for the 2nd observer, with v0 = v�V ,�
@
@t0 + v0(r0; t0) � r0

�2
�0 (r0; t0) = c2r02�0 (r0; t0) : (7)

For sound waves �0 (r0; t0) = �(r; t). If the flow velocity
v(r; t) is not uniform then we obtain refraction effects for the

sound waves. Only for an observer at rest in a time indepen-
dent and uniform fluid does v0 disappear from (7).

3 Sound wave Lorentz covariant formalism

The above Galilean formalism for sound waves is well known
and uses physically sensible choices for the time and space
coordinates. Of course we could choose to use spherical or
cylindrical space coordinates if we so desired. This would
cause no confusion. However we could also choose to use a
new class of time and space coordinates, indicated by upper-
case symbols T;X; Y; Z, that mixes the above time and space
coordinates. One such new class of coordinates is

T =  (v)
��

1� v2

c2

�
t+

vx
c2

�
;

X =  (v)x; Y = y; Z = z; (8)

where  (v) = 1=
p

1� v2=c2. Note that this is not a Lorentz
transformation. The transformations for the derivatives are
then found to be
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We define r = f @
@X ;

@
@Y ;

@
@Z g. Then (1) becomes, for

uniform v, �
@
@T

�2
�(R; T ) = c2r2 �(R; T ) ; (10)

with R = fX;Y; Zg and �(R; T ) = �(r; t). This is a re-
markable result. In the new class of coordinates the dynami-
cal equation no longer contains the flow velocity v — it has
been mapped out of the dynamics. Eqn.(10) is now covariant
under Lorentz transformations�,

T 0 =  (V )
�
T +

V X
c2

�
;

X 0 =  (V )(X � V T ); Y 0 = Y; Z 0 = Z; (11)

where we have taken the simplest case, and where V is a mea-
sure of the relative speed of the two observers in their com-
mon X directions.

There is now no reference to the underlying flowing fluid
system — for an observer using this class of space and time
coordinates the speed of sound relative to the observer is al-
ways c and so invariant — there will be no sound
speed anisotropy. We could also introduce a “spacetime” con-
struct with pseudo-Riemannian metric ds2 = c2dT 2 � dR2,
�Lorentz did not construct the “Lorentz transformation” — and this

nomenclature is very misleading as Lorentz held to a different interpretation
of the so-called relativistic effects.
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and sound cones along which ds2 = 0. As well pairs of
spacetime events could be classified into either time-like or
space-like, with the time ordering of spacelike events not be-
ing uniquely defined.

However this sound-speed invariance is purely an arti-
fact of the non-physical space and time coordinates intro-
duced in (8). The non-physical nature of this inferred “in-
variance” would have been easily exposed by doing measure-
ments of the speed of sound in different directions. However
in a bizarre imaginary world the Lorentz-covariant sound for-
malism could have been discovered first, and the spacetime
formalism might have been developed and become an en-
trenched belief system. If later experiments had revealed that
the speed of sound was actually anisotropic then the experi-
mentalist involved might have been applauded, or, even more
bizarrely, their discoveries denied and suppressed, and fur-
ther experiments stopped by various means. The overwhelm-
ing evidence is that this bizarre possibility is precisely what
happened for electromagnetics, for Maxwell essentially in-
troduced the Lorentz covariant electromagnetism formalism,
and experiments that detected the light speed anisotropy.

4 Dynamical 3-space theory

Here we briefly review the dynamics of the 3-space that is
the analogue of the “flowing fluid” in the sound allegory. For
zero vorticity we have [19–21]

r �
�
@v
@t

+ (v � r)v
�

+
�
8
�
(trD)2� tr(D2)

�
= � 4�G� ;

r� v = 0 ; Dij =
1
2

�
@vi
@xj

+
@vj
@xi

�
; (12)

where �(r; t) is the matter and EM energy densities expressed
as an effective matter density. Experiment and astrophysical
data has shown that � � 1=137 is the fine structure constant
to within observational errors [19–22]. For a quantum system
with mass m the Schrödinger equation must be generalised
[22] with the new terms required to maintain that the motion
is intrinsically wrt to the 3-space and that the time evolution
is unitary

i~
@ (r; t)
@t

=

= � ~2

2m
r2 (r; t)� i~

�
v � r+

1
2
r � v

�
 (r; t) :

(13)

The space and time coordinates ft; x; y; zg in (12) and
(13) ensure that the separation of a deeper and unified pro-
cess into different classes of phenomena — here a dynami-
cal 3-space and a quantum system, is properly tracked and
connected. As well the same coordinates may be used by an
observer to also track the different phenomena. However it is
important to realise that these coordinates have no ontological
significance — they are not real. Nevertheless it is imperative
not to use a degenerate system of coordinates that suppresses

the description of actual phenomena. The velocities v have
no ontological or absolute meaning relative to this coordinate
system — that is in fact how one arrives at the form in (12),
and so the “flow” is always relative to the internal dynamics
of the 3-space. So now this is different to the example of
sound waves.

A wave packet propagation analysis gives the acceleration
induced by wave refraction to be [22]

g =
@v
@t

+ (v � r)v + (r� v)� vR ; (14)

vR(r0(t); t) = v0(t)� v(r0(t); t) ; (15)

is the velocity of the wave packet relative to the 3-space,
where v0 and r0 are the velocity and position relative to
the observer, and the last term in (14) generates the Lense-
Thirring effect as a vorticity driven effect. Together (12) and
(14) amount to the derivation of gravity as a quantum effect,
explaining both the equivalence principle (g in (14) is inde-
pendent of m) and the Lense-Thirring effect. Overall we see,
on ignoring vorticity effects, that

r � g = �4�G�� �
8
�
(trD)2 � tr(D2)

�
; (16)

which is Newtonian gravity but with the extra dynamical term
whose strength is given by �. This new dynamical effect
explains the spiral galaxy flat rotation curves (and so doing
away with the need for “dark matter”), the bore hole g anoma-
lies, the black hole “mass spectrum”. Eqn.(12), even when
� = 0, has an expanding universe Hubble solution that fits
the recent supernovae data in a parameter-free manner with-
out requiring “dark matter” nor “dark energy”, and without
the accelerating expansion artifact [21]. However (16) cannot
be entirely expressed in terms of g because the fundamental
dynamical variable is v. The role of (16) is to reveal that if
we analyse gravitational phenomena we will usually find that
the matter density � is insufficient to account for the observed
g. Until recently this failure of Newtonian gravity has been
explained away as being caused by some unknown and un-
detected “dark matter” density. Eqn.(16) shows that to the
contrary it is a dynamical property of 3-space itself.

Another common misunderstanding is that the success of
the Direc equation implies that a preferred frame cannot ex-
ist. This belief is again easily demolished. The generalised
Dirac equation which uses the Galilean class of space-time
coordinates is

i~
@ 
@t

= �i~
�
c~� � r+v:r+

1
2
r � v

�
 +�mc2 ; (17)

where ~� and � are the usual Dirac matrices. This equation
shows that the Dirac spinor propagates wrt to the 3-space, and
that there are dynamical effects associated with that that are
not in the generalised Schrödinger equation (13). As shown
elsewhere (17) gives rise to relativistic gravitational effects�,
that go beyond those in (14).
�Meaning when an object has speed comparable to c wrt the 3-space.
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5 Galilean covariant electromagnetic theory

Hertz in 1890 [18] noted that Maxwell had overlooked the
velocity field that accompanies time derivatives, as in (1), and
presented an improved formalism, and the minimal source-
free form is

�
�
@
@t

+ v � r
�

H = �r�E ;

�
�
@
@t

+ v � r
�

E = +r�H ;

r �H = 0 ; r �E = 0 ; (18)

with v(r; t) being the dynamical 3-space velocity field as
measured� by some observer using time and space coordi-
nates ft; x; y; zg, although Hertz did not consider a time and
space dependent v. Again for uniform and time-independent
v (18) has plane wave solutions

E(r; t) = E0 ei(k�r�!t); H(r; t) = H0 ei(k�r�!t) ; (19)

!(k;v) = c j~kj+ v � k ; where c = 1=
p
�� : (20)

Then the EM group velocity is

vEM = ~rk!(k;v) = c k̂ + v : (21)

So, like the analogy of sound, the velocity of EM radia-
tion vEM has magnitude c only with respect to the 3-space,
and in general not with respect to the observer if the observer
is moving through that 3-space, as experiment has indicated
again and again, as discussed above. Eqns.(18) give, for uni-
form v, �

@
@t

+ v � r
�2

E = c2r2E ;�
@
@t

+ v � r
�2

H = c2r2H : (22)

on using the identity r � (r � E) = �r2E + r(r:E)
and r:E = 0, and similarly for the H field. Transforming to
the Minkowski-Einstein T;X; Y; Z coordinates using (8) and
(9) we obtain the form of the source-free “standard” Maxwell
equations

@2E
@T 2 = c2r2

E ;
@2H
@T 2 = c2r2

H ; (23)

which is again covariant under Lorentz transformation (11).
It is important to emphasize that the transformation from the
Galilean covariant Hertz-Maxwell equations (18) to the
Lorentz covariant Maxwell equations (23) is exact. It is usu-
ally argued that the Galilean transformations (5) are the non-
relativistic limit of the Lorentz transformations (11). While
this is technically so, as seen by taking the limit v=c! 0, this

�Earth based light speed anisotropy experiments show that v has value
� 420�30 km/s in a known direction [20], and is not to be confused with
the CMB velocity.

misses the key point that they are related by the new mapping
in (8). Also we note that for the Galilean space-time class
the speed of light is anisotropic, while it is isotropic for the
Minkowski-Einstein space-time class. It is only experiment
that can decide which of the two classes of coordinates is the
more valid space-time coordinate system. As noted above,
and since 1887, experiments have detected that the speed of
light is indeed anisotropic.

Again when using the Minkowski-Einstein coordinates
there is now no reference to the underlying dynamical 3-space
system — for an observer using this class of space and time
coordinates the speed of light relative to the observer is al-
ways c and so invariant. We could then be tricked into in-
troducing a “spacetime” construct with pseudo-Riemannian
metric ds2 = c2dT 2 � dR2, and light cones along which
ds2 = 0. As well pairs of spacetime events could be classi-
fied into either time-like or space-like, with the time ordering
of spacelike events not being uniquely defined. This loss of
the notion of simultaneity is merely a consequence of the de-
generate nature of the Minkowski-Einstein spacetime coordi-
nates. This has confounded progress in physics for more than
a century.

Hence the Minkowski-Einstein space-time coordinates
are degenerate in that they map out the existence of the dy-
namical 3-space. So the development of 20th century physics
has been misled by two immensely significant “accidents”,
1st that Maxwell failed to include the velocity v, and the 2nd
that the Michelson interferometer in gas-mode is some 2000
times less sensitive than Michelson had assumed, and that the
observed fringe shifts actually indicate a large value for v in
excess of 300km/s. These two accidents stopped physics from
discovering the existence of a dynamical 3-space, until re-
cently, and that the dynamical 3-space displays wave effects.
Also again this transformation between the two classes of
space-time coordinates explicitly demonstrates that “Lorentz
covariance” coexists with a preferred frame, contrary to the
aims of the experiments in [17]. Furthermore vacuum-mode
Michelson interferometers, such as the vacuum cavity res-
onators, cannot even detect the long-standing light speed
anisotropy. We can apply the inverse mapping, from the
Minkowski-Einstein class to the Galilean class of coordina-
tes, but in doing so we have lost the value of the velocity field.
In this sense the Minkowski-Einstein class is degenerate — it
cannot be used to analyse light speed anisotropy experiments
for example.

6 Conclusions

We have reported herein the discovery of an exact and in-
vertible mapping from Galilean time and space coordinates
to Minkowski-Einstein spacetime coordinates. This mapping
removes the effects of the velocity of the dynamical 3-space
relative to an observer, and so in this sense the Minkowski-
Einstein coordinates are degenerate — they stop the usual
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Special Relativity formalism from being able to say anything
about the existence of a preferred frame, a real 3-space, and
from describing experiments that have detected light speed
anisotropy. The Minkowski-Einstein formalism has neverthe-
less has been very successful in describing other effects. The
spacetime formalism, with its spacetime metric and Lorentz
covariance, is really an artifact of the degenerate Minkowski-
Einstein coordinates, and we have shown how one may un-
ravel these mathematical artifacts, and display the underlying
dynamics.. The new mapping shows that relativistic effects
are caused by motion relative to an actual 3-space — and
which has been observed for more than 120 years. This was
Lorentz’s proposition. The belief that spacetime actually de-
scribed reality has lead to numerous misconceptions about the
nature of space and time. These are distinct phenomena, and
are not fused into some 4-dimensional entity. Indeed time is
now seen to have a cosmic significance, and that all observers
can measure that time — for by measuring their local abso-
lute speed relative to their local 3-space they can correct the
ticking rate of their clocks to remove the local time dilation
effect, and so arrive at a measure of the ticking rate of cos-
mic time�. This changes completely how we might consider
modelling deeper reality — one such proposition is Process
Physics [19–21].

The Special Relativity formalism asserts that only relative
descriptions of phenomena between two or more observers
have any meaning. In fact we now understand that all effects
are dynamically and observationally relative to an ontologi-
cally real, that is, detectable dynamical 3-space. Ironically
this situation has always been known as an “absolute effect”.
The most extraordinary outcome of recent discoveries is that
a dynamical 3-space exists, and that from the beginning of
Physics this has been missed — that a most fundamental as-
pect of reality has been completely overlooked.
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The main purpose of this paper is to seek a mechanical interpretation of gravitational
phenomena. We suppose that the universe may be filled with a kind of fluid which may
be called the 
(0) substratum. Thus, the inverse-square law of gravitation is derived by
methods of hydrodynamics based on a sink flow model of particles. The first feature of
this theory of gravitation is that the gravitational interactions are transmitted by a kind
of fluidic medium. The second feature is the time dependence of gravitational constant
G and gravitational mass. The Newton’s law of gravitation is arrived if we introduce an
assumption that G and the masses of particles are changing so slowly that they can be
treated as constants.

1 Introduction

The Newton’s law of gravitation can be written as

F21 = �G m1m2

r2 r̂21 ; (1)

where m1 and m2 are the masses of two particles, r is the
distance between the two particles,G is the gravitational con-
stant, F12 is the force exerted on the particle with mass m2
by the particle with mass m1, r̂21 denotes the unit vector di-
rected outward along the line from the particle with mass m1
to the particle with mass m2.

The main purpose of this paper is to derive the Newton’s
law of gravitation by means of fluid mechanics based on sink
flow model of particles.

The motive of this paper is to seek a mechanism of gravi-
tational phenomena. The reasons why new models of gravity
are interesting may be summarized as follows.

Firstly, there exists some astronomical phenomena that
could not be interpreted by the present theories of gravita-
tion, for instance, the Titius-Bode law [1]. New theories of
gravity may view these problems from new angles.

Secondly, whether the gravitational constant G depends
on time and space is still unknown [2–8]. It is known that the
gravitational constant G is a constant in the Newton’s theory
of gravitation and in theory of general relativity.

Thirdly, the mechanism of the action-at-a-distance gravi-
tation remains an unsolved problem in physics for more than
300 years [9–11]. Although theory of general relativity is
a field theory of gravity [12], the concept of field is differ-
ent from that of continuum mechanics [13–16] because of the
absence of a continuum in theory of general relativity. Thus,
theory of general relativity can only be regarded as a phe-
nomenological theory of gravity.

Fourthly, we do not have a satisfactory quantum theory of
gravity presently [17–21]. One of the challenges in theoretic-

all physics is to reconcile quantum theory and theory of gen-
eral relativity [17,22]. New theories of gravity may open new
ways to solve this problem.

Fifthly, one of the puzzles in physics is the problem of
dark matter and dark energy [23–31]. New theories of gravity
may provide new methods to attack this problem [24, 25].

Finally, we do not have a successful unified field theory
presently. Great progress has been made towards an unifica-
tion of the four fundamental interactions in the universe in
the 20th century. However, gravitation is still not unified suc-
cessfully. New theories of gravity may shed some light on
this puzzle.

To conclude, it seems that new considerations on gravita-
tion is needed. It is worthy keeping an open mind with respect
to all the theories of gravity before the above problems been
solved.

Now let us briefly review the long history of mechanical
interpretations of gravitational phenomena. Many philoso-
phers and scientists, such as Laozi [32], Thales, Anaximenes,
believed that everything in the universe is made of a kind of
fundamental substance [9]. Descartes was the first to bring
the concept of aether into science by suggesting that it has
mechanical properties [9]. Since the Newton’s law of grav-
itation was published in 1687 [33], this action-at-a-distance
theory was criticized by the French Cartesian [9]. Newton
admitted that his law did not touch on the mechanism of grav-
itation [34]. He tried to obtain a derivation of his law based on
Descartes’ scientific research program [33]. Newton himself
even suggested an explanation of gravity based on the action
of an aetherial medium pervading the space [34, 35]. Euler
attempted to explain gravity based on some hypotheses of a
fluidic aether [9].

In a remarkable paper published in 1905, Einstein aban-
doned the concept of aether [36]. However, Einstein’s as-
sertion did not cease the explorations of aether [9, 37–46].
Einstein changed his view later and introduced his new con-
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cept of ether [47, 48]. I regret to admit that it is impossible
for me to mention all the works related to this field in his-
tory. Adolphe Martin and Roy Keys [49–51] proposed a flu-
idic cosmonic gas model of vacuum to explain the physical
phenomena such as electromagnetism, gravitation, quantum
mechanics and the structure of elementary particles.

Inspired by the aforementioned thoughts and others [52–
56], we show that the Newton’s law of gravitation is derived
based on the assumption that all the particles are made of sin-
gularities of a kind of ideal fluid.

During the preparation of the manuscript, I noticed that
John C. Taylor had proposed an idea that the inverse-square
law of gravitation may be explained based on the concept of
source or sink [65].

2 Forces acting on sources and sinks in ideal fluids

The purpose of this section is to calculate the forces between
sources and sinks in inviscid incompressible fluids which is
called ideal fluids usually.

Suppose the velocity field u of an ideal fluid is irrota-
tional, then we have [16, 54–59],

u = r� ; (2)

where � is the velocity potential,r = i @@x + j @@y + k @
@z is the

Hamilton operator.
It is known that the equation of mass conservation of an

ideal fluid becomes Laplace’s equation [54–59],

r2� = 0 ; (3)

where � is velocity potential, r2 = @2

@x2 + @2

@y2 + @2

@z2 is the
Laplace operator.

Using spherical coordinates(r; �; '), a general form of so-
lution of Laplace’s equation (3) can be obtained by separation
of variables as [56]

�(r; �) =
1X
l=0

�
Alrl +

Bl
rl+1

�
Pl(cos �) ; (4)

whereAl andBl are arbitrary constants, Pl(x) are Legendre’s
function of the first kind which is defined as

Pl(x) =
1

2ll!
dl

dxl
(x2 � 1)l: (5)

If there exists a velocity field which is continuous and fi-
nite at all points of the space, with the exception of individual
isolated points, then these isolated points are called singular-
ities usually.

Definition 1 Suppose there exists a singularity at point P0 =
(x0; y0; z0). If the velocity field of the singularity at point
P = (x; y; z) is

u(x; y; z; t) =
Q

4�r2 r̂ ; (6)

where r =
p

(x� x0)2 + (y � y0)2 + (z � z0)2, r̂ denotes
the unit vector directed outward along the line from the singu-
larity to the point P = (x; y; z), then we call this singularity
a source if Q > 0 or a sink if Q < 0. Q is called the strength
of the source or sink.

Suppose a static point source with strength Q locates at
the origin (0; 0; 0). In order to calculate the volume leav-
ing the source per unit time, we may enclose the source with
an arbitrary spherical surface S with radius a. A calculation
shows thatZZ

S
 u � ndS =

ZZ
S
 Q

4�a2 r̂ � ndS = Q ; (7)

where n denotes the unit vector directed outward along the
line from the origin of the coordinates to the field point
(x; y; z). Equation (7) shows that the strength Q of a source
or sink evaluates the volume of the fluid leaving or entering a
control surface per unit time.

From (4), we see that the velocity potential �(r; �) of a
source or sink is a solution of Laplace’s equation r2� = 0.

Theorem 2 Suppose (1) there exists an ideal fluid (2) the
ideal fluid is irrotational and barotropic, (3) the density � is
homogeneous, that is @�=@x=@�=@y=@�=@z=@�=@t= 0 ;
(4) there are no external body forces exerted on the fluid,
(5)the fluid is unbounded and the velocity of the fluid at the
infinity is approaching to zero. Suppose a source or sink is
stationary and is immersed in the ideal fluid. Then, there is a
force

FQ = � �Qu0 (8)

exerted on the source by the fluid, where � is the density of
the fluid, Q is the strength of the source or the sink, u0 is the
velocity of the fluid at the location of the source induced by
all means other than the source itself.

Proof Only the proof of the case of a source is needed. Let
us select the coordinates that is attached to the static fluid at
the infinity.

We set the origin of the coordinates at the location of the
source. We surround the source by an arbitrary small spheri-
cal surface S. The surface S is centerred at the origin of the
coordinates with radius r. The outward unit normal to the
surface S is denoted by n. Let � (t) denotes the mass system
of fluid enclosed in the volume between the surface S and the
source at time t. Let FQ denotes the hydrodynamic force ex-
erted on the source by the mass system � , then a reaction of
this force must act on the the fluid enclosed in the mass sys-
tem � . Let FS denotes the hydrodynamic force exerted on the
mass system � due to the pressure distribution on the surface
S, K denotes momentum of the mass system � .

As an application of the Newton’s second law of motion
to the mass system � ,we have

DK
Dt

= �FQ + FS ; (9)
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where D=Dt represents the material derivative in the lagrang-
ian system [16,54–59]. The expressions of the momentum K
and the force FS are

K =
ZZZ

�
� udV ; FS =

ZZ
S
 (�p)ndS ; (10)

where the first integral is volume integral, the second integral
is surface integral, n denotes the unit vector directed outward
along the line from the origin of the coordinates to the field
point(x; y; z).

Since the velocity field is irrotational, we have the follow-
ing relation

u = r� ; (11)

where � is the velocity potential.
According to Ostrogradsky–Gauss theorem (see, for in-

stance, [54–56, 58, 59]), we haveZZZ
�
�udV =

ZZZ
�
�r�dV =

ZZ
S
 ��ndS : (12)

Note that the mass system � does not include the singu-
larity at the origin. According to Reynolds’ transport theo-
rem [54–56, 58, 59], we have

D
Dt

ZZZ
�
�udV =

@
@t

ZZZ
V
�udV +

ZZ
S
 �u(u �n)dS ; (13)

where V is the volume fixed in space which coincide with the
mass system � (t) at time t, that is V = � (t).

Then, using (13) , (10) and (12), we have

DK
Dt

=
ZZ
S
 �

@�
@t

ndS +
ZZ
S
 �u(u � n)dS : (14)

According to Lagrange–Cauchy integral [54–56, 58, 59],
we have

@�
@t

+
(r�)2

2
+
p
�

= f(t) ; (15)

where f(t) is an arbitrary function of time t. Since the ve-
locity u of the fluid at the infinity is approaching to zero, and
noticing (4), �(t) must be of the following form

�(r; �; t) =
1X
l=0

Bl(t)
rl+1 Pl (cos �) ; (16)

where Bl(t); l > 0 are functions of time t. Thus, we have the
following estimations at the infinity of the velocity field

� = O
�

1
r

�
;

@�
@t

= O
�

1
r

�
; r !1 ; (17)

where '(x) = O( (x)); x ! a stands for limx!a j'(x)j =
 (x) = k; (0 6 k < +1):

Applying (15) at the infinity and using (17), we have
juj! 0, @�=@t! 0 and p= p1, where p1 is a constant.
Thus, f(t) = p1=�. Therefore, according to (15), we have

p = p1 � � @�@t �
�(u � u)

2
: (18)

Using (10) and (18), we have

FS =
ZZ
S
 �

@�
@t

ndS +
ZZ
S
 �(u � u) n

2
dS : (19)

Using (9), (14), (19), we have

FQ =
ZZ
S


�
1
2
�(u � u)n� �u(u � n)

�
dS : (20)

Now let us calculate this velocity u in order to obtain FQ.
Since the velocity field induced by the source Q is (6), then
according to the superposition principle of velocity field of
ideal fluids, the velocity on the surface S is

u =
Q

4�r2 n + u0; (21)

where n denotes the unit vector directed outward along the
line from the origin of the coordinates to the field point
(x; y; z). Using (20) and (21), we have

FQ = �
ZZ
S

�
� Q2

32�2r4 n +
1
2

(u0 � u0) n�

� Q
4�r2 u0 � (u0 � n) u0

�
dS : (22)

Since the radius r can be arbitrarily small, the velocity u0
can be treated as a constant in the integral of (22). Thus, (22)
turns out to be

FQ = ��
ZZ
S
 Q

4�r2 u0 dS : (23)

Since again u0 can be treated as a constant, (23) turns out
to be (8). This completes the proof. �

Remark Lagally [52], Landweber and Yih [53, 54], Faber
[55] and Currie [56] obtained the same result of Theorem 2
for the special case where the velocity field is steady.

Theorem 2 only considers the situation that the sources or
sinks are at rest. Now let us consider the case that the sources
or sinks are moving in the fluid.

Theorem 3 Suppose the presuppositions (1), (2), (3), (4)
and (5) in Theorem 2 are valid and a source or a sink is mov-
ing in the fluid with a velocity vs, then there is a force

FQ = ��Q (uf � vs) (24)

is exerted on the source by the fluid, where � is the density of
the fluid, Q is the strength of the source or the sink, uf is the
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velocity of the fluid at the location of the source induced by
all means other than the source itself.

Proof The velocity of the fluid relative to the source at the
location of the source is uf �vs. Let us select the coordinates
that is attached to the source and set the origin of the coordi-
nates at the location of the source. Then (24) can be arrived
following the same procedures in the proof of Theorem 2. �

Applying Theorem 3 to the situation that a source or sink
is exposed to the velocity field of another source or sink,
we have:

Corollary 4 Suppose the presuppositions (1), (2), (3), (4)
and (5) in Theorem 2 are valid and a source or a sink with
strength Q2 is exposed to the velocity field of another source
or sink with strength Q1, then the force F21 exerted on the
singularity with strength Q2 by the velocity field of the sin-
gularity with strength Q1 is

F21 = ��Q2
Q1

4�r2 r̂21 + �Q2v2 ; (25)

where r̂21 denotes the unit vector directed outward along the
line from the singularity with strength Q1 to the singularity
with strength Q2, r is the distance between the two singular-
ities, v2 is the velocity of the source with strength Q2.

3 Derivation of inverse-square-law of gravitation

Since quantum theory shows that vacuum is not empty and
has physical effects, e.g., the Casimir effect [45, 60–62], it is
valuable to probe vacuum by introducing the following hy-
potheses:

Assumption 5 Suppose the universe is filled by an ideal
fluid named 
(0) substratum; the ideal fluid fulfil the con-
ditions (2), (3), (4), (5) in Theorem 2.

This fluid may be named 
(0) substratum in order to dis-
tinguish with Cartesian aether. Following Einstein, Infeld
and Hoffmann, who introduced the idea that particles may
be looked as singularities in fields [63,64], and noticing (25),
it is nature to introduce the following:

Assumption 6 All the microscopic particles were made up
of a kind of elementary sinks of 
(0) substratum. These ele-
mentary sinks were created simultaneously.The initial masses
and the strengths of the elementary sinks are the same.

We may call these elementary sinks as monads.
Suppose a particle with mass m is composed of N mon-

ads. Then, according to Assumption 6, we have:

m0(t) = m0(0) + �q0 t ; (26)

Q = �Nq0 ; m(t) = Nm0(t) = � Q
q0
m0(t) ; (27)

dm0

dt
= �q0 ;

dm
dt

= ��Q ; (28)

where m0(t) is the mass of monad at time t, �q0(q0 > 0) is
the strength of a monad, m(t) is the mass of a particle at time

t, Q is the strength of the particle, N is the number of mon-
ads that make up the particle, � is the density of the 
(0)
substratum, t > 0.

From (28), we see that the massm0 of a monad is increas-
ing since q0 evaluates the volume of the 
(0) substratum fluid
entering the monad per unit time. From (28), we also see that
the mass of a monad or a particle is increasing linearly.

Based on Assumption 5 and Assumption 6, the motion of
a particle is determined by:

Theorem 7 The equation of motion of a particle is

m(t)
dv
dt

=
�q0
m0(t)

m(t)u� �q0
m0(t)

m(t)v + F ; (29)

where m0(t) is the mass of monad at time t, �q0 is the
strength of a monad, m(t) is the mass of a particle at time
t, v is the velocity of the particle, u is the velocity of the 
(0)
substratum at the location of the particle induced by all means
other than the particle itself, F denotes other forces.

Proof Applying the Newton’s second law and Theorem 3 to
this particle, we have mdv=dt = ��Q(u�v) + F. Noticing
(27), we get (29). �

Formula (29) shows that there exists a universal damping
force

Fd = ��q0
m0

mv (30)

exerted on each particle.
Now let us consider a system consists of two particles.

Based on Assumption 6, applying Theorem 7 to this system,
we have:

Corollary 8 Suppose there is a system consists of two par-
ticles and there are no other forces exerted on the particles,
then the equations of motion of this system are

m1
dv1

dt
= ��q0

m0
m1v1 � �q2

0

4�m2
0

m1m2

r2 r̂12 (31)

m2
dv2

dt
= ��q0

m0
m2 v2 � �q2

0

4�m2
0

m1m2

r2 r̂21 ; (32)

where mi=1;2 is the mass of the particles, vi=1;2 is the ve-
locity of the particles, m0 is the mass of a monad, �q0 is the
strength of a monad, � is the density of the 
(0) substratum,
r̂12 denotes the unit vector directed outward along the line
from the particle with mass m2(t) to the particle with mass
m1(t), r̂21 denotes the unit vector directed outward along the
line from the particle with mass m1(t) to the particle with
mass m2(t).

Ignoring the damping forces in (32), we have:

Corollary 9 Suppose (1) vi=1;2 � ui=1;2, where vi is the
velocity of the particle with mass mi, ui is the velocity of
the 
(0) substratum at the location of the particle with mass
mi induced by the other particle, (2) there are no other forces
exerted on the particles, then the force F21(t) exerted on the

28 Xiao-Song Wang. Derivation of the Newton’s Law of Gravitation Based on a Fluid Mechanical Singularity Model of Particles



October, 2008 PROGRESS IN PHYSICS Volume 4

particle with mass m2(t) by the velocity field of 
(0) sub-
stratum induced by the particle with mass m1(t) is

F21(t) = �G(t)
m1(t)m2(t)

r2 r̂21 ; (33)

where G = �q2
0=(4�m2

0(t)), r̂21 denotes the unit vector di-
rected outward along the line from the particle with mass
m1(t) to the particle with mass m2(t), r is the distance be-
tween the two particles.

Corollary 9 is coincide with the Newton’s inverse-square-
law of gravitation (1) except for two differences. The first
difference is that mi=1;2 are constants in the Newton’s law
(1) while in (1) while in Corollary are functions of time t.
The second difference is that G is a t. The second difference
is that G is a constant in the Newton’s

Let us now introduce an assumption thatG and the masses
of particles are changing so slowly relative to the time scale
of human beings that they can be treated as constants approx-
imately. Thus, the Newton’s law (1) of gravitation may be
considered as a result of Corollary 9 based on this assump-
tion.

4 Superposition principle of gravitational field

The definition of gravitational field g of a particle with mass
m is g = F=mtest, where mtest is the mass of a test point
mass, F is the gravitational force exerted on the test point
mass by the gravitational field of the particle with mass m.
Based on Theorem 7 and Corollary 9, we have

g =
�q0
m0

u ; (34)

where � is the density of the 
(0) substratum, m0 is the mass
of a monad, q0 is the strength of a monad, u is the velocity
of the 
(0) substratum at the location of the test point mass
induced by the particle mass m. From (34), we see that the
superposition principle of gravitational field is deduced from
the superposition theorem of the velocity field of ideal fluids.

5 Time dependence of gravitational constant G and
mass

According to Assumption 6 and Corollary 9, we have we have

G =
�q2

0

4�m2
0(t)

; (35)

where m0(t) is the mass of monad at time t, �q0 is the
strength of a monad, � is the density of the 
(0) substratum.
The time dependence of gravitational mass can be seen from
(35) and (28).

6 Conclusion

We suppose that the universe may be filled with a kind of fluid
which may be called the 
(0) substratum. Thus, the inverse-

square law of gravitation is derived by methods of hydrody-
namics based on a sink flow model of particles. There are
two features of this theory of gravitation. The first feature is
that the gravitational interactions are transmitted by a kind of
fluidic medium. The second feature is the time dependence of
gravitational constant and gravitational mass. The Newton’s
law of gravitation is arrived if we introduce an assumption
thatG and the masses of particles are changing so slowly that
they can be treated as constants. As a byproduct, it is shown
that there exists a universal damping force exerted on each
particle.
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It is shown that in the weak field approximation the new geometrical approach can lead
to the linear field equations for the several independent fields. For the stronger fields and
in the second order approximation the field equations become non-linear, and the fields
become dependent. This breaks the superposition principle for every separate field and
produces the interaction between different fields.The unification of the gravitational and
electromagnetic field theories is performed in frames of the geometrical approach in the
pseudo-Riemannian space and in the curved Berwald-Moor space.

1 Introduction

In paper [1] the new (geometrical) approach was suggested
for the field theory. It is applicable for any Finsler space [2]
for which in any point of the main space x1; x2; : : : ; xn the
indicatrix volume

�
Vind(x1; x2; : : : ; xn)

�
ev can be defined,

provided the tangent space is Euclidean. Then the action I
for the fields present in the metric function of the Finsler
space is defined within the accuracy of a constant factor as
a volume of a certain n-dimensional region V :

I = const �
Z
V

(n) dx1dx2 : : : dxn

(Vind(x1; x2; : : : ; xn))ev
: (1)

Thus, the field Lagrangian is defined in the following way

L = const � 1
(Vind(x1; x2; : : : ; xn))ev

: (2)

In papers [3,4] the spaces conformally connected with the
Minkowski space and with the Berwald-Moor space were re-
garded. These spaces have a single scalar field for which the
field equation was written and the particular solutions were
found for the spherical symmetry and for the rhombodode-
caedron symmetry of the space.

The present paper is a continuation of those papers deal-
ing with the study and development of the geometric field
theory.

2 Pseudo-Riemannian space with the signature (+���)

Let us consider the pseudo-Riemannian space with the signa-

ture (+���) and select the Minkowski metric tensor
�
gij in

the metric tensor gij(x); of this space explicitly

gij(x) =
�
gij +hij(x) : (3)

Let us suppose that the field hij(x) is weak, that is

jhij(x)j � 1 : (4)

According to [1], the Lagrangian for a pseudo-Rieman-
nian space with the signature (+���) is equal to

L =
q
�det(gij) : (5)

Let us calculate the value of [�det(gij)] within the ac-
curacy of jhij(x)j2 :

�det(gij) ' 1 + L1 + L2 ; (6)
where

L1 =
�
g ijhij � h00 � h11 � h22 � h33 ; (7)

L2 = �h00(h11 + h22 + h33) + h11h22 + h11h33 +

+h22h33 � h2
12 � h2

13 � h2
23 + h2

03 + h2
02 + h2

01 :
(8)

The last formula can be rewritten in a more conven-
ient way

L2 = �
���� h00 h01
h01 h11

����� ���� h00 h02
h02 h22

�����
�
���� h00 h03
h03 h33

����+
���� h11 h12
h12 h22

����+
+
���� h11 h13
h13 h33

����+
���� h22 h23
h23 h33

���� ;
(9)

then

L ' 1 +
1
2

L1 +
1
2

�
L2 � 1

4
L2

1

�
: (10)

To obtain the field equations in the first order approxi-
mation, one should use the Lagrangian L1; and to do the
same in the second order approximation — the Lagrangian�

L1 + L2 � 1
4 L2

1
�
:
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3 Scalar field

For the single scalar field '(x) the simplest representation
of tensor hij(x) has the form :

hij(x) � h(')
ij (x) = � @'

@xi
@'
@xj

: (11)

That is why

L' =
q
�det(gij) =

p
1� L1 ' 1� 1

2
L1� 1

8
L2

1 ; (12)

where

L1 =
�
@'
@x0

�2
�
�
@'
@x1

�2
�
�
@'
@x2

�2
�
�
@'
@x3

�2
: (13)

In the first order approximation, we can use the Lagran-
gian L1 to obtain the following field equation

@2'
@x0@x0 � @2'

@x1@x1 � @2'
@x2@x2 � @2'

@x3@x3 = 0 ; (14)

which presents the wave equation. The stationary field that
depends only on the radius

r =
p

(x1)2 + (x2)2 + (x3)2 ; (15)

will satisfy the equation

d
dr

�
r2 d'
dr

�
= 0 ; (16)

the integration of which gives

d'
dr

= �C1
1
r2 ) '(r) = C0 + C1

1
r
: (17)

In the second order approximation one should use the La-
grangian

�
L1 � 1

4 L2
1
�

to obtain the field equation in the sec-
ond order approximation

�
g ij @

@xi

��
�1� 1

2
L1

�
@'
@xj

�
= 0 ; (18)

this equation is already non-linear.
The strict field equation for the tensor hij(x) (11) is

�
g ij @

@xi

0B@ @'
@xjp
1� L1

1CA = 0 ; (19)

then the stationary field depending only on the radius must
satisfy the equation

d
dr

0BBBB@r2

d'
drs

1�
�
d'
dr

�2
1CCCCA = 0 : (20)

Integrating it, we get

d'
dr

= � C1p
r4 � C2

1
)

) '(r) = C0 +
1Z
r

C1p
r4 � C2

1
dr : (21)

The field with the upper sign and the field with the lower
sign differ qualitatively: the upper sign “+” in Eq. (11) gives
a finite field with no singularity in the whole space, the lower
sign “�” in Eq. (11) gives a field defined everywhere but for
the spherical region

0 6 r 6
pjC1j ; (22)

in which there is no field, while

r >
pjC1j ; r ! pjC1j ) d'

dr
! �C1 � 1 : (23)

At the same time in the infinity (r ! 1) both solutions
'�(r) behave as the solution of the wave equation Eq. (17).

If we know the Lagrangian, we can write the energy-
momentum tensor T ij for the these solutions and calculate
the energy of the system derived by the light speed c :

P0 = const
Z (3)

T 0
0 dV : (24)

To obtain the stationary spherically symmetric solutions,
we get

T 0
0 = � r2p

r4 � C2
1
; (25)

that is why for both upper and lower signs P0 !1.
The metric tensor of Eq. (3,11) is the simplest way to “in-

sert” the gravity field into the Minkowski space — the initial
flat space containing no fields. Adding several such terms as
in Eq. (11) to the metric tensor, we can describe more and
more complicated fields by tensor hij = h(grav)

ij :

4 Covariant vector field

To construct the twice covariant symmetric tensor hij(x)
with the help of a covariant field Ai(x) not using the con-
nection objects, pay attention to the fact that the alternated
partial derivative of a tensor is a tensor too

Fij =
@Aj
@xi
� @Ai
@xj

; (26)

but a skew-symmetric one. Let us construct the symmetric
tensor on the base of tensor Fij . To do this, first, form a
scalar

LA =
�
g ij

�
gkmFikFjm =

= 2
�
g ij

�
gkm

�
@Ak
@xi

@Am
@xj

� @Ak
@xi

@Aj
@xm

�
;

(27)
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which gives the following expressions for two symmetric
tensors

h(1)
ij =

�
gkm

�
2
@Ak
@xi

@Am
@xj
�@Ak
@xi

@Aj
@xm

�@Ak
@xj

@Ai
@xm

�
; (28)

h(2)
ij =

�
gkm

�
2
@Ai
@xk

@Aj
@xm

�@Ai
@xk

@Am
@xj
�@Aj
@xk

@Am
@xi

�
: (29)

Notice, that not only Fij and LA but also the tensors
h(1)
ij , h(2)

ij are gradient invariant, that is they don’t change
with transformations

Ai ! Ai +
@f(x)
@xi

; (30)

where f(x) is an arbitrary scalar function.
Let

hij � h(Ak)
ij = �(x)h(1)

ij + [1� �(x)] h(2)
ij ; (31)

where �(x) is some scalar function. Then in the first order
approximation we get

L1 = 2
�
g ij

�
gkm

�
Ak
@xi

@Aj
@xm

�
� LA ; (32)

and the first order approximation for the field Ai(x) gives
Maxwell equations

�
g ij @2

@xi@xj
Ak � @

@xk

��
g ij @Aj

@xi

�
= 0 : (33)

For Lorentz gauge

�
g ij @Aj

@xi
= 0 ; (34)

the equations Eqs. (33) take the form

�Ak = 0 : (35)

It is possible that Eq. (31) is not the most general form
for tensor hij which in the first order approximation gives
the field equations coinciding with Maxwell equations.

To obtain Maxwell equations not for the free field but
for the field with sources ji(x); one should add to h(Ak)

ij
Eq. (31) the following tensor

h(jk)
ij =

�
16�
c

�
� 1

2
(Aijj + Ajji) : (36)

This means that the metric tensor Eq. (3) with tensor

hij = h(Max)
ij � h(Ak)

ij + h(jk)
ij (37)

describes the weak electromagnetic field with source jk(x):
We must bear in mind that we use the geometrical approach
to the field theory, and we have to consider jk(x) to be given
and not obtained from the field equations.

So, the metric tensor Eq. (3) with tensor

hij = �h(Ak)
ij + h(grav)

ij ; (38)

where �;  are the fundamental constants in frames of the
unique pseudo-Riemannian geometry describes simultane-
ously the free electromagnetic field and the free gravitational
field. To include the sources, jk(x); of the electromagnetic
field, the metric tensor must either include not only jk(x) but
the partial derivatives of this field too or the field jk(x) must
be expressed by the other fields as shown below.

If the gravity field is “inserted” in the simplest way as
shown in the previous section, then the sources of the electro-
magnetic field can be expressed by the scalar field as
follows

ji(x) = q
@'
@xi

: (39)

In this case the first order approximation for Lorentz
gauge gives

�Ak =
4�
c
jk ; (40)

�' = 0 : (41)

Since the density of the current has the form of Eq. (39),
the Eq. (41) gives the continuity equation

�
g ij @ji

@xj
= 0 : (42)

5 Several weak fields

The transition from the weak fields to the strong fields may
lead to the transition from the linear equations for the inde-
pendent fields to the non-linear field equations for the mutu-
ally dependent interacting fields '(x) and  (x) “including”
gravity field in the Minkowski space.

Let

hij = "'
@'
@xi

@'
@xj

+ " 
@ 
@xi

@ 
@xj

; (43)

where "', " are independent sign coefficients. Then the
strict Lagrangian can be written as follows

L'; =
q

1 + L1 + L2 ; (44)

and

L1 =
�
g ij
�
"'
@'
@xi

@'
@xj

+ " 
@ 
@xi

@ 
@xj

�
; (45)

where
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L2 = "' " 

"
�
�
@'
@x0

@ 
@x1 � @'

@x1
@ 
@x0

�2
�

�
�
@'
@x0

@ 
@x2 � @'

@x2
@ 
@x0

�2
�

�
�
@'
@x0

@ 
@x3 � @'

@x3
@ 
@x0

�2
+

+
�
@'
@x1

@ 
@x2 � @'

@x2
@ 
@x1

�2
+

+
�
@'
@x1

@ 
@x3 � @'

@x3
@ 
@x1

�2
+

+
�
@'
@x2

@ 
@x3 � @'

@x3
@ 
@x2

�2#

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;

: (46)

This formula, Eq. (46), can be obtained from Eq. (9) most
easily, if one uses the following simplifying formula

���� hii� hi�j�
hi�j� hjj�

���� = �
��������
@'
@xi

@ 
@xi�

@'
@xj�

@ 
@xj

��������
2

=

= �
�
@'
@xi

@ 
@xj
� @'
@xj

@ 
@xi

�2
:

In the first order approximation for the Lagrangian, the
expression L1 should be used. Then the field equations give
the system of two independent wave equations

@2'
@x0@x0 � @2'

@x1@x1 � @2'
@x2@x2 � @2'

@x3@x3 = 0

@2 
@x0@x0 � @2 

@x1@x1 � @2 
@x2@x2 � @2 

@x3@x3 = 0

9>>>=>>>; :

Here the fields '(x) and  (x) are independent and the
superposition principle is fulfilled.

Using the strict Lagrangian for the two scalar fields
Eq. (44) we get a system of two non-linear differential equa-
tions of the second order

�
g ij @

@xi

24';j �1� �g rs ;r  ;s
��  ;j �g rs';r  ;sp

1 + L1 + L2

35 = 0 ;

�
g ij @

@xi

24 ;j �1+
�
g rs';r ';s

�� ';j �g rs';r  ;sp
1 + L1 + L2

35 = 0 ;

where comma means the partial derivative. Here the fields
'(x),  (x) depend on each other, and the superposition prin-
ciple is not fulfilled. The transition from the last but one equa-
tions to the last equations may be regarded as the transition
from the weak fields to the strong fields.

6 Non-degenerate polynumbers

Consider a certain system of the non-degenerate polynum-
bers Pn [5], that is n-dimensional associative commutative
non-degenerated hyper complex numbers. The correspond-
ing coordinate space x1; x2; : : : ; xn is a Finsler metric flat
space with the length element equal to

ds =
n
q�
gi1i2:::in dxi1dxi2 : : : dxin ; (47)

where
�
gi1i2:::in is the metric tensor which does not depend

on the point of the space. The Finsler spaces of this kind can
be found in literature (e.g. [6–9]) but the fact that all the non-
degenerated polynumber spaces belong to this type of Finsler
spaces was established beginning from the papers [10, 11]
and the subsequent papers of the same authors, especially in
[5].

The components of the generalized momentum in geom-
etry corresponding to Eq. (47) can be found by the formulas

pi =
�
gij2:::jn dxj2 : : : dxjn��

gi1i2:::in dx
i1dxi2 : : : dxin

�n�1
n
: (48)

The tangent equation of the indicatrix in the space of the
non-degenerated polynumbers Pn can be always written [5]
as follows

�
g i1i2:::inpi1pi2 : : : pin � �n = 0 ; (49)

where � is a constant. There always can be found such a
basis (and even several such bases) and such a � > 0 that��

g i1i2:::in
�

=
��
g i1i2:::in

�
: (50)

Let us pass to a new Finsler geometry on the base of the
space of non-degenerated polynumbers Pn. This new geom-
etry is not flat, but its difference from the initial geometry is
infinitely small, and the length element in this new geome-
try is

ds = n

rh�
gi1i2:::in + "hi1i2:::in(x)

i
dxi1dxi2 : : : dxin ; (51)

where " is an infinitely small value. If in the initial space the
volume element was defined by the formula

dV = dxi1dxi2 : : : dxin ; (52)

in the new space within the accuracy of " in the first power
we have

dVh '
h
1 + " � C0

�
g i1i2:::inhi1i2:::in(x)

i
dxi1dxi2 : : : dxin :

That is according to [1], the Lagrangian of the weak field
in the space with the length element Eq. (51) in the first order
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approximation is

L1 =
�
g i1i2:::inhi1i2:::in(x) : (53)

This expression generalizes formula Eq. (7).

7 Hyper complex space H4

In the physical (“orthonormal” [5]) basis in which every
point of the space is characterized by the four real coordinates
x0; x1, x2; x3 the fourth power of the length element dsH4

is defined by the formula

(dsH4)4 � �gijkl dx0dx1dx2dx3 =

= (dx0 + dx1 + dx2 + dx3)(dx0 + dx1 � dx2 � dx3)�
� (dx0 � dx1 + dx2 � dx3)(dx0 � dx1 � dx2 + dx3) =

= (dx0)4+(dx1)4+(dx2)4+(dx3)4+8dx0dx1dx2dx3 �
� 2(dx0)2(dx1)2 � 2(dx0)2(dx2)2 � 2(dx0)2(dx3)2 �
� 2(dx1)2(dx2)2 � 2(dx1)2(dx3)2 � 2(dx2)2(dx3)2: (54)

Let us compare the fourth power of the length element
dsH4 in the space of polynumbers H4 with the fourth power
of the length element dsMin in the Minkowski space

(dsMin)4 = (dx0)4+(dx1)4+(dx2)4+(dx3)4�
� 2(dx0)2(dx1)2�2(dx0)2(dx2)2�2(dx0)2(dx3)2�
+ 2(dx1)2(dx2)2+2(dx1)2(dx3)2+2(dx2)2(dx3)2:

(55)

This means

(dsH4)4 = (dsMin)4 + 8dx0dx1dx2dx3�
� 4(dx1)2(dx2)2�4(dx1)2(dx3)2�4(dx2)2(dx3)2;

(56)

and in the covariant notation we have

(dsH4)4 =
��
gij
�
gkl +

1
3
�
g 0ijkl� �

Gijkl
�
�

� dxidxjdxkdxl ;
(57)

where

�
g 0ijkl =

�
1 ; if i; j; k; l are all different
0 ; else (58)

�
Gijkl =

8>><>>:
1 ; if i; j; k; l , 0 and i = j , k = l;

or i = k , j = l;
or i = l , j = k

0 ; else

(59)

The tangent equation of the indicatrix in the H4 space
can be written in the physical basis as in [5] :

(p0 + p1 + p2 + p3)(p0 + p1 � p2 � p3)�
� (p0� p1 + p2� p3)(p0� p1� p2 + p3)� 1 = 0 ;

(60)

where pi are the generalized momenta

pi =
@ dsH4

@(dxi)
: (61)

Comparing formula Eq. (60) with formula Eq. (61), we
have �

g ijkl pipjpkpl � 1 = 0 : (62)

Here

�
g ijkl =

�
g ij

�
g kl +

1
3
�
g 0 ijkl � �

G ijkl ; (63)

and ��
g ijkl

�
=
��
gijkl

�
��
g 0 ijkl

�
=
��
g 0ijkl

�
� �
G ijkl

�
=
� �
Gijkl

�
9>>>>>=>>>>>; : (64)

To get the Lagrangian for the weak field in the first order
approximation, we have to get tensor hijkl in Eq. (53). In the
simplified version it could be splitted into two additive parts:
gravitational part and electromagnetic part. The gravitational
part can be constructed analogously to Sections 3 and 5 with
regard to the possibility to use the two-index number tensors,

since now tensors
�
g ijkl; hijkl have four indices. The con-

struction of the electromagnetic part should be regarded in
more detail.

Since we would like to preserve the gradient invariance
of the Lagrangian and to get Maxwell equations for the free
field in the H4 space, let us write the electromagnetic part of
tensor hijkl in the following way

hAkijkl = �(x)h(1)
ijkl + [1� �(x)] h(2)

ijkl ; (65)

where the tensors h(1)
ijkl; h

(2)
ijkl are the tensors present in the

round brackets in the r.h.s. of formulas Eqs. (28,29). Then

LA =
�
g ijklhAkijkl �

� �g ij �gkm
�
@Ak
@xi

@Am
@xj

� @Ak
@xi

@Aj
@xm

�
:

(66)

To obtain Maxwell equations not for the free field but for
the field with a source ji(x); one should add to the tensor
h(Ak)
ijkl Eq. (65) the following tensor

h(jk)
ijkl =

�
8

3�

��
2Aijj

�
gkl �Ai �gjk jl � ji �gjk Al ;

�
;

symmetrized in all indices, that is tensor

hijkl = hMax
ijkl � h(Ak)

ijkl + h(jk)
(ijkl)
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describes the weak electromagnetic field with the sources
ji(x), where

ji =
X
b

q(a)
@ (b)

@xi
; (67)

and  (b) are the scalar components of the gravitational field.
To obtain the unified theory for the gravitational and elec-

tromagnetic fields one should take the linear combination of
tensor h(Max)

ijkl corresponding to the electromagnetic field in
the first order approximation, and tensor h(grav)

ijkl correspond-
ing to the gravitational field in the first order approximation

hijkl = �h(Max)
ijkl + h(grav)

ijkl ; (68)

where �;  are constants. Tensor h(grav)
ijkl may be, for exam-

ple, constructed in the following way

hgravijkl =
NX
a=1

"(a)
@'(a)

@xi
@'(a)

@xj
@'(a)

@xk
@'(a)

@xl
+

+
MX
b=1

�(b)
@ (b)

@x(i

@ (b)

@xj
�
gkl) ;

(69)

where "(a); �(b) are the sign coefficients, and '(a);  (b) are
the scalar fields. The whole number of scalar fields is equal
to (N +M) .

8 Conclusion

In this paper it was shown that the geometrical approach [1]
to the field theory in which there usually appear the non-linear
and non-splitting field equations could give a system of inde-
pendent linear equations for the weak fields in the first order
approximation. When the fields become stronger the super-
position principle (linearity) breaks, the equations become
non-linear and the fields start to interact with each other. We
may think that these changes of the equations that take place
when we pass from the weak fields to the strong fields are due
to the two mechanisms: first is the qualitative change of the
field equations for the free fields in the first order approxima-
tion; second is the appearance of the additional field sources,
that is the generation of the field by the other fields.

In frames of the geometrical approach to the field theory
[1] the unification of the electromagnetic and gravitational
fields is performed both for the four-dimensional pseudo-Rie-
mannian space with metric tensor gij(x) and for the four-
dimensional curved Berwald-Moor space with metric tensor
gijkl(x):
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Instant Interpretation of Quantum Mechanics
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E-mail: hoang.huy.khanh@gmail.com

We suggest a new interpretation of Quantum Mechanics, in which the system state
vectors are identified with q-instants — new elements of reality that are similar to time
instants but can be overlapped with each other. We show that this new interpretation
provides a simple and objective solution to the measurement problem, while preserving
the general validity of the Schrodinger equation as well as the superposition principle
in Quantum Mechanics.

1 Introduction

In spite of the extraordinary practical successes of Quantum
Mechanics, the foundations of the theory contain unresolved
problems, of which the most commonly cited is the measure-
ment problem. In standard Quantum Mechanics, the quantum
state evolves according to the Schrodinger equation into a lin-
ear superposition of different states, but the actual measure-
ments always find the physical system in a single state, with
some probability given by Quantum Mechanics. To bridge
this gap between theory and observed reality, different in-
terpretations of Quantum Mechanics have been suggested,
ranging from the conventional Copenhagen interpretation to
Hidden-variables and Many-worlds interpretations.

The Copenhagen interpretation of Quantum Mechanics
proposed a process of collapse which is responsible for the
reduction of the superposition into a single state. This pos-
tulate of wavefunction collapse was widely regarded as arti-
ficial, ad-hoc and does not represent a satisfactory solution
to the measurement problem. Hidden-variable theories are
proposed as alternative interpretations in which the behavior
of measurement could be understood by the assumptions on
the existence of inaccessible local variables with definite val-
ues which determine the measurement outcome. However,
Bell’s celebrated inequality [1], and the more recent GHZ ar-
gument [2], show that a Hidden-variable theory which is con-
sistent with Quantum Mechanics would have to be non-local
and therefore contradictory to Relativity. The best known
of such theory is Bohmian mechanics [3, 4], to which many
physicists feel that it looks contrived. It was deliberately de-
signed to give predictions which are in all details identical to
conventional Quantum Mechanics.

In Everett’s Relative State formulation [5], also known as
the Many-worlds interpretation [6], one insists on the general
validity of the superposition principle. The final state after the
measurement is considered to be the full superposition state,
and the measurement process is interpreted as the splitting of
the system+apparatus into various branches (these are often
called Everett branches) only one of which we observe. All
measurement outcomes in the superposition thus coexist as
separate real world outcomes. This means that, in some sense,

there is a very large, perhaps infinite, number of universes.
Most physicists find this extremely unattractive. Moreover, in
this interpretation it is not clear how to recover the empirical
quantum mechanical probabilities.

In this paper we suggest a new interpretation of Quan-
tum Mechanics, called Instant interpretation, which can give
a simple, objective solution to the measurement problem and
does not have the difficulties mentioned above. It assumes,
as in the Everett interpretations, the general validity of the
Schrodinger equation as well as the superposition principle of
Quantum Mechanics. Basically, it consists in the introduction
of the concept of q-instant (or quantum instant), and the inter-
pretation of the system state vectors as the q-instants at which
the quantum system is present or occurred. The q-instant, be-
ing a new concept of instant, is an element of reality that has
the same role as time instants in classical physics: quantum
events take place at different q-instants similarly to that clas-
sical events take place at different time instants. However,
q-instants have new properties, especially the superposition,
that are fundamentally different to time instants. Mathemat-
ically, q-instants are vector-like instants, while time instants
are point-like instants. The difference in behavior of quantum
and classical objects is essentially due to such differences be-
tween q-instants and time instants.

A particularly intriguing consequence of the linear time
evolution of the quantum system in the context of Instant in-
terpretation is that it leads, in quantum observation, to the
apparent collapse phenomenon, or the apparent unique mea-
surement outcome, an illusion that happens to any conscious-
being observer. This is the key point to resolve the measure-
ment problem by the Instant interpretation.

The outline of the article is as follows. We start with a
preliminary introduction of the concept of quantum instant
in Quantum Mechanics. In Section 3, we present the Instant
interpretation and the formalism of Quantum Mechanics in
this interpretation, named as Instant Quantum Mechanics. In
Section 4, we show how the new interpretation can provide a
simple and objective solution to the problem of definite out-
come in quantum measurement theory, i.e. the problem re-
lated to the fact that a particular experiment on a quantum
system always gives a unique result. Finally, in Section 5,
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we give some conclusion remarks on the instant formalism of
Quantum Mechanics and the role of quantum decoherence in
this new interpretation.

2 Preliminary Concept of Quantum Instant

Before introducing the concept of q-instants in Quantum Me-
chanics, we shall describe briefly the basic meaning and prop-
erty of its closed concept — the time instant notion.

From the physical viewpoint, time is part of the funda-
mental structure of the universe, a dimension in which events
occur. A time instant or time point in this dimension is thus
considered as a holder for the presence of events and objects.
Each of the object’s presences is called an occurrence of the
object. A physical object at two different instants is consid-
ered as the same object, and not as two objects. Similarly,
the worlds at different instants in the past, present and future
are different occurrences of a single world, not of multiple
worlds. We consider this as the basic meaning of the instant
notion.

One particular property of time instant is its distinctness:
Different time instants are strictly distinguished in the sense
that when a physical object is being present in a given time
instant, it is not present in other time instants. In other words,
due to this separateness, the object completely leaves one
time instant, before it can occur in another time instant.

The notion of q-instants that we use to interpret the wave
function state in Quantum Mechanics has the same basic mea-
ning as time instants, that is, q-instants are new holders for the
presences of a physical system.

We shall illustrate the introduction of this new concept of
instant in Quantum Mechanics by means of a simple example.
Let  be a state vector such that

 =
1p
2

( 1 +  2) ; (1)

where 1 and 2 are two orthogonal state vectors (correspond
to two eigenstates of some observable F).

What it really means a physical system in such a super-
posed state  ? It seems likely that the system is half in the
state  1 and half in  2, a property of quantum objects that
is usually considered as weird and inexplicable (as it is typi-
cally expressed for the behavior of the particle in the two-slit
experiment).

Using the concept of instants, however, we can explain
the superposition in (1) as describing the occurrences of the
system at two different instants: one associated with the state
vector  1 and other with  2.

Note that we do not intend to add some hidden-time � as-
sociated with the system states by some mapping f(�i) =  i.
Instead of introducing such classical extra hidden-variables
that control the occurrences of the state  i, we identify the
state  i with the instant itself. We then try to know what

are the properties of this new kind of instant, which we call
quantum instant or q-instant.

In fact, by considering the state vectors  ,  1 and  2 in
the superposition (1) as q-instants, we see that the q-instant
concept exhibits intriguing new properties, compared with
conventional time instants: different q-instants can be super-
posed or overlapped, in contrast with the distinctness property
mentioned above of time instants.

In our example, the q-instant  is a superposition of two
q-instants  1 and  2, it overlaps with each of these two q-
instants. On the contrary, the two q-instants  1 and  2 are
orthogonal, they are distinct and do not overlap with each
other as in the case of two different time instants. The over-
lap of two q-instants has the consequence that when an object
is being present in one instant, one of its occurrences can be
found in another instant.

Mathematically, q-instants are vector-like instants, while
time instants are point-like instants. In fact, due to its su-
perposition property, quantum instant has the structure of a
vector and is not represented by a point on the real line R
like a time instant. The inner product of two vectors can then
be used to measure the overlap of the two corresponding q-
instants.

3 Formalism of Quantum Mechanics in Instant Inter-
pretation

In the above section, we have illustrated the introduction of
the notion of q-instant in Quantum Mechanics. For the sake
of simplicity, we have identified the state vector of a physical
object with the q-instant at which the object located. Taking
into account the time dimension, we see that the state vec-
tor of a physical object evolves in time, while the q-instants
are rather something independent with time. Indeed, in the
Instant interpretation, we will consider that, for each physi-
cal system, besides the time dimension, there exists indepen-
dently a continuum of q-instants in which the system takes
its presences. Quantum events take place in time dimension
as well as in the q-instant continuum. The state vector, in the
Instant interpretation, is then considered as the representation
of a q-instant at a time t. So the q-instant itself is independent
with time, but its representation, i.e. the state vector, evolves
in time according to the Schrodinger equation. Note that, in
this sense, the q-instant corresponds to the state vector in the
Heisenberg representation of Quantum Mechanics.

The axioms of Quantum Mechanics in the Instant inter-
pretation are as follows:

A1 Every physical system S is associated to a Hilbert spa-
ce HS and a q-instant continuum QS in which the sys-
tem takes its presences.

A2 Each q-instant Q of the continuum QS is described, at
each time t, by a normalized vector j i of HS . The
time evolution of the q-instant representation, i.e. the
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vector j i representing the instant Q, is governed by
the Schrodinger equation:

i~
@ j (t)i
@t

= H j (t)i : (2)

The operator H is the Hamiltonian of the system S.
A3 LetQ1, Q2 be two q-instants of the continuum QS rep-

resented, at some given time, respectively by two vec-
tors  1,  2 of HS , then jh 1j 2ij2 is the measure of
presence of q-instant Q1 in q-instant Q2.

A4 Each physical observable O of the system S is repre-
sented by a self-adjoined operator in HS . If a q-instant
Q of the system S is described, at some time t, by an
eigenvector jOni of an observable O then the value of
the observable O of the system S at q-instant Q and
time t is on, where on is the corresponding eigen-value
of jOni.

Quantum Mechanics based on these axioms is called In-
stant Quantum Mechanics. In the following, we will give
some remarks about its axioms and the underlying concept q-
instants. In particular, we will show how the notion of prob-
ability can be defined in the context of the Instant interpreta-
tion.

(R1) For each q-instant Q, we denote by Q(t) the vector
j i of HS that describes it at time t. We say that the system
S at time t and q-instantQ is in the state  . Let U be the time
unitary evolution of the system, then:
• at time t0 and q-instant Q, the system is in the state
Q(t0) � j 0i , and

• at time t and q-instant Q, the system is in the state
Q(t) � j i = U(t) j 0i.

Thus, according to Instant Quantum Mechanics, the state
of a physical system is determined by a time instant and a q-
instant. This is in contrast with standard Quantum Mechanics
in which only the time t determines the state  of a physical
system. In standard Quantum Mechanics, one basic axiom
is that the physical system at each time t is described by a
state vector  . This axiom seems evident, and the practical
successes of Quantum Mechanics confirm it. However, as we
shall show in the next sections, this is just apparently true, and
the description of state in Instant Quantum Mechanics is not
in contradiction with practical observations. While in stan-
dard Quantum Mechanics, to fix an initial system setting, we
use the expression “Suppose at time t0, the system S is in the
state  ”, in the Instant interpretation, we can equivalently ex-
press this by “Consider the system S at time t0 and q-instant
Q such that Q(t0) =  ”.

(R2) Similar to the state space, the q-instant continuum
QS has also the structure of a Hilbert vector space. This struc-
ture is defined as follows.

Let, at some given time t, j i, j 1i and j 2i be the state
vectors that describe respectively the q-instants Q, Q1 and
Q2. Then, we define:

• Q = c1Q1 + c2Q2 if j i = c1 j 1i+ c2 j 2i,
• the inner product hQ1jQ2i = h 1j 2i.

Due to the linearity and unitarity of the time evolution of the
q-instants representation, it is easy to see that the above defi-
nitions are consistent, that is, they are time-independent.

Let j i =
Pn
i=1 ci j ii and Q, Qi, 1 6 i 6 n, be q-

instants such that Q(t) = j i, Qi(t) = j ii, then we have
the following facts:

• q-instant Q is a superposition of the q-instants Qi:
Q =

Pn
i=1 ciQi,

• at time t and q-instant Qi, the state of the system is
j ii, for 1 6 i 6 n,

• at time t and q-instant Q, the state of the system is j i.
(R3) Since q-instants are vectors, there is no order rela-

tion between them as in the case of time instants. There is
thus no concept of next q-instant of a q-instant. If the system
is being present at instant Q, it makes no sense to ask what
q-instant it will be present next? Instead, there is a superposi-
tion between the different instants of the q-instant continuum.
Between any two q-instants Q� and Q� there is a weight
w�� = jhQ�jQ�ij2, which is the measure of presence or
overlap of the instant Q� in the instant Q� , defined in the
axiom A3. If Q� and Q� are overlapped, i.e. w�� , 0, then
when the system is present in instant Q�, it is present also in
Q� . If w�� = 0, we say that the two instants Q� and Q� are
orthogonal, that is, when the system is present in one instant,
it is not present in the other instant.

(R4) The notion of current instant, having a straightfor-
ward meaning in the case of time instants, is not directly de-
fined for the case of q-instants. It is not globally defined for
the whole q-instant continuum and it makes no sense to ask
which is the current q-instant of the q-instant continuum ? In
fact, in its usual sense, the current instant means the instant
that the system is being present at and not elsewhere. This
has sense only if the so-called current instant is orthogonal
with all the others, a requirement which is impossible if we
consider the whole q-instant continuum. The notion of cur-
rent q-instant is thus defined only with respect to a context
in which this orthogonality requirement is satisfied. We de-
fine it as follows: A context is a pair (Q;E), where Q is a
q-instant and E = fQig is an orthogonal basis. Suppose that
Q =

P
i ciQi is the expansion of Q in this basis. So when

the system is present at instantQ, it will present also at all in-
stants Qi with ci , 0. But as the instants Qi’s of the basis E
are pairwise orthogonal, there is always only one instant Qi
of E that the system is currently present, this Qi is called the
current q-instant of the context (Q;E). As the system will
present in all the above instants Qi’s, all these instants will
become the current q-instant while the system under consid-
eration is in the context (Q;E). The role of the current in-
stant is thus alternatively played by each of the q-instants of
E. This notion of current q-instant is therefore similar to that
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of current time instant for the time dimension. However, dif-
ferent to the case of time instants, in which all time instants
equally take the role of current instant during the flow of time,
the assignment of this role in the case of q-instants is pro-
portional to the measure of presence of each q-instant Qi in
the context q-instant Q. The measure of presence jhQjQiij2
determines therefore the probability that the q-instant Qi be-
comes the current instant of (Q;E). One can understand the
intuition behind this probability notion by means of the fol-
lowing thought experiment: Imagine a person who lives in
the q-instant dimension E, in which he takes a long sleep and
then wakes up at some q-instant of E. Suppose that before
sleeping the person does not know at which instant he will
wake up. He knows it only when he wakes up and opens his
eyes, at that moment he realizes that he is currently at some
instant Qi. So, before opening his eyes, the person can only
predict with a certain probability which instant Qi he is cur-
rently at. This probability for an instant Qi is the probability
that Qi becomes the current instant, and it is proportional to
the measure of presence of Qi.

4 The measurement process and the apparent collapse
phenomenon

In this section, we recall briefly first the standard description
of the measurement process within traditional Quantum Me-
chanics and the problem arising from it, usually referred as
the measurement problem in the literature. We then show how
our Instant interpretation of Quantum Mechanics can give a
simple and objective solution to this problem.

4.1 Measurements in traditional Quantum Mechanics
— the problem of definite outcome

A standard scheme using pure Quantum Mechanics to de-
scribe the measurement process is the one devised by von
Neumann (1932). In this schema, both the measured system
and the apparatus are considered as quantum objects.

LetHS be the Hilbert space of the measured system S and
fjeiig be the eigenvectors of the operator F representing the
observable to be measured. Let HA be the Hilbert space of
the apparatus A and fjaiig be the basis vectors of HA, where
the jaii’s are assumed to correspond to macroscopically dis-
tinguishable pointer positions that correspond to the outcome
of a measurement if S is in the state jeii. The apparatus A is
in the initial ready state ja0i.

The total system S
A, assumed to be represented by the
Hilbert product space HSA = HS 
 HA, evolves according
to the Schrodinger equation. Let U be the time evolution of
the total system from the initial state to the final state of the
measuring process.

Suppose that the measured system S is initially in one of
the eigenvector state jeii then U(jeii ja0i) = jeii jaii where
j�f i = jeii jaii is the final state of the total system + appara-

tus S 
 A. The outcome jaii of the apparatus A can be pre-
dicted with certainty merely from the unitary dynamics.

Now, consider the case of measurement in which the sys-
tem S is initially prepared not in the eigenstate jeii but in
a superposition of the form

P
i ci jeii. Due to the linearity

of the Schrodinger equation, the final state j�f i of total sys-
tem is:

j�f i = U(
X
i

ci jeii ja0i) =
X
i

ci jeii jaii : (3)

So the final state j�f i describes a state that does not cor-
respond to a definite state of the apparatus. This is in contrast
to what is actually perceived at the end of the measurement:
in actual measurements, the observer always finds the appa-
ratus in a definite pointer state jaii, for some i, but not in a
superposition of these states. The difficulty to understand this
fact is typically referred to as the measurement problem in the
literature.

Von Neumann’s approach (like all other standard presen-
tations of Quantum Mechanics) assumes that after the first
stage of the measurement process, described as above, a sec-
ond non-linear, indeterministic process takes place, the re-
duction (or collapse) of the wave packet, that involves S 

A jumping from the entangled state

P
i ci jeii jaii into the

state jeii jaii for some i. It’s obvious that the wave-packet
reduction postulate, abandoning the general validity of the
Schrodinger equation without specifying any physical con-
ditions under which the linear evolution fails, is ad hoc and
does not consequently represent a satisfactory solution to the
measurement problem.

In the last few decades, some important advances related
to a theoretical understanding of the collapse process have
been made. This new theoretical framework, called quan-
tum decoherence, supersedes previous notions of instanta-
neous collapse and provides an explanation for the absence
of quantum coherence after measurement [7–11]. While this
theory correctly predicts the form and probability distribu-
tion of the final eigenstates, it does not explain the observa-
tion of a unique stable pointer state at the end of a measure-
ment [12, 13].

4.2 Solution from Instant Quantum Mechanics

We will show how the Instant interpretation based on the con-
cept of q-instants allows a simple and objective solution to the
measurement problem. The above description of the mea-
surement process can be reformulated in Instant Quantum
Mechanics as follows:

According to the Instant interpretation, the combined sys-
tem S 
 A takes its presences in a continuum QSA of q-
instants, each of which is represented at each time t by a nor-
malized vector of the Hilbert product spaceHSA = HS
HA.

Following the remark (R1) of Section 3, the initial set-
ting (according to standard Quantum Mechanics) in which
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the combined system S 
 A is in the state

j�0i =
X
i

ci jeii ja0i : (4)

is equivalent to the initial setting (according to the Instant in-
terpretation) in which the combined system S
A under con-
sideration is being present at the q-instantQ of the continuum
QSA such that

Q(t0) = j�0i ; (5)

where j�0i is defined in (4).
For each i, let Qi be the q-instant of S 
 A such that

Qi(t0) = j�ii = jeii ja0i : (6)

The instantsQi’s are, hence, orthogonal one with another.
Following the remark (R2) of Section 3, the instantQ is span-
ned over this set of instants as follows:

Q =
X
i

ciQi : (7)

Following the axiom A3, the jci j2 is the measure of pres-
ence of the system S 
 A in instant Qi as long as the system
is being present in instant Q.

The state vectors, representing the instants Q and Qi’s,
evolve independently in time following the Schrodinger equa-
tion. At the end of the measurement process, we have:

Qi(tf ) = jeii jaii ; (8)

Q(tf ) =
X
i

ci jeii jaii : (9)

From (8), (9) we see that after measurement:

• at time tf and q-instant Q, the state of the combined
system is

P
i ci jeii jaii;

• at time tf and q-instant Qi, the state of the combined
system is jeii jaii, hence the state of the apparatus
is jaii.

Thus, after measurement, the observer sees different out-
comes jaii’s, at different instantsQi’s. So far, the description
still seems to be in contrast to what is actually perceived by
the observer at the end of the measurement, i.e. to the follow-
ing fact:

Fact 1. The observer always sees the apparatus in one defi-
nite state jaii, for some i, after the measurement.

The difficulty to explain Fact 1 is usually referred as the
problem of definite outcome in quantum measurement theory.
However, we will show that Fact 1 is intriguingly not true, it
is an illusion of the observer. More precisely, we will show,
according to the Instant interpretation, the following appar-
ent “collapse” phenomenon (or the phenomenon of apparent
unique measurement outcome):

Fact 2. The observer does see different measurement out-
comes, but it seems to him that there is only one unique mea-
surement outcome and the apparatus is in one definite state
jaii, for some i, after the measurement.

Proof. To prove this fact we will take into account the pres-
ence of the observer in the measurement process by consider-
ing him as a component of the total system. We will see that
the illusion in Fact 2 comes from the property of time evolu-
tion independence of different q-instants in the measurement
process and its impacts on the observer’s recognition of the
world.

To be consistent and objective, we will treat the observer
quantum mechanically, that is, as a quantum object. We can
simply write jOii to denote the state of the observer seeing
the apparatus in position jaii. However, to well understand
the illusion, we need to consider the cognitive aspect of the
observer in a little more detail. A conscious being can ob-
serve the world and use his brain cells to stock information
he perceived. What make he feels that he is seeing an event,
is the result of a process of recognition during which the brain
cells “memorize” the event.

Let C be the set of memory cells that the observer uses in
the recognition of the apparatus state, andCi be the content of
C when the observer perceives that the apparatus state is jaii.
This content Ci is considered as the proof that the observer
perceives the apparatus in position jaii.

Suppose that at some instant the content of the cells is Ci
and the observer actually perceives that the apparatus state is
jaii. If the cells contents are later destroyed, not only the
observer will not see the apparatus being in the state jaii,
but as his concerned memory data is lost, he will feel that
he has never seen the apparatus being in the state jaii. If,
alternatively, the cell contents are changed and replaced by
Cj , not only the observer will see that the apparatus is now in
the state jaji, but as his old data is lost, for him the apparatus
have never been in the state jaii.

This is what happens to the observer in the measurement
process according to Instant Quantum Mechanics.

In fact, including the observer in the measurement pro-
cess, the Hilbert space of the total system will be the product
HS 
 HA 
 HO, where HO is the Hilbert space of the ob-
server. We assume that HO is spanned over the basis of state
vectors fjOi; Ciig where the jOi; Cii describes the state of
the observer seeing the apparatus in position jaii and having
his memory cells contents Ci.

Initially, the total system S 
A
O under consideration
is being present at the q-instant Q of the continuum QSAO
such that

Q(t0) = j�0i =
X
i

ci jeii ja0i jO0; C0i : (10)

The total system containing the measured system, the ap-
paratus and the observer with his memory cells evolves in
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time following the Schrodinger equation during the measure-
ment process.

At the end of measurement, at time tf , similar to (8), (9),
we have:

Qi(tf ) = jeii jaii jOi; Cii ; (11)

Q(tf ) =
X

ci jeii jaii jOi; Cii : (12)

So, after the measurement process, similar to the appara-
tus and the observer, the cells C takes its presences in differ-
ent q-instants, and at q-instant Qi, the observer memory cells
content is Ci. Note that, due to the time evolution indepen-
dence of the cells contents in different q-instants, the content
of the cells C in one q-instant is not influenced by its contents
in other q-instants.

We consider the impact of this on the observer behavior.
After measurement, at instant Qi, the cells content is Ci, but
at another instant Qj , the cells content is replaced by Cj . So
at instant Qj , the observer loses all information of his mem-
ory cells at instant Qi. Due to the time evolution indepen-
dence of the cells contents at Qi and Qj , basing on his mem-
ory cells information atQj , the observer has no trace or proof
that he has ever lived in instant Qi. By consequence, at in-
stant Qj , the observer sees the apparatus in position jaji, but
he absolutely forgets that he has ever lived in q-instant Qi
and seen the apparatus in position jaii. In other words, after
each measurement, the observer does see different outcomes
at different q-instants, but he believes that there is only one
outcome, the one that he is currently seeing. �

So we have proved Fact 2 and solve therefore the prob-
lem of definite outcome. How about the probability of an
outcome? Objectively, all outcomes are present after the mea-
surement, so the probability of an outcome jaii here must be
understood as the probability that an outcome jaii becomes
the one that is currently perceived (and illusorily considered
as unique) by the observer. In other words, the probability
of an outcome jaii is the probability that the correspond-
ing instant Qi is the current q-instant in which the observer
presents. As we have remarked in R4 of Section 3, this no-
tion of current q-instant is defined with respect to a context.
In our case, corresponding to the setting of the measurement
process, this context is (Q;E), whereQ is the q-instant under
consideration of the total system at time t0, and E = fQig
is the set of orthogonal instants Qi in which the measured
observable F has a definite value. So from R4 of Section 3,
we see that the probability of the outcome jaii is the measure
of presence of the instant Qi in instant Q which, from (7), is
equal to jci j2.

5 Concluding remarks

1. We note that the phenomenon of apparent unique outcome
in the measurement process (Fact 2 of Section 4.2) illustrates

also a remark about the definition of state in the Instant inter-
pretation in R1 of Section 3: the state of a physical system is
dependent not only on time but also on q-instant. In fact, as
we have seen in Section 4.2, the state of the total system at the
end of measurement is dependent on the q-instants at which
the system presents. But, as demonstrated there, the observer
is unconscious about this, for him the state of a quantum ob-
ject is always unique at any time instant. The description of
state in the Instant interpretation is thus not in contradiction
with practical observations.

2. In the Instant interpretation, we consider that, like
microscopic objects, a macroscopic object, e.g. an appara-
tus, also takes its presences in a q-instant continuum which
supports the superposition principle. If Q1 and Q2 are two
q-instants in which the object can present, then it can also
present in a q-instant which is a superposition of Q1 and Q2.
The question is why can we observe a macroscopic object
such as an apparatus in q-instants in which its pointer posi-
tion is either up or down, but never in a q-instant in which its
pointer is in a superposition of these positions.

This is the problem of classicality of macroscopic objects,
to which decoherence theory, in particular the environment-
induced decoherence, can provide an explanation. In fact,
recent development in this domain [7–9,11,14–16] has shown
that there exists, for macroscopic objects, certain preferred
sets of states, often referred to as pointer states that are robust.
These states are determined by the form of the interaction
between the system and its environment and are suggested to
correspond to the classical states of our experience. Thus, for
a macroscopic object, one can not observe all of its Hilbert
state vector space but only a small subset of it. In the context
of Instant interpretation, this means that, while a macroscopic
object can present in all q-instants of the continuum, we can
observe it only in q-instants that are described by these robust
classical states.

In summary, with respect to the measurement problem in
Quantum Mechanics, decoherence theory can provide an ex-
planation to the classicality appearance of the measurement
outcomes, while the Instant interpretation allows to explain
the observation of an unique outcome at the end of a mea-
surement.
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The problem of thermoelasticity, based on the theory of Lord and Shulman with one
relaxation time, is used to solve a boundary value problem of one dimensional semi-
infinite medium heated by a laser beam having a temporal Dirac distribution. The sur-
face of the medium is taken as traction free. The general solution is obtained using the
Laplace transformation. Small time approximation analysis for the stresses, displace-
ment and temperature are performed. The convolution theorem is applied to get the
response of the system on temporally Gaussian distributed laser radiation. Results are
presented graphically. Concluding that the small time approximation has not affected
the finite velocity of the heat conductivity.

1 Introduction

The classical theory (uncoupled) of thermoelasticity based on
the conventional heat conduction equation. The conventional
heat conduction theory assumes that the thermal disturbances
propagate at infinite speeds. This prediction may be suitable
for most engineering applications but it is a physically unac-
ceptable situation, especially at a very low temperature near
absolute zero or for extremely short-time responses.

Biot [1] formulated the theory of coupled thermoelastic-
ity to eliminate the shortcoming of the classical uncoupled
theory. In this theory, the equation of motion is a hyperbolic
partial differential equation while the equation of energy is
parabolic. Thermal disturbances of a hyperbolic nature have
been derived using various approaches. Most of these ap-
proaches are based on the general notion of relaxing the heat
flux in the classical Fourier heat conduction equation, thereby,
introducing a non Fourier effect.

The first theory, known as theory of generalized thermoe-
lasticity with one relaxation time, was introduced by Lord and
Shulman [2] for the special case of an isotropic body. The ex-
tension of this theory to include the case of anisotropic body
was developed by Dhaliwal and Sherief [4].

In view of the experimental evidence available in favor of
finiteness of heat propagation speed, generalized thermoelas-
ticity theories are supposed to be more realistic than the con-
ventional theory in dealing with practical problems involving
very large heat fluxes and/or short time intervals, like those
occurring in laser units and energy channels.

The purpose of the present work is to study the thermoe-
lastic interaction caused by heating a homogeneous and iso-
tropic thermoelastic semi-infinite body induced by a Dirac
pulse having a homogeneous infinite cross-section by em-
ploying the theory of thermo-elasticity with one relaxation
time. The problem is solved by using the Laplace transform
technique. Approximate small time analytical solutions to

stress, displacement and temperature are obtained. The con-
volution theorem is applied to get the spatial and temporal
temperature distribution induced by laser radiation having a
temporal Gaussian distribution. At the end of this work we
present the computed results obtained from the theoretical re-
lations applied on a Cu target.

2 Formulation of the problem

We consider a thermoelastic, homogeneous, isotropic semi-
infinite target occupying the region z > 0, and initially at
uniform temperature T0. The surface of the target z = 0
is heated homogeneously by a leaser beam and assumed to
be traction free. The Cartesian coordinates (x; y; z) are con-
sidered in the solution and z-axis pointing vertically into the
medium. The equation of motion in the absence of the body
forces has the form

�ji;j = � �ui ; (1)

where �ij is the components of stress tensor, ui is the com-
ponents of displacement vector and � is the mass density.
Due to the Lord and Shalman theory of coupled thermoelas-
ticity [2] (L-S) who considered a wave-type heat equation by
postulating a new law of heat conduction equation to replace
the Fourier’s law

�cE
�
@T
@t

+ t0
@2T
@t2

�
+

+  T0 div
�
@u
@t

+ t0
@2u
@t2

�
= kr2T ;

(2)

where T0 is a uniform reference temperature, =(3�+2�)�t,
�, and � are Lame’s constants. �t is the linear thermal expan-
sion coefficient, cE is the specific heat at constant strain and
k is the thermal conductivity. The boundary conditions:

�zz = 0; z = 0 ; (3)
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� k dT
dz

= A0 q0 �(t) ; z = 0 ; (4)

whereA0 is an absorption coefficient of the material, q0 is the
intensity of the laser beam and �(t) is the Dirac delta function
[5]. The initial conditions:

T (z; 0) = T0

@T
@t

=
@2T
@t2

=
@w
@t

=
@2w
@t2

= 0 ; at t = 0 ; 8 z

9>=>; : (5)

Due to the symmetry of the problem and the external ap-
plied thermal field, the displacement vector u has the compo-
nents:

ux = 0 ; uy = 0 ; uz = w(z; t) : (6)

From equation (6) the strain components eij , and the re-
lation of the strain components to the displacement read;

exx = eyy = exy = exz = eyz = 0

ezz =
@w
@z

eij =
1
2

(ui;j + uj;i)

9>>>>>=>>>>>; : (7)

The volume dilation e takes the form

e = exx + eyy + ezz =
@w
@z

: (8)

The stress components are given by:

�xx = �e� (T � T0)

�yy = �e� (T � T0)

�zz = 2�
@w
@z

+ �e� (T � T0)

9>>>>=>>>>; ; (9)

where
�xy = 0
�xz = 0
�yz = 0

9>=>; : (10)

The equation of motion (1) will be reduces to

�zz;z + �xz;x + �yz;y = � �uz : (11)

Substituting from (9) and (10) into the last equation and
using � = T � T0 we get,

(2�+ �)
@2w
@z2 �  @�@z = �

@2w
@t2

; (12)

where � is the temperature change above a reference temper-
ature T0. Differentiating (12) with respect to z and using (8),
we obtain

(2�+ �)
@2e
@z2 �  @

2�
@z2 = �

@2e
@t2

: (13)

The energy equation can be written in the form:�
@
@t

+ t0
@2

@t2

�
(�cE � + T0 e) = kr2 T

r2 � @2

@z2

9>>=>>; : (14)

For convenience, the following non-dimensional quanti-
ties are introduced

z� = c1�z ; w� = c1�w ; t� = c21� t

t�0 = c21� t0 ; ��ij =
�ij
�
; �� =

T � T0

T0

� =
�cE
k

; c21 = ��ij =
�+ 2�
�

9>>>>>=>>>>>; : (15)

Substituting from (15) into (12) we get after dropping the
asterisks and adopting straight forward manipulation

r2e� g1r2� =
@2e
@t2

r2� =
�
@
@t

+ t0
@2e
@t2

�
(� + g2e)

9>>=>>; ; (16)

where g1 = T0
(2�+�) and g2 = 

�cE .
Substituting from (15) into (9) we get,

�xx = �yy = �e� �1�

�zz = �e� �1�

)
; (17)

where � = (2�+�)
� , � = �

� and �1 = T0
� . We now intro-

duce the Laplace transform defined by the formula:

�f(z; s) =
Z 1

0
e�stf(z; t)dt : (18)

Applying (18) to both sides of equation (16) we get,

(r2 � s2) �e� g1r2 �� = 0 ; (19)

(r2 � s(1 + t0s)) �� � s(1 + t0s) g2 �e = 0 : (20)

Eliminating �� and �e between equation (19) and (20) we
get the following fourth-order differential equations satisfied
by �e and ��; respectively

(r4 � Ar2 + C) �e = 0 ; (21)

(r4 � Ar2 + C) �� = 0 ; (22)

withA= s2 +s(1+t0s)(1+g1g2) and C = s3(1+t0s). One
can solve these fourth order ordinary differential equations by
using e�kz and finding the roots of the inditial equation

k4 � Ak2 + C = 0 ; (23)
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suppose that ki (i = 1; 2) are the positive roots, then the so-
lution of (23) for z > 0 and ki > 0 are; respectively

�e(z; s) =
2X
i=1

Ai e�kiz (24)

and

��(z; s) =
2X
i=1

A
0
i e
�kiz ; (25)

where Ai = Ai(s) and A
0
i = A

0
i(s) are some parameters

depending only on s and ki are functions of s. Substituting
by (24) and (25) into (20) we get the relation,

A
0
i =

s(1 + t0s)g2

k2
i � s(1 + t0s)

Ai ; (26)

while Laplace transform of Equation (8) and integration w.r.t.
z we obtain

�w(z; s) = �
2X
i=1

Ai
ki
e�kiz : (27)

Substituting from Equation (24) and Equation (26) into
(17) we get the stresses,

�xx = �yy =
2X
i=1

Aie�kiz �

� �(k2
i � s(1 + t0s))� s(1 + t0s)�1g2

k2
i � s(1 + t0s)

:

(28)

�zz =
2X
i=1

Aie�kiz �

� �(k2
i � s(1 + t0s))� s(1 + t0s)�1g2

k2
i � s(1 + t0s)

:

(29)

Therefore it is easy to determine Ai and A
0
i for i = 1; 2

A1 =
�A0q0(k2

1 � s(1 + t0s))B1(s)
g2s(1 + t0s)[�k1B2(s) + k2B3(s)]

; (30)

A2 =
A0q0(k2

2 � s(1 + t0s))B1(s)
g2s(1 + t0s)[�k1B2(s) + k2B3(s)]

; (31)

A
0
1 =

�A0q0B1(s)
[�k1B2(s) + k2B3(s)]

; (32)

A
0
2 =

A0q0B1(s)
[�k1B2(s) + k2B3(s)]

; (33)

where B1(s) =�(k2
2 � s(1 + t0s))(�+�1g2), B2(s) =

=�k2
2 � s(1 + t0s)(�+�1g2), and also B3(s) =�k2

1 �� s(1 + t0s)(�+�1g2).

3 Small time approximation

We now determine inverse transforms for the case of small
values of time (large values of s). This method was used by

Hetnarski [6] to obtain the fundamental solution for the cou-
pled thermelasticity problem and by Sherief [7] to obtain the
fundamental solution for generalized thermoelasticity with
two relaxation times for point source of heat. k1 and k2 are
the positive roots of the characteristic equation (23), given by

k1 =
�
s
2

h
s+ (1 + t0s)(1 + �) +

+
p
s2+2s(��1)(1+t0s)+(1+t0s)2(1+�)2

i�1
2

;
(34)

k2 =
�
s
2

h
s+ (1 + t0s)(1 + �) +

�ps2+2s(��1)(1+t0s)+(1+t0s)2(1+�)2
i�1

2

;
(35)

where �= g1g2 = �2
t (3�+ 2�)2T0
�cE(2�+�) . Setting v= 1

s , equations
(34) and (35) can be expressed in the following from

ki = v�1 [fi(v)]
1
2 ; i = 1; 2 ; (36)

where

f1(v) =
1
2

h
1 + (v + t0)(1 + �) +

+
p

1 + 2(�� 1)(v + t0) + (v + t0)2(1 + �)2
i
;

(37)

f2(v) =
1
2

h
1 + (v + t0)(1 + �)�

�p1 + 2(�� 1)(v + t0) + (v + t0)2(1 + �)2
i
:

(38)

Expanding f1(v) and f2(v) in the Maclaurin series
around v = 0 and consider only the first four terms, can be
written fi(v) (i = 1; 2) as

fi(v) = ai0 + ai1v + ai2v2 + ai3v3; i = 1; 2 ; (39)

where the coefficients of the first four terms are given by

a10 =
1+(1+�) t0+

p
1+2(��1) t0+(1+�)2 t20

2

a20 =
1+(1+�) t0�p1+2(��1) t0+(1+�)2 t20

2

a11 =
1
2

"
(1+�)� (��1) t0+(1+�)2 t0p

1+2(��1)t0+(1+�)2 t20

#
a21 =

1
2

"
(1+�)+

(��1) t0+(1+�)2 t0p
1+2(��1) t0+(1+�)2 t20

#
a12 =

�
[1+2(��1) t0+(1+�)2 t20] 3

2

a22 =� �
[1+2(��1) t0+(1+�)2 t20] 3

2

a13 =
��(�1+�+(1+�)2 t0)

[1+2(��1)t0+(1+�)2 t20] 3
2

a23 =
�(�1+�+(1+�)2 t0)

[1+2(��1)t0+(1+�)2 t20] 3
2

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: (40)
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Next, we expand [fi(v)]
1
2 in the Maclaurin series around

v = 0 and retaining the first three terms, we obtain finally the
expressions for k1 and k2 which can be written in the form

ki = v�1 �bi0 + bi1v + bi2v2� ; i = 1; 2 ; (41)

where
bi0 =

p
ai0 ;

bi1 =
ai1

2
p
ai0

;

and

bi2 =
1

8a
3
2
i0(9ai2ai0 � a2

i0)
:

Consider ki to be written as

ki = bi0s+ bi1; i = 1; 2 : (42)

Applying Maclaurin series expansion around v = 0 of the
following expressions;

1
ki
Ai ;

s(1 + t0s)g2

k2
i � s(1 + t0s)

Ai ;�
�(k2

i � s(1 + t0s))� s(1 + t0s)�1g2

k2
i � s(1 + t0s)

�
Ai ;�

�(k2
i � s(1 + t0s))� s(1 + t0s)�1g2

k2
i � s(1 + t0s)

�
Ai ;

i = 1; 2 :

We find that ��, �w, ��xx, ��yy , and ��zz can be written in the
following form

�� =
�c�0
s

+
c�1
s2 +

c�2
s3

�
e�k1z +

+
�c�3
s

+
c�4
s2 +

c�5
s3

�
e�k2z ;

(43)

�w =
�cw0

s2 +
cw1

s3 +
cw2

s4

�
e�k1z +

+
�cw3

s2 +
cw4

s3 +
cw5

s4

�
e�k2z;

(44)

��xx = ��yy =
�c�0

s
+
c�1

s2 +
c�2

s3

�
e�k1z +

+
�c�3

s
+
c�4

s2 +
c�5

s3

�
e�k2z;

(45)

��zz =
�cz0
s

+
cz1
s2 +

cz2
s3

�
e�k1z +

+
�cz3
s

+
cz4
s2 +

cz5
s3

�
e�k2z;

(46)

where

c�0 =
y1

f0
=0:00002466

c�1 =
y2

f0
�f1y1

f2
0

=0:000666

c�2 =
y3

f0
+
f2

1y1

f3
0
�f2y1+f1y2

f2
0

=�0:911471

c�3 =
y�1
f0

=0:705

c�4 =
y�2
f0
�f1y�1

f2
0

=�1:7696

c�5 =
y�3
f0

+
f2

1y�1
f3

0
�f2y�1+f1y�2

f2
0

=50:6493

cw0 =
A1

R0
=�0:0007519

cw1 =�R1A1

R2
0

+
A2

R0
=0:18

cw2 =
R2

1A1

R3
0
�R2A1+R1A1

R2
0

+
A3

R0
=26:90

cw3 =
A�1
R0

=0:000106

cw4 =
�R�1A�1
R�20

+
A�2
R�0

=�0:000493

cw5 =
R�21 A�1
R�30

�R�2A�1+R�1A�1
R�20

+
A�3
R�0

=194:0138

c�0 =
x1

�1
=0:001511

c�1 =
x2

�1
��2x1

�2
1

=�0:03623

c�2 =
x1

�1
��2x2

�2
1
�x1�3

�2
1

=�54:064

c�3 =
x�1
�1

=�0:002985

c�4 =
x�2
�1
��2x�1

�2
1

=0:07314

c�5 =
x�1
�1
��2x�2

�2
1
�x�1�3

�2
1

=53:02

cz0 =
L1

�1
=0:003015

cz1 =
L2

�1
��2L1

�2
1

=�0:0722

cz2 =
L1

�1
��2L2

�2
1
�L1�3

�2
1

=�107:88

cz3 =
L�1
�1

=�0:003

cz4 =
L�2
�1
��2L�1

�2
1

=0:0722

cz5 =
L�1
�1
��2L�2

�2
1
�L�1�3

�2
1

=107:88

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: (47)
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From equation (39), we obtain

e�k1z = e�(b10s+b11)z = e�b11ze�b10sz ;

and
e�k2z = e�(b20s+b21)z = e�b21ze�b20sz:

Applying the inverse Laplace transform for equations
(43, 44, 45, 46) we get �, w, �xx, �yy and �zz in the fol-
lowing form

� = e�b11z �1H(t� b10z) + e�b21z �2H(t� b20z) ; (48)

where

�1 =
h
c�0 + c�1(t� b10z) +

c�2
2

(t� b10z)2
i
;

�2 =
h
c�3 + c�4(t� b20z) +

c�5
2

(t� b20z)2
i
;

and also

w = e�b11zW1H(t� b10z)+e�b21zW2H(t� b20z) ; (49)

where

W1 =
�
cw0(t�b10z)+

cw1(t�b10z)2

2
+
cw2(t�b10z)3

6

�
;

W2 =
�
cw3(t�b20z)+

cw4(t�b20z)2

2
+
cw5(t�b20z)3

6

�
;

and also

�xx = �yy =

= e�b11z �1H(t� b10z) + e�b21z �2H(t� b20z) ;
(50)

where

�1 =
�
c�0 + c�1(t� b10z) + c�2

(t� b10z)2

2

�
;

�2 =
�
c�3 + c�4(t� b20z) + c�5

(t� b20z)2

2

�
;

and also

�zz = e�b11zZ1H(t� b10z) + e�b21zZ2H(t� b20z) ; (51)

where

Z1 =
�
cz0 + cz1(t� b10z) + cz2

(t� b10z)2

2

�
;

Z2 =
�
cz3 + cz4(t� b20z) + cz5

(t� b20z)2

2

�
;

and H(t � bi0z) is Heaviside’s unit step functions. By us-
ing the convolution theorem h(t) =

R t
0 f(� )g(t � � )d� for

(48), (49), (50) and (51) we obtain under the assumption that

f(� ) = e�
(tb��)2

'2 ; which represents the time behavior of the

intensity of the laser radiation, where tb is the time at which
f(� ) has maximum. Here ' is the time at which the intensity
of the laser radiation reduces to 1

e

� = e�b11z
��

c�0+c�1(t�b10z)+c�2
(t�b10z)2

2
+

+ c�2
(t�b10z)2

2
+'2c�2

4

� p
�

2
'erf

� t
'

�
�c�2 t'4 e

� t2

'2 +

+ (c�1+c�2(t�b10z))'
2

2

�
1�e� t2

'2
��

+

+ e�b21z
��

c�3+c�4(t�b10z)+c�5
(t�b10z)2

2
+

+ '2c�5
4

� p
�

2
'erf

� t
'

�
�c�2 t'4 e

� t2

'2 +

+ (c�4+c�5(t�b10z))'
2

2

�
1�e� t2

'2
��
;

(52)

w = e�b11z
��

cw0(t�b10z)+ cw1

2

�
(t�b10z)2+'2

2

�
+

+ cw2

�
(t�b10z)3

6
+'2

4

�� p
�

2
'erf

� t
'

�
�

�
�
cw0+cw1(t�b10z)�'2cw2

12

�
'2�(t2�'2)e�

t2

'2
�

+

+ cw2

2
(t�b10z)2

�
'2

2

�
1�e� t2

'2
�
�

� 1
4

(cw1+cw2(t�b10z))t'2e�
t2

'2

�
+

+ e�b21z
��

cw3(t�b20z)+ cw4

2

�
(t�b10z)2+'2

2

�
+

+ cw5

�
(t�b10z)3

6
+'2

4

�� p
�

2
'erf

� t
'

�
�

�
�
cw3+cw4(t�b10z)�'2cw5

12

�
'2�(t2�'2)e�

t2

'2
�

+

+ cw5

2
(t�b10z)2

�
'2

2

�
1�e� t2

'2
�
�

� 1
4

(cw4+cw5(t�b10z))t'2e�
t2

'2

�
;

(53)

�zz = e�b11z
��

cz0+cz1(t�b10z)+ cz2
2

(t�b10z)2 +

+ '2cz2
4

� p
�

2
'erf

� t
'

�
� cz2

4
t'e�

t2

'2 +

+ (cz1+cz2(t�b10z)
�
'2

2

�
1�e� t2

'2
��

+

+ e�b11z
��

cz3+cz4(t�b10z)+ cz5
2

(t�b10z)2 +

+ '2cz5
4

� p
�

2
'erf

� t
'

�
� cz5

4
t'e�

t2

'2 +

+ (cz4+cz5(t�b10z))'
2

2

�
1�e� t2

'2
��
;

(54)

48 I. A. Abdallah, et. al. Thermoelastic Property of a Semi-Infinite Medium Induced by a Homogeneously Illuminating Laser Radiation



October, 2008 PROGRESS IN PHYSICS Volume 4

�xx = �yy = e�b11z

��
c�0+c�1(t�b10z) +

+ c�2

2
(t�b10z)2+'2c�2

4

� p
�

2
'erf

� t
'

�
� c�2'

4
te�

t2

'2 +

+ (c�1+c�2(t�b10z))'
2

2

�
1�e� t2

'2
��

+

+ e�b21z
��

c�3+c�4(t�b20z)+ c�5

2
((t�b10z)2 +

+ c�5'2

4

�
'
p
�

2
erf
� t
'

�
�'c�5

4
te�

t2

'2 +

+ (c�4+c�5(t�b10z))'
2

2

�
1�e� t2

'2
��
:

(55)

4 Computation and discussions

We have calculated the spatial temperature, displacement and
stress �, w, �xx, �yy and �zz with the time as a parameter
for a heated target with a spatial homogeneous laser radia-
tion having a temporally Gaussian distributed intensity with
a width of (10E-3 s). We have performed the computation for
the physical parameters T0 = 293 K, � = 8954 Kg/m3,

A = 0:01; cE = 383:1 J/kgK;

' = 10�3 s; � = g1g2 = 0:01680089;

�t = 1:78(10�5) K�1; k = 386 W/mK;

� = 7:76(1010) kg/m sec2; � = 3:86(10)10 kg/m sec2

and
t0 = 0:02 sec

for Cu as a target. We obtain the results displayed in the fol-
lowing figures.

Considering surface absorption the obtained results in
Figure 1 show the temperature �, Figure 2 display the tem-
poral temperature distribution and the temporal behavior of
the laser radiation, Figure 3 for the displacement w, Figure 4
for the stress �zz and Figure 5 for the stresses �xx and �yy .

The coupled system of differential equations describing
the thermoelasticity treated through the Laplace transform of
a temporally Dirac distributed laser radiation illuminating ho-
mogeneous a semi-infinite target and absorbed at its irradi-
ated surface. Since the system is linear the response of the
system on the Dirac function was convoluted with a tem-
porally Gaussian distributed laser radiation. The theoretical
obtained results were applied on the Cu target. Figure 1 il-
lustrates the calculated spatial distribution of the temperature
per unit intensity at different values of the time parameter
(t = 0:005; 0:007; 0:01; 0:015; and 0:02). From the curves it
is evident that the temperature has a finite velocity expressed
through the strong gradient of the temperature which moves
deeper in the target as the time increases.

Fig. 1: The temperature distribution � per unit intensity versus z
with the time as a parameter.

Fig. 2: (A) The temporal temperature distribution � per unit inten-
sity form the. (B) The temporal behavior of the laser radiation which
is assumed to have a Gaussian distribution with width ' = 10�3s.

Figure 2 represent the calculated front temporal tempera-
ture distribution per unit intensity (curve A); as a result of the
temporal behavior of the laser radiation which is assumed to
have a Gaussian distribution with a width equals to (10E-3 s)
(curve B). From the figure it is evident that the temperature
firstly increases with increasing the time this can be attributed
to the increased absorbed energy which over compensates the
heat losses given by the heat conductivity inside the material.
As the absorbed power equals the conducted one inside the
material the temperature attains its maximum value. the max-
imum of the temperature occurs at later time than the maxi-
mum of the radiation this is the result of the heat conductivity
of Cu and the relatively small gradient of the temperature in
the vicinity of z = 0 as seen from Figure 1. After the ra-
diation becomes week enough such that it can not compen-
sate the diffused power inside the material the temperature
decreases monotonically with increasing time.

Figure 3 shows the calculated spatial displacement per
unit intensity at different times(0:01; 0:015 and 0:02). The
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Fig. 3: The displacement distribution u per unit intensity versus z
with the time as a parameter.

Fig. 4: The stress �zz distribution per unit intensity versus z with
the time as a parameter.

displacement increases monotonically with time. It attains
smaller gradient with increasing z. Both effects can be at-
tributed to the temperature behavior. The negative displace-
ment results from the co-ordinate system which is located at
the front surface with positive direction of the z-axis pointing
down words.

Figure 4 illustrates the spatial distribution of stress �zz
per unit intensity at the times (0.01, 0.015 and 0.02). Since,
�zz = �e��1�, thus from Figure 3 �zz attains maxima at the
locations for which the gradient of the displacement exhibits
maxima and this is practically at the same points for which
�zz is maximum. The calculations showed that �xx and �yy
have the same behavior as �zz .

5 Results and conclusions

The thermoelasticity problem formulated by a coupled linear
system of partial differential equations was discussed. The
system was decoupled to provide a fourth order linear differ-
ential equations which were solved analytically using Laplace

Fig. 5: The stress distribution �xx and �yy per unit intensity versus
z with the time as a parameter.

transform. The small time approximation analysis was per-
formed for the solution of temperature, displacement and for
the stresses; showing that the finite velocity of the temper-
ature described by the D.Es system was not affected by the
small time approximation.
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The positive and negative parity states of the even-even 98-108Ru isotopes are studied
within the frame work of the interacting boson approximation model (IBA � 1). The
calculated levels energy, potential energy surfaces, V (�; ), and the electromagnetic
transition probabilities, B(E1) and B(E2), show that ruthenium isotopes are transi-
tional nuclei. Staggering effectle, �I = 1, has been observed between the positive and
negative parity states in some of ruthenium isotopes. The electric monopole strength,
X(E0=E2), has been calculated. All calculated values are compared with the available
experimental and theoretical data wher reasonable agreement has obtained.

1 Introduction

The mass region A= 100 has been of considerable interst for
nuclear structure studies as it shows many interesting fea-
tures. These nuclei show back bending at high spin and shape
transitions from vibrational to -soft and rotational charac-
ters. Many attempts have made to explore these structural
changes which is due mainly to the n-p interactions.

Experimentally, the nuclear reaction 100Mo (�, xn) [1]
has been used in studying levels energy of 100Ru. Angular
distribution, - coincidences were measured, half life time
has calculated and changes to the level scheme were pro-
posed. Also, double beta decay rate of 100Mo to the first
excited 0+ state of 100Ru has measured experimentally [2]
using - coincidence technique.

Doppler-shift attenuation measurements following the
100Ru (n, n`) reaction [3] has used to measure the life times
of the excited states in 100Ru. Absolute transition rates were
extracted and compared with the interacting boson model de-
scription. The 2+(2240.8 keV) state which decays domi-
nantly to the 2+ via 1701 keV transition which is almost pure
M1 in nature considered as a mixed-symmetry state. Again
100Ru has been studied [4] experimently and several levels
were seen where some new ones are detected below 3.2 MeV.

The excited states of 102Ru have been investigated using
96Zr (10B, p3n) reaction [5] at a beam of energy 42 MeV
and the emitted  rays were detected.The analysis indicated
that the nucleus is a -soft and the band crossing as well as
staggering effect have observed.

Theoretically many models have been applied to ruthe-
nium isotopes. Yukawa folded mean field [6] has applied to
100Ru nucleus while the microscopic vibrational model has
applied to 104Ru and some other nuclei with their daughters
[7]. The latter model was successful in describing the yrast
0+ and 2+ states of most of these nuclei and also some of
their half-lives.

The very high-spin states of nuclei near A�100 are inves-

tigated by the Cranked Strutinsky method [8] and many very
extended shape minima are found in this region. Interacting
boson model has been used in studying Ru isotopes using
a U(5)–O(6) transitional Hamiltonian with fixed parameters
[9, 10] except for the boson number N . The potential arising
from a coherent-state analysis indicate that 104Ru is close to
the critical point between spherical and -unstable structures.

Hartree-Fock Bogoliubov [11] wave functions have been
tested by comparing the theoretically calculated results for
100Mo and 100Ru nuclei with the available experimental data.
The yrast spectra , reduced B (E2; 0+! 2+) transition prob-
abilities, quadrupole momentsQ(2+) and g factors, g(2+) are
computed. A reasonable agreement between the calculated
and observed has obtained.

The microscopic anharmonic vibrator approach (MAVA)
[12] has been used in investigating the low-lying collective
states in 98-108Ru. Analysis for the level energies and elec-
tric quadrupole decays of the two-phonon type of states in-
dicated that 100Ru can interpreted as being a transitional nu-
cleus between the spherical anharmonic vibrator 98Ru and the
quasirotational 102-106Ru isotopes.

A new emprical approach has proposed [13] which based
on the connection between transition energies and spin. It
allows one to distinguish vibrational from rotational charac-
ters in atomic nuclei. The cranked interacting boson model
[14] has been used in estimating critical frequencies for the
rotation-induced spherical-to-deformed shape transition in
A= 100 nuclei. The predictions show an agreement with the
back bending frequencies deduced from experimental yrast
sequences in these nuclei.

The aim of the present work is to use the IBA�1 [15–17]
for the following tasks:

(1) calculating the potential energy surfaces, V (�; ), to
know the type of deformation exists;

(2) calculating levels energy, electromagnetic transition
rates B(E1) and B(E2);
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nucleus EPS PAIR ELL QQ OCT HEX E2SD(eb) E2DD(eb)
98Ru 0.6280 0.000 0.0090 �0.0010 0.0000 0.0000 0.1250 �0.3698
100Ru 0.5950 0.000 0.0085 �0.0200 0.0000 0.0000 0.1160 �0.3431
102Ru 0.5650 0.0000 0.0085 �0.0200 0.0000 0.0000 0.1185 �0.3505
104Ru 0.4830 0.0000 0.0085 �0.0200 0.0000 0.0000 0.1195 �0.3535
106Ru 0.4560 0.0000 0.0085 �0.0200 0.0000 0.0000 0.1020 �0.3017
108Ru 0.4540 0.0000 0.0085 �0.0200 0.0000 0.0000 0.1035 �0.3062

Table 1: Parameters used in IBA-1 Hamiltonian (all in MeV).

(3) studying the relation between the angular momentum
I , the rotational angular frequency ~! for bending in
ruthenium isotopes;

(4) calculating staggering effect and beat patterns to detect
any interactions between the (+ve) and (�ve) parity
states; and

(5) calculating the electric monopole strengthX(E0=E2).

2 (IBA-1) model

2.1 Level energies

IBA-1 model was applied to the positive and negative parity
states in even-even 98-108Ru isotopes. The Hamiltonian em-
ployed in the present calculation is:

H = EPS � nd + PAIR � (P � P )

+
1
2
ELL � (L � L) +

1
2
QQ � (Q �Q)

+ 5OCT � (T3 � T3) + 5HEX � (T4 � T4) ;

(1)

where

P � p =
1
2

24 n(sysy)(0)
0 �

p
5(dydy)(0)

0

o
xn

(ss)(0)
0 �

p
5( ~d ~d)(0)

0

o 35(0)

0

; (2)

L � L = �10
p

3
h
(dy ~d)(1)x (dy ~d)(1)

i(0)

0
; (3)

Q �Q =
p

5

26664
�

(Sy ~d+ dys)(2) �
p

7
2

(dy ~d)(2)
�
x�

(sy ~d+ + ~ds)(2) �
p

7
2

(dy ~d)(2)
�
37775

(0)

0

; (4)

T3 � T3 = �p7
h
(dy ~d)(2)x (dy ~d)(2)

i(0)

0
; (5)

T4 � T4 = 3
h
(dy ~d)(4)x (dy ~d)(4)

i(0)

0
: (6)

In the previous formulas, nd is the number of boson; P �P ,
L �L, Q �Q, T3 �T3 and T4 �T4 represent pairing, angular mo-
mentum, quadrupole, octupole and hexadecupole interactions

between the bosons; EPS is the boson energy; and PAIR,
ELL, QQ, OCT , HEX is the strengths of the pairing, an-
gular momentum, quadrupole, octupole and hexadecupole in-
teractions.

2.2 Transition rates

The electric quadrupole transition operator employed in this
study is:

T (E2) = E2SD � (sy ~d+ dys)(2) +

+
1p
5
E2DD � (dy ~d)(2) : (7)

The reduced electric quadrupole transition rates between
Ii ! If states are given by

B (E2; Ii � If ) =
[< If k T (E2) k Ii >]2

2Ii + 1
: (8)

3 Results and discussion

3.1 The potential energy surfaces

The potential energy surfaces [18], V (�, ), as a function of
the deformation parameters � and  are calculated using:

EN�N� (�; ) = <N�N� ;� jH�� jN�N� ;�> =

= �d(N�N�)�2(1 + �2) + �2(1 + �2)�2�
��kN�N�[4� ( �X� �X�)� cos 3]

	
+

+
�

[ �X� �X��2] +N�(N� � 1)
�

1
10
c0 +

1
7
c2
�
�2
�
;

(9)

where

�X� =
�

2
7

�0:5

X� � = � or � : (10)

The calculated potential energy surfaces, V (�; ), are
presented in Fig. 1. It shows that 98Ru is a vibrational —
like nucleus while 100�104Ru are -soft where the two wells
on the oblate and prolate sides are equal. 106;108Ru are rota-
tional - like where they are prolate deformed.
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I+i I+f
98Ru 100Ru 102Ru 104Ru 106Ru 108Ru

01 Exp*. 21 0.392(12) 0.490(5) 0.630(10) 0.820(12) 0.770(20) 1.010(15)

01 Theor. 21 0.3930 0.4853 0.6279 0.8274 0.7737 1.0110

21 01 0.0786 0.0970 0.1256 0.1655 0.1547 0.2022

22 01 0.0000 0.0006 0.0012 0.0027 0.0032 0.0040

22 02 0.0226 0.0405 0.0548 0.0826 0.0870 0.1257

23 01 0.0000 0.0000 0.0000 0.0002 0.0006 0.0017

23 02 0.0658 0.0759 0.0993 0.1135 0.0853 0.0830

23 03 0.0093 0.0087 0.0121 0.0207 0.0264 0.0402

24 03 0.0041 0.0066 0.0121 0.0286 0.0448 0.0795

24 04 0.0565 0.0588 0.0712 0.0786 0.0530 0.0448

41 21 0.1260 0.1683 0.2257 0.3071 0.2912 0.3791

41 22 0.0092 0.0142 0.0190 0.0271 0.0267 0.0360

41 23 0.0269 0.0319 0.0424 0.0498 0.0384 0.0386

61 41 0.1420 0.2039 0.2838 0.3897 0.3681 0.4747

61 42 0.0172 0.0179 0.0228 0.0285 0.0256 0.0323

61 43 0.0208 0.0242 0.0333 0.0382 0.0292 0.0300

81 61 0.1264 0.2032 0.2998 0.4208 0.4012 0.5194

81 62 0.0247 0.0183 0.0223 0.0256 0.0217 0.0265

81 63 0.0113 0.0157 0.0239 0.0286 0.0228 0.0247

101 81 0.0791 0.1678 0.2768 0.4081 0.3997 0.5264

101 82 0.0319 0.0175 0.0207 0.0224 0.0183 0.0217
�Ref. 19.
Table 2: Values of the theoretical reduced transition probability, B(E2) (in e2 b2).

I+i I+f
98Ru 100Ru 102Ru 104Ru 106Ru 108Ru

11 01 0.0000 0.0030 0.0050 0.0104 0.0176 0.0261

11 02 0.1084 0.1280 0.1285 0.1280 0.1258 0.1227

31 21 0.1055 0.1211 0.1219 0.1306 0.1432 0.1564

31 22 0.0470 0.0415 0.0471 0.0544 0.0618 0.0712

31 23 0.0013 0.0002 0.0000 —— 0.7737 ——

32 21 0.0158 0.0024 0.0018 0.0029 0.0067 0.0130

32 22 0.0347 0.0197 0.0136 0.0102 0.0104 0.0121

32 23 0.1600 0.2126 0.2119 0.1943 0.1660 0.1352

51 41 0.2261 0.2533 0.2533 0.2605 0.2737 0.2881

51 42 0.0608 0.0480 0.0563 0.0648 0.0714 0.0784

51 43 0.0020 0.0006 —— —— 0.7737 ——

71 61 0.3657 0.3950 0.3912 0.3970 0.4083 0.4213

71 62 0.0609 0.0446 0.0551 0.0641 0.0701 0.0757

91 81 0.5276 0.5439 0.5367 0.5386 0.5465 0.5568

91 82 0.0425 0.0342 0.0472 0.0574 0.0640 0.0695

111 101 0.7143 0.6983 0.6872 0.6845 0.6882 0.6951

Table 3: Values of the theoretical reduced transition probability, B(E1) (in � e2b).
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Fig. 1: Potential energy surfaces for 98-108Ru nuclei.

Fig. 2: Comparison between exp. [21–26] and theoretical (IBA-1) energy levels.
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I+i I+f I+0f
98Ru 100Ru 102Ru 104Ru 106Ru 108Ru

02 01 21 0.011 0.027 0.057 0.166 0.213 0.227

03 01 21 0.250 0.347 1.333 0.894 1.076 1.328

03 01 22 0.001 0.009 0.005 0.010 0.086 0.112

03 01 23 1.000 0.042 0.026 0.024 0.043 0.130

03 02 21 —– 0.086 0.500 0.421 0.184 0.171

03 02 22 —– 0.002 0.002 0.004 0.014 0.014

03 02 23 —– 0.010 0.010 0.011 0.007 0.016

04 01 22 1.600 0.010 0.046 —– —– —–

04 01 23 0.024 0.010 0.003 —– —– —–

04 01 24 0.363 0.113 0.003 —– —– —–

04 02 22 1.200 0.030 0.097 —– —– —–

04 02 23 0.018 0.034 0.070 0.114 0.476 0.808

04 02 24 0.272 0.340 0.142 1.035 3.696 2.082

04 03 21 0.111 0.454 —– —– 0.558 0.458

04 03 22 0.600 0.010 0.010 —– 0.002 0.611

04 03 23 0.009 0.011 0.007 —– 0.074 0.058

04 03 24 0.136 0.113 0.015 —– 0.575 0.150

Table 4. Theoretical Xif 0f (E0/E2) in Ru isotopes.

3.2 Energy spectra

The energy of the positive and negative parity states of ruthe-
nium series of isotopes are calculated using computer code
PHINT [20]. A comparison between the experimental spec-
tra [21–26] and our calculations, using values of the model
parameters given in Table 1 for the ground state band are il-
lustrated in Fig. 2. The agreement between the calculated lev-
els energy and their correspondence experimental values for
all nuclei are slightly higher especially for the higher excited
states. We believe this is due to the change of the projec-
tion of the angular momentum which is due mainly to band
crossing.

Unfortunately there is no enough measurements of elec-
tromagnetic transition ratesB (E1) orB (E2) for these series
of nuclei. The only measured B (E2; 0+

1 ! 2+
1 )’s are pre-

sented, in Table 2 for comparison with the calculated values.
The parameters E2SD and E2DD are used in the computer
code NPBEM [20] for calculating the electromagnetic tran-
sition rates after normalization to the available experimental
values and displayed in Table 1.

No new parameters are introduced for calculating elec-
tromagnetic transition rates B (E1) and B (E2) of intraband
and interband. Some of the calculated values are presented in
Fig. 3 and show bending at N = 60, 62 which means there is
an interaction between the (+ve) and (�ve) parity states of
the ground state band.

The moment of inertia I and angular frequency ~! are
calculated using equations (11, 12):

2I
~2 =

4I � 2
�E(I ! I � 2)

; (11)

(~!)2 = (I2 � I + 1)
�

�E(I ! I � 2)
(2I � 1)

�2

: (12)

The plots in Fig. 4 show back bending at angular mo-
mentum I+ = 10 for 98-108Ru except 106Ru where there is
no experimental data available. It means, there is a cross-
ing between the (+ve) and (�ve) parity states in the ground
state band which confirmed by calculating staggering effect
to these series of nuclei and the bending observed in Fig. 3.

Fig. 3: The calculated B(E2)’s for the ground state band.

3.3 Electric monopole transitions

The electric monopole transitions, E0, are normally occur-
ring between two states of the same spin and parity by trans-
ferring energy and zero unit of angular momentum. The
strength of the electric monopole transition, Xif 0f (E0=E2),
[27] can be calculated using equations (13, 14) and presented
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Fig. 4: Angular momentum I as a function of (~!) .

Fig. 5: �I = 1, staggering patterns for 98-102Ru isotopes.
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in Table 4

Xif 0f (E0=E2) =
B (E0; Ii � If )
B (E2; Ii � I0f )

; (13)

Xif 0f (E0=E2) = (2.54�109)A3=4 �
�E

5
(MeV)

KL

�(E2)
Te(E0; Ii � If )
Te(E2; Ii � I0f )

: (14)

3.4 The staggering

The presence of (+ve) and (�ve) parity states has encour-
aged us to study staggering effect [28–30] for 98-108Ru series
of isotopes using staggering function equations (15, 16) with
the help of the available experimental data [21–26].

Stag (I) = 6�E (I)� 4�E (I � 1)� 4�E (I + 1) +

+ �E (I + 2) + �E (I � 2) ; (15)
with

�E (I) = E (I + 1)� E (I) : (16)

The calculated staggering patterns are illustrated in Fig. 5
and show an interaction between the (+ve) and (�ve) parity
states for the ground state of 98-102Ru nuclei.

3.5 Conclusions

IBA-1 model has been applied successfully to 98-108Ru iso-
topes and we have got:

1. The levels energy are successfully reproduced;
2. The potential energy surfaces are calculated and show

vibrational-like to 98Ru, -soft to 100-104Ru and rota-
tional characters to 106-108Ru isotopes where they are
mainly prolate deformed nuclei;

3. Electromagnetic transition rates B (E1) and B (E2)
are calculated;

4. Bending for 98-108Ru has been observed at angular mo-
mentum I+ = 10 except for 106Ru, where there is no
experimental data are available;

5. Electromagnetic transition rates B (E1) and B (E2)
are calculated;

6. Strength of the electric monopole transitions
Xif 0f (E0=E2) are calculated; and

7. Staggering effect has been calculated and beat patterns
are obtained which show an interaction between the
(�ve)and (+ve) parity states for 98-102Ru.
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